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Abstract. In general, for higher order elliptic equations and boundary value
problems like the biharmonic equation and the linear clamped plate bound-

ary value problem neither a maximum principle nor a comparison principle

or – equivalently – a positivity preserving property is available. The problem
is rather involved since the clamped boundary conditions prevent the bound-

ary value problem from being reasonably written as a system of second order

boundary value problems.
It is shown that, on the other hand, for bounded smooth domains Ω ⊂

Rn, the negative part of the corresponding Green’s function is “small” when

compared with its singular positive part, provided n ≥ 3.
Moreover, the biharmonic Green’s function in balls B ⊂ Rn under Dirichlet

(i.e. clamped) boundary conditions is known explicitly and is positive. It has
been known for some time that positivity is preserved under small regular

perturbations of the domain, if n = 2. In the present paper, such a stability

result is proved for n ≥ 3.
Keywords: Biharmonic Green’s functions, positivity, almost positivity, blow-

up procedure.

1. Introduction

Although simple examples show that strong maximum principles as satisfied
e.g. by harmonic functions cannot hold true for solutions of higher order elliptic
equations, it is reasonable to ask whether higher order boundary value problems
may possibly enjoy a positivity preserving property. To be specific, we consider the
clamped plate boundary value problem:

(1)

{
∆2u = f in Ω,

u|∂Ω
= ∂

∂νu|∂Ω
= 0.

Here Ω ⊂ Rn is a bounded smooth domain with exterior unit normal ν at ∂Ω, and
f is a sufficiently smooth datum. If n = 2, the unknown u models the vertical
deflection of a horizontally clamped thin elastic plate from the horizontal equilib-
rium shape under the vertical load f . The boundary conditions u|∂Ω

= ∂
∂νu|∂Ω

= 0
are called Dirichlet boundary conditions and are natural in mechanics to model the
horizontal clamping: More precisely, the condition u|∂Ω

= 0 models the location

of the clamping and the condition ∂
∂νu|∂Ω

= 0 models the fact that the plate is
clamped into some matter and is not able to rotate freely. We refer to the memoir
written by Hadamard [17] for further considerations on this question. Throughout
the present paper, always these boundary conditions will be considered.
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We shall discuss comparison principles or positivity preserving properties for
the biharmonic operator. We say that the clamped plate boundary value problem
enjoys a positivity preserving property in Ω if the following assertion holds:

for all u ∈ C4(Ω) and f ∈ C0(Ω) satisfying (1), one has that

{ f ≥ 0 ⇒ u ≥ 0 } .
This definition is the natural extension of the “positivity preserving property” for
the harmonic operator, i.e. a comparison principle for a second-order operator.
While the “positivity preserving property” is well understood for second-order op-
erators, it is much more involved for fourth-order ones.

The positivity preserving property is closely related to the sign of the Green’s
function. More precisely, let HΩ = HΩ,∆2 be the singular Green’s function for the
operator ∆2 in Ω under Dirichlet boundary conditions. Then, for any reasonable
datum f : Ω → R the solution u : Ω → R of the clamped plate boundary value
problem (1) is given by

u(x) =

∫
Ω

HΩ(x, y)f(y) dy.

In particular, the clamped plate boundary value problem enjoys a positivity pre-
serving property in Ω iff HΩ(x, y) ≥ 0 for all x, y ∈ Ω, x 6= y.

It is important to remark that positivity issues are related to the specific kind
of prescribed boundary conditions. More precisely, if one chooses Navier bound-
ary condition (that is u = ∆u = 0 on ∂Ω), then a twofold application of the
second order comparison principle immediately yields a positivity preserving prop-
erty. This simple situation is misleading in several respects: As we will explain
below, counterexamples show that the situation is much more intricate for other
boundary conditions. For Dirichlet boundary conditions which we consider here,
this iterative trick fails completely. Moreover, even under Navier conditions, there
is in general no positivity preserving property for perturbations of the biharmonic
operator, see [29, 21], cf. also the general approach in [6].

The first example of a positive Green’s function was given by Boggio [4] by means
of a beautiful explicit formula for balls in Rn, even for the Dirichlet problem for
polyharmonic operators. Boggio [3] (1901) and Hadamard [17] (1908) conjectured
that in arbitrary reasonable (two dimensional) domains Ω, the positivity preserving
property should hold true. In 1909 Hadamard [18] already knew, that the positivity
conjecture is false in annuli with small inner radius. However, there was still some
hope to prove positivity for convex domains.

Starting about 40 years later, numerous counterexamples disproved the Boggio-
Hadamard conjecture, see e.g. [9, 11, 30]. In particular, Coffman and Duffin [5]
proved that in any two dimensional domain containing a right angle, the positivity
preserving property does not hold. Even for smooth convex domains, the issue is
quite intricate: Garabedian [11] (see also Shapiro-Tegmark [30] and Hedenmalm-
Jakobsson-Shimorin[19]) proved that for mildly eccentric ellipses, the prositivity
preserving property does not hold true. On the other hand, according to [14], one
has positivity in ellipses, which are close enough to a ball. For a more extensive
survey and further references we also refer to [14].
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Therefore, the positivity preserving property does not hold true in general, even
for arbitrarily smooth uniformly convex domains. Hence, it is important to un-
derstand the lack of “positivity preserving property” with the help of the Green’s
function. One may ask the following questions:

(1) Is positivity preserving in any bounded smooth domain possibly “almost
true” in the sense that the negative part H−Ω (x, y) := min{HΩ(x, y), 0}
of the biharmonic Green’s function under Dirichlet boundary conditions is
“small relatively” to the singular positive part H+

Ω (x, y)?
(2) Are there are at least families of domains, different from balls, where the

biharmonic Green’s functions under Dirichlet boundary conditions are pos-
itive?

Question (1) is motivated by reactions of physicists and engineers on the math-
ematical results concerning positivity preserving and sign change. They may be
summarised as follows: “For a clamped plate without corners, we do not expect
downwards deflections if the force is pushing upwards. If such a phenomenon can be
mathematically observed we think that perhaps the model is not perfectly suitable
or that negativity is so small that it cannot be observed in reality.” Also numerical
experiments give support to the second hypothesis, which is subject of our first
main result.

The general behaviour of the Green’s functions is modeled on the behaviour of
the singular fundamental solution on Rn. On the whole space, we have that (letting
en be the n-dimensional volume of B1(0) ⊂ Rn)

HRn(x, y) =



1

2(n− 4)(n− 2)nen
|x− y|4−n, when n ≥ 5,

1

16e4
log

1

|x− y|
, when n = 4,

− 1

8π
|x− y|, when n = 3,

for all x, y ∈ Rn, x 6= y. If n ≥ 5, this fundamental solution can even be interpreted
as a Green’s function in Rn, where the Dirichlet boundary conditions at infinity
are understood as a suitable decay. In the general framework of a bounded smooth
domain of Rn, Krasovskĭı [22, 23] proved that there exists a constant C(Ω) such
that

|HΩ(x, y)| ≤ C(Ω)

 |x− y|
4−n, if n > 4,

(1 + | log |x− y| |) , if n = 4,
1, if n < 4;

for all x, y ∈ Ω, x 6= y. These estimates give a uniform bound for the singular
behaviour for Green’s functions but do not consider their boundary behaviour. The
latter was done by Dall’Acqua and Sweers [8] by means of integrating Krasovskĭı’s



4 HANS-CHRISTOPH GRUNAU AND FRÉDÉRIC ROBERT

estimates for H and its derivatives.:
(2)

|HΩ(x, y)| ≤



C · |x− y|4−n min

{
1,
d(x)2d(y)2

|x− y|4

}
, if n > 4,

C · log

(
1 +

d(x)2d(y)2

|x− y|4

)
, if n = 4,

C · d(x)2−n/2d(y)2−n/2 min

{
1,
d(x)n/2d(y)n/2

|x− y|n

}
, if n < 4.

Here, d(x) = d(x, ∂Ω) and C = C(Ω) > 0 denotes a constant.
As far as the positive part H+

Ω is concerned, these estimates cannot be improved,
see e.g. [15]. However, they do not distinguish between the positive and the negative
part of the Green’s function. A distinction between H+

Ω and H−Ω and showing that
pairs of points of negativity cannot approach each other is the subject of our first
main result, which was announced in [13].

Theorem 1. Let Ω ⊂ Rn (n ≥ 3) be a bounded C4,α-smooth domain. We denote
by HΩ the biharmonic Green’s function in Ω under Dirichlet boundary conditions.
Then, there exists a constant δ = δ(Ω) > 0 such that for any two points x, y ∈ Ω,
x 6= y,

HΩ(x, y) ≤ 0 implies that |x− y| ≥ δ.
Consequently, there exists a constant C = C(Ω) > 0 such that for any two points
x, y ∈ Ω, x 6= y, we have that

(3) HΩ(x, y) ≥ −C(Ω),

i.e. the negative part H−Ω of the Green’s function is bounded. Moreover, if Ω is
smooth enough for (2) to hold true, the estimate (3) from below can be refined:

(4) HΩ(x, y) ≥ −C(Ω) d(x)2 d(y)2.

In other words: Around the pole, biharmonic Green’s functions are always pos-
itive, if n ≥ 3. And this behaviour is uniform, even if the pole approaches the
boundary.

The proof of Theorem 1 indicates that one may not expect the full result to
hold true also for n = 2. The bound (4), however, was proved for the case n = 2
and sufficiently smooth domains by Dall’Acqua, Meister and Sweers [7]. Even for
n = 2, 3, where the Green’s function is bounded, (4) is a strong statement because
in the case, where x or y is closer to the boundary than they are to each other,

(2) would only give HΩ ≥ −C d(x)2d(y)2

|x−y|n . In this sense, (4) gains a factor of order

|x− y|n.
In his counterexample to positivity mentioned above, Garabedian [11] found in a

mildly eccentric ellipse Ω opposite boundary points x0, y0 ∈ ∂Ω with ∆x∆yHΩ(x0, y0) <
0. This shows that qualitatively, the estimate (4) is sharp.

Another consequence of Theorem 1 is that one has a strong control of the neg-
ative part of solutions u of the clamped plate boundary value problem (1) with
nonnegative datum f irrespective of the space dimension:

f ≥ 0 ⇒ ‖u−‖L∞(Ω) ≤ C(Ω)‖f‖L1(Ω).

This estimate should be compared with the estimate for the full function: It follows
from general elliptic theory [1] that for all p > n

4 , there exists C(p,Ω) > 0 such
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that for solutions u of the clamped plate boundary value problem (1) with datum
f , we have that

‖u‖L∞(Ω) ≤ C(p,Ω)‖f‖Lp(Ω).

Consequently, on the one hand, there might be a negative part for u, even if f ≥ 0.
But on the other hand, this negative part enjoys a nice strong control by a very
weak norm. Therefore, although one has a lack of positivity in general, in this sense
it is “small”.

