EXTREMALS FOR THE HARDY-SOBOLEV INEQUALITIES ON CONES

INFORMAL NOTE

NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT

Let \mathcal{C} be an open connected cone of $\mathbb{R}^{n}, n \geq 3$, centered at 0 , that is

$$
\left\{\begin{array}{l}
\mathcal{C} \text { is a domain (that is open and connected) } \tag{1}\\
\forall x \in \mathcal{C}, \forall r>0, r x \in \mathcal{C} .
\end{array}\right.
$$

We fix $\gamma \in \mathbb{R}$ such that $-\Delta-\gamma|x|^{-2}$ is coercive, that is there exists $c>0$ such that

$$
\begin{equation*}
\int_{\mathcal{C}}\left(|\nabla u|^{2}-\gamma \frac{u^{2}}{|x|^{2}}\right) d x \geq c \int_{\mathcal{C}}|\nabla u|^{2} d x \tag{2}
\end{equation*}
$$

for all $u \in D^{1,2}(\mathcal{C})$, where $D^{1,2}(\mathcal{C})$ is the completion of $C_{c}^{\infty}(\mathcal{C})$ for the norm $\|u\|:=$ $\|\nabla u\|_{2}$. We fix $s \in[0,2)$ and we define $2^{\star}(s):=\frac{2(n-s)}{n-2}$. It follows from the HardySobolev inequality (see for instance Ghoussoub-Robert [5] for general considerations on this inequality) that there exists $\mu_{\gamma, s}(\mathcal{C})>0$ such that

$$
\begin{equation*}
\mu_{\gamma, s}(\mathcal{C}):=\inf _{u \in D^{1,2}(\mathcal{C}) \backslash\{0\}} \frac{\int_{\mathcal{C}}\left(|\nabla u|^{2}-\gamma \frac{u^{2}}{|x|^{2}}\right) d x}{\left(\int_{\mathcal{C}} \frac{|u|^{2^{\star}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2^{\star(s)}}}} \tag{3}
\end{equation*}
$$

We say that $u_{0} \in D^{1,2}(\mathcal{C}) \backslash\{0\}$ is an extremal for $\mu_{\gamma, s}(\mathcal{C})$ if it achieves the infimum in (3). The question of the extremals on general cones has been tackled by Egnell [4] in the case $\{\gamma=0$ and $s>0\}$. Theorem 0.1 below has been noted in several contexts by Bartsche-Peng-Zhang [2] and Lin-Wang [3]. In this note, we sketch an independent proof.

Theorem 0.1. We let \mathcal{C} be a cone of \mathbb{R}^{n}, $n \geq 3$, as in (1), $s \in[0,2)$ and $\gamma \in \mathbb{R}$ such that (2) holds. Then,
(1) If $\{s>0\}$ or $\{s=0, \gamma>0$ and $n \geq 4\}$, then there are extremals for $\mu_{\gamma, s}(\mathcal{C})$.
(2) If $\{s=0$ and $\gamma<0\}$, there are no extremals for $\mu_{\gamma, 0}(\mathcal{C})$.
(3) If $\{s=0$ and $\gamma=0\}$, there are extremals for $\mu_{0,0}(\mathcal{C})$ if and only if there exists $z \in \mathbb{R}^{n}$ such that $\left(1+|x-z|^{2}\right)^{1-n / 2} \in D^{1,2}(\mathcal{C})$ (in particular $\overline{\mathcal{C}}=\mathbb{R}^{n}$).
Moreover, if there are no extremals for $\mu_{\gamma, 0}(\mathcal{C})$, then

$$
\begin{equation*}
\mu_{\gamma, 0}(\mathcal{C})=\frac{1}{K(n, 2)^{2}}:=\inf _{u \in D^{1,2}\left(\mathbb{R}^{n}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{n}}|\nabla u|^{2} d x}{\left(\int_{\mathbb{R}^{n}}|u|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}}} \text { where } 2^{\star}:=2^{\star}(0)=\frac{2 n}{n-2} \tag{4}
\end{equation*}
$$

[^0]As a consequence, the only unclear situation is when $\{s=0, n=3$ and $\gamma>0\}$. Here are two corollaries. The first one covers most of the cones that are distinct from \mathbb{R}^{n}. The second one is essentially the case when the cone is \mathbb{R}^{n}.

