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The Paneitz operator discovered in [11] is the fourth order operator defined on
a 4-dimensional Riemannian manifold (M, g) by

P 4
g u = ∆2

gu− divg
(2

3
Sgg − 2Rcg

)
du

where ∆gu = −divg∇u is the Laplacian of u with respect to g, Sg is the scalar
curvature of g, and Rcg is the Ricci curvature of g. An extension to manifolds of
dimension n ≥ 5, due to Branson [2], is the fourth order operator defined by

Png u = ∆2
gu− divg

(
(n− 2)2 + 4

2(n− 1)(n− 2)
Sgg −

4

n− 2
Rcg

)
du+

n− 4

2
Qngu

where

Qng =
1

2(n− 1)
∆gSg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
S2
g −

2

(n− 2)2
|Rcg|2

Both P 4
g and Png have conformal properties: for all u ∈ C∞(M), P 4

g̃ u = e−4ϕP 4
g u

when n = 4 and g̃ = e2ϕg, while Png (uϕ) = ϕ(n+4)/(n−4)Png̃ u when n ≥ 5 and

g̃ = ϕ4/(n−4)g. With respect to these relations, P 4
g in dimension 4 is a natural

analogue of ∆g in dimension 2, while Png in dimension n ≥ 5 is a natural analogue

of the conformal Laplacian ∆g + n−2
4(n−1)Sg in dimension n ≥ 3. Possible references

on the subject are the survey articles [3] by Chang, and [4] by Chang and Yang.

We let here (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 5, and say that a fourth order operator Pg is a Paneitz type operator with
constant coefficients if

Pgu = ∆2
gu+ α∆gu+ au (0.1)

where α, a ∈ R. When g is Einstein, Png = Pg for some α and a. Let 2] = 2n/(n−4)

be the critical Sobolev exponent for the embedding of the Sobolev space H2
2 in Lp-

spaces. We are mainly concerned in this article with two questions. On the one
hand to find necessary and sufficient conditions on α and a for Pg to be coercive.
On the other hand to describe Palais-Smale sequences for the higher order analogue
of Yamabe type equations

Pgu = |u|2
]−2u (0.2)

By the mountain pass lemma of Ambrosetti and Rabinowitz [1], it easily follows
that if Pg is coercive, then there exist Palais-Smale sequences for this equation.
Minimizing positive solutions to (0.2) have been obtained in Djadli, Hebey and
Ledoux [5]. Positivity for the 4-dimensional Paneitz operator P 4

g is studied in the
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very nice Gursky [7]. The study of the analogue of (0.2) in dimension 4 is subject
to an intensive literature. We refer to the survey articles [3] by Chang, and [4] by
Chang and Yang, and to the references they contain, for more information.

1. Coercivity

Given (M, g) a smooth compact n-dimensional Riemannian manifold, n ≥ 5, we
let H2

2 (M) be the Sobolev space defined as the completion of the space of smooth
functions on M with respect to the norm

‖u‖2H2
2

=

∫
M

(∆gu)
2
dvg +

∫
M

|∇u|2dvg +

∫
M

u2dvg

The Paneitz type operator Pg as given by (0.1) is said to be coercive if there exists
λ > 0 such that for any u ∈ H2

2 (M),∫
M

(Pgu)udvg ≥ λ‖u‖2H2
2

where the left hand side of this inequality has to be understood in the distributional
sense. An equivalent definition is that there exists λ > 0 such that for all u ∈
H2

2 (M), ∫
M

(Pgu)udvg ≥ λ
∫
M

u2dvg

As already mentioned, we are concerned in this section with necessary and sufficient
conditions on a and α for Pg to be coercive. By taking u ≡ 1 in the definition of
the coercivity, one sees that a has to be positive. In what follows, we denote by

λ0 = 0 < λ1 < λ2 < · · · < λk < · · · < +∞
the ordered sequence of the eigenvalues of the Laplacian ∆g, and let Λk be the
eigenspace corresponding to the eigenvalue λk. Given a > 0, and k ∈ N, k ≥ 1, we
also let

ak = λk +
a

λk
The answer to our question is given by the following result.

Theorem 1.1. Given a > 0, let ka ∈ N, ka ≥ 1, be such that λka−1 <
√
a ≤ λka .

Let also α0 = α0(a) be the largest α such that, for all u ∈ H2
2 (M),∫

M

(∆gu)
2
dvg + a

∫
M

u2dvg ≥ α
∫
M

|∇u|2dvg (1.1)

Then, the following holds:

(1) α0 = aka−1 if λ2
ka−1 < a < λka−1λka ;

(2) α0 = λka−1 + λka if a = λka−1λka ;

(3) α0 = aka if λka−1λka < a ≤ λ2
ka

.

Moreover, u realizes the equality in the optimal inequality∫
M

(∆gu)
2
dvg + a

∫
M

u2dvg ≥ α0

∫
M

|∇u|2dvg (1.2)

if and only if u ∈ Λka−1 in case (1), u ∈ Λka−1 ⊕ Λka in case (2), and u ∈ Λka
in case (3). In particular, Pg as given by (0.1) is coercive if and only if a > 0 and
α > −α0(a).
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Proof. By definition,

α0 = inf
u∈H

∫
M

(
(∆gu)

2
+ au2

)
dvg

where

H =

{
u ∈ H2

2 (M) ,

∫
M

|∇u|2dvg = 1

}
Given k ∈ N, k ≥ 1, and taking u ∈ Λk in (1.2), one gets that α0 ≤ ak for all k ≥ 1.
Independently, by standard variational technics, one gets that there exists u0 ∈ H
such that for all ϕ ∈ H2

2 (M),∫
M

(∆gu0) (∆gϕ) dvg + a

∫
M

u0ϕdvg = α0

∫
M

(∇u0,∇ϕ) dvg

Taking ϕ ∈ Λk, k ≥ 1, in this relation gives that

λk (ak − α0)

∫
M

u0ϕdvg = 0 (1.3)

In the same order of ideas, taking for ϕ a constant function, one gets that u0⊥Λ0.
Let f : R→ R be the real valued function defined for x > 0 by

f(x) = x+
a

x

Then f is decreasing for x <
√
a, and increasing for x ≥

√
a. Moreover, f goes

from +∞ to 2
√
a when x goes from 0+ to

√
a, and f then goes from 2

√
a to +∞

when x goes from
√
a to +∞. Set now

bk = min
1≤i≤k

ai

and let ka be as in the theorem. As a first and main step, we claim that α0 = bka .
According to what we said above, α0 ≤ bka . Suppose that α0 < bka . Then α0 < ak
for any k ≥ 1. By (1.3), it follows that u0⊥Λk for all k. Since L2(M) possesses a
basis of eigenfunctions, this implies that u0 ≡ 0, a contradiction. Hence, α0 = bka
and the claim is proved. Let now Ika be the set of the integers i ≥ 1 for which
ai = bka . If i 6∈ Ika , then, again by (1.3), u0⊥Λi. Hence, necessarily,

u0 ∈ ⊕i∈IkaΛi

Conversely, any function in this space realizes the equality in (1.2). As a conse-
quence, u realizes the equality in (1.2) if and only if u ∈ ⊕i∈IkaΛi. In order to end
the proof of the first part of the theorem, note that, according to what we said on
f ,

bka = min (aka−1, aka)

It holds that aka−1 < aka if a < λka−1λka , aka−1 = aka = λka−1 + λka if a =
λka−1λka , and aka−1 > aka if a > λka−1λka . This ends the proof of the first part
of the theorem.

