EXTREMALS FOR THE HARDY-SOBOLEV INEQUALITIES ON
CONES
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Let C be an open connected cone of R™, n > 3, centered at 0, that is

(1)

C is a domain (that is open and connected)
VreC,Vr >0, re €C.

We fix v € R such that —A —~|z| 72 is coercive, that is there exists ¢ > 0 such that

2
(2) / <|Vu|2 —7u2> dzx > c/ |Vul? do
c Ed c

for all u € D*?(C), where D'2(C) is the completion of C2°(C) for the norm |u| :=
[IVull2. We fix s € [0,2) and we define 2*(s) := % It follows from the Hardy-
Sobolev inequality (see for instance Ghoussoub-Robert [5] for general considerations
on this inequality) that there exists ., s(C) > 0 such that

. Je (|Vu|2 - 7%) dx
(3) fiy,s(C) = mn 7 -
ueDH2(C)\{0} (f Ju|2* (2) dl‘) 2% (5)
c

|z[*

We say that ug € DV?(C)\ {0} is an extremal for p. s(C) if it achieves the infimum
in (3). The question of the extremals on general cones has been tackled by Egnell
[4] in the case {7y = 0 and s > 0}. Theorem 0.1 below has been noted in several
contexts by Bartsche-Peng-Zhang [2] and Lin-Wang [3]. In this note, we sketch an
independent proof.

Theorem 0.1. We let C be a cone of R™, n > 3, as in (1), s € [0,2) and v € R
such that (2) holds. Then,

(1) If {s > 0} or {s =0, v > 0 and n > 4}, then there are extremals for
ty,5(C).
(2) If {s =0 and vy < 0}, there are no extremals for i o(C).
(3) If {s = 0 and v = 0}, there are extremals for poo(C) if and only if there
exists z € R™ such that (1+ |z —z|>)'="/2 € DY2(C) (in particular C = R™).
Moreover, if there are no extremals for p o(C), then
(4)
1 Jgn |Vul? d 2n

C)=——= = inf — s where 2 := 2*(0) =
/’L’Y,O( ) K(TL;2)2 weDL.2(RM)\{0} (fRn |u‘2* dl‘)2 ( )

*"‘3
3

|
[\]
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As a consequence, the only unclear situation is when {s =0, n = 3 and v > 0}.

Here are two corollaries. The first one covers most of the cones that are distinct
from R™. The second one is essentially the case when the cone is R™.

Corollary 0.2. We let C be a cone of R*, n >3, as in (1) such that C # R". We
let s €[0,2) and v € R such that (2) holds. Then,

(1) If {s > 0} or {s =0, v > 0 and n > 4}, then there are extremals for

fy,5(C).
(2) If {s =0 and vy < 0}, there are no extremals for i o(C).

Here again, the case {s =0, n = 3 and v > 0} is unsettled.

Corollary 0.3. We let C be a cone of R™, n > 3, as in (1). We assume that there
exists z € R"™ such that (1 + |z — z|>)'="/2 € DY2(C) (in particular C = R™). We
fix s €10,2) and v € R such that (2) holds. Then,

(1) If {s > 0} or {s =0 and y > 0}, then there are extremals for p s(C).

(2) If {s =0 and v < 0}, there are no extremals for pio(C).

Note here that there is no specificity for dimension n = 3.

Proof of Theorem 0.1: This goes as the classical proof of the existence of extremals
for the Sobolev inequalities using Lions’s concentration-compactness Lemmae ([6,7],
see also Struwe [8] for a classical exposition in book form).