Corollary 0.2. We let \mathcal{C} be a cone of \mathbb{R}^{n}, $n \geq 3$, as in (1) such that $\overline{\mathcal{C}} \neq \mathbb{R}^{n}$. We let $s \in[0,2)$ and $\gamma \in \mathbb{R}$ such that (2) holds. Then,
(1) If $\{s>0\}$ or $\{s=0, \gamma>0$ and $n \geq 4\}$, then there are extremals for $\mu_{\gamma, s}(\mathcal{C})$.
(2) If $\{s=0$ and $\gamma \leq 0\}$, there are no extremals for $\mu_{\gamma, 0}(\mathcal{C})$.

Here again, the case $\{s=0, n=3$ and $\gamma>0\}$ is unsettled.
Corollary 0.3. We let \mathcal{C} be a cone of $\mathbb{R}^{n}, n \geq 3$, as in (1). We assume that there exists $z \in \mathbb{R}^{n}$ such that $\left(1+|x-z|^{2}\right)^{1-n / 2} \in D^{1,2}(\mathcal{C})$ (in particular $\overline{\mathcal{C}}=\mathbb{R}^{n}$). We fix $s \in[0,2)$ and $\gamma \in \mathbb{R}$ such that (2) holds. Then,
(1) If $\{s>0\}$ or $\{s=0$ and $\gamma \geq 0\}$, then there are extremals for $\mu_{\gamma, s}(\mathcal{C})$.
(2) If $\{s=0$ and $\gamma<0\}$, there are no extremals for $\mu_{\gamma, 0}(\mathcal{C})$.

Note here that there is no specificity for dimension $n=3$.
Proof of Theorem 0.1: This goes as the classical proof of the existence of extremals for the Sobolev inequalities using Lions's concentration-compactness Lemmae ($[6,7]$, see also Struwe [8] for a classical exposition in book form).
We let $\left(\tilde{u}_{k}\right)_{k} \in D^{1,2}\left(\mathbb{R}_{+}^{n}\right)$ be a minimizing sequence for $\mu_{\gamma, s}(\mathcal{C})$ such that

$$
\int_{\mathcal{C}} \frac{\left|\tilde{u}_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1 \text { and } \lim _{k \rightarrow+\infty} \int_{\mathcal{C}}\left(\left|\nabla \tilde{u}_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} \tilde{u}_{k}^{2}\right) d x=\mu_{\gamma, s}(\mathcal{C})
$$

We use a concentration compactness argument in the spirit of Lions [6,7]. For any k, there exists $r_{k}>0$ such that $\int_{B_{r_{k}}(0) \cap \mathcal{C}} \frac{\left|\tilde{u}_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1 / 2$. We define $u_{k}(x):=$ $r_{k}^{\frac{n-2}{2}} u_{k}\left(r_{k} x\right)$ for all $x \in \mathcal{C}$. Since \mathcal{C} is a cone, we have that $u_{k} \in D^{1,2}(\mathcal{C})$. We then have that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{\mathcal{C}}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x=\mu_{\gamma, s}(\mathcal{C}) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1, \int_{B_{1}(0) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=\frac{1}{2} \tag{6}
\end{equation*}
$$

Step 1: We claim that, up to a subsequence,

$$
\begin{equation*}
\lim _{R \rightarrow+\infty} \lim _{k \rightarrow+\infty} \int_{B_{R}(0) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1 \tag{7}
\end{equation*}
$$

Proof of the claim: For $k \in \mathbb{N}$ and $r \geq 0$, we define

$$
Q_{k}(r):=\int_{B_{r}(0) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x
$$