Concerning the second part, it is clear that a > 0 and α > −α0(a) are necessary
conditions for Pg to be coercive. Conversely, suppose that a > 0 and α > −α0(a).
For ε > 0 sufficiently small, α > −α0(a−ε). Then, according to what is said above,
and for all u ∈ H2

2 (M), ∫
M

(Pgu)udvg ≥ ε
∫
M

u2dvg

This proves the theorem. �
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2. Struwe’s compactness

As above, we let (M, g) be a smooth compact Riemannian manifold of dimension
n ≥ 5, and Pg be the fourth order operator given by (0.1). We let also Ig be the
functional defined on H2

2 (M) by

Ig(u) =
1

2

∫
M

(Pgu)udvg −
1

2]

∫
M

|u|2
]

dvg

=
1

2

∫
M

(∆gu)2dvg +
α

2

∫
M

|∇u|2dvg +
a

2

∫
M

u2dvg −
1

2]

∫
M

|u|2
]

dvg

and say that a sequence (um) in H2
2 (M) is a Palais-Smale sequence for Ig if:

1. Ig(um) is bounded in m, and

2. DIg(um)→ 0 strongly as m→ +∞.

When Pg is coercive, Palais-Smale sequences for Ig are easily produced by the
Mountain-Pass lemma of Ambrosetti and Rabinowitz [1]. Indeed, it follows from
the coercivity of Pg and the Sobolev inequality corresponding to the embedding

H2
2 ⊂ L2] , that there exist C1, C2 > 0 such that for all u ∈ H2

2 (M),

Ig(u) ≥ C1‖u‖2H2
2
− C2‖u‖2

]

H2
2

Let Br be the ball of center 0 and radius r in H2
2 (M). Then, for r > 0 small, there

exists ρ = ρ(r), such that for u ∈ ∂Br, Ig(u) ≥ ρ. Independently, Ig(0) = 0, so
that Ig(0) < ρ, while for u0 ∈ H2

2 (M)\{0},
lim

t→+∞
Ig(tu0) = −∞

It follows that there exists an open neighbourhood Br of 0 in H2
2 (M), that there

exists ũ ∈ H2
2 (M)\Br, and that there exists ρ > 0 such that

Ig(0) < ρ , Ig(ũ) < ρ , and Ig(u) ≥ ρ for all u ∈ ∂Br
The Mountain pass lemma of Ambrosetti and Rabinowitz then yields a Palais-Smale
sequence (um) for Ig with the property that

lim
m→∞

Ig(um) = inf
γ∈Γ

max
u∈γ

Ig(u)

where Γ stands for the class of continuous paths joining 0 to ũ.

Let D(Rn) be the set of smooth functions in Rn with compact support. We let
D2

2(Rn) be the completion of D(Rn) with respect to the norm

‖u‖ =

√∫
Rn
|∇2u|2dx =

√∫
Rn

(∆u)
2
dx

For u ∈ D2
2(Rn), we let also E(u) be given by

E(u) =
1

2

∫
Rn

(∆u)2dx− 1

2]

∫
Rn
|u|2

]

dx

where ∆ is the Euclidean Laplacian. Given δ > 0, ηδ denotes a smooth cut-off
function in Rn such that ηδ = 1 in B0(δ) and ηδ = 0 in Rn\B0(2δ). For x ∈ M ,
where (M, g) is a smooth compact Riemannian manifold, and δ < ig/2, where ig is
the injectivity radius, we let ηδ,x be the smooth cut-off function in M given by

ηδ,x(y) = ηδ
(
exp−1

x (y)
)
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where expx is the exponential map at x.

An important result of Struwe [12] describes the behavior of Palais-Smale se-
quences associated to second order equations of the type

∆gu+ au = |u|2
?−2u (2.1)

where 2? = 2n/(n − 2) is the critical exponent for the embedding of the Sobolev
space H2

1 in Lp-spaces. We prove here that the analogue of this result holds when
passing from the above equations to the fourth order equations

∆2
gu+ α∆gu+ au = |u|2

]−2u (2.2)

After blow-up, the limit equation of (2.2) is the equation in the Euclidean space

∆2u = |u|2
]−2u (2.3)

The answer to the second question we asked in the introduction is then given by the
following theorem. Remarks on the case where the Palais-Smale sequence consists
of nonnegative functions, or when Pg is replaced by a more general operator, are
in section 4.

Theorem 2.1. Let (um) be a Palais-Smale sequence for Ig. There exists k ∈ N,
sequences (Rjm), Rjm > 0 and Rjm → +∞ as m → ∞, converging sequences (xjm)
in M , a solution u0 ∈ H2

2 (M) of (2.2), and non-trivial solutions uj ∈ D2
2(Rn) of

(2.3), j = 1, . . . , k, such that, up to a subsequence,

um = u0 +

k∑
j=1

ηjmu
j
m + o(1)

where

ujm(x) =
(
Rjm
)n−4

2 uj
(
Rjm exp−1

xjm
(x)
)
,

ηjm = ηδ,xjm , δ < ig/2, and ‖o(1)‖H2
2
→ 0 as m→ +∞. Moreover,

Ig(um) = Ig(u
0) +

k∑
j=1

E(uj) + o(1)

where o(1)→ 0 as m→∞.

In this paper we regard expx as defined in Rn. An intrinsic definition is possible

if M is parallelizable. If not we let Ωi and Ω̃i, i = 1, . . . , N , be open subsets of
M such that for any i, Ω̃i is parallelizable and Ωi ⊂ Ω̃i, and such that M = ∪Ωi.
The canonical exponential map gives N maps expx defined in Ωi ×Rn, and expx
is, depending on the situation, one of these maps. A property of expx that holds
for any x ∈M should then be regarded as a property that holds for any i and any
x ∈ Ωi.

The proof of this theorem proceeds in several steps and follows for a large part
the lines of the original proof by Struwe [12] where the behavior of Palais-Smale
sequences associated to the second order equation (2.1) is described. First, we claim
that the following result holds:

Step 1. Palais-Smale sequences for Ig are bounded in H2
2 (M).
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Proof of step 1. Let (um) be a Palais-Smale sequence for Ig. Then,

DIg(um).um =

∫
M

(Pgum)umdvg −
∫
M

|um|2
]

dvg = o
(
‖um‖H2

2

)
so that

Ig(um) =
2

n

∫
M

|um|2
]

dvg + o
(
‖um‖H2

2

)
(2.4)

The embedding of H2
2 (M) in H2

1 (M) being compact, for any ε > 0 there exists
Bε > 0 such that for all u ∈ H2

2 (M),

‖u‖2H2
1
≤ ε‖u‖2H2

2
+Bε‖u‖22] (2.5)

where ‖u‖2
H2

1
= ‖∇u‖22 + ‖u‖22. Clearly,

‖um‖2H2
2
≤
∫
M

(Pgum)umdvg + C(α, a)‖um‖2H2
1

where C(α, a) = max (|α− 1|, |a− 1|). Choosing ε in (2.5) sufficiently small such
that C(α, a)ε ≤ 1/2, and since Ig(um) = O(1), we get with (2.4) and (2.5) that

‖um‖2H2
2
≤ O(1) + o

(
‖um‖H2

2

)
This proves step 1. �

Now, we enter into a more specific study of Palais-Smale sequences, and claim
that the following result holds:

Step 2. Let (um) be a Palais-Smale sequence for Ig such that um ⇀ u0 weakly
in H2

2 (M), um → u0 strongly in H2
1 (M), and um → u0 almost everywhere. Let

vm = um − u0, and Jg be the functional Ig when α = a = 0. Then (vm) is a
Palais-Smale sequence for Jg and

Jg(vm) = Ig(um)− Ig(u0) + o(1)

where o(1)→ 0 as m→∞. Moreover, u0 is a solution of (2.2).

Proof of step 2. We first observe that for any ϕ ∈ C∞(M),

DIg(um).ϕ =

∫
M

(Pgϕ)umdvg −
∫
M

|um|2
]−2umϕdvg = o(1)

By step 1, (um) is bounded in H2
2 (M). Passing to the limit as m → +∞ in this

relation, we get that u0 is a solution of (2.2). Now, we compute the energy of vm.
Since vm ⇀ 0 weakly in H2

2 (M), and vm → 0 strongly in H2
1 (M),

Ig(um) = Ig(u
0) + Jg(vm)− 1

2]

∫
M

(
|vm + u0|2

]

− |vm|2
]

− |u0|2
]
)
dvg + o(1)

Let C > 0 be such that for any x, y ∈ R,∣∣∣|x+ y|2
]

− |x|2
]

− |y|2
]
∣∣∣ ≤ C (|x|2]−1|y|+ |y|2

]−1|x|
)

Integration theory gives that∫
M

(
|vm + u0|2

]

− |vm|2
]

− |u0|2
]
)
dvg = o(1)

and we get that

Jg(vm) = Ig(um)− Ig(u0) + o(1)
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Summarizing, we are left with the proof that (vm) is a Palais-Smale sequence for
Jg. Let ϕ ∈ C∞(M). Then,