We let (ay), € DY2(R%) be a minimizing sequence for i, 4(C) such that

o2 (s)
/C L j <Vﬂk|2 - |;|2Ui) da = f14,5(C)-

|.’I,‘|5 k——+o00
We use a concentration compactness argument in the spirit of Lions [6,7]. For any

k, there exists ry > 0 such that [, ©)nc 2> g = 1/2. We define uy(z) =
Tk

Bl
n—2

7.2 ug(rgz) for all x € C. Since C is a cone, we have that u, € D'?(C). We then
have that

. 2 Y 2 _
®) i, [ (9= gt 0s =m0
and
2*(s) 2% (s) 1

(6) L P / luel g = 1

¢ |zl B (0)NC |z 2
Step 1: We claim that, up to a subsequence,

2*(s)

(7) lim lim % de =1

R—+o00k—=+o0 Jp,(0)nc |x\5
Proof of the claim: For k € N and r > 0, we define
|uk‘2*(s)

Qr(r) ::/ ———dz.
B,.(0)nC ||

Since 0 < Qr < 1 and r — Q(r) is nondecreasing for all k € N, then, up to a
subsequence, there exists @ : [0, +00) — R nondecreasing such that (Q(r)) — Q(r)
as k — 4oo for a.e. r > 0. We define

a:= lim Q(r).

r—-+4oo
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It follows from (5) and (6) that 2 < a < 1. Up to taking another subsequence,
there exists (Ri)k, (R}, )x € (0,+00) such that

2R < R}, < 3Ry, for all k € N,
limg—y 400 R = limg 4 00 R;v = +00,
limy 400 Qr(Ri) = limg 400 Qr(Ry,) = a.

In particular,

® 2 (s) 27 (s)
lim [ dr =« and lim [ r=1—«
k=+too Jpy (e |f® koo J(®e\ By (0))nC ||
We claim that
(9) lim R,? ui dx = 0.
k=00 (Br; (0\Br, (0))NC

We prove the claim. A preliminary remark is that for all z € Bg, (0) \ Bg,(0), we
have that Ry < |z| < 3Ry. Therefore, Holder’s inequality yields

/ u? dx
(Bry (0\Br,, (0))NC

-5y =@
ngre®) ™ o)
(Bry (O\Br, (0))NC (Bry (0\Br, (0))NC

2
2*(s) 2709
SC’R% / [ —dx
(Bry (0\Br, ) ||

for all k£ € N. The conclusion (9) then follows from (8). This proves the claim.
We let ¢ € C°(R™) be such that 0 < ¢ <1, p(z) =1 for € B1(0) and ¢(x) =0
for z € R™\ By(0). For k € N, we define
_( lsl |, Ri-2R,
) =g <R;€ "R R, R,
As one checks, prug, (1 — ¢r)ur € DV2(C) for all k € N. Therefore, it follows from
(8) that

> for all z € R™.

Mdm > / [ dr = a+o(1)
\x|s ~ JBg,(0)nC |z

1 _ 2*(s) 2% (s)
\1‘| (R"\Bp, (0))NC |z|

as k — +o00. The Hardy-Sobolev inequality (3) and (9) yield

2
2% (s) 2% (5)
PrUk 2l
@) ([ 22582 00) ™ < [ (9ol - et ) da
c || c ||
< /goi (|Vu;€2 — |7|2ui> dz + O (sz/ u dm)
c z (Bry (0\Br, (0)nC

< [ot (19w - Zput) do o)
c |

v



4 NASSIF GHOUSSOUB AND FREDERIC ROBERT

as k — +oo. Similarly,

2
1— m 2*(s) 2% (s)
11,5 (C (/ I ﬁ;sk' dw) < /C(l—wk)2 <Vuk|2 - |:|2%Li> da +o(1)

as k — 4o00. Therefore, we have that

t,5(€) (7@ + (1 )7 +0(1))

2
U 2% (s) 2*(9) 1_ U 2 2F(s)
< 1,4(0) < C spwue” ) ) +< c' k)| dx)

T
/(SﬁkJr(l*SDk) )(|VUk|2 gl > dz + o(1

< [a-2a0-0) (Wum - |j|uk) dz + of1)

.

<1040 +2 [ oul1 = ) gt o + o)

< f1y.(€) + 0 (R,:Q / u? dx) +0(1) < j1r,0(C) +0l1)
(Bg, (0)\Br, (0))NC

as k — +oo. Therefore, aT® + (1-a) o < 1, which implies o = 1 since
0 < a < 1. This proves the claim.