Since $0 \leq Q_{k} \leq 1$ and $r \mapsto Q_{k}(r)$ is nondecreasing for all $k \in \mathbb{N}$, then, up to a subsequence, there exists $Q:[0,+\infty) \rightarrow \mathbb{R}$ nondecreasing such that $\left(Q_{k}(r)\right) \rightarrow Q(r)$ as $k \rightarrow+\infty$ for a.e. $r>0$. We define

$$
\alpha:=\lim _{r \rightarrow+\infty} Q(r) .
$$

It follows from (5) and (6) that $\frac{1}{2} \leq \alpha \leq 1$. Up to taking another subsequence, there exists $\left(R_{k}\right)_{k},\left(R_{k}^{\prime}\right)_{k} \in(0,+\infty)$ such that

$$
\left\{\begin{array}{l}
2 R_{k} \leq R_{k}^{\prime} \leq 3 R_{k} \text { for all } k \in \mathbb{N}, \\
\lim _{k \rightarrow+\infty} R_{k}=\lim _{k \rightarrow+\infty} R_{k}^{\prime}=+\infty, \\
\lim _{k \rightarrow+\infty} Q_{k}\left(R_{k}\right)=\lim _{k \rightarrow+\infty} Q_{k}\left(R_{k}^{\prime}\right)=\alpha .
\end{array}\right\}
$$

In particular,

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \int_{B_{R_{k}}(0) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=\alpha \text { and } \lim _{k \rightarrow+\infty} \int_{\left(\mathbb{R}^{n} \backslash B_{R_{k}^{\prime}}(0)\right) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1-\alpha \tag{8}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} R_{k}^{-2} \int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}} u_{k}^{2} d x=0 . \tag{9}
\end{equation*}
$$

We prove the claim. A preliminary remark is that for all $x \in B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)$, we have that $R_{k} \leq|x| \leq 3 R_{k}$. Therefore, Hölder's inequality yields

$$
\begin{aligned}
& \int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}} u_{k}^{2} d x \\
& \leq\left(\int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}} d x\right)^{1-\frac{2}{2^{\star(s)}}}\left(\int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}}\left|u_{k}\right|^{2^{\star}(s)} d x\right)^{\frac{2}{2 \star(s)}} \\
& \leq C R_{k}^{2}\left(\int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2 \star(s)}}
\end{aligned}
$$

for all $k \in \mathbb{N}$. The conclusion (9) then follows from (8). This proves the claim.
We let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $0 \leq \varphi \leq 1, \varphi(x)=1$ for $x \in B_{1}(0)$ and $\varphi(x)=0$ for $x \in \mathbb{R}^{n} \backslash B_{2}(0)$. For $k \in \mathbb{N}$, we define

$$
\varphi_{k}(x):=\varphi\left(\frac{|x|}{R_{k}^{\prime}-R_{k}}+\frac{R_{k}^{\prime}-2 R_{k}}{R_{k}^{\prime}-R_{k}}\right) \text { for all } x \in \mathbb{R}^{n}
$$

As one checks, $\varphi_{k} u_{k},\left(1-\varphi_{k}\right) u_{k} \in D^{1,2}(\mathcal{C})$ for all $k \in \mathbb{N}$. Therefore, it follows from (8) that

$$
\begin{aligned}
\int_{\mathcal{C}} \frac{\left|\varphi_{k} u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x & \geq \int_{B_{R_{k}}(0) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=\alpha+o(1) \\
\int_{\mathcal{C}} \frac{\left|\left(1-\varphi_{k}\right) u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x & \geq \int_{\left(\mathbb{R}^{n} \backslash B_{R_{k}^{\prime}}(0)\right) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1-\alpha+o(1)
\end{aligned}
$$

as $k \rightarrow+\infty$. The Hardy-Sobolev inequality (3) and (9) yield

$$
\begin{aligned}
& \mu_{\gamma, s}(\mathcal{C})\left(\int_{\mathcal{C}} \frac{\left|\varphi_{k} u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2 \star(s)}} \leq \int_{\mathcal{C}}\left(\left|\nabla\left(\varphi_{k} u_{k}\right)\right|^{2}-\frac{\gamma}{|x|^{2}} \varphi_{k}^{2} u_{k}^{2}\right) d x \\
& \leq \int_{\mathcal{C}} \varphi_{k}^{2}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+O\left(R_{k}^{-2} \int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}} u_{k}^{2} d x\right) \\
& \leq \int_{\mathcal{C}} \varphi_{k}^{2}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+o(1)
\end{aligned}
$$