Let us now turn to Question (2): Are there at least families of domains, differ-
ent from balls, where the biharmonic Green’s functions under Dirichlet boundary
conditions are positive? For two dimensional domains, this question was addressed
in [14]. There, it was shown that in domains Ω ⊂ R2 being sufficiently close in C4-
sense to the (unit) disk B ⊂ R2, the biharmonic Green’s function (under Dirichlet
boundary conditions) is positive. Recently, Sassone [26] could relax the assumption
on the domains to be close to B in C2,α-sense. The authors could take advantage of
conformal maps and the Riemann mapping theorem, pulling back the clamped plate
boundary value problem to Dirichlet problems in the unit disk with the biharmonic
operator as principal part and only with (small) lower order perturbations. The
latter were treated in B ⊂ Rn (n arbitrary) in [15]. The methods of [14], however,
do not carry over to higher dimensions due to a lack of sufficiently many conformal
maps. So, the question, whether the positivity of the biharmonic Green’s function
in the unit ball B ⊂ Rn is stable under domain perturbations, was left open.

This question is addressed in our next result. Assuming n > 2, we show that
in domains Ω ⊂ Rn, which are sufficiently close to the unit ball in a suitable
C4,α-sense, the biharmonic Green’s function under Dirichlet boundary conditions
is indeed positive. More precisely, we prove the following theorem, where Id denotes
the identity map:

Theorem 2. Let B be a unit ball of Rn, n ≥ 3. Then, there exists ε0 = ε0(n) > 0
such that the following holds true:

We assume that Ω ⊂ Rn is a C4,α-smooth domain which is ε0-close to the ball
B in the C4,α-sense, i.e.:

There exists a surjective C4,α-map ψ : B → Ω such that
‖Id− ψ‖C4,α(B) ≤ ε0.

Then, the Green’s function HΩ for ∆2 in Ω under Dirichlet boundary conditions is
strictly positive:

∀x, y ∈ Ω, x 6= y : HΩ(x, y) > 0.

Assuming ε0 small enough, this notion of closeness implies that there is a fixed
neighbourhood U of B, C4,α-smooth injective extensions ψ : U → Rn, ‖Id −
ψ‖C4,α(U) = O(ε) and C4,α-smooth inverse maps φ = ψ−1 : ψ(U) → U such that

ψ
(
B
)

= Ω, ψ (B) = Ω.

For n = 2, a direct and explicit proof based on perturbation series, Green’s
function estimates and conformal maps was given in [14, 15]. This means that
there, in principle, ε0 may be calculated explicitly. Moreover, in the case n = 2,
closeness has to be assumed only in a weaker norm, see [26].

Here, the proof is somehow more indirect since a number of proofs by contra-
diction is involved so that it will be impossible to calculate ε0 from our proofs.
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Furthermore, we have to make extensive use of general elliptic theory as provided
by Agmon, Douglis and Nirenberg [1]. We emphasize that Theorem 2 is by no means
just a continuous dependence on data result, since the involved Green’s “functions”
are not simply functions but families of functions depending on the position of the
singularity.

The problem consists in gaining uniformity with respect to the position of the
singularity: When the singularity is in the interior, it is possible to use the local
positivity results of Grunau-Sweers [16]. But when the singularity approaches the
boundary, the situation becomes more intricate and we develop a new technique for
this problem. These remarks apply also to Theorem 1 which is proved by means of
the same methods.

It remains as an interesting question to find out an optimal notion of close-
ness for a result like Theorem 2 to hold true. One might expect that like in the
two-dimensional case (see[26]) C2,α-closeness could suffice: Does the boundary cur-
vature govern the positivity behaviour of biharmonic Green’s functions? However,
such a result would require new ideas and techniques; its possible proof would
certainly be much more technical than ours. Sassone’s approach is strictly two-
dimensional because of his use of conformal maps.

Our methods and techniques are general and our results can be extended to more
general fourth order “positive definite self adjoint” elliptic operators under Dirichlet
boundary conditions, where the principal part is a square of second order elliptic
operators, and also to similar elliptic operators of higher order 2m in dimensions
n ≥ 2m− 1 with reasonable boundary conditions of the type discussed in Agmon-
Douglis-Nirenberg [1].

2. A more general result

In order to prove Theorem 2, below in Theorem 3 we describe the possible
situations how transition from positivity to sign change may occur within a smooth
family of domains. It is then easy to see that none of these situations occurs in the
(unit) ball in Rn, n > 2. Moreover, a special case of Theorem 3 will directly yield
the proof of Theorem 1.

To provide a more flexible result in Theorem 3, we will also include lower order
perturbations. The formulation is somehow technical and requires in particular the
notion of smooth domain perturbations, which we make precise in the following
definition.

Definition 1. Let Ω, (Ωk)k∈N be domains of Rn. We say that (Ωk)k∈N is a C4,α-
smooth perturbation of the bounded C4,α-smooth domain Ω, and we write

lim
k→+∞

Ωk = Ω

if the following facts are satisfied:

(i) There exist N ∈ N, p1, . . . , pN ∈ ∂Ω, δ > 0 and open subsets ω ⊂⊂ Ω,
ω ⊂⊂ ω0 ⊂⊂ Ωk such that

Ω ⊂ ω ∪
N⋃
i=1

Bδ(pi); Ωk ⊂ ω ∪
N⋃
i=1

Bδ(pi);
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(ii) for any i ∈ {1, . . . , N}, there exists an open subset of Ui ⊂ Rn such that
0 ∈ Ui, and a C4,α-smooth diffeomorphism Φi : Ui → B2δ(pi) such that
Φi(0) = pi and

Φi(Ui ∩ {x1 < 0}) = Φi(Ui) ∩ Ω , Φi(Ui ∩ {x1 = 0}) = Φi(Ui) ∩ ∂Ω;

(iii) for any i ∈ {1, . . . , N} and k ∈ N, there exists Φk,i : Ui → B2δ(pi) such that
Φk,i(Ui) is an open subset, B3δ/2(pi) ⊂ Φk,i(Ui) and Φk,i : Ui → Φk,i(Ui)

is a C4,α-smooth diffeomorphism and

Φk,i(Ui ∩ {x1 < 0}) = Φk,i(Ui) ∩ Ωk , Φk,i(Ui ∩ {x1 = 0}) = Φk,i(Ui) ∩ ∂Ωk;

(iv) for any i ∈ {1, . . . , N}, limk→+∞ Φk,i = Φi in C4,α
loc (Ui).

This definition implies that we have a well defined smooth exterior normal vector
field so that Ω, Ωk, ∂Ω and ∂Ωk carry a canonical orientation. In what follows,
the local charts will be chosen such that this orientation is observed, i.e. such that
Jac Φi ◦ Φ−1

j > 0, Jac Φk,i ◦ Φ−1
k,j > 0.

This definition covers in particular the following more special situation of smooth
domain perturbation, which we make use of in proving Theorem 2: Let a sequence
of mappings (ψk)k∈N be such that there exists an open subset of U ⊂ Rn and

ψk : U → Rn for all k ∈ N. We assume that limk→+∞ ψk = Id in C4,α
loc (U). Let

Ω ⊂⊂ U be a C4,α-smooth bounded subset of Rn and let Ωk := ψk(Ω) for all k ∈ N.
Then the sequence (Ωk)k∈N is a smooth perturbation of Ω.

Employing the notion of smooth domain perturbation we are now able to formu-
late our key result (where Theorems 1 and 2 are a consequence of as it is explained
at the end of Section 6):

Theorem 3. Let n ≥ 3, and (Ωk)k∈N be a C4,α-smooth perturbation of the bounded
C4,α-smooth domain Ω in the sense of Definition 1. We consider a sequence
(ak)k∈N ∈ C0,α(U0), where Ω ⊂⊂ U0 and assume that there exists a∞ ∈ C0,α(U0)
such that

lim
k→+∞

ak = a∞ in C0,α
loc (U0).

We assume further that there exists λ > 0 such that

(5)

∫
Ωk

(
(∆ϕ)2 + akϕ

2
)
dx ≥ λ

∫
Ωk

ϕ2 dx

for all ϕ ∈ C∞c (Ωk) and all k ∈ N. Let Gk be the Green’s function of ∆2 + ak on
Ωk, and G be the Green’s function of ∆2 + a∞ on Ω, all with Dirichlet boundary
conditions.

Finally, we suppose that there exist two sequences (xk)k∈N, (yk)k∈N such that
xk, yk ∈ Ωk and

Gk(xk, yk) = 0 for all k ∈ N.
Up to a subsequence, let x∞ := limk→+∞ xk and y∞ := limk→+∞ yk. Then
x∞, y∞ ∈ Ω, x∞ 6= y∞ and we are in one of the following situations:

(i) if x∞, y∞ ∈ Ω, then G(x∞, y∞) = 0;
(ii) if x∞ ∈ Ω and y∞ ∈ ∂Ω, then ∆yG(x∞, y∞) = 0;

(iii) if x∞ ∈ ∂Ω and y∞ ∈ Ω, then ∆xG(x∞, y∞) = 0;
(iv) if x∞, y∞ ∈ ∂Ω, then ∆x∆yG(x∞, y∞) = 0.
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In the above statement, ∆xG denotes the Laplacian with respect to the first
variables, and ∆yG denotes the Laplacian with respect to the second variables.
The uniform coercivity assumption (5) is e.g. implied by a sign condition like ak ≥
0 and uniform smoothness of the domains to have a uniform Poincaré-Friedrichs
inequality.

A result like Theorem 3 seems to be not known if n = 2 and we doubt whether it
is correct there. At least, our method cannot be extended to this case. The proof of
Lemma 6.3 in dimensions n = 3, 4 uses a Nehari-type local positivity result [16, 24]
which is not available for n = 2.

More general lower order “self adjoint” perturbations of the biharmonic operator
may be covered by precisely the same techniques. However, here we prefer to stick
to a relatively simple situation in order to avoid too many technical details.

In the one dimensional context (clamped bars), related and quite concrete results
were obtained by Schröder [27, 28, 29].

In order to gain a better feeling for the statement of Theorem 3 one should think
of deforming the ball, where we know that positivity preserving holds true, smoothly
into a domain where the biharmonic Green’s function is sign changing (e.g. a long
thin ellipsoid). There is a “last” domain where one still has a nonnegative Green’s
function. Our result describes the possible degeneracies of this positivity via which
sign change occurs beyond this “last positivity-domain”. The key statement is that
x∞ 6= y∞ so that it is impossible that negativity appears through the singularity:
Around the singularity, our Green’s functions are always positive. The most difficult
part is to prove this also arbitrarily close to the boundary.

Alternatively one may think of the Green’s function for ∆2+λ in a ball for λ→∞
where again, initially one has positivity while sign changes occur for λ → ∞ (see
e.g. [2, 6]). We think that most likely the transition from positivity to sign change
will occur via alternative (iv) of Theorem 3.