Step 2: We claim that there exists us, € DV2(C) such that up — u, weakly in
DY2(C) as k — +o00, there exists zo # 0 such that

, \ 2*(s)
() (%)
(10) either limg_ o0 '“klf‘s 1cde = ‘%Tjs lcdr and | °|°||§ de =1
c 2k
(11) or limy s %lc dx = 0y, and Ueo =

Proof of the claim: Arguing as in Step 1, we get that for all x € R™, we have that
2% (s)
lim lim %

dr = 0,1}.
r—=0k—+oo /g (o) |T|* =o€ {0.1)

It then follows from the second identity of (6) that ap < 1/2, and therefore ay = 0.
Moreover, it follows from the first identity of (6) that there exist as most one point
xo € R™ such that a,, = 1. In particular zy # 0 since ap = 0. Therefore, it follows
from Lions’s second concentration compactness lemma [6,7] (see also Struwe [8] for
an exposition in book form) that, up to a subsequence, there exists u., € DV2(C),
xo € R™\ {0} and C € {0,1} such that uj, — us weakly in D12(C) and

lim |ug > ) oo | )
koo |m[* ||

In particular, due to (6) and the compactness (7), we have that

ledr = 1c dz + Cdy, in the sense of measures

|uoo|2*(s)
k—+too Jo  |z|® Je xff

Since C € {0,1}, the claim follows.

dx + C.
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Step 3. We assume that us, # 0. We claim that limg_ 4o up = Uso strongly in
D'2(C) and that us is an extremal for p, 4(C).

Proof of the claim: Tt follows from (10)-(11) that [, |“°Tgl|25 © dz = 1. Tt then follows
from the Hardy-Sobolev inequality (3) that

T2
€)= [ (19l = i)
K c |[2

Moreover, since up — Uy, weakly as k — 400, we have that

/ (|Vuoo|2 — |2u00) dx < hmlnf <|Vuk|2 |a:|2 ) de = py,s(C).

k—4o0

Therefore, equality holds in this latest inequality, uo is an extremal for pu, s(C) and
reflexivity yields convergence of (ux) to us in DY2(C). This proves the claim.

Step 4: We assume that u,, = 0. Then

s=0, lim dz = 0 and |Vug|* dz — p4,5(C)6

k——+oo Jo |:1c|2 o

as k — 400 in the sense of measures.

Proof of the claim: Indeed, since up — us = 0 weakly in D12(C) as k — +o00, then
for any 1 < ¢ < 2* := 22w, — 0 strongly in L} (C) when k — +o00. Assume by
contradiction that s > 0 then 2*(s) < 2* and therefore, since zy # 0, we have that

|uk\2*(3)

lim dr =0

k=+co JBs(z0)nC |z[*

for § > 0 small enough, contradicting (11). Therefore s = 0 and the first part of
the claim is proved.

We prove the second part of the claim. We let f € C*°(R™) be such that f(x) =0
for x € Bs(xg), f(x) =1 for x € R™ \ Bas(xg) and 0 < f <1 (0 < d < |zg|/4). We

define p := 1 — f2 and ¢ := f/2 — f2. Clearly p,¢p € C>°(R") and ¢? + % = 1.
Inequality (3) yields

2

@) ( [hou @)™ < [ (19 - Zztou)?) an

Integrating by parts, using (11), using that ux, — 0 strongly in L? (R™) as k — ~+o0,
and that ¢? = 1 — 9?2, we get that

10l (1ol +o0) ™ < [ (19~ Z02) e+ ( [ dx>

pey,s(C) +0(1) < /<|vu,€|2 iz |2uk> dxf/zbz <|Vuk|2||2 )da:+o(1)

as k — +oo. Using again (5), we then get that

/wQ <|Vuk|2 W ) dx < o(1)
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as k — +oo. Integrating again by parts and using the strong local convergence to
0 in leoc, we get that

/C (IV(«/)uk)l2 - |Z2(1/)uk)2> dr < o(1)

as k — +oo. The coercivity (2) then yields limy_, o ||V (®ug)|l2 = 0. Therefore,
the Hardy inequality yields convergence of ||~ (¢puy)x to 0 in L?(C). Therefore,

7‘112
lim —’; dr = 0.
k=+00 J(Bys(zo))ene |z

Taking § > 0 small enough and combining this result with the strong convergence
of (ug)r in L? . around x¢ # 0 yields

loc
2
lim / Lk g = 0.
k—+oo Jo |2|?
Combining this equality, limg_, o ||V (¢pur)|l2 = 0 and (5) yields the third part of
the claim. This proves the claim.

