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Abstract. We investigate the Hardy-Schrödinger operator Lγ = −∆− γ
|x|2 on smooth domains

Ω ⊂ Rn whose boundaries contain the singularity 0. We prove a Hopf-type result and optimal

regularity for variational solutions of corresponding linear and nonlinear Dirichlet boundary value

problems, including the equation Lγu = u2?(s)−1

|x|s , where γ < n2

4
, s ∈ [0, 2) and 2?(s) :=

2(n−s)
n−2

is the critical Hardy-Sobolev exponent. We also give a complete description of the profile of
all positive solutions –variational or not– of the corresponding linear equation on the punctured

domain. The value γ = n2−1
4

turned out to be a critical threshold for the operator Lγ . When
n2−1

4
< γ < n2

4
, a notion of “Hardy singular boundary mass” mγ(Ω) associated to the operator

Lγ , can be assigned to any conformally bounded domain Ω such that 0 ∈ ∂Ω. As a byproduct, we
give a complete answer to problems of existence of extremals for Hardy-Sobolev inequalities, and

consequently for those of Caffarelli-Kohn-Nirenberg. These results extend previous contributions

by the authors in the case γ = 0, and by Chern-Lin for the case γ <
(n−2)2

4
. More specifically, we

show that extremals exist when 0 ≤ γ ≤ n2−1
4

if the mean curvature of ∂Ω at 0 is negative. On

the other hand, if n2−1
4

< γ < n2

4
, extremals then exist whenever the Hardy singular boundary

mass mγ(Ω) of the domain is positive.
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1. Introduction

The borderline Dirichlet boundary value problem −∆u− γ u
|x|2 = u

n+2
n−2 on Ω

u > 0 on Ω
u = 0 on ∂Ω,

(1.1)

on a smooth bounded domain Ω of Rn (n ≥ 3) has no energy minimizing solutions if the singularity
0 belongs to the interior of the domain Ω (See discussion after inequality (1.15)). The situation
changes dramatically however, if 0 is situated on the boundary ∂Ω. Indeed, C. S. Lin and his
collaborators [5, 6] showed that solutions exist in this case provided the mean curvature of ∂Ω at

0 is negative, n ≥ 4, and 0 < γ < (n−2)2

4 . The condition on γ insures that the Hardy-Schrödinger

operator Lγ := −∆ − γ
|x|2 is positive on H1

0 (Ω). This is the case as long as γ < γH(Ω), the latter

being the best constant in the corresponding Hardy inequality, i.e.,

(1.2) γH(Ω) := inf

{∫
Ω
|∇u|2 dx∫

Ω
u2

|x|2 dx
; u ∈ D1,2(Ω) \ {0}

}
.

Here D1,2(Ω) – or H1
0 (Ω) if the domain is bounded – is the completion of C∞c (Ω) with respect to

the norm given by ||u||2 =
∫

Ω
|∇u|2dx, and it is well known that for any domain Ω having 0 in its

interior, we have

(1.3) γ(Ω) = γH(Rn) =
(n− 2)2

4
.

On the other hand, γH(Rn+) = n2

4 when Rn+ := {x ∈ Rn; x1 > 0} is the half-space, and if Ω is any
domain having 0 on its boundary, then necessarily

(1.4)
(n− 2)2

4
< γH(Ω) ≤ n2

4
.

The question of what happens when (n−2)2

4 < γ < γH(Ω) provided the initial motivation for this
paper. To start with, we shall show that the negative mean curvature condition at 0 is still sufficient
for the existence of solutions for (1.1) as long as γ remains below a new (higher) threshold, namely
when n ≥ 4 and

(1.5) 0 < γ ≤ n2 − 1

4
.

However, the situation changes dramatically for the remaining interval, i.e., when

(1.6)
n2 − 1

4
< γ < γH(Ω).

In this case, we show that local geometric conditions at 0 become irrelevant for solving (1.1) and
more global properties of the domain must come into play. This will be illustrated by the notion of
Hardy singular boundary mass of the domain Ω that we introduce as follows.

We first consider the Hardy-Schrödinger operator Lγ := −∆− γ
|x|2 on Rn+, and notice that the most

basic solutions for Lγu = 0 satisfying u = 0 on ∂Rn+ are of the form uα(x) = x1|x|−α, and that
Lγuα = 0 on Rn+ if and only if α is either α−(γ) or α+(γ), where

(1.7) α±(γ) := n
2 ±

√
n2

4 − γ.