Throughout the paper we assume that

n ≥ 3.

A first essential step in proving Theorem 3 consists in providing uniform bounds
(in k) for the Green’s functions like

(6) |Gk(x, y)| ≤ C ·

 |x− y|
4−n, if n > 4,

(1 + |log |x− y||) , if n = 4,
1, if n = 3.

Moreover, if n = 3, 4, the somehow irregular estimates for Gk require to focus first
on the gradients, where estimates like

(7) |∇Gk(x, y)| ≤ C ·
{
|x− y|−1

, if n = 4,
1, if n = 3,

are available, which are compatible with the scaling arguments performed below.
In this respect, the proof is more difficult in dimensions n = 3 and in particular
n = 4. Estimates (6) and (7) are due to Krasovskĭı [23], provided the family
(Ωk) is assumed to be uniformly C11-smooth. This assumption is due to the great
generality of the boundary value problems considered by Krasovskĭı. We prove in
Theorem 4 that in our special situation, (6) and (7) hold true under our uniform
C4,α-smoothness assumptions. Preliminary properties of the Green’s functions are
shown in Section 3, while Section 5 is devoted to convergence properties of families
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of Green’s functions in (Ωk)k∈N. The proofs of Theorems 3 and, as a consequence,
of Theorems 1 and 2 are finally given in Section 6.

Notation. Straightening the boundary requires to work in Rn− := {x ∈ Rn :
x1 < 0}, where we write Rn 3 x = (x1, x̄). en denotes the n-dimensional volume
of B1(0) ⊂ Rn. C∞c (Ω) denotes the space of arbitrarily smooth functions with
compact support in Ω and D′(Ω) its dual, i.e. the space of distributions on Ω.

3. The Green’s function G for the perturbed biharmonic operator

In the first part of this section, we consider a fixed operator ∆2 + a in a fixed
smooth domain and construct and investigate the corresponding Green’s function.

Proposition 3.1. Let Ω ⊂ Rn be a bounded C4,α-smooth domain and a ∈ C0,α
(
Ω
)
.

We assume that ∆2 + a is coercive. Then, for every x ∈ Ω, there exists a unique
Green’s function Gx ∈ L1(Ω) ∩ C4,α

(
Ω \ {x}

)
such that Gx|∂Ω = ∂Gx

∂ν |∂Ω = 0 and

that for all ϕ ∈ C4
(
Ω
)

with ϕ|∂Ω = ∂ϕ
∂ν |∂Ω = 0 one has the following representation

formula:

(8) ϕ(x) =

∫
Ω

Gx(y)
(
∆2ϕ(y) + a(y)ϕ(y)

)
dy.

If R > 0 is such that Ω ⊂ BR(0) and λ > 0 such that

∀ϕ ∈W 2,2
0 (Ω) :

∫
Ω

(
(∆ϕ)2 + aϕ2

)
dy ≥ λ

∫
Ω

ϕ2 dy

then, the following estimate for the Green’s function holds true:

|Gx(y)| ≤ C(λ,R, n, ‖a‖C0,α ,Ω)(9)

·


(
|x− y|4−n + max{d(x, ∂Ω), d(y, ∂Ω)}4−n

)
, if n > 4,

1 + |log |x− y||+ |log (max{d(x, ∂Ω), d(y, ∂Ω)})| , if n = 4,
1, if n = 3.

If n = 3, 4, we further prove the following gradient estimates:

|∇(x,y)Gx(y)| ≤ C(λ,R, n, ‖a‖C0,α ,Ω)(10)

·
{ (
|x− y|−1 + max{d(x, ∂Ω), d(y, ∂Ω)}−1

)
, if n = 4,

1, if n = 3.

The dependence of the constants C on Ω is explicit via the C4,α-properties of ∂Ω.

Proof. We first prove extensively the generic case n > 4. At the end we comment
on the changes and additional arguments which have to be made, if n = 4 or n = 3.

Case n > 4. We introduce the fundamental solution Γ0 of the biharmonic operator

(11) Γ0(x, y) :=
1

2(n− 4)(n− 2)nen
|x− y|4−n

so that Γ0 ∈ C∞
(
Ω× Ω

)
\ {(x, y) : x = y}. We define recursively for j ≥ 0

Γj+1(x, y) := −
∫

Ω

Γj(x, z)a(z)Γ0(z, y) dz
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and have that Γj ∈ C4,α
(
Ω× Ω \ {(x, y) : x = y}

)
is well defined and, according to

a Lemma of Giraud [12], that for j ≥ 1

(12) |Γj(x, y)| ≤

 Cj |x− y|4(j+1)−n, if (j + 1) < n
4 ,

Cj (1 + |log |x− y||) , if (j + 1) = n
4 ,

Cj , if (j + 1) > n
4 .

Here, Cj = Cj (n,R, ‖a‖∞), where R > 0 is chosen such that Ω ⊂ BR(0). We fix

some ` > n
4 , x ∈ Ω and for ux ∈ C4,α

(
Ω
)

to be suitably determined below, we put

(13) Gx(y) := Γ0(x, y) +
∑̀
j=1

Γj(x, y) + ux(y).

One should observe that
∑∞
j=0 Γj is the Neumann-series for the fundamental so-

lution for the perturbed differential operator. We have that Gx ∈ C4,α
(
Ω \ {x}

)
.

In order that Gx becomes indeed a Green’s function for the Dirichlet problem for
∆2 + a, i.e. that indeed formula (8) is satisfied, we need ux to be a solution of the
following Dirichlet problem

(14)


∆2ux(y) + a(y)ux(y) = −a(y)Γ`(x, y) in Ω

ux(y) = −Γ0(x, y)−
∑`
j=1 Γj(x, y) for y ∈ ∂Ω,

∂
∂νux(y) = − ∂

∂νy
Γ0(x, y)−

∑`
j=1

∂
∂νy

Γj(x, y) for y ∈ ∂Ω.

Since ` > n
4 , the right hand side −a·Γ`(x, . ) is Hölder continuous with Hölder norm

bounded by a constant C(n,R, ‖a‖C0,α). The C1,α-norm of the datum for ux|∂Ω and
the C0,α-norm of the datum for ∂

∂νux|∂Ω are bounded by C(n,R, ∂Ω)d(x, ∂Ω)3−n−α.
The dependence of the constant C on ∂Ω is in principle constructive and explicit
via its curvature properties and their derivatives. According to C1,α–estimates for
boundary value problems in variational form like (14) – see [1, Thm. 9.3] – we see
that

(15) ‖ux‖C1,α(Ω) ≤ C(n,R, λ, ‖a‖C0,α , ∂Ω)d(x, ∂Ω)3−n−α.

One should observe that the differential operators are uniformly coercive, so that
no ux-terms need to appear on the right-hand-side.

As long as d(y, ∂Ω) ≤ d(x, ∂Ω), (15) shows that

|ux(y)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)d(x, ∂Ω)4−n

and hence

(16) |Gx(y)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)
(
|x− y|4−n + d(x, ∂Ω)4−n) .

If d(y, ∂Ω) > d(x, ∂Ω) we conclude from (16) by exploiting the symmetry of the
Green’s function:

(17) |Gx(y)| = |Gy(x)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)
(
|x− y|4−n + d(y, ∂Ω)4−n) .

Combining (16) and (17) yields (9) for n > 4.

Case n = 4. Here the fundamental solution we start with is

(18) Γ0(x, y) := − 1

16e4
log |x− y|.
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We proceed with the iterated kernels Γj . In view of the mild singularity of Γ0,
however, it is sufficient to choose ` = 1. As above we find that

(19) ‖ux‖C1,α(Ω) ≤ C(n,R, λ, ‖a‖C0,α , ∂Ω)d(x, ∂Ω)−1−α.

As long as d(y, ∂Ω) ≤ d(x, ∂Ω), (19) shows that

(20) |∇yGx(y)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)
(
|x− y|−1 + d(x, ∂Ω)−1

)
.

In order to exploit the symmetry of Gx(y) we need a similar estimate also for
|∇xGx(y)|. To this end one has to differentiate (14) with respect to the parameter
(!) x and obtains as before that for d(y, ∂Ω) ≤ d(x, ∂Ω)

(21) |∇xGx(y)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)
(
|x− y|−1 + d(x, ∂Ω)−1

)
.

By symmetry Gx(y) = Gy(x), and (21) shows that for d(x, ∂Ω) ≤ d(y, ∂Ω), one has

(22) |∇yGx(y)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)
(
|x− y|−1 + d(y, ∂Ω)−1

)
while (20) yields

(23) |∇xGx(y)| ≤ C(C0, n,R, λ, ‖a‖C0,α , ∂Ω)
(
|x− y|−1 + d(y, ∂Ω)−1

)
.

Combining (20)-(23) proves (10) and hence (9) in the case n = 4.

Case n = 3. Here, we simply work with the bounded Lipschitz continuous funda-
mental solution

(24) Γ0(x, y) := − 1

8π
|x− y|

so that no iterative procedure is needed and we may directly work with ` = 0. One
comes up with

(25) ‖ux‖C1,α(Ω) ≤ C(R,n, λ, ‖a‖C0,α , ∂Ω)d(x, ∂Ω)−α.

Proceeding as for n = 4 yields (10) and hence (9) also in the case n = 3. � �

Let us now show that assuming certain uniform estimates on the Green’s func-
tions Hk for the biharmonic operators on a family (Ωk) of domains according to
Definition 1 implies similar uniform estimates for the Green’s functions of the per-
turbed biharmonic operators ∆2 + ak on Ωk:

Proposition 3.2. Let n ≥ 4 and (Ωk)k∈N be a C4,α-smooth perturbation of the
bounded C4,α-smooth domain Ω according to Definition 1 and R > 0 such that
Ωk ⊂ BR(0). Let Hk ∈ C4

(
Ωk × Ωk \ {(x, y) : x = y}

)
denote the Green’s functions

for ∆2 in Ωk and assume that there exists a uniform constant C1 such that for all
k and all x, y ∈ Ωk (x 6= y)

(26) |Hk(x, y)| ≤ C1 ·
{
|x− y|4−n, if n > 4,
(1 + |log |x− y||) , if n = 4.

Let ak ∈ C0,α
(
Ωk
)

and Λ > 0 such that ∀k : ‖ak‖C0,α(Ωk) ≤ Λ and let λ > 0 be

such that

∀k ∀ϕ ∈ C∞c (Ωk) :

∫
Ωk

(
(∆ϕ)2 + akϕ

2
)
dy ≥ λ

∫
Ωk

ϕ2 dy.
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We denote by Gk the Green’s functions for ∆2 + ak in Ωk. Then, there exists a
constant C2 = C2(R,n,C1, λ,Λ,Ω) such that one has the following estimate:

(27) ∀x, y ∈ Ωk, x 6= y : |Gk(x, y)| ≤ C2 ·
{
|x− y|4−n, if n > 4,
(1 + |log |x− y||) , if n = 4.