Step 5: We assume that u., = 0. Then s =0 and
1
s(C) = R") = ——.
Hoy s ( ) ,U‘O,O( ) K(?’L, 2)2
Proof of the claim: Since uy € DY2(C) € DY2(R"), we have that

2
. 5%
to,0(R™) (/ |uk|® da?) S/ [Vug|* da.
n RTL

It then follows from Step 4, (5) and (6) that po,0(R™) < py,s(C). Conversely, the
computations of Step 6 below yield i, 5(C) < poo(R™) = K(n,2)~ . These two
inequalities prove the claim.
Step 6: We assume that {s =0 and v < 0}. Then
1
)= —— = R™).
IU"YaO( ) K(?’L,Q)Q ILL07O( )

Moreover, there are extremals iff {7 = 0 and there exists z € R™ such that (1 +
|z — 2|?)1="/2 € DV2(C)} (in particular C = R™).

Proof of the claim: Note that 2*(s) = 2*(0) = 2*. Since v < 0, we have for any
ue C(C)\ {0},

e (Ve —vi) do_ jjvupar 1

(12) - 2 - = :
(e luf do)™ ([ Juf" da) — K(.2)%
and therefore po(C) > K(; 57+ Fix now yo € Q and let n € CZ°(C) be such that

n—2

n(z) = 1 around yo. Set uc(z) := n(z) <m)T for all z € C and £ > 0.

Since yg # 0, it is easy to check that lim._,q fc % dx = 0. Tt is also classical (see
for example Aubin [1]) that
Jo IVuc|? dz 1

lim = .
e—0 (fc |u5|2* dx) 2% K(n, 2)2
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It follows that ju,0(C) < K(,i 5yz- This proves that j1,,0(C) = T((nl 22"

Assume now that there exists an extremal ug € DV2(C) \ {0} for p,0(C). The
inequalities in (12) and the fact that

u2
_ Je <|Vu0|2 _Vﬁ) dx o Je Vuol?de 1

(Je buol2* )™ (f ol ) = K278

yields v = 0 and ug € D*?(C) C D"2(R™) is an extremal for the classical Sobolev
inequality on R™. Therefore, ug is of the form = — a(b + |z — 29|?)'~"/? for some
a # 0 and b > 0 (see Aubin [1] or Talenti [9]). Using the homothetic invariance of
the cone, we then get that there is an extremal of the form z — (1 + |z — z|?)!~"/2
for some z € R™. Since an extremal has support in C, we then get that C = R™.

M’y,O(C

This proves the claim. O
Step 7: We assume that s =0, v > 0 and n > 4. Then
1
1 s R") = —.
( 3) My, (C) < /U'O,O( ) K(?’l, 2)2

Proof of the claim: We consider the family u. as in Step 6. Well known computa-
tions by Aubin [1] yield

Jﬁs(us) = K(n, 2)*2 — ’y|x0|72095 +0(6:) ase — 0,

where ¢ > 0, §. =2 if n > 5 and §. = 2Ine~! if n = 4. It follows that if v > 0
and n > 4, then 1, 5(C) < K(n,2)~!. This proves the claim.

Step 8: We assume that s = 0 and that there exists z € R" such that z +—
(14 |z — 2>)=/2 € DY2(C). Then ., o(C) < W for all v > 0.

Proof of the claim: We define U(z) := (1 + |z — 2|?)'="/2 for all x € R". We then

have that JS,(U) = LI%(U) < Jg%g (U) = K(n,2)~L. This proves the claim.

Theorem 0.1 is a consequence of Steps 3 and 5 to 7. Corollary 0.2 is a direct
consequence of Theorem 0.1. Corollary 0.3 is a direct consequence of Theorem 0.1
and Step 8. This ends the proof of Theorem 0.1.
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