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Let C be an open connected cone of Rn, n ≥ 3, centered at 0, that is

(1)

{
C is a domain (that is open and connected)

∀x ∈ C, ∀r > 0, rx ∈ C.

We fix γ ∈ R such that −∆−γ|x|−2 is coercive, that is there exists c > 0 such that

(2)

∫
C

(
|∇u|2 − γ u

2

|x|2

)
dx ≥ c

∫
C
|∇u|2 dx

for all u ∈ D1,2(C), where D1,2(C) is the completion of C∞c (C) for the norm ‖u‖ :=

‖∇u‖2. We fix s ∈ [0, 2) and we define 2?(s) := 2(n−s)
n−2 . It follows from the Hardy-

Sobolev inequality (see for instance Ghoussoub-Robert [5] for general considerations
on this inequality) that there exists µγ,s(C) > 0 such that

(3) µγ,s(C) := inf
u∈D1,2(C)\{0}

∫
C

(
|∇u|2 − γ u2

|x|2

)
dx(∫

C
|u|2?(s)
|x|s dx

) 2
2?(s)

.

We say that u0 ∈ D1,2(C) \ {0} is an extremal for µγ,s(C) if it achieves the infimum
in (3). The question of the extremals on general cones has been tackled by Egnell
[4] in the case {γ = 0 and s > 0}. Theorem 0.1 below has been noted in several
contexts by Bartsche-Peng-Zhang [2] and Lin-Wang [3]. In this note, we sketch an
independent proof.

Theorem 0.1. We let C be a cone of Rn, n ≥ 3, as in (1), s ∈ [0, 2) and γ ∈ R
such that (2) holds. Then,

(1) If {s > 0} or {s = 0, γ > 0 and n ≥ 4}, then there are extremals for
µγ,s(C).

(2) If {s = 0 and γ < 0}, there are no extremals for µγ,0(C).
(3) If {s = 0 and γ = 0}, there are extremals for µ0,0(C) if and only if there

exists z ∈ Rn such that (1+|x−z|2)1−n/2 ∈ D1,2(C) (in particular C = Rn).

Moreover, if there are no extremals for µγ,0(C), then
(4)

µγ,0(C) =
1

K(n, 2)2
:= inf

u∈D1,2(Rn)\{0}

∫
Rn |∇u|

2 dx(∫
Rn |u|2

? dx
) 2

2?
where 2? := 2?(0) =

2n

n− 2
.
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As a consequence, the only unclear situation is when {s = 0, n = 3 and γ > 0}.
Here are two corollaries. The first one covers most of the cones that are distinct
from Rn. The second one is essentially the case when the cone is Rn.

Corollary 0.2. We let C be a cone of Rn, n ≥ 3, as in (1) such that C 6= Rn. We
let s ∈ [0, 2) and γ ∈ R such that (2) holds. Then,

(1) If {s > 0} or {s = 0, γ > 0 and n ≥ 4}, then there are extremals for
µγ,s(C).

(2) If {s = 0 and γ ≤ 0}, there are no extremals for µγ,0(C).

Here again, the case {s = 0, n = 3 and γ > 0} is unsettled.

Corollary 0.3. We let C be a cone of Rn, n ≥ 3, as in (1). We assume that there
exists z ∈ Rn such that (1 + |x − z|2)1−n/2 ∈ D1,2(C) (in particular C = Rn). We
fix s ∈ [0, 2) and γ ∈ R such that (2) holds. Then,

(1) If {s > 0} or {s = 0 and γ ≥ 0}, then there are extremals for µγ,s(C).
(2) If {s = 0 and γ < 0}, there are no extremals for µγ,0(C).

Note here that there is no specificity for dimension n = 3.

Proof of Theorem 0.1: This goes as the classical proof of the existence of extremals
for the Sobolev inequalities using Lions’s concentration-compactness Lemmae ([6,7],
see also Struwe [8] for a classical exposition in book form).