Moreover, assuming

(28) ∀x, y ∈ Ωk, x 6= y : |∇(x,y)Hk(x, y)| ≤ C1 |x− y|−1
, if n = 4,

in dimension n = 4 implies that

(29) ∀x, y ∈ Ωk, x 6= y : |∇(x,y)Gk(x, y)| ≤ C2 |x− y|−1
, if n = 4.

The dependence on (Ωk)k as regular perturbations of Ω is explicit via the geo-
metric properties of ∂Ω. As long as these properties are uniformly satisfied, the
same constant may be chosen.

The case n = 3 need not be covered here, since in this case, Proposition 3.1
already provides strong enough information for our purposes.

Proof. We proceed quite similarly as in the proof of Proposition 3.1, but now using
the biharmonic Green’s functions Hk instead of Γ0. That means that in Ωk, we
define inductively

Γk,1(x, y) := −
∫

Ωk

Hk(x, z)ak(z)Hk(z, y) dz;

Γk,j+1(x, y) := −
∫

Ωk

Γk,j(x, z)ak(z)Hk(z, y) dz.

Moreover, as above, we make the ansatz with uk,x ∈ C4,α(Ωk)

(30) Gk(x, y) := Hk(x, y) +
∑̀
j=1

Γk,j(x, y) + uk,x(y).

We choose ` > n
4 + 1 so that

(31) |Γk,`| ≤ C(R,n,Λ), |∇Γk,`| ≤ C(R,n,Λ),

while for the other Γj , we have in particular that

(32) |Γk,j(x, y)| ≤ C(R,n,Λ) ·
{
|x− y|4−n, if n > 4,
(1 + |log |x− y||) , if n = 4,

and assuming (28) that

(33) ∀x, y ∈ Ωk, x 6= y : |∇(x,y)Γk,j(x, y)| ≤ C(R,n,Λ) · |x− y|−1
, if n = 4.

As before we see that Gk is indeed the Green’s function for the Dirichlet problem
for ∆2 + ak in Ωk, iff the uk,x solve the following boundary value problems:

(34)

{
∆2uk,x(y) + ak(y)uk,x(y) = −ak(y)Γk,`(x, y) in Ωk
uk,x(y) = ∂

∂νuk,x = 0 for y ∈ ∂Ωk.

The right hand side is uniformly bounded, the operators are uniformly coercive.
Hence, Lp-theory (see [1]) combined with Sobolev embedding theorems and differ-
entiating (34) with respect to the parameter x yields

(35)
|uk,x(y)| ≤ C(R,n,C1, λ,Λ, (Ωk)k∈N),

|∇(x,y)uk,x(y)| ≤ C(R,n,C1, λ,Λ, (Ωk)k∈N).
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The dependence on (Ωk)k is uniform in the sense described before the present proof.
Inserting (31), (32), (35) and (33) into (30) proves the claim. � �

Finally, we need a more precise statement concerning the smoothness of the
Green’s functions simultaneously with respect to both variables.

Proposition 3.3. Under the assumptions of Proposition 3.2 we have in addition
that

Gk ∈ C4,α
(
Ωk × Ωk \ {(x, y) : x 6= y}

)
.

Proof. We let i ∈ {0, . . . , 3} and p ∈ (n, n+ 1) so that in particular 4− i− n
p > 0.

We let ϕ ∈ C∞c (Ωk) and consider ψ ∈ C4,α(Ωk) such that ∆2ψ + akψ = ϕ in Ωk
and ψ = ∂νψ = 0 on ∂Ωk. It follows from regularity theory (see [1]) and Sobolev’s
embedding theorem that

‖ψ‖Ci,β(Ωk) ≤ C‖ψ‖W 4,p(Ωk) ≤ C‖ϕ‖Lp(Ωk)

with β ≤ 4− i− n
p , β ∈ (0, 1). Here W 4,p denotes the Sobolev space of order 4 in

differentiability and of order p in integrability. Since ψ(x) =
∫

Ωk
Gk(x, y)ϕ(y) dy,

we get that ∇ixGk makes sense and that∣∣∣∣∫
Ωk

(∇ixGk(x, y)−∇ixGk(x′, y))ϕ(y) dy

∣∣∣∣ ≤ C2‖ϕ‖Lp(Ωk)|x− x′|β .

By duality, we then get that y 7→ ∇ixGk(x, y) ∈ Lq(Ωk) for all q ∈ (n+1
n , n

n−1 ) and
that

‖∇ixGk(x, ·)−∇ixGk(x′, ·)‖q ≤ C(q)|x− x′|β for all x, x′ ∈ Ωk.

It follows from the equation satisfied by Gk(x, ·) that we have ∆2∇ixGk(x, ·) +
a∇ixGk(x, ·) = 0 in D′(Ωk \ {x}) and ∇ixGk(x, ·) = 0, ∂ν∇ixGk(x, ·) = 0 on ∂Ωk. It
then follows from regularity theory that ∇ixGk(x, ·) ∈ C4,α(Ωk \ {x}). Moreover,
for all δ > 0, there exists C(δ) > 0 such that

‖∇ixGk(x, ·)−∇ixGk(x′, ·)‖C4,α(Ωk\(Bδ(x)∪Bδ(x′))) ≤ C(δ)|x− x′|β

for all x, x′ ∈ Ωk. This is valid for i ≤ 3; using the symmetry of the Green’s function,
we have a similar result for i = 4 with respect to the C3,α(Ωk \ (Bδ(x) ∪Bδ(x′)))-
norm. It then follows that all derivatives of order 4 are covered so that Gk ∈
C4,α(Ωk × Ωk \ {(x, x) : x ∈ Ωk}). This proves the proposition. � �

4. Uniform bounds for the Green’s functions

As before, we consider a family of bounded regular domains (Ωk)k∈N being a
smooth perturbation of a fixed bounded regular domain Ω according to Definition 1.
We focus on proving

|Hk(x, y)| ≤ C1

 |x− y|
4−n, if n > 4,

(1 + | log |x− y| |) , if n = 4,
1, if n = 3;

|∇(x,y)Hk(x, y)| ≤ C1

{
|x− y|−1, if n = 4,
1, if n = 3;

with the constant C1 = C1(Ω) being uniform for the whole family (Ωk)k∈N. Origi-
nally, this type of estimates on the Green’s functions is due to Krasovskĭı [23] (cf.
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also [22]) even for very general boundary value problems for even order elliptic op-
erators. For the reader’s convenience, we include here an independant and shorter
proof of these estimates.

Theorem 4. Let Ω be a bounded C4,α-smooth domain of Rn, n ≥ 3 and (Ωk)k∈N
a C4,α-smooth perturbation of Ω. We denote by Hk the Green’s functions for ∆2

in Ωk under Dirichlet boundary conditions.
Then, there exists a constant C1 > 0 such that for all k and all x, y ∈ Ωk with

x 6= y one has that

(36) |Hk(x, y)| ≤ C1 ·

 |x− y|
4−n, if n > 4,

(1 + |log |x− y||) , if n = 4,
1, if n = 3.

Moreover, for n = 3, 4 we prove that

(37) ∀x, y ∈ Ωk, x 6= y : |∇(x,y)Hk(x, y)| ≤ C1 ·
{
|x− y|−1

, if n = 4,
1, if n = 3.

Proof. If n = 3, the statement of Proposition 3.1 is already strong enough and
nothing remains to be proved. We postpone the case n = 4 and start with proving
the theorem in the generic case n > 4. We argue by contradiction and assume that
there exist two sequences (xk)k∈N, (yk)k∈N with xk, yk ∈ Ω`k such that xk 6= yk for
all k ∈ N and such that

(38) lim
k→+∞

|xk − yk|n−4|H`k(xk, yk)| = +∞.

It is enough to consider `k = k; other situations may be reduced to this by rela-
belling or are even more special. After possibly passing to a subsequence, it follows
from (9) that there exists x∞ ∈ ∂Ω such that

(39) lim
k→+∞

xk = x∞ and lim
k→+∞

d(xk, ∂Ωk)

|xk − yk|
= 0.

We remark that the constant in (9) can be chosen uniformly for the family (Ωk)k∈N.

Lemma 4.1. Assume that n ≥ 4. For any q ∈
(

n
n−3 ,

n
n−4

)
, there exists C(q) > 0

such that for all k and all x ∈ Ωk we have

(40) ‖Hk(x, . )‖Lq(Ωk) ≤ Cd(x, ∂Ωk)4−n+n
q .

The constant C can be chosen uniformly for the family (Ωk)k∈N.

Proof. We proceed with the help of a duality argument. Let ψ ∈ C∞c (Ωk) and let
ϕ ∈ C4,α(Ωk) be a solution of{

∆2ϕ = ψ in Ωk,
ϕ = ∂νϕ = 0 on ∂Ωk.

Let q ∈
(

n
n−3 ,

n
n−4

)
and denote q′ = q

q−1 the dual exponent, so that in particular
n
4 < q′ < n

3 . It follows from elliptic estimates [1, Thm. 15.2] that there exists
C3 > 0 independent of ϕ,ψ and k such that

‖ϕ‖W 4,q′ (Ωk) ≤ C3‖ψ‖Lq′ (Ωk).
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The embedding W 4,q′(Ωk) ↪→ C0,β(Ωk) with β = 4− n
q′ = 4−n+ n

q being continuous

uniformly in k shows that there exists C4 > 0 independent of ϕ and k such that
‖ϕ‖C0,β(Ωk) ≤ C4‖ϕ‖W 4,q′ (Ωk). Let x ∈ Ωk and x′ ∈ ∂Ωk. We then get that

|ϕ(x)| = |ϕ(x)− ϕ(x′)| ≤ ‖ϕ‖C0,β(Ωk)|x− x
′|β ≤ C3C4‖ψ‖Lq′ (Ωk)|x− x

′|β .

Moreover, ϕ(x) =
∫

Ωk
Hk(x, y)ψ(y) dy for all x ∈ Ωk by Green’s representation

formula. Therefore, taking the infimum with respect to x′ ∈ ∂Ωk, we have that∣∣∣∣∫
Ωk

Hk(x, y)ψ(y) dy

∣∣∣∣ ≤ C3C4‖ψ‖Lq′ (Ωk)d(x, ∂Ωk)β

for all ψ ∈ C∞c (Ωk). Inequality (40) then follows. � �

Lemma 4.2. Assuming n > 4 and (38), one has that limk→+∞ |xk − yk| = 0.

