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Abstract. Given (M, g) a smooth compact Riemannian manifold of dimen-
sion n ≥ 5, we investigate compactness for the fourth order geometrical equa-

tion Pgu = u2]−1, where Pg is the Paneitz operator, and 2] = 2n/(n − 4) is

critical from the Sobolev viewpoint. We prove that the equation is compact
when the Paneitz operator is of strong positive type.

In 1983, Paneitz [9] introduced a conformally fourth order operator defined on
4-dimensional Riemannian manifolds. Branson [3] generalized the definition to
n-dimensional Riemannian manifolds, n ≥ 5. While the conformal Laplacian is
associated to the scalar curvature, the geometric Paneitz-Branson operator is as-
sociated to a notion of Q-curvature. The Q-curvature in dimension 4, and for
conformally flat manifolds, is the integrand in the Gauss-Bonnet formula for the
Euler characteristic. In this article we let (M, g) be a smooth compact conformally
flat Riemannian n-manifold, n ≥ 5, and consider the geometric Paneitz equation

Pgu = u2]−1 , (0.1)

where Pg is the Paneitz operator in dimension n ≥ 5, u is required to be positive,
and 2] = 2n

n−4 is the critical exponent for the Sobolev embedding. The Paneitz
operator in dimension n ≥ 5 reads as

Pgu = ∆2
gu− divg (Agdu) +

n− 4

2
Qgu ,

where ∆g = −divg∇ is the Laplace-Beltrami operator, Qg is the Q-curvature of g,
Ag is the smooth symmetrical (2, 0)-tensor field given by

Ag =
(n− 2)2 + 4

2(n− 1)(n− 2)
Sgg −

4

n− 2
Rcg ,

and Rcg and Sg are respectively the Ricci curvature and scalar curvature of g.

The Paneitz operator is conformally invariant in the sense that if g̃ = u4/(n−4)g is
conformal to g, then Pg̃(f) = usPg(uf) for all f ∈ C∞(M), where s = 1−2]. From
the viewpoint of conformal geometry, equation (0.1) turns out to be the natural
fourth order analogue of the second order Yamabe equation. We refer to Chang [4]
and Chang and Yang [5] for more details on the above definitions.

In what follows we let H2
2 (M) be the Sobolev space consisting of functions in

L2(M) with two derivatives in L2. As shown in Hebey and Robert [7], up to pass-
ing to a subsequence, bounded sequences (uα) in H2

2 (M) of nonnegative solutions
of (0.1) split into the sum of a nonnegative solution u0, namely the weak limit of
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the uα’s, a finite sum of k bubbles (Biα), obtained by rescaling positive solutions

of the Euclidean equation ∆2u = u2]−1, and a rest Rα which converges strongly
to zero in H2

2 (M) as α → +∞. This splitting provides exact asymptotics for the
uα’s in the Sobolev setting. Following standard terminology, we say that equa-
tion (0.1) is compact if for any bounded sequence (uα) in H2

2 (M) of nonnegative
solutions of (0.1), we necessarily have that k = 0 in such decompositions. Regu-
larity theory, see for instance Esposito-Robert [6], holds for (0.1). Then, thanks
to Agmon-Douglis-Nirenberg-type estimates [1, 2], and estimates like the ones de-
veloped in Hebey, Robert and Wen [8], an equivalent definition for compactness is
that bounded sequences in H2

2 (M) of nonnegative solutions of (0.1) are actually
bounded in C4,θ(M). A major stress in studying compactness is to understand
large solutions. Namely, solutions with large energies which, in studying their pos-
sible blow-up, involve multi-bubbles which may interact one with another on the
pointwise level.

Compactness for fourth order equations like (0.1) was recently studied in Hebey,
Robert and Wen [8]. It was shown in [8] that equations like (0.1) are compact as
long as they are not close to the geometric equation (0.1). In this note we investigate
compactness for the geometric equation (0.1) and show how the analysis developed
in [8] provides an answer to this question of whether (0.1) is compact or not. The
result we get is the fourth order analogue of the result proved in Schoen [10] where
the second order Yamabe equation was investigated. As in Hebey, Robert and Wen
[8], and also Schoen [10], we assume in what follows that (M, g) is conformally
flat (and hence, since n ≥ 5, that the Weyl tensor of g is zero). We let Gg be
the Green’s function of Pg. The Green’s function is unique if Pg is positive. By

conformal invariance of the Paneitz operator, if g̃ = u4/(n−4)g is a conformal metric
to g, then

Gg̃(x, y) =
Gg(x, y)

u(x)u(y)
. (0.2)