as $k \rightarrow+\infty$. Similarly,
$\mu_{\gamma, s}(\mathcal{C})\left(\int_{\mathcal{C}} \frac{\left|\left(1-\varphi_{k}\right) u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2 \star(s)}} \leq \int_{\mathcal{C}}\left(1-\varphi_{k}\right)^{2}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+o(1)$ as $k \rightarrow+\infty$. Therefore, we have that

$$
\begin{aligned}
& \mu_{\gamma, s}(\mathcal{C})\left(\alpha^{\frac{2}{2 \star(s)}}+(1-\alpha)^{\frac{2}{\hbar^{\star(s)}}}+o(1)\right) \\
& \leq \mu_{\gamma, s}(\mathcal{C})\left(\left(\int_{\mathcal{C}} \frac{\left|\varphi_{k} u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2 \star(s)}}+\left(\int_{\mathcal{C}} \frac{\left|\left(1-\varphi_{k}\right) u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2 \star(s)}}\right) \\
& \leq \int_{\mathcal{C}}\left(\varphi_{k}^{2}+\left(1-\varphi_{k}\right)^{2}\right)\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+o(1) \\
& \leq \int_{\mathcal{C}}\left(1-2 \varphi_{k}\left(1-\varphi_{k}\right)\right)\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+o(1) \\
& \leq \mu_{\gamma, s}(\mathcal{C})+2 \int_{\mathcal{C}} \varphi_{k}\left(1-\varphi_{k}\right) \frac{\gamma}{|x|^{2}} u_{k}^{2} d x+o(1) \\
& \leq \mu_{\gamma, s}(\mathcal{C})+O\left(R_{k}^{-2} \int_{\left(B_{R_{k}^{\prime}}(0) \backslash B_{R_{k}}(0)\right) \cap \mathcal{C}} u_{k}^{2} d x\right)+o(1) \leq \mu_{\gamma, s}(\mathcal{C})+o(1)
\end{aligned}
$$

as $k \rightarrow+\infty$. Therefore, $\alpha^{\frac{2}{2 \star(s)}}+(1-\alpha)^{\frac{2}{2^{\star(s)}}} \leq 1$, which implies $\alpha=1$ since $0<\alpha \leq 1$. This proves the claim.

Step 2: We claim that there exists $u_{\infty} \in D^{1,2}(\mathcal{C})$ such that $u_{k} \rightharpoonup u_{\infty}$ weakly in $D^{1,2}(\mathcal{C})$ as $k \rightarrow+\infty$, there exists $x_{0} \neq 0$ such that
(10) either $\lim _{k \rightarrow+\infty} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} \mathbf{1}_{\mathcal{C}} d x=\frac{\left|u_{\infty}\right|^{2^{\star}(s)}}{|x|^{s}} \mathbf{1}_{\mathcal{C}} d x \quad$ and $\int_{\mathcal{C}} \frac{\left|u_{\infty}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1$

$$
\begin{equation*}
\text { or } \lim _{k \rightarrow+\infty} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} \mathbf{1}_{\mathcal{C}} d x=\delta_{x_{0}} \quad \text { and } u_{\infty} \equiv 0 \tag{11}
\end{equation*}
$$

Proof of the claim: Arguing as in Step 1, we get that for all $x \in \mathbb{R}^{n}$, we have that

$$
\lim _{r \rightarrow 0} \lim _{k \rightarrow+\infty} \int_{B_{r}(0) \cap \mathcal{C}} \frac{\left.\left|u_{k}\right|\right|^{2^{\star}(s)}}{|x|^{s}} d x=\alpha_{x} \in\{0,1\}
$$

It then follows from the second identity of (6) that $\alpha_{0} \leq 1 / 2$, and therefore $\alpha_{0}=0$. Moreover, it follows from the first identity of (6) that there exist as most one point $x_{0} \in \mathbb{R}^{n}$ such that $\alpha_{x_{0}}=1$. In particular $x_{0} \neq 0$ since $\alpha_{0}=0$. Therefore, it follows from Lions's second concentration compactness lemma [6,7] (see also Struwe [8] for an exposition in book form) that, up to a subsequence, there exists $u_{\infty} \in D^{1,2}(\mathcal{C})$, $x_{0} \in \mathbb{R}^{n} \backslash\{0\}$ and $C \in\{0,1\}$ such that $u_{k} \rightharpoonup u_{\infty}$ weakly in $D^{1,2}(\mathcal{C})$ and

$$
\lim _{k \rightarrow+\infty} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} \mathbf{1}_{\mathcal{C}} d x=\frac{\left|u_{\infty}\right|^{2^{\star}(s)}}{|x|^{s}} \mathbf{1}_{\mathcal{C}} d x+C \delta_{x_{0}} \text { in the sense of measures }
$$