Proof. Assume by contradiction that |xk − yk| does not converge to 0. After ex-
tracting a subsequence we may then assume that there exists δ > 0 such that all
xk ∈ Bδ(x∞) and all yk ∈ Ωk \ B3δ(x∞). We consider q as in Lemma 4.1. In
particular we know that ‖Hk(x, . )‖Lq(Ωk) ≤ C uniformly in k. By applying local
elliptic estimates (cf. [1, Theorem 15.3]) combined with Sobolev embeddings in

Ωk \B2δ(x∞) we find that

‖Hk(xk, . )‖L∞(Ωk\B3δ(x∞)) ≤ C(q, δ)

uniformly in k. In particular, we would have

|Hk(xk, yk)| ≤ C(q, δ) and |xk − yk|n−4|Hk(xk, yk)| ≤ C(q, δ)

independent of k. This contradicts our hypothesis (38). � �

Concluding the proof of Theorem 4, case n > 4. In what follows we may work in one
fixed coordinate domain Ui; for this reason we drop the index i. Let Φk : U → Rn
be coordinate charts of Ωk at x∞ as in Definition 1. We recall that

Φk(U ∩ {x1 < 0}) = Φk(U) ∩ Ωk and Φk(U ∩ {x1 = 0}) = Φk(U) ∩ ∂Ωk.

Without loss of generality we may assume that Φk(0) = x∞ and Bδ(x∞) ⊂ Φk(U).
We let xk = Φk(x′k) and yk = Φk(y′k). Therefore, (39) rewrites as

(41) lim
k→+∞

x′k = 0 and lim
k→+∞

x′k,1
|x′k − y′k|

= 0.

We define for R large enough

H̃k(z) = |x′k − y′k|n−4Hk(Φk(x′k),Φk(x′k + |x′k − y′k|(z − ρk~e1)))

in BR(0) ∩ {x1 < 0}, where ρk :=
x′k,1
|x′k−y

′
k|

. We rewrite the biharmonic equation

∆2Hk(x, . ) = 0 complemented with Dirichlet boundary conditions as

∆2
gk
H̃k = 0 in (BR(0) ∩ {z1 < 0}) \ {ρk~e1}, H̃k = ∂1H̃k = 0 on {z1 = 0}.

Here, gk(z) = Φ∗k(E)(x′k + |x′k − y′k|(z − ρk~e1)), E = (δij) the Euclidean metric,
and ∆gk denotes the Laplace-Beltrami operator with respect to this rescaled and
translated pull back of the Euclidean metric under Φk. Then, for τ > 0 being
chosen suitably small, it follows from elliptic estimates (see [1, Theorem 15.3]) and
Sobolev embeddings that there exists C(R, q, τ) > 0 such that

(42) |H̃k(z)| ≤ C(R, q, τ)‖H̃k‖Lq(BR(0)\Bτ (0))
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for all z ∈ BR/2(0) \ B2τ (0), z1 ≤ 0. In order to estimate the Lq-norm on the
right-hand side we use (40) and obtain that∫

BR(0)∩{ζ1<0}
|H̃k(ζ)|q dζ ≤ C|x′k − y′k|q(n−4)−n

∫
Ωk

|Hk(xk, y)|q dy

≤ C|x′k − y′k|q(n−4)−nd(xk, ∂Ωk)(4−n)q+n

≤ C

(
d(xk, ∂Ωk)

|x′k − y′k|

)n−q(n−4)

.

Therefore, with (39), we get that limk→+∞ ‖H̃k‖Lq(BR(0)\Bτ (0)) = 0, and (42) yields

lim
k→+∞

H̃k = 0 in C0((BR/2(0) \B2τ (0)) ∩ {z1 ≤ 0}).

In particular, since limk→+∞ ρk = 0, we have that

lim
k→+∞

H̃k

(
y′k − x′k
|y′k − x′k|

+ ρk~e1

)
= 0.

This limit rewrites as

lim
k→+∞

|xk − yk|n−4|Hk(xk, yk)| = 0,

contradicting (38). The proof of Theorem 4, n > 4, is complete. � �

Proof of Theorem 4, case n = 4. Here it is enough to prove (37) for ∇y, exploiting
the symmetry of the Green’s function. We argue by contradiction and as in the
proof for n > 4, we may assume that there exist two sequences (xk)k∈N, (yk)k∈N
with xk, yk ∈ Ωk such that xk 6= yk and

(43) lim
k→+∞

|xk − yk| |∇yHk(xk, yk)| = +∞.

After possibly passing to a subsequence, it follows from (10) that there exists x∞ ∈
∂Ω such that

(44) lim
k→+∞

xk = x∞ and lim
k→+∞

d(xk, ∂Ωk)

|xk − yk|
= 0.

Lemma 4.1 may be applied with some q > 4. The analogue of Lemma 4.2 is
proved in exactly the same way as above. Like above we now put for R large
enough

H̃k(z) = Hk(Φk(x′k),Φk(x′k + |x′k − y′k|(z − ρk~e1)))

in BR(0) ∩ {z1 < 0}, where xk = Φk(x′k), yk = Φk(y′k), ρk :=
x′k,1
|x′k−y

′
k|

. As above we

find for τ > 0 small enough that there exists C(R, τ, q) > 0 such that

|∇H̃k(z)| ≤ C(R, q, τ)‖H̃k‖Lq(BR(0)\Bτ (0))

for all z ∈ BR/2(0) \B2τ (0), z1 ≤ 0. Using (40) we obtain that∫
BR(0)∩{ζ1<0}

|H̃k(ζ)|q dζ ≤ C|x′k − y′k|−4

∫
Ωk

|Hk(xk, y)|q dy

≤ C

(
d(xk, ∂Ωk)

|x′k − y′k|

)4

.

In the same way as in the generic case n > 4, this yields first that

lim
k→+∞

∇H̃k = 0 in C0((BR/2(0) \B2τ (0)) ∩ {z1 ≤ 0})
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and back in the original coordinates

lim
k→∞

|xk − yk| |∇yHk(xk, yk)| = 0.

So, we achieve a contradiction also if n = 4. This proves (37). Integrating (37), we
get (36). The proof of Theorem 4 is complete. �

5. Convergence of the Green’s functions

As before, we consider a family of bounded regular domains (Ωk) being a C4,α-
smooth perturbation of a fixed bounded C4,α-smooth domain Ω according to Defi-
nition 1. We consider the operators ∆2 + ak in Ωk and assume that

∃U0 ⊃ Ωk : ak ∈ C0,α(U0);

∃a∞ ∈ C0,α(U0) : lim
k→∞

ak = a∞ in C0,α
loc (U0).

As before, we denote by Gk the Green’s functions corresponding to ∆2 + ak in
Ωk and by G the Green’s functions corresponding to ∆2 + a∞ in Ω and show
the following convergence result. As for the diffeomorphisms Φk,i,Φi we refer to
Definition 1.

Proposition 5.1. Let xk ∈ Ωk and assume that limk→∞ xk = x∞ ∈ Ω. Then, we
have:

Gk(xk, . ) → G(x∞, . ) in C4
loc(Ω \ {x∞}),

Gk(xk, . ) → G(x∞, . ) in L1(Rn),

Gk(xk, . ) ◦ Φk,i → G(x∞, . ) ◦ Φi in C4
loc(Ui ∩ {z1 ≤ 0} \ {Φ−1

i (x∞)}).

If n = 3 we have in addition that

Gk( . , . )→ G( . , . ) in C0
loc(Ω× Ω).

Proof. According to Theorem 4 and Proposition 3.2 we know that

|Hk(x, y)| ≤ C ·

 |x− y|
4−n, if n > 4,

(1 + |log |x− y||) , if n = 4,
1, if n = 3;

|Gk(x, y)| ≤ C ·

 |x− y|
4−n, if n > 4,

(1 + |log |x− y||) , if n = 4,
1, if n = 3;

(45)

uniformly in k. This shows that in particular

(46) ‖Gk(x, . )‖L1(Ωk) ≤ C uniformly in k.

Moreover, since xk → x∞, we may assume that all xk are in a small neighbourhood
around x∞. Refering to the construction in the proof of Proposition 3.1 we see
that the uk,xk arising there are uniformly bounded in C4,α

(
Ωk
)
. After selecting

a suitable subsequence we see that for each Ω0 ⊂⊂ Ω one has Gk(xk, . ) → ϕ in
C4
loc

(
Ω0 \ {x∞}

)
and Gk(xk, . ) ◦Φk,i → ϕ ◦Φi in C4

loc(Ui ∩{z1 ≤ 0} \ {Φ−1
i (x∞)})

with a suitable ϕ ∈ C4,α(Ω \ {x∞}). Thanks to this compactness and the fact
that in any case the limit is the uniquely determined Green’s function, we have
convergence on the whole sequence towards G(x∞, . ).
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Finally, since we have pointwise convergence, (45) allows for applying Vitali’s
convergence theorem to show that

Gk(xk, . )→ G(x∞, . ) in L1(Rn).

The statement concerning C0
loc(Ω×Ω)-convergence in n = 3 follows from |∇Gk( . , . )| ≤

C, cf. (10). � �

In order to prove Lemma 6.4 below we also need a convergence result simulta-
neous in both variables.

Proposition 5.2. We have that

Gk( . , . ) ◦ (Φk,i × Φk,j)→ G( . , . ) ◦ (Φi × Φj)

in C4
loc ((Ui ∩ {x1 ≤ 0})× (Uj ∩ {x1 ≤ 0}) \Dij) , where

Dij = {(x, y) ∈ Ui × Uj : Φi(x) = Φj(y)}.
Proof. We combine the ideas of the proofs of Propositions 5.1 and 3.3. One should
observe that Theorem 4 and Proposition 3.2 guarantee uniform L1-bounds for Hk

and Gk as in the proof of Proposition 5.1. � �

6. The limit of the zeros of the Green’s functions

We keep the notations of the previous sections. In order to prove Theorem 3, we
assume that for every k, there exist

(47) xk, yk ∈ Ωk, xk 6= yk : Gk(xk, yk) = 0.

After passing to subsequences there exist x∞ = limk→∞ xk, y∞ = limk→∞ yk. Us-
ing Definition 1, one sees that x∞, y∞ ∈ Ω.

As for the location of these limit points, we distinguish several cases.

6.1. Both points in the interior. Here, we consider the case that x∞, y∞ ∈ Ω.
Once it is shown that x∞ 6= y∞ we conclude directly from Proposition 5.1 that

(48) G(x∞, y∞) = 0.

So, we are left with proving:

Lemma 6.1. x∞ 6= y∞.

Proof. Assume by contradiction that x∞ = y∞. We consider first the case n > 4
and here, the rescaled Green’s function:

(49) G̃k(z) := |xk − yk|n−4Gk(xk, xk + |xk − yk|z).

Let ε > 0 be such that B2ε(x∞) ⊂ Ω ∩ Ωk for all k. Then, for k large enough,

|xk − x∞| < ε and G̃k(z) is certainly defined for |z| < ε
|xk−yk| , where one has by

Theorem 4 and Proposition 3.2 that

(50) |G̃k(z)| ≤ C|z|4−n

uniformly in k. Because the G̃k are defined on a sequence of sets which exhausts
the whole Rn we may discuss how to pass to a limit locally in Rn. Since

∆2G̃k + |xk − yk|4ak(xk + |xk − yk|z)G̃k = 0 on Bε/|xk−yk|(0) \ {0},
by elliptic Schauder theory we may assume that after possibly passing to a subse-
quence that

(51) G̃k → G̃ in C4
loc(Rn \ {0}), where |G̃(z)| ≤ C|z|4−n.