We let (ũk)k ∈ D1,2(Rn+) be a minimizing sequence for µγ,s(C) such that∫
C

|ũk|2
?(s)

|x|s
dx = 1 and lim

k→+∞

∫
C

(
|∇ũk|2 −

γ

|x|2
ũ2
k

)
dx = µγ,s(C).

We use a concentration compactness argument in the spirit of Lions [6,7]. For any

k, there exists rk > 0 such that
∫
Brk (0)∩C

|ũk|2
?(s)

|x|s dx = 1/2. We define uk(x) :=

r
n−2
2

k uk(rkx) for all x ∈ C. Since C is a cone, we have that uk ∈ D1,2(C). We then
have that

(5) lim
k→+∞

∫
C

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx = µγ,s(C),

and

(6)

∫
C

|uk|2
?(s)

|x|s
dx = 1 ,

∫
B1(0)∩C

|uk|2
?(s)

|x|s
dx =

1

2
.

Step 1: We claim that, up to a subsequence,

(7) lim
R→+∞

lim
k→+∞

∫
BR(0)∩C

|uk|2
?(s)

|x|s
dx = 1

Proof of the claim: For k ∈ N and r ≥ 0, we define

Qk(r) :=

∫
Br(0)∩C

|uk|2
?(s)

|x|s
dx.

Since 0 ≤ Qk ≤ 1 and r 7→ Qk(r) is nondecreasing for all k ∈ N, then, up to a
subsequence, there exists Q : [0,+∞)→ R nondecreasing such that (Qk(r))→ Q(r)
as k → +∞ for a.e. r > 0. We define

α := lim
r→+∞

Q(r).
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It follows from (5) and (6) that 1
2 ≤ α ≤ 1. Up to taking another subsequence,

there exists (Rk)k, (R
′
k)k ∈ (0,+∞) such that 2Rk ≤ R′k ≤ 3Rk for all k ∈ N,

limk→+∞Rk = limk→+∞R′k = +∞,
limk→+∞Qk(Rk) = limk→+∞Qk(R′k) = α.


In particular,
(8)

lim
k→+∞

∫
BRk (0)∩C

|uk|2
?(s)

|x|s
dx = α and lim

k→+∞

∫
(Rn\BR′

k
(0))∩C

|uk|2
?(s)

|x|s
dx = 1− α

We claim that

(9) lim
k→+∞

R−2
k

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx = 0.

We prove the claim. A preliminary remark is that for all x ∈ BR′k(0) \BRk(0), we

have that Rk ≤ |x| ≤ 3Rk. Therefore, Hölder’s inequality yields∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx

≤

(∫
(BR′

k
(0)\BRk (0))∩C

dx

)1− 2
2?(s)

(∫
(BR′

k
(0)\BRk (0))∩C

|uk|2
?(s) dx

) 2
2?(s)

≤ CR2
k

(∫
(BR′

k
(0)\BRk (0))∩C

|uk|2
?(s)

|x|s
dx

) 2
2?(s)

for all k ∈ N. The conclusion (9) then follows from (8). This proves the claim.

We let ϕ ∈ C∞c (Rn) be such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for x ∈ B1(0) and ϕ(x) = 0
for x ∈ Rn \B2(0). For k ∈ N, we define

ϕk(x) := ϕ

(
|x|

R′k −Rk
+
R′k − 2Rk
R′k −Rk

)
for all x ∈ Rn.

As one checks, ϕkuk, (1− ϕk)uk ∈ D1,2(C) for all k ∈ N. Therefore, it follows from
(8) that ∫

C

|ϕkuk|2
?(s)

|x|s
dx ≥

∫
BRk (0)∩C

|uk|2
?(s)

|x|s
dx = α+ o(1),∫

C

|(1− ϕk)uk|2
?(s)

|x|s
dx ≥

∫
(Rn\BR′

k
(0))∩C

|uk|2
?(s)

|x|s
dx = 1− α+ o(1)

as k → +∞. The Hardy-Sobolev inequality (3) and (9) yield

µγ,s(C)
(∫
C

|ϕkuk|2
?(s)

|x|s
dx

) 2
2?(s)