In particular, due to (6) and the compactness (7), we have that

$$
1=\lim _{k \rightarrow+\infty} \int_{\mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=\int_{\mathcal{C}} \frac{\left|u_{\infty}\right|^{2^{\star}(s)}}{|x|^{s}} d x+C
$$

Since $C \in\{0,1\}$, the claim follows.

Step 3. We assume that $u_{\infty} \not \equiv 0$. We claim that $\lim _{k \rightarrow+\infty} u_{k}=u_{\infty}$ strongly in $D^{1,2}(\mathcal{C})$ and that u_{∞} is an extremal for $\mu_{\gamma, s}(\mathcal{C})$.
Proof of the claim: It follows from (10)-(11) that $\int_{\mathcal{C}} \frac{\left|u_{\infty}\right|^{2^{\star}(s)}}{|x|^{s}} d x=1$. It then follows from the Hardy-Sobolev inequality (3) that

$$
\mu_{\gamma, s}(\mathcal{C}) \leq \int_{\mathcal{C}}\left(\left|\nabla u_{\infty}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{\infty}^{2}\right) d x
$$

Moreover, since $u_{k} \rightharpoonup u_{\infty}$ weakly as $k \rightarrow+\infty$, we have that

$$
\int_{\mathcal{C}}\left(\left|\nabla u_{\infty}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{\infty}^{2}\right) d x \leq \liminf _{k \rightarrow+\infty} \int_{\mathcal{C}}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x=\mu_{\gamma, s}(\mathcal{C})
$$

Therefore, equality holds in this latest inequality, u_{∞} is an extremal for $\mu_{\gamma, s}(\mathcal{C})$ and reflexivity yields convergence of $\left(u_{k}\right)$ to u_{∞} in $D^{1,2}(\mathcal{C})$. This proves the claim.

Step 4: We assume that $u_{\infty} \equiv 0$. Then

$$
s=0, \lim _{k \rightarrow+\infty} \int_{\mathcal{C}} \frac{u_{k}^{2}}{|x|^{2}} d x=0 \text { and }\left|\nabla u_{k}\right|^{2} d x \rightharpoonup \mu_{\gamma, s}(\mathcal{C}) \delta_{x_{0}}
$$

as $k \rightarrow+\infty$ in the sense of measures.
Proof of the claim: Indeed, since $u_{k} \rightharpoonup u_{\infty} \equiv 0$ weakly in $D^{1,2}(\mathcal{C})$ as $k \rightarrow+\infty$, then for any $1 \leq q<2^{\star}:=\frac{2 n}{n-2}, u_{k} \rightarrow 0$ strongly in $L_{l o c}^{q}(\mathcal{C})$ when $k \rightarrow+\infty$. Assume by contradiction that $s>0$: then $2^{\star}(s)<2^{\star}$ and therefore, since $x_{0} \neq 0$, we have that

$$
\lim _{k \rightarrow+\infty} \int_{B_{\delta}\left(x_{0}\right) \cap \mathcal{C}} \frac{\left|u_{k}\right|^{2^{\star}(s)}}{|x|^{s}} d x=0
$$

for $\delta>0$ small enough, contradicting (11). Therefore $s=0$ and the first part of the claim is proved.