POSITIVITY AND ALMOST POSITIVITY OF BIHARMONIC GREEN’S FUNCTIONS 19

Moreover,
∆2G̃ = 0 in Rn \ {0}.

In order to compute the differential equation satisfied by G̃ near z = 0, let ϕ ∈
C∞c (Rn) with supp ϕ ⊂ BR(0) and define for k large enough

Ωk 3 x 7→ ϕk(x) := ϕ

(
x− xk
|xk − yk|

)
, ϕk ∈ C∞c (Ωk).

ϕ(0) = ϕk(xk) =

∫
Ωk

Gk(xk, y)(∆2ϕk + akϕk) dy

=

∫
B|xk−yk|R(xk)

Gk(xk, y)|xk − yk|−4

·
((

∆2ϕ
)( y − xk
|xk − yk|

)
+ |xk − yk|4ak(y)ϕ

(
y − xk
|xk − yk|

))
dy

=

∫
BR(0)

|xk − yk|n−4Gk(xk, xk + |xk − yk|z)

·
(
∆2ϕ(z) + |xk − yk|4ak(xk + |xk − yk|z)ϕ(z)

)
dz

=

∫
Rn
G̃k(z)

(
∆2ϕ(z) + |xk − yk|4ak(xk + |xk − yk|z)ϕ(z)

)
dz.

We put γn = 1
2(n−4)(n−2)nen

and obtain, letting k →∞:∫
Rn
G̃(z)∆2ϕ(z) dz = ϕ(0) =

∫
Rn
γn|z|4−n∆2ϕ(z) dz.

This shows that we have in the sense of distributions that

∆2
(
G̃(z)− γn|z|4−n

)
= 0 in Rn.

Hence,
G̃(z) = γn|z|4−n + ψ(z), ψ ∈ C∞(Rn), ∆2ψ = 0.

Thanks to (50) we know further that

|ψ(z)| ≤ C(1 + |z|)4−n.

Also for entire bounded biharmonic (even more generally polyharmonic) functions,
Liouville’s theorem holds true, i.e. these are constant, see [25, p. 19]. Hence
ψ(z) ≡ 0 showing that

G̃(z) = γn|z|4−n, z ∈ Rn \ {0}.
On the other hand we have according to the choice (47) of xk, yk and the definition

(49) of G̃k that

G̃k

(
yk − xk
|xk − yk|

)
= |xk − yk|n−4Gk (xk, yk) = 0.

Hence there exists at least one point ζ ∈ Rn with

|ζ| = 1 and 0 = G̃(ζ) = γn|ζ|4−n,
which is false. This proves the statement for the case n > 4. One should observe
that when looking just at the biharmonic operator, a proof for the previous lemma
would directly follow from the local positivity results in general domains, which are
proved in [16]. This observation will be useful in what follows.
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Let us now consider the case n = 4. Since x∞ ∈ Ω, according to [16], there exists
(a small) δ1 > 0 such that for all k and all x, y ∈ Ωk we have that

(52) x, y ∈ Bδ1(x∞) ⇒ Hk(x, y) ≥ − 1

c3
log |x− y|.

We estimate the difference between Gk and Hk. For arbitrary but fixed x ∈ Ω,
we have that with respect to the y-variable, (Hk −Gk) (x, . ) solves the following
Dirichlet problem:{

∆2
y (Hk −Gk) (x, y) + ak(y) (Hk −Gk) (x, y) = ak(y)Hk(x, y), y ∈ Ωk

(Hk −Gk) (x, y) = ∂
∂νy

(Hk −Gk) (x, y) = 0, y ∈ ∂Ωk.

According to Theorem 4, we have that ‖ak( . )Hk(x, . )‖L2(Ωk) ≤ c4 uniformly in k

and x. Since ∆2 + ak is assumed to be uniformly coercive, elliptic estimates from
[1] show that

‖ (Hk −Gk) (x, . )‖L∞(Ωk) ≤ C‖ (Hk −Gk) (x, . )‖W 4,2(Ωk) ≤ c5,
uniformly in x and k. Together with (52), this gives that there exist a δ2 > 0 and
a constant c6 > 0 such that

(53) x, y ∈ Bδ2(x∞) ⇒ Gk(x, y) ≥ − 1

c6
log |x− y|.

This proves the claim also for n = 4, since by (53), it is impossible that Gk(xk, yk) =
0, where xk, yk → x∞ ∈ Ω.

Finally, we consider n = 3. Since here, according to Proposition 5.1, alsoGk → G
in C0

loc(Ω × Ω) we have by assumption that G(x∞, x∞) = 0. On the other hand,
testing the boundary value problem for G(x∞, . ) with G(x∞, . ) itself yields by
virtue of the uniform coercivity that

G(x∞, x∞) ≥ λ
∫

Ω

G(x∞, y)2 dy > 0.

We obtain a contradiction also in the case n = 3. So, the proof of Lemma 6.1 is
complete. � �

6.2. One point in the interior, one point on the boundary. After possibly
interchanging x∞ and y∞ we may consider the case that x∞ ∈ Ω, y∞ ∈ ∂Ω.

Lemma 6.2.

∆yG(x∞, y∞) = 0.

Proof. We may fix a neighbourhood Bδ(pi) such that y∞ ∈ ∂Ω ∩ Bδ(pi) so that
for k large enough yk ∈ Ωk ∩ Bδ(pi). We denote y′k := Φ−1

k,i(yk), y′∞ := Φ−1
i (y∞)

and observe that (y′k)1 < 0, (y′∞)1 = 0, y′k → y′∞ in Ui. we recall the notation

y′k = (y′k,1, ȳ
′
k). Writing

G̃k,i := Gk(xk, . ) ◦ Φk,i, G̃i := Gk(x∞, . ) ◦ Φi

we see by means of Taylor’s expansion that with suitable θk ∈ (0, 1):

0 = Gk(xk, yk) = G̃k,i(y
′
k)

= G̃k,i(0, ȳ′k) + ∂1G̃k,i(0, ȳ′k)y′k,1 +
1

2
∂11G̃k,i(θky

′
k,1, ȳ

′
k)(y′k,1)2

=
1

2
∂11G̃k,i(θky

′
k,1, ȳ

′
k)(y′k,1)2
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due to the boundary conditions on Gk. According to Proposition 5.1 this yields
∂11G̃i(y

′
∞) = 0. Since Gk(xk, . )|∂Ω = ∂

∂νGk(xk, . )|∂Ω = 0, we obtain back in the
original coordinates that ∆yG(x∞, y∞) = 0 as stated. � �

6.3. Both points on the boundary. So, here we have to consider the case that
both x∞ ∈ ∂Ω and y∞ ∈ ∂Ω. The most delicate part will be to prove that both
points have to be distinct:

Lemma 6.3. x∞ 6= y∞.

The proof is rather technical and will be postponed to Subsection 6.4. Assuming
now Lemma 6.3 being proved it is not too difficult that in this case an additional
zero of the Green’s function can be observed on the boundary:

Lemma 6.4. ∆x∆yG(x∞, y∞) = 0.

Proof. According to Proposition 3.3 we have that G ∈ C4,α in a neighbourhood
of (x∞, y∞). This proof is similar to that of Lemma 6.2. We fix neighbourhoods
such that x∞ ∈ Bδ(pi), y∞ ∈ Bδ(pj); without loss of generality we may assume that
Bδ(pi)∩Bδ(pj) = ∅. Moreover we may assume that ∀k : xk ∈ Bδ(pi), yk ∈ Bδ(pj).
To work in local charts we define

x′k := Φ−1
k,i(xk), x′∞ := Φ−1

i (x∞), y′k := Φ−1
k,j(yk), y′∞ := Φ−1

j (y∞).

Hence we have

x′k ∈ Ui ∩ {x1 < 0}, x′k → x′∞ ∈ Ui ∩ {x1 = 0},
y′k ∈ Uj ∩ {y1 < 0}, y′k → y′∞ ∈ Uj ∩ {y1 = 0}.

Defining

G̃k : Ui ∩ {x1 ≤ 0} × Uj ∩ {y1 ≤ 0} → R, G̃k(x′, y′) := Gk (Φk,i(x
′),Φk,j(y

′)) ;

G̃ : Ui ∩ {x1 ≤ 0} × Uj ∩ {y1 ≤ 0} → R, G̃(x′, y′) := Gk (Φi(x
′),Φj(y

′)) ;

we see that by assumption

0 = Gk(xk, yk) = G̃k(x′k, y
′
k).

Taylor’s expansion with respect to y′ and exploiting the boundary conditions for
G̃k with respect to y′ shows that for each k there exists a suitable θk ∈ (0, 1) such
that

∂2
y1
G̃k(x′k,1, x̄

′
k, θky

′
k,1, ȳ

′
k) = 0.

Now, we use Taylor’s expansion for this expression with respect to x′ and obtain
with suitable τk ∈ (0, 1):

0 = ∂2
y1
G̃k(x′k,1, x̄

′
k, θky

′
k,1, ȳ

′
k)

= ∂2
y1
G̃k(0, x̄′k, θky

′
k,1, ȳ

′
k) + ∂x1∂

2
y1
G̃k(0, x̄′k, θky

′
k,1, ȳ

′
k)x′k,1

+
1

2
∂2
x1
∂2
y1
G̃k(τkx

′
k,1, x̄

′
k, θky

′
k,1, ȳ

′
k)(x′k,1)2

=
1

2
∂2
x1
∂2
y1
G̃k(τkx

′
k,1, x̄

′
k, θky

′
k,1, ȳ

′
k)(x′k,1)2

so that
∂2
x1
∂2
y1
G̃k(τkx

′
k,1, x̄

′
k, θky

′
k,1, ȳ

′
k) = 0.

Since by Proposition 5.2 we have C4 convergence of G̃k to G̃ it follows that

∂2
x1
∂2
y1
G̃(x′∞, y

′
∞) = 0.
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Taking into account the boundary conditions of G and of G̃, back in the original
variables we see that

∆x∆yG(x∞, y∞) = 0

thereby proving the claim. � �

6.4. Proof of Lemma 6.3. We assume by contradiction that limk→∞ xk = x∞ =
y∞ = limk→∞ yk. We choose a neighbourhood Bδ(pi) 3 x∞ and may assume that
∀k : xk, yk ∈ Bδ(pi) ∩ Ωk. As before we introduce

x′k := Φ−1
k,i(xk), y′k := Φ−1

k,i(yk), x′∞ := Φ−1
i (x∞)

so that we have

x′k, y
′
k ∈ Ui ∩ {x1 < 0}, x′k → x′∞, y

′
k → x′∞ ∈ Ui ∩ {x1 = 0}.