≤
∫
C

(
|∇(ϕkuk)|2 − γ

|x|2
ϕ2
ku

2
k

)
dx

≤
∫
C
ϕ2
k

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+O

(
R−2
k

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx

)

≤
∫
C
ϕ2
k

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)
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as k → +∞. Similarly,

µγ,s(C)
(∫
C

|(1− ϕk)uk|2
?(s)

|x|s
dx

) 2
2?(s)

≤
∫
C
(1− ϕk)2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

as k → +∞. Therefore, we have that

µγ,s(C)
(
α

2
2?(s) + (1− α)

2
2?(s) + o(1)

)
≤ µγ,s(C)

(∫
C

|ϕkuk|2
?(s)

|x|s
dx

) 2
2?(s)

+

(∫
C

|(1− ϕk)uk|2
?(s)

|x|s
dx

) 2
2?(s)


≤
∫
C
(ϕ2
k + (1− ϕk)2)

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

≤
∫
C
(1− 2ϕk(1− ϕk))

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

≤ µγ,s(C) + 2

∫
C
ϕk(1− ϕk)

γ

|x|2
u2
k dx+ o(1)

≤ µγ,s(C) +O

(
R−2
k

∫
(BR′

k
(0)\BRk (0))∩C

u2
k dx

)
+ o(1) ≤ µγ,s(C) + o(1)

as k → +∞. Therefore, α
2

2?(s) + (1 − α)
2

2?(s) ≤ 1, which implies α = 1 since
0 < α ≤ 1. This proves the claim.

Step 2: We claim that there exists u∞ ∈ D1,2(C) such that uk ⇀ u∞ weakly in
D1,2(C) as k → +∞, there exists x0 6= 0 such that

either limk→+∞
|uk|2

?(s)

|x|s 1C dx = |u∞|2
?(s)

|x|s 1C dx and

∫
C

|u∞|2
?(s)

|x|s
dx = 1(10)

or limk→+∞
|uk|2

?(s)

|x|s 1C dx = δx0
and u∞ ≡ 0.(11)

Proof of the claim: Arguing as in Step 1, we get that for all x ∈ Rn, we have that

lim
r→0

lim
k→+∞

∫
Br(0)∩C

|uk|2
?(s)

|x|s
dx = αx ∈ {0, 1}.

It then follows from the second identity of (6) that α0 ≤ 1/2, and therefore α0 = 0.
Moreover, it follows from the first identity of (6) that there exist as most one point
x0 ∈ Rn such that αx0

= 1. In particular x0 6= 0 since α0 = 0. Therefore, it follows
from Lions’s second concentration compactness lemma [6,7] (see also Struwe [8] for
an exposition in book form) that, up to a subsequence, there exists u∞ ∈ D1,2(C),
x0 ∈ Rn \ {0} and C ∈ {0, 1} such that uk ⇀ u∞ weakly in D1,2(C) and

lim
k→+∞

|uk|2
?(s)

|x|s
1C dx =

|u∞|2
?(s)

|x|s
1C dx+ Cδx0 in the sense of measures

In particular, due to (6) and the compactness (7), we have that

1 = lim
k→+∞

∫
C

|uk|2
?(s)

|x|s
dx =

∫
C

|u∞|2
?(s)

|x|s
dx+ C.

Since C ∈ {0, 1}, the claim follows.
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Step 3. We assume that u∞ 6≡ 0. We claim that limk→+∞ uk = u∞ strongly in
D1,2(C) and that u∞ is an extremal for µγ,s(C).

Proof of the claim: It follows from (10)-(11) that
∫
C
|u∞|2

?(s)

|x|s dx = 1. It then follows

from the Hardy-Sobolev inequality (3) that

µγ,s(C) ≤
∫
C

(
|∇u∞|2 −

γ

|x|2
u2
∞

)
dx.