DIg(um).ϕ = DJg(vm).ϕ−
∫
M

Φmϕdvg + o
(
‖ϕ‖H2

1

)
where

Φm = |vm + u0|2
]−2(vm + u0)− |vm|2

]−2vm − |u0|2
]−2u0

We let C > 0 be such that for any x, y ∈ R,∣∣∣|x+ y|2
]−2 (x+ y)− |x|2

]−2x− |y|2
]−2y

∣∣∣ ≤ C (|x|2]−2|y|+ |y|2
]−2|x|

)
By Hölder’s inequality,∣∣∣∣∫

M

Φmϕdvg

∣∣∣∣ ≤ C (∥∥∥|vm|2]−2u0
∥∥∥

2]/(2]−1)
+
∥∥∥|u0|2

]−2vm

∥∥∥
2]/(2]−1)

)
‖ϕ‖2]

while, ∥∥∥|vm|2]−2u0
∥∥∥

2]/(2]−1)
+
∥∥∥|u0|2

]−2vm

∥∥∥
2]/(2]−1)

= o(1)

The Sobolev inequality corresponding to the embedding of H2
2 (M) in L2](M) then

gives that

DIg(um).ϕ = DJg(vm).ϕ+ o
(
‖ϕ‖H2

2

)
This implies that (vm) is a Palais-Smale sequence for Jg. Step 2 is proved. �

In what follows, we let β] = 2
nK
−n/4
0 , where K0 is the best constant K in the

Euclidean Sobolev inequality(∫
Rn
|u|2

]

dx

)2/2]

≤ K
∫
Rn

(∆u)
2
dx

By Edmunds, Fortunato and Janelli [6], Lieb [8], and Lions [10],

K−1
0 = π2n(n− 4)(n2 − 4)Γ

(n
2

)4/n

Γ (n)
−4/n

where Γ(x) =
∫∞

0
tx−1e−tdt, x > 0, is the Euler function. We claim that the

following result holds:

Step 3. Let (vm) be a Palais-Smale sequence for Jg such that vm ⇀ 0 weakly in
H2

2 (M), and such that Jg(vm) → β where β < β]. Then vm → 0 strongly in
H2

2 (M).

Proof of step 3. By step 1, (vm) is bounded in H2
2 (M), and we have that

Jg(vm) =
2

n
‖vm‖2

]

2] + o(1) =
2

n
‖∆gvm‖22 + o(1) = β + o(1) (2.6)

As a consequence, β ≥ 0. By Djadli, Hebey and Ledoux [5], for any ε > 0, there
exists Bε > 0 such that for all u ∈ H2

2 (M),

‖u‖22] ≤ (K0 + ε) ‖∆gu‖22 +Bε‖u‖22
Since the embedding of H2

2 (M) in H2
1 (M) is compact, we may assume that vm → 0

strongly in H2
1 (M), and in particular that vm → 0 strongly in L2(M). Then,
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applying the above sharp Sobolev inequality to vm, and letting m go to +∞, we
get with (2.6) that for any ε > 0,(n

2
β
)2/2]

≤ (K0 + ε)
n

2
β

Taking ε > 0 sufficiently small, this inequality is impossible if β > 0 and β < β].
Hence, β = 0, and by (2.6), vm → 0 strongly in H2

2 (M). Step 3 is proved. �

As a remark, note that it follows from steps 2 and 3 that if (um) is a Palais-Smale
sequence for Ig, and Ig(um) → β, where β < β], then, up to a subsequence, (um)
converges strongly to some u0 in H2

2 (M). In other words, compactness holds for
Palais-Smale sequences when the energy is (strictly) below the minimum energy.
Another illustration of this fact is in Djadli, Hebey and Ledoux [5] when dealing
with minimizing sub-critical sequences associated to (2.2).

The following lemma is the main ingredient in the proof of Theorem 2.1. We
postpone its proof to section 3.

Lemma 2.1. Let (vm) be a Palais-Smale sequence for Jg such that vm ⇀ 0 weakly
in H2

2 (M) but not strongly. There exist a sequence (Rm), Rm > 0 and Rm → +∞
as m → ∞, a converging sequence (xm) in M , and a non-trivial solution v ∈
D2

2(Rn) of (2.3), such that, up to a subsequence, the following holds: if

wm = vm − ηmv̂m ,

then (wm) is a Palais-Smale sequence for Jg such that wm ⇀ 0 weakly in H2
2 (M)

and

Jg(wm) = Jg(vm)− E(v) + o(1) ,

where

v̂m(x) = (Rm)
n−4
2 v

(
Rm exp−1

xm(x)
)
,

ηm = ηδ,xm , δ < ig/2, and o(1)→ 0 as m→∞.

By steps 1 to 3, and Lemma 2.1, we are now in position to prove the theorem.
The proof proceeds as follows:

Proof of Theorem 2.1. First, we claim that non-trivial solutions to (2.3) have their
energy bounded from below by β]. Indeed, if u ∈ D2

2(Rn) is a non-trivial solution
to (2.3), it follows from the sharp Euclidean Sobolev inequality that∫

Rn
(∆u)

2
dx =

∫
Rn
|u|2

]

dx ≤ K2]/2
0

(∫
Rn

(∆u)
2
dx

)2]/2

Then, ‖∆u‖22 ≥ K
−n/4
0 , and E(u) ≥ β]. This proves the claim. In order to prove

the theorem, we let (um) be a Palais-Smale sequence for Ig. According to step 1,
(um) is bounded in H2

2 (M). Up to a subsequence, we may therefore assume that for
some u0 ∈ H2

2 (M), um ⇀ u0 weakly in H2
2 (M), um → u0 strongly in H2

1 (M), and
um → u0 almost everywhere. We may also assume that Ig(um) → c as m → +∞.
By step 2, u0 is a solution of (2.2) and vm = um − u0 is a Palais-Smale sequence
for Jg such that

Jg(vm) = Ig(um)− Ig(u0) + o(1)

If vm → 0 strongly in H2
2 (M), note that by step 3 this holds if c−Ig(u0) < β], then

um = u0 + o(1), and the theorem is proved. If not, according to the claim at the
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beginning of this proof, we apply Lemma 2.1 to get a new Palais-Smale sequence
(v1
m) of energy

Jg(v
1
m) ≤ Jg(vm)− β] + o(1)

Here again, either v1
m → 0 strongly in H2

2 (M), in which case the theorem is proved,
or v1

m ⇀ 0 weakly but not strongly in H2
2 (M), in which case we apply again

Lemma 2.1. By induction, we get at some point that the Palais-Smale sequence
(vkm) obtained with this process has an energy which converges to some β < β].
Then, by step 3, vkm → 0 strongly in H2

2 (M), and the theorem is proved. �

3. Proof of Lemma 2.1

We prove Lemma 2.1 in this section. Special difficulties that occur in our context
with respect to the original proof of Struwe [12] come from the Riemannian metric
that we have to control (e.g. rescaling arguments change the metric), and from
the fourth order operator we consider (the Laplacian of a function is more difficult
to control than its gradient). If not, this lemma has its exact analogue in Struwe
[12]. In essence, both reduce to the claim that substracting a suitable bubble to a
Palais-Smale sequence, we are left with a Palais-Smale sequence of lower energy.