It is known that if g̃ is a flat metric around some x0 ∈M , then

Gg̃(x0, x) =
λn

dg̃(x0, x)n−4
+ µg̃(x0, x) , (0.3)

where λ−1
n = 2(n−2)(n−4)ωn−1, ωn−1 is the volume of the unit (n−1)-sphere, and

the function x → µg̃(x0, x) is smooth on M . Combining the above two equations,
noting that conformal changes of metrics which leave a metric flat around one point
come from conformal diffeomorphisms of the Euclidean space, we easily get (as in
Schoen and Yau [11] for the conformal Laplacian) that if g and g̃ = u4/(n−4)g are
conformal metrics, both being flat around x0, then

µg̃(x0, x0) =
µg(x0, x0)

u(x0)2
. (0.4)

In particular, by (0.4), the sign of µg(x0) = µg(x0, x0) does not depend on the
choice of the metric in [g]x0

, where [g]x0
stands for the set of conformal metrics to

g which are flat around x0.

In what follows we say that Pg is of strong positive type if Pg is positive, Gg
is positive, and for any x ∈ M there exists g̃ ∈ [g]x such that µg̃(x) > 0. For
example, the Paneitz operator on quotients of the unit sphere is of strong positive



THE GEOMETRIC PANEITZ EQUATION 3

type. Positivity of the Paneitz operator was studied in Xu and Yang [12]. The
main result of this note is:

Theorem 0.1. The geometric equation (0.1) is compact on compact conformally
flat manifolds of dimensions n ≥ 5 with Paneitz operator of strong positive type.

Let (M, g) be a smooth compact conformally flat manifold of dimension n ≥ 5
with positive Paneitz operator Pg, and positive Green’s function Gg. Given S ⊂M ,
let [g]S be the set of conformal metrics to g which are flat in a neighborhood of S.
We prove Theorem 0.1 by proving that if (uα) is a bounded sequence in H2

2 (M)
of nonnegative solutions of (0.1) which blows up with geometrical blow-up points
S = {x1, . . . , xN}, then uα ⇀ 0 in H2

2 (M) as α→ +∞, and for any g̃ ∈ [g]S , there
exist λi,j > 0 such that for any i = 1, . . . , N ,

µg̃(xi) +
∑
j 6=i

λi,jGg̃(xi, xj) = 0 . (0.5)

Theorem 0.1 clearly follows from (0.5). We prove equation (0.5) in the rest of this
note, using the material proved in Hebey, Robert and Wen [8].

1. Proof of the result

In what follows we prove (0.5), and thus Theorem 0.1. For that purpose we
let (uα) be a bounded sequences in H2

2 (M) of nonnegative nontrivial solutions of
(0.1). Since the Green’s function Gg of Pg is positive, the uα’s are positive. In the
sequel, everything is up to a subsequence. We know from Hebey and Robert [7]
that there exist k ∈ N, u0 ≥ 0 a nonnegative solution of (0.1), and k bubbles (Biα),
i = 1, . . . , k, such that

uα = u0 +

k∑
i=1

Biα +Rα , (1.1)

where Rα → 0 in H2
2 (M) as α → +∞. By contradiction, we assume that k ≥ 1,

and let S = {x1, . . . , xN} be the geometric blow-up points set consisting of the
limits of the centers of the bubbles (Biα). Since bubbles may accumulate one on
another (there are such examples for equations like (0.1), we refer to Hebey, Robert
and Wen [8]), N might be less than k. By conformal invariance we may assume
that g = g̃ is flat around the points in S. Then the geometric Paneitz equation

(0.1) reduces to ∆2
guα = u2]−1

α around the points in S.

A a preliminary step in the proof of (0.5), we come back to the estimates proved
in Hebey, Robert and Wen [8] and explain why they are still valid in the present
context. A rough argument would be that blow-up phenomena are local in nature,
while the Paneitz operator on conformally flat manifolds is locally, up to conformal
changes of the metric, like the Paneitz operator on the sphere (and hence with
positive constant coefficients as in [8]). More details are as follows. First we note
that the standard procedure to get rescaling invariant pointwise estimates, as devel-
oped in [8] for fourth order operators, together with Agmon-Douglis-Nirenberg-type
estimates for fourth order operators, give that there exists C > 0 such that,(

min
1≤i≤k

dg(x
i
α, x)

)n−4
2 ∣∣uα(x)− u0(x)

∣∣ ≤ C (1.2)
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for all α and all x, where u0, the weak limit of the uα’s, is as in (1.1), and where
the xiα’s, i = 1, . . . , k, are the centers of the bubbles (Biα) in (1.1). In particular,
we get with (1.2) that uα → u0 in C4

loc(M\S) as α→ +∞. In addition to (1.2), if
Φα(x) stands for the left hand side in (1.2), we also have that

lim
R→+∞

lim
α→+∞

sup
x∈M\Ωα(R)