We prove the second part of the claim. We let $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $f(x)=0$ for $x \in B_{\delta}\left(x_{0}\right), f(x)=1$ for $x \in \mathbb{R}^{n} \backslash B_{2 \delta}\left(x_{0}\right)$ and $0 \leq f \leq 1\left(0<\delta<\left|x_{0}\right| / 4\right)$. We define $\varphi:=1-f^{2}$ and $\psi:=f \sqrt{2-f^{2}}$. Clearly $\varphi, \psi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $\varphi^{2}+\psi^{2}=1$. Inequality (3) yields

$$
\mu_{\gamma, s}(\mathcal{C})\left(\int_{\mathcal{C}}\left|\varphi u_{k}\right|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}} \leq \int_{\mathcal{C}}\left(\left|\nabla\left(\varphi u_{k}\right)\right|^{2}-\frac{\gamma}{|x|^{2}}\left(\varphi u_{k}\right)^{2}\right) d x
$$

Integrating by parts, using (11), using that $u_{k} \rightarrow 0$ strongly in $L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$ as $k \rightarrow+\infty$, and that $\varphi^{2}=1-\psi^{2}$, we get that

$$
\begin{aligned}
& \mu_{\gamma, s}(\mathcal{C})\left(\left|\varphi\left(x_{0}\right)\right|^{2^{\star}}+o(1)\right)^{\frac{2}{2 \star}} \leq \int_{\mathcal{C}} \varphi^{2}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+O\left(\int_{\operatorname{Supp} \varphi \Delta \varphi} u_{k}^{2} d x\right) \\
& \mu_{\gamma, s}(\mathcal{C})+o(1) \leq \int_{\mathcal{C}}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x-\int_{\mathcal{C}} \psi^{2}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x+o(1)
\end{aligned}
$$

as $k \rightarrow+\infty$. Using again (5), we then get that

$$
\int_{\mathcal{C}} \psi^{2}\left(\left|\nabla u_{k}\right|^{2}-\frac{\gamma}{|x|^{2}} u_{k}^{2}\right) d x \leq o(1)
$$

as $k \rightarrow+\infty$. Integrating again by parts and using the strong local convergence to 0 in $L_{l o c}^{2}$, we get that

$$
\int_{\mathcal{C}}\left(\left|\nabla\left(\psi u_{k}\right)\right|^{2}-\frac{\gamma}{|x|^{2}}\left(\psi u_{k}\right)^{2}\right) d x \leq o(1)
$$

as $k \rightarrow+\infty$. The coercivity (2) then yields $\lim _{k \rightarrow+\infty}\left\|\nabla\left(\psi u_{k}\right)\right\|_{2}=0$. Therefore, the Hardy inequality yields convergence of $|x|^{-1}\left(\psi u_{k}\right)_{k}$ to 0 in $L^{2}(\mathcal{C})$. Therefore,

$$
\lim _{k \rightarrow+\infty} \int_{\left(B_{2 \delta}\left(x_{0}\right)\right)^{c} \cap \mathcal{C}} \frac{u_{k}^{2}}{|x|^{2}} d x=0
$$

Taking $\delta>0$ small enough and combining this result with the strong convergence of $\left(u_{k}\right)_{k}$ in $L_{l o c}^{2}$ around $x_{0} \neq 0$ yields

$$
\lim _{k \rightarrow+\infty} \int_{\mathcal{C}} \frac{u_{k}^{2}}{|x|^{2}} d x=0
$$

Combining this equality, $\lim _{k \rightarrow+\infty}\left\|\nabla\left(\psi u_{k}\right)\right\|_{2}=0$ and (5) yields the third part of the claim. This proves the claim.
Step 5: We assume that $u_{\infty} \equiv 0$. Then $s=0$ and

$$
\mu_{\gamma, s}(\mathcal{C})=\mu_{0,0}\left(\mathbb{R}^{n}\right)=\frac{1}{K(n, 2)^{2}}
$$

Proof of the claim: Since $u_{k} \in D^{1,2}(\mathcal{C}) \subset D^{1,2}\left(\mathbb{R}^{n}\right)$, we have that

$$
\mu_{0,0}\left(\mathbb{R}^{n}\right)\left(\int_{\mathbb{R}^{n}}\left|u_{k}\right|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}} \leq \int_{\mathbb{R}^{n}}\left|\nabla u_{k}\right|^{2} d x
$$