Up to a subsequence, we may assume that Jg(vm) → β as m → +∞. We may
also assume that vm is smooth, since if not there always exists vm smooth and such
that ‖vm − vm‖H2

2
→ 0. Then, (vm) is a Palais-Smale sequence for Jg such that

vm ⇀ 0 weakly in H2
2 (M) but not strongly, and, as easily checked, if the claim

holds for (vm), then it holds also for (vm). Since DJg(vm) → 0, we get as in step
1 of section 2 that ∫

M

(∆gvm)
2
dvg =

n

2
β + o(1) (3.1)

while, by step 3 of section 2, n
2β ≥ K

−n/4
0 . For t > 0, we let

µm(t) = max
x∈M

∫
Bx(t)

(∆gvm)
2
dvg

Given t0 > 0, it follows from (3.1) that there exist x0 ∈ M and λ0 > 0 such that,
up to a subsequence, ∫

Bx0 (t0)

(∆gvm)
2
dvg ≥ λ0

for all m. Then, since t → µm(t) is continuous, we get that for any λ ∈ (0, λ0),
there exists tm ∈ (0, t0) such that µm(tm) = λ. Clearly, there also exists xm ∈ M
such that

µm(tm) =

∫
Bxm (tm)

(∆gvm)
2
dvg

Up to a subsequence, (xm) converges. We let r0 ∈ (0, ig/2) be such that for all
x ∈M and all y, z ∈ Rn, if |y| ≤ r0 and |z| ≤ r0, then

dg (expx(y), expx(z)) ≤ C0 |z − y|

for some C0 ∈ [1, 2] independent of x, y, and z. Given Rm ≥ 1, and x ∈ Rn such
that |x| < igRm, we let

ṽm(x) = R
4−n
2

m vm
(
expxm(R−1

m x)
)

and g̃m(x) =
(
exp?xmg

)
(R−1

m x)
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Then,

(∆gvm)
(
expxm(R−1

m x)
)

= Rn/2m (∆g̃m ṽm) (x)

and if |z|+ r < igRm,∫
Bz(r)

(∆g̃m ṽm)
2
dvg̃m =

∫
expxm(R−1

m Bz(r))
(∆gvm)

2
dvg (3.2)

Moreover, when |z|+ r < r0Rm,

expxm
(
R−1
m Bz(r)

)
⊂ Bexpxm (R−1

m z)(C0rR
−1
m ) (3.3)

while

expxm
(
R−1
m B0(C0r)

)
= Bxm(C0rR

−1
m ) (3.4)

Given r ∈ (0, r0), we fix t0 such that C0rt
−1
0 ≥ 1. Then, for any λ ∈ (0, λ0), we let

Rm ≥ 1 be such that C0rR
−1
m = tm. By (3.2) to (3.4), for any z ∈ Rn such that

|z| < r0Rm − r,∫
Bz(r)

(∆g̃m ṽm)
2
dvg̃m ≤ λ and

∫
B0(C0r)

(∆g̃m ṽm)
2
dvg̃m = λ (3.5)

As a technical point we will use in the sequel, we claim that there exist δ ∈ (0, ig)
and C1 > 1 such that for any x ∈ M , and any R ≥ 1, if g̃x,R(y) = exp?xg(R−1y),
then

1

C1

∫
Rn

(∆u)
2
dx ≤

∫
Rn

(
∆g̃x,Ru

)2
dvg̃x,R ≤ C1

∫
Rn

(∆u)
2
dx (3.6)

for all u ∈ D2
2(Rn) such that Suppu ⊂ B0(δR). Indeed, given ε > 0, we choose

δ > 0 sufficiently small such that for any x ∈ M , exp?xg and the Euclidean metric
ξ, when restricted to B0(δ), are ε-close in the C1-topology. Then,

∆g̃x,Ru = ∆u+O
(
ε|∇2u|+ ε

R
|∇u|

)
for all u ∈ D2

2(Rn) such that Suppu ⊂ B0(δR), while, according to the Hölder and
Sobolev inequalities,∫

B0(δR)

|∇u|2dx ≤ |B0(δR)|2/n
(∫

B0(δR)

|∇u|2n/(n−2)dx

)(n−2)/n

≤ AR2

∫
Rn
|∇2u|2dx

where |B0(δR)| is the Euclidean volume of B0(δR). Taking ε sufficiently small, we
then get the existence of δ > 0 and C1 > 1 as in the above claim. Clearly, we may
also ask that for all u ∈ L1(Rn) such that Suppu ⊂ B0(δR),

1

C1

∫
Rn
|u|dx ≤

∫
Rn
|u|dvg̃x,R ≤ C1

∫
Rn
|u|dx (3.7)

Now, we let η̃ ∈ D(Rn) be a cut-off function such that 0 ≤ η̃ ≤ 1, η̃ = 1 in B0(1/4)
and η̃ = 0 in Rn\B0(3/4). We set η̃m(x) = η̃(δ−1R−1

m x), where δ is as above. Then,∫
Rn

(∆g̃m η̃mṽm)
2
dvg̃m = O(1)

and it follows from the above claim that η̃mṽm is bounded in D2
2(Rn). In particular,

up to a subsequence, there exists v ∈ D2
2(Rn) such that η̃mṽm ⇀ v weakly in
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D2
2(Rn). As a first step in the proof of Lemma 2.1, we claim that the following

holds:

Step 1. We have that

η̃mṽm → v strongly in H2
2 (B0(C0r)) (3.8)

for r and λ sufficiently small.

Proof of step 1. In order to prove this claim, we let x0 ∈ Rn, and for ρ > 0, we
denote by hρ the standard metric on ∂Bx0

(ρ). By Fatou’s lemma,∫ 2r

r

(
lim inf
m→+∞

∫
∂Bx0 (ρ)

Nξ(η̃mṽm)dvhρ

)
dρ ≤ lim inf

m→+∞

∫
Bx0 (2r)

Nξ(η̃mṽm)dx ≤ C

where Nh(u) = |∇2
hu|2h + |∇u|2h + u2, and ξ is the Euclidean metric. It follows that

there exists ρ ∈ [r, 2r] such that, up to a subsequence, and for all m,∫
∂Bx0 (ρ)

Nξ(η̃mṽm)dvhρ ≤ C

We let C = C(ρ) > 0 be such that for any ϕ ∈ C∞(Rn), Nhρ(ϕ
∣∣∂Bx0 (ρ)

) ≤ CNξ(ϕ)

on ∂Bx0
(ρ). By the above inequality,

‖η̃mṽm‖H2
2(∂Bx0 (ρ)) ≤ C and ‖∂n(η̃mṽm)‖H2

1(∂Bx0 (ρ)) ≤ C

where ∂nu stands for the derivative in the direction of the inward normal to
∂Bx0

(ρ). By compactness of the embeddings H2
2 (∂Bx0

(ρ)) ⊂ H2
3/2 (∂Bx0

(ρ)) and

H2
1 (∂Bx0(ρ)) ⊂ H2

1/2 (∂Bx0(ρ)), and continuity of the trace operators u → u|∂B
and u→ (∂nu)|∂B , we get that, up to a subsequence,

η̃mṽm → v in H2
3/2 (∂Bx0

(ρ)) and ∂n(η̃mṽm)→ ∂nv in H2
1/2 (∂Bx0

(ρ))

Let A = Bx0
(3r)\Bx0

(ρ), and ϕm ∈ D2
2(Rn) be such that ϕm = η̃mṽm − v on

Bx0
(ρ+ ε) and ϕm = 0 on Rn\Bx0

(3r− ε), ε << 1. Let also D2
2(A) be the closure

in H2
2 (A) of D(A), the space of smooth functions with compact support in A. Then,

‖η̃mṽm − v‖H2
3/2

(∂Bx0 (ρ)) = ‖ϕm‖H2
3/2

(∂A)

and

‖∂n(η̃mṽm − v)‖H2
1/2

(∂Bx0 (ρ)) = ‖∂nϕm‖H2
1/2

(∂A)

while there exists ϕ0
m ∈ D2

2(A) such that

‖ϕm + ϕ0
m‖H2

2 (A) ≤ C1‖ϕm‖H2
3/2

(∂A) + C2‖∂nϕm‖H2
1/2

(∂A)

Minimization arguments give that there exists zm ∈ H2
2 (A) such that

∆2zm = 0 in A , zm − ϕm − ϕ0
m ∈ D2

2(A)

and ‖zm‖H2
2 (A) ≤ C‖ϕm + ϕ0

m‖H2
2 (A). Hence, zm → 0 strongly in H2

2 (A). We let

ψm = η̃mṽm − v in Bx0(ρ) , ψm = zm in Bx0(3r)\Bx0(ρ) , ψm = 0 otherwise

Clearly, ψm ∈ D2
2(Rn). Choosing r such that r < min(ig/6, δ/24), we set

ψ̃m(x) = R
n−4
2

m ψm
(
Rmexp

−1
xm(x)

)
if dg(xm, x) < 6r , ψ̃m = 0 otherwise
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Then, η̃
(
δ−1exp−1

xm(x)
)

= 1 if dg(xm, x) < 6r, and if in addition |x0| < 3r, then

DJg(vm).ψ̃m = DJg(η̂mvm).ψ̃m

=

∫
Bx0 (3r)

(∆g̃m(η̃mṽm)) (∆g̃mψm) dvg̃m

−
∫
Bx0 (3r)

|η̃mṽm|2
]−2

(η̃mṽm)ψmdvg̃m

where η̂m(x) = η̃
(
δ−1exp−1

xm(x)
)
. We have that ‖ψ̃m‖H2

2 (M) ≤ C‖ψm‖D2
2(Rn).