Φα(x)
n−4
2 = 0 , (1.3)

where, for R > 0, Ωα(R) is given by Ωα(R) =
⋃k
i=1Bxiα(Rµiα), and the µiα’s are

the weights of the bubbles (Biα) in (1.2). Going on with the estimates in Hebey,
Robert and Wen [8] we may assume, up to renumbering, and up to passing to a
subsequence, that (B1

α) is the bubble in (1.1) with the largest weight. Then we let
the xα’s and µα’s be such that xα = x1

α and µα = µ1
α for all α. A preliminary remark

is that the global splitting estimate ‖uα‖p1,p2,µ−1
α
≤ C in [8] easily follows from the

positivity of the Green’s function with only slight modifications of the arguments in
[8]. The arguments in [8] used the decomposition of the fourth order operator into
the product of two second order operators. We may use instead Agmon-Douglis-
Nirenberg-type estimates and note that the positivity of the Green’s function Gg
implies that Pg satisfies the comparison principle. As an independent easy remark,
since ∆g(∆guα) ≥ 0 around the points in S, there exists C > 0 such that ∆guα ≥
−C in M , for all α. Then, with such an estimate, and the analysis developed in
[8], we easily get that the integral and asymptotic estimates in Hebey, Robert and
Wen [8] follow from (1.1)–(1.3). In several places the computations in [8] simplify
because of the simple nature of the geometric equation around the points in S. By
the asymptotic estimates, if we let ũα be the rescaled function obtained from uα by
ũα(x) = uα

(
expxα(

√
µαx)

)
, we get that there exist δ > 0, A > 0, and a biharmonic

function ϕ ∈ C4 (B0(2δ)) such that, up to a subsequence,

ũα(x)→ A

|x|n−4
+ ϕ(x) (1.4)

in C3
loc (B0(2δ)\{0}) as α → +∞. Moreover, since we assumed that Gg > 0, so

that either u0 ≡ 0 or u0 > 0 everywhere, we also have the important information
that ϕ is positive in B0(2δ) if u0 6≡ 0.

As an important step in the proof of (0.5), we claim that thanks to the asymp-
totics (1.4), and thanks to the property that ϕ is positive if u0 is nonzero, we
necessarily have that u0 ≡ 0 when the uα’s blow up. In order to do this, we use
the Pohozaev identity as in [8], and conformal invariance. The Pohozaev identity
for fourth order equations reads as∫

Ω

(
xk∂ku

)
∆2udx+

n− 4

2

∫
Ω

u∆2udx

=
n− 4

2

∫
∂Ω

(
−u∂∆u

∂ν
+
∂u

∂ν
∆u

)
dσ

+

∫
∂Ω

(
1

2
(x, ν)(∆u)2 − (x,∇u)

∂∆u

∂ν
+
∂(x,∇u)

∂ν
∆u

)
dσ

(1.5)

for all smooth bounded domains Ω in Rn and all u ∈ C4
(
Ω
)
, where ∆ is the

Euclidean Laplacian, ν is the outward unit normal of ∂Ω, and dσ is the Euclidean
volume element on ∂Ω. We apply the Pohozaev identity (1.5) to the uα’s in the ball
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Ω = B0(δ
√
µα). In the process we assimilate xα and 0 (thanks to the exponential

map at xα), and regard uα as a function in the Euclidean space. Noting that∫
Bα

(
xk∂kuα

)
∆2uαdx+

n− 4

2

∫
Bα

uα∆2uαdx = O

(∫
∂Bα

u2]

α dσ

)
,

where Bα = B0(δ
√
µα), and that

∫
∂Bα

u2]

α dσ = o(µ
(n−4)/2
α ) by (1.4), we get with

(1.4), the Pohozaev identity, and the computations developed in [8], that

(n− 2)(n− 4)2ωn−1Aϕ(0)µ
n−4
2

α + o
(
µ
n−4
2

α

)
= 0 ,

where ωn−1 is the volume of the unit (n− 1)-sphere, and A and ϕ are as in (1.4).
In particular, ϕ(0) = 0, and since ϕ > 0 if u0 6≡ 0, this proves the above claim
that we necessarily have that u0 ≡ 0 when the uα’s blow up. With respect to the
terminology in Hebey, Robert and Wen [8], this amounts to say that compactness
reduces to pseudo-compactness for the geometric equation.