We distinguish two further cases according to whether the distance between xk
and yk converges faster to 0 than the distance of these points to the boundary or
vice verca.

First case: |xk − yk| = o (max(d(xk, ∂Ωk), d(yk, ∂Ωk))). After possibly interchang-
ing xk and yk and passing to a subsequence we may assume that

|xk − yk| = o(d(xk, ∂Ωk)).

This case is much simpler than the second case below and quite similar to the case
where both points converge in the interior treated in Subsection 6.1. Like there we
treat the case n > 4 first. In this case, we consider the rescaled Green’s functions:

G̃k(z) := |xk − yk|n−4Gk(xk, xk + |xk − yk|z).

These are is certainly defined for |z| < d(xk,∂Ωk)
|xk−yk| , which converges to ∞ as k →∞.

For this reason, we may now directly copy the reasoning of Subsection 6.1 and
obtain that

G̃k → G̃ in C4
loc(Rn \ {0}) with G̃(z) = γn|z|4−n.

One should observe that also here the property of the Green’s functions to be
uniformly bounded by C|x − y|4−n is used. According to the choice (47) of xk, yk
and the definition of G̃k we have that

G̃k

(
yk − xk
|xk − yk|

)
= |xk − yk|n−4Gk (xk, yk) = 0.

Hence there exists at least one point ζ ∈ Rn with

|ζ| = 1 and 0 = G̃(ζ) = γn|ζ|4−n,
which is false.

We now treat the case n = 4 and proceed similarly as in the proof of Lemma 6.1.
Rescaling the result of [16] shows the existence of δ > 0, c3 > 0 such that for
x, y ∈ Ωk with |x− y| ≤ δd(x, ∂Ωk), one has (uniformly in k) that

(54) Hk(x, y) ≥ − 1

c3
log

|x− y|
d(x, ∂Ωk)

.

As it was shown in the proof of Lemma 6.1, Gk −Hk is bounded uniformly in k.
Hence, there exists a constant c4 such that for x, y ∈ Ωk we have

|x− y| ≤ δ d(x, ∂Ωk) ⇒ Gk(x, y) ≥ − 1

c3
log

|x− y|
d(x, ∂Ωk)

− c4.
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Since |xk − yk| = o(d(xk, ∂Ωk)) we obtain

0 = Gk(xk, yk)→∞ (k →∞).

This is again false and proves the claim for n = 4.
Finally we discuss the case n = 3. Rescaling the result of Nehari [24] shows the

existence of δ > 0, ε > 0 such that for x, y ∈ Ωk with |x− y| ≤ δd(x, ∂Ωk), one has
(uniformly in k) that

(55) Hk(x, y) ≥ εd(x, ∂Ωk).

Making use of elliptic theory as in the proof of Lemma 6.1 and exploiting the fact
that n = 3 yields that ‖ (Gk( . , yk)−Hk( . , yk)) ‖C2(Ωk) ≤ c5 uniformly in k. Since

|xk − yk| ≤ δd(xk, ∂Ωk) for k large enough we conclude that

0 = Gk(xk, yk) ≥ εd(xk, ∂Ωk)− c6d(xk, ∂Ωk)2,

which becomes again false for k →∞.

Second case: |xk − yk| 6= o(max(d(xk, ∂Ωk), d(yk, ∂Ωk)). After selecting a subse-
quence we may assume that there is τ > 0 such that

|xk − yk| ≥ τd(xk, ∂Ωk) and |xk − yk| ≥ τd(yk, ∂Ωk).

We define

ρk :=
(x′k)1

|x′k − y′k|
< 0 and O(1)

and after selecting a further subsequence we may assume that

lim
k→∞

ρk =: ρ ≤ 0.

Again, we will introduce a rescaled family of Green’s functions. For any R > 0 and
z, ζ ∈ BR ∩ Rn−,

(56)
G̃k(z, ζ) := |x′k − y′k|n−4Gk

(
Φk,i(x

′
k + |x′k − y′k|(z − ρk~e1)),

Φk,i(x
′
k + |x′k − y′k|(ζ − ρk~e1))

)
.

Moreover, G̃k(z, ·) = ∂ζ1G̃k(z, ·) = 0 on BR(0) ∩ ∂Rn−. According to (36) and
Proposition 3.2, we see that uniformly in k, z and ζ

(57)
∣∣∣G̃k(z, ζ)

∣∣∣ ≤ C|z − ζ|4−n, provided that n > 4.

If n = 3, 4 we conclude first that∣∣∣∇G̃k(z, ζ)
∣∣∣ ≤ C ·{ |z − ζ|−1, if n = 4,

1, if n = 3.

Upon integration we obtain that
(58)∣∣∣G̃k(z, ζ)

∣∣∣ ≤ C ·{ (1 + | log |z − ζ||+ log(1 + |z|) + log(1 + |ζ|)) , if n = 4,
(1 + |z|+ |ζ|) , if n = 3.

The points xk and yk were chosen such that Gk(xk, yk) = 0, which reads in new
coordinates

(59) G̃k

(
ρk~e1,

y′k − x′k
|x′k − y′k|

+ ρk~e1

)
= 0.
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In order to formulate the differential equation satisfied by G̃k, we denote by E =
(δij) the Euclidean metric and

gk,i(z) := Φ∗k,i(E)(x′k + |x′k − y′k|(z − ρk~e1))

its translated and rescaled pullback with respect to the coordinate charts Φk,i.
Moreover, we introduce its limit, the constant metric

g∞,i := Φ∗i (E)(x∞).

First, we keep z ∈ Rn− fixed and consider G̃k(z, . ) =: G̃k,z( . ) as function in the
second variable. For ζ ∈ BR(0) ∩ Rn− \ {z} we have that for k large enough, the
following boundary value problem is satisfied:

(60)


∆2
gk,i,ζ

G̃k(z, ζ)

+|x′k − y′k|4(ak ◦ Φk,i) (x′k + |x′k − y′k|(ζ − ρk~e1)) G̃k(z, ζ) = 0
for ζ1 < 0, ζ 6= z,

G̃k(z, ζ) = ∂ζ1G̃k(z, ζ) = 0 for ζ1 = 0.

For k →∞, using [1], we find G̃z = G̃(z, . ) ∈ C4
(
Rn− \ {z}

)
such that

(61) G̃k(z, . )→ G̃z in C4
loc

(
Rn− \ {z}

)
, ∆2

g∞,ζG̃(z, ζ) = 0 (z 6= ζ);

(62)∣∣∣G̃(z, ζ)
∣∣∣ ≤ C ·

 |z − ζ|
4−n, if n > 4,

(1 + | log |z − ζ| |+ log(1 + |z|) + log(1 + |ζ|) ) , if n = 4,
(1 + |z|+ |ζ|) , if n = 3;

(63)
∣∣∣∇G̃(z, ζ)

∣∣∣ ≤ C ·{ |z − ζ|−1, if n = 4,
1, if n = 3.

In order to calculate the differential equation satisfied by G̃ near ζ = z, we introduce

ϕ ∈ C∞c
(
Rn−
)
, ϕ = ∂1ϕ = 0 on ∂Rn−

and let ϕk ∈ C4,α
(
Ωk
)

such that

ϕ(z) = ϕk ◦ Φk,i (x′k + |x′k − y′k|(z − ρk~e1)) for z ∈ Ω̃k

ϕk = ∂νϕk = 0 on ∂Ωk;

where we denote

Ω̃k := ρk~e1 −
x′k

|x′k − y′k|
+

1

|x′k − y′k|
(
Ui ∩ Rn−

)
.
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By means of the representation formula and the corresponding Green’s function we
see that for z ∈ Rn− and k large enough

ϕ(z) = ϕk (Φk,i (x′k + |x′k − y′k|(z − ρk~e1)))

=

∫
Ωk

Gk (Φk,i (x′k + |x′k − y′k|(z − ρk~e1)) , y)
(
∆2ϕk + akϕk

)
dy

=

∫
Φk,i(Ui∩{η1<0})

Gk (Φk,i (x′k + |x′k − y′k|(z − ρk~e1)) , y)
(
∆2ϕk + akϕk

)
dy

=

∫
Ui∩{η1<0}

Gk (Φk,i (x′k + |x′k − y′k|(z − ρk~e1)) ,Φk,i(η))

·
(

∆2
Φ∗k,i(E)(ϕk ◦ Φk,i) + (ak ◦ Φk,i)(ϕk ◦ Φk,i)

)
(η) |Jac Φk,i(η)| dη

=

∫
Ω̃k

|x′k − y′k|4−nG̃k(z, ζ)|x′k − y′k|−4

·
(

∆2
gk,i

+ |x′k − y′k|4ak (Φk,i (x′k + |x′k − y′k|(ζ − ρk~e1)))
)
ϕ(ζ)

·|x′k − y′k|n |Jac Φk,i (x′k + |x′k − y′k|(ζ − ρk~e1))| dζ

=

∫
Ω̃k

G̃k(z, ζ)

·
(

∆2
gk,i

+ |x′k − y′k|4ak (Φk,i (x′k + |x′k − y′k|(ζ − ρk~e1)))
)
ϕ(ζ)

· |Jac Φk,i (x′k + |x′k − y′k|(ζ − ρk~e1))| dζ.

Observing (57), (58) and passing to the limit we obtain for z ∈ Rn−:

ϕ(z) =

∫
Rn−

G̃(z, ζ)∆2
g∞,iϕ(ζ) |Jac Φi(x

′
∞)| dζ.

We introduce the linear bijection L = dΦi(x
′
∞), the half space P := L

(
Rn−
)

and
obtain for z ∈ Rn−:

(64) ϕ(z) =

∫
Rn−

G̃(z, ζ)∆2
L∗Eϕ(ζ) |det(L)| dζ =

∫
P

G̃(z, L−1(η))∆2
(
ϕ ◦ L−1

)
dη.

Finally we consider a rotation σ ∈ O(n) such that σ(P ) = Rn− so that σ ◦L(Rn−) =
Rn−. For arbitrary

ψ ∈ C∞c
(
Rn−
)
, with ψ = ∂1ψ = 0 on ∂Rn−

and x̃ ∈ Rn− we may take ϕ = ψ ◦ σ ◦L and z = (σ ◦L)−1(x̃). We obtain from (64)
since the Laplacian is invariant under orthogonal transformations that for x̃ ∈ Rn−:

ψ(x̃) = (ψ ◦ σ ◦ L) ((σ ◦ L)−1(x̃))

=

∫
P=σ−1(Rn−)

G̃
(
(σ ◦ L)−1(x̃), L−1(η)

)
∆2 (ψ ◦ σ) (η) dη

=

∫
Rn−

G̃
(
(σ ◦ L)−1(x̃), (σ ◦ L)−1(η)

)
∆2ψ(η) dη.