Hence, the ψ̃m’s are bounded in H2
2 (M), and it follows that DJg(vm).ψ̃m = o(1).

Since ψm → 0 strongly in H2
2 (A), and ψm ⇀ 0 weakly in D2

2(Rn),∫
Bx0 (3r)

(∆g̃m(η̃mṽm)) (∆g̃mψm) dvg̃m

=

∫
Bx0 (ρ)

∆g̃m(ψm + v)∆g̃mψmdvg̃m + o(1)

=

∫
Rn

(∆g̃mψm)
2
dvg̃m + o(1)

Similarly, one easily gets that∫
Bx0 (3r)

|η̃mṽm|2
]−2

(η̃mṽm)ψmdvg̃m =

∫
Rn
|ψm|2

]

dvg̃m + o(1)

and since DJg(vm).ψ̃m = o(1), it follows that∫
Rn

(∆g̃mψm)
2
dvg̃m −

∫
Rn
|ψm|2

]

dvg̃m = o(1) (3.9)

By the strong convergence ψm → 0 in H2
2 (A), and the weak convergence ψm ⇀ 0

in D2
2(Rn), ∫

Rn
(∆g̃mψm)

2
dvg̃m =

∫
Bx0 (ρ)

(∆g̃m(η̃mṽm − v))
2
dvg̃m + o(1)

=

∫
Bx0 (ρ)

(∆g̃m(η̃mṽm))
2
dvg̃m −

∫
Bx0 (ρ)

(∆g̃mv)
2
dvg̃m + o(1)

It follows that∫
Rn

(∆g̃mψm)
2
dvg̃m ≤

∫
Bx0 (ρ)

(∆g̃m(η̃mṽm))
2
dvg̃m + o(1)

Let N be an integer such that B0(2) is covered by N balls of radius 1 and center
in B0(2). Then there exist N points x1,. . . ,xN in Bx0(2r) such that

Bx0
(ρ) ⊂ Bx0

(2r) ⊂
N⋃
i=1

Bxi(r)

and we get with (3.5) that for x0 and r such that |x0|+ 3r < r0,∫
Rn

(∆g̃mψm)
2
dvg̃m ≤ Nλ+ o(1) (3.10)
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For C1 as in (3.6) and (3.7), and x0 and r such that |x0|+ 3r < δ,(∫
Rn
|ψm|2

]

dvg̃m

)2/2]

≤ C
2/2]

1

(∫
Rn
|ψm|2

]

dx

)2/2]

≤ C
2/2]

1 K0

∫
Rn

(∆ψm)
2
dx

≤ C
1+(2/2])
1 K0

∫
Rn

(∆g̃mψm)
2
dvg̃m

By (3.9) and (3.10) we then get that∫
Rn

(∆g̃mψm)
2
dvg̃m ≤ K2]/2

∫
Rn

(∆g̃mψm)
2
dvg̃m + o(1)

where K = C
1+(2/2])
1 K0 (Nλ+ o(1))

1−(2/2])
. Choosing λ > 0 sufficiently small

such that NC
(2]+2)/(2]−2)
1 K

2/(2]−2)
0 λ < 1, it follows that∫
Rn

(∆g̃mψm)
2
dvg̃m = o(1)

and hence that ψm → 0 strongly in D2
2(Rn). Since r ≤ ρ, it follows that

η̃mṽm → v strongly in H2
2 (Bx0(r)) (3.11)

and the convergence holds as soon as NC
(2]+2)/(2]−2)
1 K

2/(2]−2)
0 λ < 1, |x0| < 3r,

|x0|+ 3r < r0, |x0|+ 3r < δ, and r < min(ig/6, δ/24). We choose λ > 0 such that
the above inequality is satisfied, and r > 0 such that r < min(ig/6, δ/24, r0/6).
Then (3.11) holds for any x0 such that |x0| < 2r. Since C0 ≤ 2, B0(C0r) is covered
by N balls of radius r and center in B0(2r). It follows that η̃mṽm → v strongly in
H2

2 (B0(C0r)), and this proves (3.8). �

In particular, we get from (3.8) that v 6≡ 0. Indeed,

λ =

∫
B0(C0r)

(∆g̃m ṽm)
2
dvg̃m

=

∫
B0(C0r)

(∆g̃m(η̃mṽm))
2
dvg̃m

≤ C1

∫
B0(C0r)

(∆v)
2
dx+ o(1)

and it follows that v 6≡ 0. Another consequence of (3.8) is that Rm → +∞ as
m → +∞. Indeed, if Rm → R as m → +∞, R ≥ 1, then ṽm ⇀ 0 weakly in
H2

2 (B0(C0r)) since vm ⇀ 0 weakly in H2
2 (M), and this is in contradiction with

(3.8) and the fact that v 6≡ 0. Hence,

lim
m→+∞

Rm = +∞ (3.12)

Now, let R ≥ 1 be given. By (3.12), for m large, Rm > R. Then, coming back to
the beginning of the proof of the lemma, (3.5) holds for z such that |z| < r0R− r.
Thus, as easily checked, it follows from the proof of (3.8) that (3.11) holds if |x0| <
3r(2R− 1), |x0|+ 3r < r0R and |x0|+ 3r < δR, where r is as above. In particular,
(3.11) holds if |x0| < 2rR. Hence, η̃mṽm → 0 strongly in H2

2 (B0(2rR)). Since
R ≥ 1 is arbitrary, and η̃m(x) = 1 for m large if |x| ≤ R, we get that for any R > 0,

ṽm → v strongly in H2
2 (B0(R)) (3.13)
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It also follows from (3.12) that the following holds:

Step 2. v is a solution of (2.3).

Proof of step 2. Let ϕ ∈ D(Rn) and let R0 > 0 be such that Suppϕ ⊂ B0(R0). Let
also ϕ̂m be given by

ϕ̂m(x) = R
n−4
2

m ϕ (Rmx)

Then Suppϕ̂m ⊂ B0(R0R
−1
m ). For m large, we let ϕm be the smooth function on

M given by the relation ϕ̂m = ϕm ◦ expxm . Then, for m large,∫
M

∆gvm∆gϕmdvg =

∫
Rn

∆g̃m(η̃mṽm)∆g̃mϕdvg̃m

and ∫
M

|vm|2
]−2vmϕmdvg =

∫
Rn
|η̃mṽm|2

]−2η̃mṽmϕdvg̃m

Since Rm → +∞, g̃m → ξ in C1 (B0(R)) for any R > 0. Moreover, (ϕm) is bounded
in H2

2 (M). Since (vm) is a Palais-Smale sequence for Jg, and η̃mṽm ⇀ v in D2
2(Rn),

we get by passing to the limit as m→ +∞ in the above two relations that∫
Rn

∆v∆ϕdx =

∫
Rn
|v|2

]−2vϕdx

In other words, v ∈ D2
2(Rn) is a solution of (2.3). �

Now, for x ∈M and δ̂ ∈ (0, δ/8), we let

Vm(x) = ηm(x)R
n−4
2

m v
(
Rmexp

−1
xm(x)

)
(3.14)

where ηm = ηδ̂,xm , and set wm = vm − Vm.

Step 3. The following relations hold. On the one hand,

wm ⇀ 0 weakly in H2
2 (M) (3.15)

On the other hand,

DJg(Vm)→ 0 and DJg(wm)→ 0 strongly (3.16)

At last,

Jg(wm) = Jg(vm)− E(v) + o(1) (3.17)

where o(1)→ 0 as m→ +∞.