Going on with the proof of (0.5), and now that we know that u0 ≡ 0, we need
to add one important estimate to the estimates listed above we proved in [8]. We
claim here that

λαuα(x)→
N∑
i=1

λiGg(xi, x) (1.6)

in C4
loc(M\S) as α → +∞, where λα → +∞ as α → +∞, S = {x1, . . . , xN} is

the geometric blow-up points set of the uα’s, Gg is the Green’s function of Pg, and

the λi ≥ 0, i = 1, . . . , N , are such that
∑N
i=1 λi = 1. In order to prove (1.6),

we use the positivity of Pg and Gg as follows. By the positivity of Pg, the lowest
eigenvalue λ of Pg is positive. If ψ is an eigenfunction for λ, letting Pgu = |Pgψ|,
and writing that Pgu ≥ Pgψ and Pgu ≥ −Pgψ, we get with the positivity of Gg
that u ≥ |ψ|. Noting that u > 0 since Pgu = λ|ψ| and Gg > 0, plugging u into the
Rayleigh characterization of λ, it follows that either ψ < 0 or ψ > 0. Without loss
of generality we may assume that ψ > 0. Then the conformal metric g̃ = ψ4/(n−4)g
is such that Qg̃ > 0, where Qg̃ is the Q-curvature of g̃. By conformal invariance,

u = ψ−1uα solves the equation Pg̃u = u2]−1. Integrating over M , since Qg̃ > 0, we
get that there exists C > 0 such that ‖uα‖L1(M) ≤ C‖uα‖sLs(M) where s = 2] − 1.

By Agmon-Douglis-Nirenberg-type estimates, noting that (1.2) gives that the uα’s
are bounded in C0

loc(M\S) as α → +∞, we get that for any p > 1, and any
δ > 0, the L∞-norm of the uα’s in sets like M\Bδ is controled by the Lp-norm
of the uα’s in M , where Bδ is the union over the x ∈ S of the geodesic balls
Bx(δ). By the above estimate, using Hölder’s inequality with 1 ≤ p ≤ 2], choosing
p > 1 close to 1, and since uα → 0 in Lq(M) for q < 2], it easily follows that
‖uα‖Ls(M\Bδ) = o

(
‖uα‖Ls(M)

)
for all δ > 0, where s is as above. In particular, the

λi’s given by

λi = lim
α→+∞

∫
Bxi (δ)

u2]−1
α dvg∫

M
u2]−1
α dvg

are nonnegative, independent of δ > 0 small, and such that
∑
λi = 1. In what

follows we let λα = ‖uα‖1−2]

2]−1
. Then λα → +∞ as α → +∞, while we can write
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with the Green’s representation formula that for x ∈M\Bδ, and 0 < δ′ � δ,

uα(x) =

∫
Bδ′

Gg(x, y)u2]−1
α (y)dvg(y) +

∫
M\Bδ′

Gg(x, y)u2]−1
α (y)dvg(y)

=

(
N∑
i=1

λiGg(xi, x) + oδ′(1)

)
λ−1
α ,

where limδ′→0 limα→+∞ oδ′(1) = 0. In particular, λαuα(x) →
∑N
i=1 λiGg(xi, x) in

C0
loc(M\S) as α→ +∞, an equation from which we easily get that (1.6) is true.

With (1.6) we can now end the proof of (0.5). If f stands for the function in

the right hand side of (1.6), then ∆2f = 0 in a set like Ω =
⋃N
i=1Bxi(δ0)\S where

δ0 > 0. We apply the Pohozaev identity (1.5) to the uα’s in Bxi(δ) for δ > 0
small and i in {1, . . . , N}. In the process we assimilate xi and 0 (thanks to the
exponential map at xi), and regard uα as a function in the Euclidean space. Noting
that ∫

B

(
xk∂kuα

)
∆2uαdx+

n− 4

2

∫
B

uα∆2uαdx = O

(∫
∂B

u2]

α dσ

)
,

where B = B0(δ), it follows from (1.6) and the Pohozaev identity that

n− 4

2

∫
∂B0(δ)

(
−f ∂∆f

∂ν
+
∂f

∂ν
∆f

)
dσ

+

∫
∂B0(δ)

(
1

2
(x, ν)(∆f)2 − (x,∇f)

∂∆f

∂ν
+
∂(x,∇f)

∂ν
∆f

)
dσ = 0 .

(1.7)

By (0.3), and (1.6), we can write that

f(x) =
λ̂i

|x− xi|n−4
+Ri(x)

for x 6= xi close to xi, where λi is as in (1.6), λ̂i = λnλi, λn is as in (0.3), Ri is
smooth around xi, and

Ri(xi) = λiµg(xi) +
∑
j 6=i

λjGg(xj , xi) .

Plugging these equations into (1.7), letting δ → 0, we get that Ri(xi) = 0. This
equation holds for all i = 1, . . . , N , and we assumed that Gg > 0. It follows that
λi > 0 for all i. This ends the proof of (0.5) and of Theorem 0.1.

As a remark, Theorem 0.1 still holds if we replace in (0.1) the critical exponent 2]

by 2]−pα where pα ≥ 0 is such that pα → 0 as α→ +∞. In this case the left hand
side in (0.5) is not anymore zero but nonpositive. Needless to say, compactness of
the subcritical equations provides a minimizing solution of (0.1).
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