This shows that in the sense of distributions

(65) ∆2
ỹḠ(x̃, . ) = δx̃,



26 HANS-CHRISTOPH GRUNAU AND FRÉDÉRIC ROBERT

where we have defined

(66) Ḡ(x̃, ỹ) := G̃
(
(σ ◦ L)−1(x̃), (σ ◦ L)−1(ỹ)

)
.

Moreover, for fixed x̃ ∈ Rn− one concludes with the help of (62) and (63) that
(67)

|Ḡ(x̃, ỹ)| ≤ C ·

 |x̃− ỹ|
4−n, if n > 4,

(1 + | log |x̃− ỹ| |+ log(1 + |x̃|) + log(1 + |ỹ|) ) , if n = 4,
(1 + |x̃|+ |ỹ|) , if n = 3;

(68) |∇Ḡ(x̃, ỹ)| ≤ C ·
{
|x̃− ỹ|−1, if n = 4,
1, if n = 3.

We denote by H the biharmonic Green’s function in Rn−, which thanks to Boggio [4]
is known explicitly and known to be positive – see Lemma 6.6 below. We prove:

Lemma 6.5. ∀x, y ∈ Rn−, x 6= y : Ḡ(x, y) = H(x, y).

Proof. In what follows we keep x ∈ Rn− fixed. Both Ḡ(x, . ) and H(x, . ) satisfy the
biharmonic equation with the δ-distribution δx as right hand side and zero Dirichlet
boundary conditions on {y1 = 0}. We let ψx := Ḡ(x, . )−H(x, . ). Hence,

ψ = ψx ∈ C∞
(
Rn−
)

solves

(69)

{
∆2ψ = 0 in Rn−,
ψ = ∂1ψ = 0 on {y1 = 0}.

Moreover, according to (67-68) and (77) below we have that

(70) ∀y ∈ Rn− : |ψ(y)| ≤ C ·

 |y|
4−n, if n > 4,

(1 + | log |y| |) , if n = 4,
(1 + |y|) , if n = 3;

(71) |∇ψ(y)| ≤ C ·
{
|y|−1, if n = 4,
1, if n = 3;

where C = C(x). According to [10, 20]

ψ∗(y) :=

{
ψ(y) if y1 ≤ 0,
−ψ(−y1, ȳ)− 2y1

∂
∂y1

ψ(−y1, ȳ)− y2
1∆ψ(−y1, ȳ), if y1 > 0,

ψ∗ ∈ C4 (Rn) is an entire biharmonic function. We consider now first the case
n > 4. Below we will prove that (69) and (70) imply that also

(72) ∀j = 1, 2 : ∀y ∈ Rn− : |∇jψ(y)| ≤ C|y|4−n−j , where C = C(x).

This immediately gives that |ψ∗(y)| ≤ C|y|4−n and in particular that ψ∗ is a
bounded entire biharmonic function. Again, Liouville’s theorem for biharmonic
functions [25, p. 19] yields that ψ∗(y) ≡ 0 so that the claim of the lemma follows,
provided n > 4.

If n = 3, 4 we shall prove below that for j = 0, 1, 2

(73) ∀y ∈ Rn− : |D2+jψ(y)| ≤ C|y|2−n−j , where C = C(x).

As above ψ∗ is an entire biharmonic function and so are Dψ∗ and D2ψ∗. Since
|D2ψ∗(y)| ≤ C(1 + |y|)2−n, it follows that D2ψ∗(x) ≡ 0. In view of the boundary
conditions in (69) we come up with ψ∗(y) ≡ 0 also in the case n = 3, 4.
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It remains to prove (72) and (73). We consider first n > 4. Assume by contra-
diction that there exists a sequence (y`) ⊂ Rn− such that |∇jψ(y`)| · |y`|n+j−4 →∞
for `→∞. Then

ψ̃`(y) := |y`|n−4ψ (y` − y`,1~e1 + |y`|y)

would solve

(74)

{
∆2ψ̃` = 0 in Rn−,
ψ̃` = ∂1ψ̃` = 0 on {y1 = 0}.

From the assumption we conclude that

(75)

∣∣∣∣∇jψ̃`(y`,1|y`|~e1

)∣∣∣∣ = |y`|n+j−4|∇jψ(y`)| → ∞.

On the other hand,

(76) |ψ̃`(y)| ≤ C|y`|n−4 |y` − y`,1~e1 + |y`|y|4−n ≤ C
∣∣∣∣ y`|y`| + y − y`,1

|y`|
~e1

∣∣∣∣4−n ,
so that ψ̃` remains bounded in a neighbourhood of

y`,1
|y`|~e1 in Rn−. Local Schauder

estimates [1, Theorem 7.3] yield∣∣∣∣∇jψ̃`(y`,1|y`|~e1

)∣∣∣∣ ≤ C,
thereby contradicting (75). This proves (72).

As for (73), i.e. in particular n = 3, 4, the proof is quite similar since we can
already make use of the gradient estimates (71). Instead of (76) one has to make
use of

|∇ψ̃`(y)| ≤ C|y`|n−3 |y` − y`,1~e1 + |y`|y|3−n ≤ C
∣∣∣∣ y`|y`| + y − y`,1

|y`|
~e1

∣∣∣∣3−n ,
so that ∇ψ̃` remains bounded uniformly outside y`

|y`| −
y`,1
|y`|~e1. Therefore, since ψ̃`

vanishes on ∂Rn−, we get that ψ̃` is bounded in a neighbourhood of
y`,1
|y`|~e1 in Rn−.

The proof of the present lemma is complete. � �

In order to show that the present case x∞ = y∞ ∈ ∂Ω cannot occur we collect
some basic facts on the biharmonic Green’s function in the half space; modulo a
simple conformal transformation, cf. [4, p. 126]:

Lemma 6.6. The biharmonic Green’s function in Rn− is given by

(77) ∀x, y ∈ Rn− : H(x, y) =
1

4nen
|x− y|4−n

|x∗−y|/|x−y|∫
1

(v2 − 1)v1−n dv,

where x∗ = (−x1, x̄). From this it follows by direct calculation:

∀x, y ∈ Rn−, x 6= y : H(x, y) > 0;(78)

∀x ∈ Rn−, y ∈ ∂Rn− : ∆yH(x, y) > 0;(79)

∀x, y ∈ ∂Rn−, x 6= y : ∆x∆yH(x, y) > 0.(80)
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We proceed by showing that x∞ = y∞ ∈ ∂Ω is indeed impossible and recall
that by assumption we chose xk, yk such that Gk(xk, yk) = 0. In terms of the
transformed Green’s functions this reads

(81) G̃k

(
ρk~e1,

y′k − x′k
|x′k − y′k|

+ ρk~e1

)
= 0,

cf. (59). After possibly extracting a further subsequence we find a point

θ = lim
k→∞

y′k − x′k
|x′k − y′k|

and may conclude that

(82) G̃ (ρ~e1, θ + ρ~e1) = 0.

According to the possible location of the limit points we have to distinguish four
cases:

Case (a): ρ < 0 and (θ + ρ~e1)1 < 0. We put x̃ = (σ ◦ L)(ρ~e1) ∈ Rn−, ỹ =
(σ ◦ L)(θ + ρ~e1) ∈ Rn−. According to (66) and Lemma 6.5 we could conclude that

H(x̃, ỹ) = Ḡ(x̃, ỹ) = 0,

which is impossible in view of (78).

Case (b): ρ = 0 and (θ + ρ~e1)1 < 0. As in the proof of Lemma 6.2 we conclude

from (81) that ∂2
x1
G̃(0, θ) = 0. Together with the Dirichlet boundary conditions

satisfied by G̃ this yields G̃(0, θ) = 0, DxG̃(0, θ) = 0, D2
xG̃(0, θ) = 0. If we put

ỹ = (σ ◦L)(θ) ∈ Rn− this implies due to (66) that also D2
xḠ(0, ỹ) = 0. In particular,

we have that ∆xH(0, ỹ) = ∆xḠ(0, ỹ) = 0, which is impossible in view of (79).

Case (c): ρ < 0 and (θ + ρ~e1)1 = 0. Due to symmetry of the Green’s function, this
case is completely analogous to the previous one and hence impossible in view of
(79).

Case (d): ρ = 0 and (θ + ρ~e1)1 = 0. As in the proof of Lemma 6.4 we conclude

from (81) that ∂2
x1
∂2
y1
G̃(0, θ) = 0. Here θ1 = 0, |θ| = 1. Thanks to the boundary

conditions satisfied by G̃ this gives ∀|α| ≤ 2, |β| ≤ 2 : Dα
xD

β
y G̃(0, θ) = 0. Using

again (66), we see that also ∀|α| ≤ 2, |β| ≤ 2 : Dα
xD

β
y Ḡ(0, ỹ) = 0, where ỹ =

(σ ◦ L)(θ) 6= 0. In particular, we come up with ∆x∆yH(0, ỹ) = ∆x∆yḠ(0, ỹ) = 0.
This is impossible in view of (80).

Conclusion. In each case we finally deduced a contradiction so that x∞ = y∞ ∈
∂Ω is indeed impossible. The proof of Lemma 6.3 is complete. �

6.5. Proof of Theorems 1, 2 and 3. Theorem 3 follows from the conclusions
made in Subsections 6.1, 6.2 and 6.3.

In order to prove Theorem 1 we assume for contradiction that there exist a
bounded C4,α-smooth domain Ω ⊂ Rn and sequences (xk), (yk) ⊂ Ω, xk 6= yk with
HΩ(xk, yk) ≤ 0 and limk→∞ |xk − yk| = 0. In view of the smoothness assump-
tion, we see by working in local coordinate charts that after possibly passing to
a subsequence and relabelling we find ỹk ∈ Ω, xk 6= ỹk with HΩ(xk, ỹk) = 0 and
|xk − ỹk| → 0 for k → ∞. Application of Theorem 3 in the special case Ωk = Ω,
ak = 0 shows that this is impossible. This contradiction proves that there exists a
δ = δ(Ω) > 0 such that x, y ∈ Ω, x 6= y, HΩ(x, y) ≤ 0 ⇒ |x− y| ≥ δ. Estimate (3)
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now follows directly from (36) while (4) is a consequence of (2), i.e. of DallAcqua
and Sweers [8].

In order to prove Theorem 2, we assume that no such ε0 > 0 exists. In view
of the remark after Theorem 2, we would have a neighbourhood U of B, C4,α-
smooth diffeomorphisms ψk : U → ψk(U) and smooth domains Ωk = ψk(B) with
sign changing biharmonic Green’s functions Hk. Hence, one of the alternatives
described in Theorem 3 would occur for the biharmonic Green’s function H in the
ball B. Since H enjoys precisely the analogous properties of Lemma 6.6 (cf. [4, p.
126]), this is false; Theorem 2 follows. �
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Université de Nice-Sophia Antipolis, Laboratoire J.-A.Dieudonné, Parc Valrose, 06108
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