Proof of step 3. We start with the proof of (3.15). There, it suffices to prove that
Vm ⇀ 0 weakly in H2

2 (M). Given R > 0, we let Ωm(R) = Bxm(R−1
m R). For ϕ a

smooth function on M , and m large,∫
Ωm(R)

Vmϕdvg = R
n−4
2

m

∫
B0(R−1

m R)

ηδ̂(x)v(Rmx)ϕ (expxm(x)) dvgm

where gm = exp?xmg. It follows that for C > 0 such that dvgm ≤ Cdx,∣∣∣∣∣
∫

Ωm(R)

Vmϕdvg

∣∣∣∣∣ ≤ C‖ϕ‖∞R−(n+4)/2
m

∫
B0(R)

|v|dx
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Similarly, by Hölder’s inequality,∣∣∣∣∣
∫
M\Ωm(R)

Vmϕdvg

∣∣∣∣∣ ≤ C‖ϕ‖∞R−(n+4)/2
m

∫
B0(δRm)\B0(R)

|v|dx

≤ C‖ϕ‖∞

(∫
B0(δRm)\B0(R)

|v|2
]

dx

)1/2]

Taking R > 0 sufficiently large, and since Rm → +∞ as m→ +∞, it follows that∫
M
Vmϕdvg → 0 as m→ +∞. With similar estimates, one gets that∫

M

(∇Vm,∇ϕ)g dvg → 0 and

∫
M

∆gVm∆gϕdvg → 0

as m→ +∞. We also do have that (Vm) is bounded in H2
2 (M). This proves (3.15).

Now we prove (3.16). Here again, we let ϕ be a smooth function on M . Then,

DJg(Vm).ϕ =

∫
M

∆gVm∆gϕdvg −
∫
M

|Vm|2
]−2Vmϕdvg

Given R > 0, we write that∫
M

∆gVm∆gϕdvg =

∫
Bxm (R−1

m R)

∆gVm∆gϕdvg +

∫
Bxm (δ)\Bxm (R−1

m R)

∆gVm∆gϕdvg

Easy computations give that∫
Bxm (δ)\Bxm (R−1

m R)

∆gVm∆gϕdvg = O
(
‖ϕ‖H2

2

)
εR

where εR → 0 as R→ +∞. Independently, let ϕm be the function of D2
2(Rn) given

by

ϕm(x) = R
4−n
2

m ηm,δ̂(x) (ϕ ◦ expxm) (R−1
m x)

where ηm,δ̂(x) = ηδ̂(R
−1
m x). Then, for m large,∫

Bxm (R−1
m R)

∆gVm∆gϕdvg =

∫
B0(R)

∆g̃mv∆g̃mϕmdvg̃m

Noting that g̃m → ξ in C1
(
B0(R̃)

)
, R̃ > R, and that∫

Bxm (R−1
m R)

(∆gϕ)
2
dvg =

∫
B0(R)

(∆g̃mϕm)
2
dvg̃m

we get that∫
B0(R)

∆g̃mv∆g̃mϕmdvg̃m =

∫
B0(R)

∆v∆ϕmdx+ o
(
‖ϕ‖H2

2

)
We also do have that∫

B0(R)

∆v∆ϕmdx =

∫
Rn

∆v∆ϕmdx+O
(
‖ϕ‖H2

2

)
εR

where εR is as above. Hence,∫
M

∆gVm∆gϕdvg =

∫
Rn

∆v∆ϕmdx+ o
(
‖ϕ‖H2

2

)
+O

(
‖ϕ‖H2

2

)
εR (3.18)
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In a similar way, we get that∫
M

|Vm|2
]−2Vmϕdvg =

∫
Rn
|v|2

]−2vϕmdx+ o
(
‖ϕ‖H2

2

)
+O

(
‖ϕ‖H2

2

)
εR (3.19)

Since v is a solution of (2.3), it follows from (3.18) and (3.19) that

DJg(Vm).ϕ = o
(
‖ϕ‖H2

2

)
+O

(
‖ϕ‖H2

2

)
εR

and since R > 0 is arbitrary, we get that DJg(Vm) → 0 strongly. Now, we write
that

DJg(wm).ϕ = DJg(vm).ϕ−DJg(Vm).ϕ−A(m) (3.20)

where

A(m) =

∫
M

Φmϕdvg =

∫
Bxm (2δ̂)

Φmϕdvg

and Φm = |wm|2
]−2wm − |vm|2

]−2vm + |Vm|2
]−2Vm. By the Hölder and Sobolev

inequalities,
|A(m)| ≤ ‖Φm‖2]/(2]−1)‖ϕ‖H2

2

Given R > 0, we set Bm = Bxm(R−1
m R) and Bcm = Bxm(2δ̂)\Bxm(R−1

m R). Then,
for m large,

‖Φm‖2]/(2]−1) ≤ ‖Φm‖L2]/(2]−1)(Bm)
+ ‖Φm‖L2]/(2]−1)(Bcm)

and as in step 2 of section 2,

‖Φm‖L2]/(2]−1)(Bcm)
≤ C

(
‖Φ1

m‖L2]/(2]−1)(Bcm)
+ ‖Φ2

m‖L2]/(2]−1)(Bcm)

)
where Φ1

m = |vm|2
]−2Vm and Φ2

m = |Vm|2
]−2vm. We have that∫

Bm

|Φm|
2]

2]−1 dvg =

∫
B0(R)

|Φ̃m|
2]

2]−1 dvg̃m

where Φ̃m = |ṽm− v|2
]−2(ṽm− v)− |ṽm|2

]−2ṽm + |v|2]−2v. Then, by (3.13), we get
that ∫

Bm

|Φm|
2]

2]−1 dvg = o(1)

Independently,∫
Bcm

|Φ1
m|

2]

2]−1 dvg =

∫
B0(2δ̂Rm)\B0(R)

|η̃mṽm|
2](2]−2)

2]−1 |v|
2]

2]−1 η̂
2]

2]−1
m dvg̃m

≤ C

∫
Rn\B0(R)

|η̃mṽm|
2](2]−2)

2]−1 |v|
2]

2]−1 dx

where η̂m = ηδ̂,xm
(
expxm(R−1

m x)
)
, and C > 0 is such that dvg̃m ≤ Cdx. Without

loss of generality, we may assume that η̃mṽm → v almost everywhere in Rn. Set

fm = |η̃mṽm|
2](2]−2)

2]−1 and f = |v|
2](2]−2)

2]−1

Then (fm) is bounded in L(2]−1)/(2]−2)(Rn) and (fm) converges almost every-
where to f , so that, by classical integration theory, (fm) converges weakly to f

in L(2]−1)/(2]−2)(Rn). It follows that

lim
m→+∞

∫
Rn\B0(R)

|η̃mṽm|
2](2]−2)

2]−1 |v|
2]

2]−1 dx =

∫
Rn\B0(R)

|v|2
]

dx
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and we get that

lim
R→+∞

lim sup
m→+∞

∫
Bcm

|Φ1
m|

2]

2]−1 dvg = 0

Similarly,

lim
R→+∞

lim sup
m→+∞

∫
Bcm

|Φ2
m|

2]

2]−1 dvg = 0

Coming back to (3.20), and since R > 0 is arbitrary, we get that DJg(wm) → 0
strongly. In particular, (3.16) is proved, and we are left with the proof of (3.17).
We have here that

Jg(wm) =
1

2

∫
M

(∆gwm)
2
dvg −

1

2]

∫
M

|wm|2
]

dvg (3.21)

Concerning the first term, we write that∫
M

(∆gwm)
2
dvg =

∫
Bxm (2δ̂)

(∆gwm)
2
dvg +

∫
M\Bxm (2δ̂)

(∆gvm)
2
dvg

and for Bm and Bcm as above, we write that∫
Bxm (2δ̂)

(∆gwm)
2
dvg =

∫
Bm

(∆gwm)
2
dvg +

∫
Bcm

(∆gwm)
2
dvg

We have that ∫
Bm

(∆gwm)
2
dvg =

∫
B0(R)

(∆g̃m(ṽm − v))
2
dvg̃m

and it follows from (3.13) that∫
Bm

(∆gwm)
2
dvg = o(1)

Moreover, it follows from rough estimates that

lim
R→+∞

lim sup
m→+∞

∫
Bcm

(∆gVm)
2
dvg = 0

Since wm = vm − Vm and (vm) is bounded in H2
2 (M), it follows that∫

Bcm

(∆gwm)
2
dvg =

∫
Bcm

(∆gvm)
2
dvg +BR(m)

and ∫
M

(∆gwm)
2
dvg =

∫
M

(∆gvm)
2
dvg −

∫
Bm

(∆gvm)
2
dvg +BR(m) + o(1)

where

lim
R→+∞

lim sup
m→+∞

BR(m) = 0 (3.22)