It then follows from Step 4, (5) and (6) that $\mu_{0,0}\left(\mathbb{R}^{n}\right) \leq \mu_{\gamma, s}(\mathcal{C})$. Conversely, the computations of Step 6 below yield $\mu_{\gamma, s}(\mathcal{C}) \leq \mu_{0,0}\left(\mathbb{R}^{n}\right)=K(n, 2)^{-1}$. These two inequalities prove the claim.
Step 6: We assume that $\{s=0$ and $\gamma \leq 0\}$. Then

$$
\mu_{\gamma, 0}(\mathcal{C})=\frac{1}{K(n, 2)^{2}}=\mu_{0,0}\left(\mathbb{R}^{n}\right)
$$

Moreover, there are extremals iff $\left\{\gamma=\underline{0}\right.$ and there exists $z \in \mathbb{R}^{n}$ such that $(1+$ $\left.\left.|x-z|^{2}\right)^{1-n / 2} \in D^{1,2}(\mathcal{C})\right\}$ (in particular $\overline{\mathcal{C}}=\mathbb{R}^{n}$).
Proof of the claim: Note that $2^{\star}(s)=2^{\star}(0)=2^{\star}$. Since $\gamma \leq 0$, we have for any $u \in C_{c}^{\infty}(\mathcal{C}) \backslash\{0\}$,

$$
\begin{equation*}
\frac{\int_{\mathcal{C}}\left(|\nabla u|^{2}-\gamma \frac{u^{2}}{|x|^{2}}\right) d x}{\left(\int_{\mathcal{C}}|u|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}}} \geq \frac{\int_{\mathcal{C}}|\nabla u|^{2} d x}{\left(\int_{\mathcal{C}}|u|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}}} \geq \frac{1}{K(n, 2)^{2}} \tag{12}
\end{equation*}
$$

and therefore $\mu_{\gamma, 0}(\mathcal{C}) \geq \frac{1}{K(n, 2)^{2}}$. Fix now $y_{0} \in \Omega$ and let $\eta \in C_{c}^{\infty}(\mathcal{C})$ be such that $\eta(x)=1$ around y_{0}. Set $u_{\varepsilon}(x):=\eta(x)\left(\frac{\varepsilon}{\varepsilon^{2}+\left|x-y_{0}\right|^{2}}\right)^{\frac{n-2}{2}}$ for all $x \in \mathcal{C}$ and $\varepsilon>0$. Since $y_{0} \neq 0$, it is easy to check that $\lim _{\varepsilon \rightarrow 0} \int_{\mathcal{C}} \frac{u_{\varepsilon}^{2}}{|x|^{2}} d x=0$. It is also classical (see for example Aubin [1]) that

$$
\lim _{\varepsilon \rightarrow 0} \frac{\int_{\mathcal{C}}\left|\nabla u_{\varepsilon}\right|^{2} d x}{\left(\int_{\mathcal{C}}\left|u_{\varepsilon}\right|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}}}=\frac{1}{K(n, 2)^{2}}
$$

It follows that $\mu_{\gamma, 0}(\mathcal{C}) \leq \frac{1}{K(n, 2)^{2}}$. This proves that $\mu_{\gamma, 0}(\mathcal{C})=\frac{1}{K(n, 2)^{2}}$.
Assume now that there exists an extremal $u_{0} \in D^{1,2}(\mathcal{C}) \backslash\{0\}$ for $\mu_{\gamma, 0}(\mathcal{C})$. The inequalities in (12) and the fact that

$$
\mu_{\gamma, 0}(\mathcal{C})=\frac{\int_{\mathcal{C}}\left(\left|\nabla u_{0}\right|^{2}-\gamma \frac{u_{0}^{2}}{|x|^{2}}\right) d x}{\left(\int_{\mathcal{C}}\left|u_{0}\right|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}}} \geq \frac{\int_{\mathcal{C}}\left|\nabla u_{0}\right|^{2} d x}{\left(\int_{\mathcal{C}}\left|u_{0}\right|^{2^{\star}} d x\right)^{\frac{2}{2^{\star}}}}=\frac{1}{K(n, 2)^{2}},
$$