Moreover, since uk ⇀ u∞ weakly as k → +∞, we have that∫
C

(
|∇u∞|2 −

γ

|x|2
u2
∞

)
dx ≤ lim inf

k→+∞

∫
C

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx = µγ,s(C).

Therefore, equality holds in this latest inequality, u∞ is an extremal for µγ,s(C) and
reflexivity yields convergence of (uk) to u∞ in D1,2(C). This proves the claim.

Step 4: We assume that u∞ ≡ 0. Then

s = 0 , lim
k→+∞

∫
C

u2
k

|x|2
dx = 0 and |∇uk|2 dx ⇀ µγ,s(C)δx0

as k → +∞ in the sense of measures.

Proof of the claim: Indeed, since uk ⇀ u∞ ≡ 0 weakly in D1,2(C) as k → +∞, then
for any 1 ≤ q < 2? := 2n

n−2 , uk → 0 strongly in Lqloc(C) when k → +∞. Assume by

contradiction that s > 0: then 2?(s) < 2? and therefore, since x0 6= 0, we have that

lim
k→+∞

∫
Bδ(x0)∩C

|uk|2
?(s)

|x|s
dx = 0

for δ > 0 small enough, contradicting (11). Therefore s = 0 and the first part of
the claim is proved.

We prove the second part of the claim. We let f ∈ C∞(Rn) be such that f(x) = 0
for x ∈ Bδ(x0), f(x) = 1 for x ∈ Rn \B2δ(x0) and 0 ≤ f ≤ 1 (0 < δ < |x0|/4). We

define ϕ := 1− f2 and ψ := f
√

2− f2. Clearly ϕ,ψ ∈ C∞(Rn) and ϕ2 + ψ2 = 1.
Inequality (3) yields

µγ,s(C)
(∫
C
|ϕuk|2

?

dx

) 2
2?

≤
∫
C

(
|∇(ϕuk)|2 − γ

|x|2
(ϕuk)2

)
dx.

Integrating by parts, using (11), using that uk → 0 strongly in L2
loc(Rn) as k → +∞,

and that ϕ2 = 1− ψ2, we get that

µγ,s(C)
(
|ϕ(x0)|2

?

+ o(1)
) 2

2? ≤
∫
C
ϕ2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+O

(∫
Supp ϕ∆ϕ

u2
k dx

)

µγ,s(C) + o(1) ≤
∫
C

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx−

∫
C
ψ2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx+ o(1)

as k → +∞. Using again (5), we then get that∫
C
ψ2

(
|∇uk|2 −

γ

|x|2
u2
k

)
dx ≤ o(1)
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as k → +∞. Integrating again by parts and using the strong local convergence to
0 in L2

loc, we get that∫
C

(
|∇(ψuk)|2 − γ

|x|2
(ψuk)2

)
dx ≤ o(1)

as k → +∞. The coercivity (2) then yields limk→+∞ ‖∇(ψuk)‖2 = 0. Therefore,
the Hardy inequality yields convergence of |x|−1(ψuk)k to 0 in L2(C). Therefore,

lim
k→+∞

∫
(B2δ(x0))c∩C

u2
k

|x|2
dx = 0.

Taking δ > 0 small enough and combining this result with the strong convergence
of (uk)k in L2

loc around x0 6= 0 yields

lim
k→+∞

∫
C

u2
k

|x|2
dx = 0.

Combining this equality, limk→+∞ ‖∇(ψuk)‖2 = 0 and (5) yields the third part of
the claim. This proves the claim.

Step 5: We assume that u∞ ≡ 0. Then s = 0 and

µγ,s(C) = µ0,0(Rn) =
1

K(n, 2)2
.

Proof of the claim: Since uk ∈ D1,2(C) ⊂ D1,2(Rn), we have that

µ0,0(Rn)

(∫
Rn
|uk|2

?

dx

) 2
2?

≤
∫
Rn
|∇uk|2 dx.

It then follows from Step 4, (5) and (6) that µ0,0(Rn) ≤ µγ,s(C). Conversely, the
computations of Step 6 below yield µγ,s(C) ≤ µ0,0(Rn) = K(n, 2)−1. These two
inequalities prove the claim.