Here again, ∫
Bm

(∆gvm)
2
dvg =

∫
B0(R)

(∆g̃m ṽm)
2
dvg̃m

and since g̃m → ξ in C1 (B0(R)), it follows from (3.13) that∫
Bm

(∆gvm)
2
dvg =

∫
B0(R)

(∆v)
2
dx+ o(1) =

∫
Rn

(∆v)
2
dx+BR(m) + o(1)



18 EMMANUEL HEBEY AND FRÉDÉRIC ROBERT

where BR(m) satisfies (3.22). Summarizing, we have that∫
M

(∆gwm)
2
dvg =

∫
M

(∆gvm)
2
dvg −

∫
Rn

(∆v)
2
dx+BR(m) + o(1) (3.23)

where BR(m) satisfies (3.22). It follows from similar arguments that∫
M

|wm|2
]

dvg =

∫
M

|vm|2
]

dvg −
∫
Rn
|v|2

]

dx+BR(m) + o(1) (3.24)

where BR(m) satisfies (3.22). Then, combining (3.21), (3.23) and (3.24),

Jg(wm) = Jg(vm)− E(v) +BR(m) + o(1)

and since R > 0 is arbitrary, we actually do have that

Jg(wm) = Jg(vm)− E(v) + o(1)

This proves (3.17), and step 3. �

According to what we said up to now, and to steps 1 to 3, Lemma 2.1 holds for
some δ ∈ (0, ig/2) small. Given δ1 < δ2 in (0, ig/2),

‖(ηδ2,xm − ηδ1,xm) v̂m‖H2
2

= o(1)

It follows that Lemma 2.1 holds for any δ ∈ (0, ig/2). This ends the proof of Lemma
2.1.

4. Miscellaneous on Theorem 2.1

We briefly comment on Theorem 2.1 when the um’s in this theorem are nonneg-
ative. Let us consider equation (2.3) for nonnegative functions,

∆2u = u2]−1 , u ≥ 0 (4.1)

As a first result, we claim that the following holds:

Lemma 4.1. If u ∈ D2
2(Rn) is a nontrivial nonnegative solution to (4.1), then

u(x) = αn

(
λ

1 + λ2|x− x0|2

)n−4
2

(4.2)

for some λ > 0 and x0 ∈ Rn, where αn =
(
n(n− 4)(n2 − 4)

)(n−4)/8
.

The functions given by (4.2) are extremal functions for the sharp Euclidean
Sobolev inequality (∫

Rn
|u|2

]

dx

)2/2]

≤ K0

∫
Rn

(∆u)
2
dx (4.3)

in the sense that they realize the equality in (4.3). By the works of Lions [10],
Lieb [8], and Edmunds, Fortunato and Janelli [6], the functions given by (4.2)
are the only extremal functions for (4.3), and the only nontrivial and nonnegative
spherically symmetric solutions of (4.1) which are decreasing in |x|. More recently,
it has been proved by Lin [9] that smooth positive solutions to (4.1) are also given
by (4.2). In order to prove our claim, it thus suffices to prove that if u ∈ D2

2(Rn)
is a nontrivial nonnegative solution to (4.1), then u is smooth and positive. The
proof of the lemma then proceeds as follows:



COERCIVITY AND STRUWE’S COMPACTNESS 19

Proof. Let (Sn, h) be the unit sphere, and P be some point in Sn. We let also
ΦP : Sn\{P} → Rn be the stereographic projection of pole P . Then,(

Φ−1
P

)?
h = ϕ4/(n−4)ξ

where ξ is the Euclidean metric and

ϕ(x) = 4
n
4−1

(
1 + |x|2

)−n−4
2

By conformal invariance properties, if u ∈ D(Rn), then ϕ2]−1 (Pnh û) ◦ Φ−1
P = ∆2u

and ∫
Rn

(
∆2u

)
udx =

∫
Sn

(Pnh û) ûdvh (4.4)

where û =
(
uϕ−1

)
◦ ΦP and Pnh is the Branson-Paneitz operator on the sphere.

Namely,

Pnh u = ∆2
hu+ cn∆hu+ dnu

where

cn =
n2 − 2n− 4

2
and dn =

n(n− 4)(n2 − 4)

16
Let now (uk) be a sequence of smooth functions with compact support in Rn which
converges to u in D2

2(Rn). Clearly, ‖u‖2 =
∫
Sn

(Pnh u)udvh is a norm on H2
2 (Sn).

It follows from (4.4) that (ûk) is a Cauchy sequence in H2
2 (Sn), where ûk is given

by ûk =
(
ukϕ

−1
)
◦ ΦP . Hence, (ûk) converges to some û in H2

2 (Sn). Moreover,

û =
(
uϕ−1

)
◦ ΦP almost everywhere. Let (ηs)s≥0 be a family of smooth functions

on Sn such that 0 ≤ ηs ≤ 1, ηs = 0 in BP (s), ηs = 1 in Sn\BP (2s), and

|∇ηs| ≤
C1

s
and |∆hηs| ≤

C2

s2

where C1, C2 are positive constants which do not depend on s. For any v ∈ C∞(Sn),
(ηsv) converges to v in H2

2 (Sn) as s→ 0. On such an assertion, note that

lim
s→0

1

s2
Volh (BP (2s)) = 0 and lim

s→0

1

s4
Volh (BP (2s)) = 0

since n ≥ 5. It follows that

lim
s→0

∫
Sn

(Pnh û) ηsvdvh =

∫
Sn

(Pnh û) vdvh

where the integrals have to be understood in the distributional sense. It also follows
that

lim
s→0

∫
Sn
û2]−1ηsvdvh =

∫
Sn
û2]−1vdvh

Noting that ∫
Sn

(Pnh û) ηsvdvh =

∫
Sn
û2]−1ηsvdvh

we get that û ∈ H2
2 (Sn) is a nontrivial nonnegative solution of the equation

Pnh û = û2]−1 (4.5)

There, we can apply Lemma 2.1 of Djadli, Hebey and Ledoux [5]. It follows from
this lemma that û ∈ Ls(Sn) for all s ≥ 1. Let Lh be the second order operator
given by

Lhu = ∆hu+
cn
2
u
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Equation (4.5) can be rewritten as

Lh (Lhû) = û2]−1 + βnû (4.6)

where βn =
c2n
4 − dn is positive. By standard regularity results, since û ∈ Ls(Sn)

for all s ≥ 1, we get that û ∈ Hs
4(Sn) for all s ≥ 1. In particular, û is C3, and

we obtain by coming back to (4.6) that û is actually at least C4. The right hand
side in (4.6) being nonnegative, it follows from elementary considerations and the
maximum principle that û is positive. Then û is smooth, and coming back to our
original solution u of (4.1), we get that u is smooth and positive. By the work of
Lin [9], this proves the lemma. �

As another result on Theorem 2.1, we claim that if the um’s in this theorem are
nonnegative, then u0 and the ui’s of Theorem 2.1 are also nonnegative. According
to Lemma 4.1, the ui’s are then given by (4.2). That u0 is nonnegative is straight-
forward. On the other hand, the ui’s, i ≥ 1, are obtained by rescaling um−u0−S,
where S is a sum of bubbles, and it is not anymore straightforward that um ≥ 0
implies that ui ≥ 0. The following proposition holds:

Proposition 4.1. Let (um) be a Palais-Smale sequence for Ig. We suppose that
um ≥ 0 for all m. Then the ui’s of Theorem 2.1 are also nonnegative. In particular,
ui is given by (4.2) and, up to the assimilation through the exponential map at xim,

uim(y) = αn

(
λim

(λim)2 + |y − xi

Rim
|2

)n−4
2

(4.7)

where xi ∈ Rn, λim = λi/Rim for some λi > 0, and αn is as in Lemma 2.1.
Moreover,

E(ui) = β] =
2

n
K
−n/4
0

so that the Palais-Smale property holds for Ig at all levels which are not of the form
β0 +kβ] where k ≥ 1 and β0 is the energy of some nonnegative solution u0 of (2.2).