yields $\gamma=0$ and $u_{0} \in D^{1,2}(\mathcal{C}) \subset D^{1,2}\left(\mathbb{R}^{n}\right)$ is an extremal for the classical Sobolev inequality on \mathbb{R}^{n}. Therefore, u_{0} is of the form $x \mapsto a\left(b+\left|x-z_{0}\right|^{2}\right)^{1-n / 2}$ for some $a \neq 0$ and $b>0$ (see Aubin [1] or Talenti [9]). Using the homothetic invariance of the cone, we then get that there is an extremal of the form $x \mapsto\left(1+|x-z|^{2}\right)^{1-n / 2}$ for some $z \in \mathbb{R}^{n}$. Since an extremal has support in $\overline{\mathcal{C}}$, we then get that $\overline{\mathcal{C}}=\mathbb{R}^{n}$. This proves the claim.
Step 7: We assume that $s=0, \gamma>0$ and $n \geq 4$. Then

$$
\begin{equation*}
\mu_{\gamma, s}(\mathcal{C})<\mu_{0,0}\left(\mathbb{R}^{n}\right)=\frac{1}{K(n, 2)^{2}} \tag{13}
\end{equation*}
$$

Proof of the claim: We consider the family u_{ε} as in Step 6. Well known computations by Aubin [1] yield

$$
J_{\gamma, s}^{\mathcal{C}}\left(u_{\varepsilon}\right)=K(n, 2)^{-2}-\gamma\left|x_{0}\right|^{-2} c \theta_{\varepsilon}+o\left(\theta_{\varepsilon}\right) \text { as } \varepsilon \rightarrow 0,
$$

where $c>0, \theta_{\varepsilon}=\varepsilon^{2}$ if $n \geq 5$ and $\theta_{\varepsilon}=\varepsilon^{2} \ln \varepsilon^{-1}$ if $n=4$. It follows that if $\gamma>0$ and $n \geq 4$, then $\mu_{\gamma, s}(\mathcal{C})<K(n, 2)^{-1}$. This proves the claim.
Step 8: We assume that $s=0$ and that there exists $z \in \mathbb{R}^{n}$ such that $x \mapsto$ $\left(1+|x-z|^{2}\right)^{1-n / 2} \in D^{1,2}(\mathcal{C})$. Then $\mu_{\gamma, 0}(\mathcal{C})<\frac{1}{K(n, 2)^{2}}$ for all $\gamma>0$.
Proof of the claim: We define $U(x):=\left(1+|x-z|^{2}\right)^{1-n / 2}$ for all $x \in \mathbb{R}^{n}$. We then have that $J_{\gamma, 0}^{\mathcal{C}}(U)=J_{\gamma, 0}^{\mathbb{R}^{n}}(U)<J_{0,0}^{\mathbb{R}^{n}}(U)=K(n, 2)^{-1}$. This proves the claim.
Theorem 0.1 is a consequence of Steps 3 and 5 to 7 . Corollary 0.2 is a direct consequence of Theorem 0.1. Corollary 0.3 is a direct consequence of Theorem 0.1 and Step 8. This ends the proof of Theorem 0.1.

References

[1] Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573-598.
[2] Thomas Bartsch, Shuangjie Peng, and Zhitao Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 30 (2007), no. 1, 113-136.
[3] Jann-Long Chern and Chang-Shou Lin, Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Ration. Mech. Anal. 197 (2010), no. 2, 401-432.
[4] Henrik Egnell, Positive solutions of semilinear equations in cones, Trans. Amer. Math. Soc. 330 (1992), no. 1, 191-201.
[5] Nassif Ghoussoub and Frédéric Robert, On the Hardy-Schrödinger operator with a boundary singularity (2014). Preprint.
[6] Pierre-Louis Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201.
[7] _, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121.
[8] Michael Struwe, Variational methods, 4th ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 34, Springer-Verlag, Berlin, 2008. Applications to nonlinear partial differential equations and Hamiltonian systems.
[9] Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.

Nassif Ghoussoub, Department of Mathematics, 1984 Mathematics Road, The University of British Columbia, BC, Canada V6T $1 Z 2$

E-mail address: nassif@math.ubc.ca
Frédéric Robert, Institut Élie Cartan, Université de Lorraine, BP 70239, F-54506 Vandeuvre-Lès-Nancy, France

E-mail address: frederic.robert@univ-lorraine.fr

[^0]: Date: June 18th, 2015.