Step 6: We assume that {s = 0 and γ ≤ 0}. Then

µγ,0(C) =
1

K(n, 2)2
= µ0,0(Rn).

Moreover, there are extremals iff {γ = 0 and there exists z ∈ Rn such that (1 +
|x− z|2)1−n/2 ∈ D1,2(C)} (in particular C = Rn).

Proof of the claim: Note that 2?(s) = 2?(0) = 2?. Since γ ≤ 0, we have for any
u ∈ C∞c (C) \ {0},

(12)

∫
C

(
|∇u|2 − γ u2

|x|2

)
dx(∫

C |u|2
? dx

) 2
2?

≥
∫
C |∇u|

2 dx(∫
C |u|2

? dx
) 2

2?
≥ 1

K(n, 2)2
,

and therefore µγ,0(C) ≥ 1
K(n,2)2 . Fix now y0 ∈ Ω and let η ∈ C∞c (C) be such that

η(x) = 1 around y0. Set uε(x) := η(x)
(

ε
ε2+|x−y0|2

)n−2
2

for all x ∈ C and ε > 0.

Since y0 6= 0, it is easy to check that limε→0

∫
C
u2
ε

|x|2 dx = 0. It is also classical (see

for example Aubin [1]) that

lim
ε→0

∫
C |∇uε|

2 dx(∫
C |uε|2

? dx
) 2

2?
=

1

K(n, 2)2
.
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It follows that µγ,0(C) ≤ 1
K(n,2)2 . This proves that µγ,0(C) = 1

K(n,2)2 .

Assume now that there exists an extremal u0 ∈ D1,2(C) \ {0} for µγ,0(C). The
inequalities in (12) and the fact that

µγ,0(C) =

∫
C

(
|∇u0|2 − γ u2

0

|x|2

)
dx(∫

C |u0|2? dx
) 2

2?
≥

∫
C |∇u0|2 dx(∫
C |u0|2? dx

) 2
2?

=
1

K(n, 2)2
,

yields γ = 0 and u0 ∈ D1,2(C) ⊂ D1,2(Rn) is an extremal for the classical Sobolev
inequality on Rn. Therefore, u0 is of the form x 7→ a(b + |x − z0|2)1−n/2 for some
a 6= 0 and b > 0 (see Aubin [1] or Talenti [9]). Using the homothetic invariance of
the cone, we then get that there is an extremal of the form x 7→ (1 + |x− z|2)1−n/2

for some z ∈ Rn. Since an extremal has support in C, we then get that C = Rn.
This proves the claim. �

Step 7: We assume that s = 0, γ > 0 and n ≥ 4. Then

(13) µγ,s(C) < µ0,0(Rn) =
1

K(n, 2)2
.

Proof of the claim: We consider the family uε as in Step 6. Well known computa-
tions by Aubin [1] yield

JCγ,s(uε) = K(n, 2)−2 − γ|x0|−2cθε + o(θε) as ε→ 0,

where c > 0, θε = ε2 if n ≥ 5 and θε = ε2 ln ε−1 if n = 4. It follows that if γ > 0
and n ≥ 4, then µγ,s(C) < K(n, 2)−1. This proves the claim.

Step 8: We assume that s = 0 and that there exists z ∈ Rn such that x 7→
(1 + |x− z|2)1−n/2 ∈ D1,2(C). Then µγ,0(C) < 1

K(n,2)2 for all γ > 0.

Proof of the claim: We define U(x) := (1 + |x− z|2)1−n/2 for all x ∈ Rn. We then
have that JCγ,0(U) = JRn

γ,0(U) < JRn
0,0(U) = K(n, 2)−1. This proves the claim.

Theorem 0.1 is a consequence of Steps 3 and 5 to 7. Corollary 0.2 is a direct
consequence of Theorem 0.1. Corollary 0.3 is a direct consequence of Theorem 0.1
and Step 8. This ends the proof of Theorem 0.1.
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