Proof. Let vm = um−u0 and µim = 1/Rim. First we prove the following: for any N
integer in [1, k], and for any s integer in [0, N − 1], there exists an integer p, there
exist sequences (yjm) and (λjm), j = 1, . . . , p, yjm ∈M and λjm > 0, such that for any
j, dg(x

N
m, y

j
m)/µNm is bounded and λjm/µ

N
m → 0, and such that for any R,R′ > 0,∫

BxNm
(RµNm)\

⋃p
j=1 Byjm

(R′λjm)

∣∣∣∣∣vm −
s∑
i=1

uim − uNm

∣∣∣∣∣
2]

dvg = o(1) + ε(R′) (4.8)

where ε(R′)→ 0 as R′ → 0, and the (uim)’s and (xim)’s are the ordered sequences in
i that come from the proof of Theorem 2.1. We proceed here by inverse induction
on s. If s = N − 1, then, by (3.13),∫

BxNm
(RµNm)

∣∣∣∣∣vm −
N−1∑
i=1

uim − uNm

∣∣∣∣∣
2]

dvg = o(1)

so that (4.8) holds with p = 0. Now, we suppose that (4.8) holds for some s,
s ≤ N − 1. If the dg(x

s
m, x

N
m)’s do not converge to 0, then, up to a subsequence,
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BxNm(RµNm)
⋂
Bxsm(R̃µsm) = ∅ for R̃ > 0. As a consequence,∫

BxNm
(RµNm)\

⋃p
j=1 Byjm

(R′λjm)

|usm|
2]
dvg ≤

∫
M\Bxsm (R̃µsm)

|usm|
2]
dvg

and it follows, see the proof of Lemma 2.1 in section 3, that∫
BxNm

(RµNm)\
⋃p
j=1 Byjm

(R′λjm)

|usm|
2]
dvg ≤

∫
Rn\B0(R̃)

|us|2
]

dx

Since R̃ > 0 is arbitrary, and us ∈ L2](Rn), we get that∫
BxNm

(RµNm)\
⋃p
j=1 Byjm

(R′λjm)

|usm|
2]
dvg = o(1)

and then that∫
BxNm

(RµNm)\
⋃p
j=1 Byjm

(R′λjm)

∣∣∣∣∣vm −
s−1∑
i=1

uim − uNm

∣∣∣∣∣
2]

dvg = o(1) + ε(R′)

In particular, (4.8) holds for s − 1. Now, we deal with the case dg(x
s
m, x

N
m) → 0.

We let r0 > 0 and C ≥ 1 be such that for all x ∈ M , and all y, z ∈ Rn, if |y| ≤ r0

and |z| ≤ r0, then

1

C
|z − y| ≤ dg (expx(y), expx(z)) ≤ C|z − y|

If x̃sm and ỹjm are such that xsm = expxNm(µNmx̃
s
m) and yjm = expxNm(µNmỹ

j
m), then

Bỹjm

(
R′

C

λjm
µNm

)
⊂ 1

µNm
exp−1

xNm

(
Byjm(R′λjm)

)
⊂ Bỹjm

(
R′C

λjm
µNm

)
(4.9)

and

Bx̃sm

(
R′

C

µsm
µNm

)
⊂ 1

µNm
exp−1

xNm

(
Bxsm(R′µsm)

)
⊂ Bx̃sm

(
R′C

µsm
µNm

)
(4.10)

Given R̃ > 0, we have by (3.13) that∫
Bxsm (R̃µsm)

∣∣∣∣∣vm −
s∑
i=1

uim

∣∣∣∣∣
2]

dvg = o(1)

Hence, by (4.8),∫
(
BxNm

(RµNm)\
⋃p
j=1 Byjm

(R′λjm)
)⋂

Bxsm (R̃µsm)

∣∣uNm∣∣2] dvg = o(1) + ε(R′)

and it follows from (4.9) and (4.10) that∫(
B0(R)\

⋃p
j=1 Bỹjm

(R′C
λ
j
m
µNm

)

)⋂
Bx̃sm ( R̃C

µsm
µNm

)

∣∣uN ∣∣2] dx = o(1) + ε(R′) (4.11)

Now, we distinguish two cases. In the first case we assume that as m → +∞,
dg(x

s
m, x

N
m)/µNm → +∞. Then we also do have that dg(x

s
m, x

N
m)/µsm → +∞, since

if not, we get by (4.11) with R̃ large enough that µsm/µ
N
m → 0, while

dg(x
s
m, x

N
m)

µsm
=
dg(x

s
m, x

N
m)

µNm
× µNm
µsm
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Then it follows that BxNm(RµNm)
⋂
Bxsm(R̃µsm) = ∅ for R̃ > 0, and we may proceed

as in the case where the dg(x
s
m, x

N
m)’s do not converge to 0 to get that (4.8) holds

for s − 1. In the second case we assume that as m → +∞, the dg(x
s
m, x

N
m)/µNm’s

converge. By (4.11), we must have that µsm/µ
N
m → 0. We set yp+1

m = xsm and
λp+1
m = µsm. Clearly,∫

BxNm
(RµNm)\

⋃p+1
j=1 Byjm

(R′λjm)

∣∣∣∣∣vm −
s∑
i=1

uim − uNm

∣∣∣∣∣
2]

dvg = o(1) + ε(R′)

while∫
BxNm

(RµNm)\
⋃p+1
j=1 Byjm

(R′λjm)

|usm|
2]
dvg ≤

∫
M\Bxsm (R′µsm)

|usm|
2]
dvg ≤ ε(R′)

It follows that∫
BxNm

(RµNm)\
⋃p+1
j=1 Byjm

(R′λjm)

∣∣∣∣∣vm −
s−1∑
i=1

uim − uNm

∣∣∣∣∣
2]

dvg = o(1) + ε(R′)

and (4.8) holds for s− 1. Therefore, we proved that (4.8) always holds. Let us now
prove the original claim that if the um’s in Theorem 2.1 are nonnegative, then u0

and the ui’s of Theorem 2.1 are also nonnegative. By the construction of u0, it is
clear that u0 is nonnegative. We let ṽNm be given by

ṽNm(x) = (µNm)
n−4
2 vm

(
expxNm(µNmx)

)
We apply (4.8) with s = 0. Then,∫

BxNm
(RµNm)\

⋃p
j=1 Byjm

(R′λjm)

∣∣vm − uNm∣∣2] dvg = o(1) + ε(R′)

and it follows that∫
B0(R)\

⋃p
j=1 Bỹjm

(R′C
λ
j
m
µNm

)

∣∣ṽNm − uN ∣∣2] dx = o(1) + ε(R′) (4.12)

where the ỹjm’s are as above. In particular, the ỹjm’s are bounded. Up to a sub-
sequence we may assume that ỹjm → ỹj as m → +∞. Then we get from (4.12)
that

ṽNm → uN in L2]

loc

(
B0(R)\{ỹj , j = 1, . . . , p}

)
and thus we may assume that ṽNm → uN almost everywhere in Rn. Independently,
let

ũ0,N
m (x) = (µNm)

n−4
2 u0

(
expxNm(µNmx)

)
Then, ∫

BxNm
(RµNm)

∣∣u0
∣∣2] dvg =

∫
B0(R)

∣∣ũ0,N
m

∣∣2] dvg̃m
where g̃m =

(
exp?xNm

g
)

(µNmx), and we get that ũ0,N
m → 0 in L2] (B0(R)). Thus,

ũ0,N
m → 0 almost everywhere in Rn. It follows that the ũNm’s given by

ũNm(x) = (µNm)
n−4
2 um

(
expxNm(µNmx)

)
converge almsot everywhere to uN . In particular, uN is nonnegative and, thanks
to Lemma 3.1, the proposition is proved. �
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As a remark, note that it follows from the above proof that for any i 6= j,

Rjm
Rim

+
Rim

Rjm
+RimR

j
mdg(x

i
m, x

j
m)2 → +∞

as m→ +∞. There, we recover well-known relations that hold when dealing with
the Laplace operator instead of the Paneitz operator. At last, note that Theorem
2.1 and the above remarks do hold if instead of a Paneitz operator Pg with constant
coefficients, one deals with the Paneitz-Branson operator Png of the introduction,
or more generally with operators of the form

Pgu = ∆2
gu− divg (A∇u) + au

where A is a smooth section of the space of smooth symmetric (0, 2) tensors on M ,
and a is a smooth function.
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