Actually, a byproduct of our analysis below gives that any non-negative solution of Lγu = 0 on Rn+
with u = 0 on ∂Rn+ is a linear combination of these two solutions. Note that α−(γ) < n

2 < α+(γ),
which points to the difference –in terms of behaviour around 0– between the “small” solution x 7→
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x1|x|−α−(γ), and the “large” one x 7→ x1|x|−α+(γ). Indeed, the small solution is “variational”, i.e.
is locally in D1,2(Rn+), while the large one is not.
This turned out to hold in more general settings, as we show that any variational solution of Lγu =

a(x)u behaves like x 7→ d(x, ∂Ω)|x|−α−(γ) around 0, while any positive non-variational solution
is necessarily like x 7→ d(x, ∂Ω)|x|−α+(γ) around 0. The profile can be made more explicit when

γ > n2−1
4 , as it is the only situation in which one can write a solution of Lγu = 0 as the sum of

the two above described profiles (plus lower-order terms), while if γ ≤ n2−1
4 , there might be some

intermediate terms between the two profiles. This led us to define the following notion of mass,
which is reminiscent of the positive mass theorem of Schoen-Yau [27] that was used to complete the
solution of the Yamabe problem. This will allow us to settle the remaining cases left by Chern-Lin,
since we establish that the positivity of such a boundary singular mass is sufficient to guarantee the
existence of solutions for (1.1) in low dimensions.

Theorem 1.1. Let Ω be a smooth bounded domain of Rn such that 0 ∈ ∂Ω. Assume that n2−1
4 <

γ < γH(Ω). Then, up to multiplication by a positive constant, there exists a unique function H ∈
C2(Ω \ {0}) such that

(1.8) −∆H − γ

|x|2
H = 0 in Ω , H > 0 in Ω , H = 0 on ∂Ω \ {0}.

Moreover, there exists a constant c ∈ R and H satisfying (1.8) such that

H(x) = d(x,∂Ω)

|x|α+(γ) + c d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.

Due to the uniqueness of solutions to (1.8) up to multiplication by a constant, the coefficient c is
uniquely defined. It will be denoted by mγ(Ω) := c ∈ R, and will be referred to as the “Hardy singular
boundary mass” of Ω.

It will be shown in section 7 that this notion of mass is conformally invariant in the following sense:
if two sets are diffeomorphic via an inversion fixing 0 (see Definition 7.3 and (7.16)), then they have
the same mass. As a consequence, we shall be able to define a notion of Hardy singular boundary
mass for unbounded domains that are conformally bounded (that is, those that are smooth and
bounded up to an inversion that fixes 0). We shall show that Ω→ mγ(Ω) is a monotone set-function
and that mγ(Rn+) = 0. These properties will allow us to construct in section 9, examples of bounded
domains Ω in Rn with 0 ∈ ∂Ω with either positive or negative boundary mass, while satisfying any
local behavior at 0 one wishes. In other words, the sign of the Hardy-singular boundary mass is
totally independent of the local properties of ∂Ω around 0.
One motivation for considering equation (1.1) came from the problem of existence of extremals for
the Caffarelli-Kohn-Nirenberg (CKN) inequalities [4]. These state that in dimension n ≥ 3, there is
a constant C := C(a, b, n) > 0 such that for all u ∈ C∞c (Rn), the following inequality holds:

(1.9)

(∫
Rn
|x|−bq|u|q

) 2
q

≤ C
∫
Rn
|x|−2a|∇u|2dx,

where

(1.10) −∞ < a <
n− 2

2
, 0 ≤ b− a ≤ 1 and q =

2n

n− 2 + 2(b− a)
.

If we let D1,2
a (Ω) be the completion of C∞c (Ω) with respect to the norm ||u||2a =

∫
Ω
|x|−2a|∇u|2dx,

then the best constant in (1.9) is given by

(1.11) S(a, b,Ω) = inf


∫

Ω
|x|−2a|∇u|2dx(∫

Ω
|x|−bq|u|q

) 2
q dx

;u ∈ D1,2
a (Ω)\{0}

 .
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The extremal functions for S(a, b,Ω) –whenever they exist– are then the least-energy solutions of
the corresponding Euler-Lagrange equations: −div(|x|−2a∇u) = |x|−bquq−1 on Ω

u > 0 on Ω
u = 0 on ∂Ω.

(1.12)

To make the connection with Hardy-Schrödinger operator, note that the substitution v(x) = |x|−au(x)

with a < n−2
2 , gives –via the Hardy inequality– that u ∈ D1,2

a (Ω) if and only if v ∈ D1,2(Ω) and
that u is a variational solution of (1.12) if and only if w is a solution of equation

−∆v − γ v
|x|2 = v2

?(s)−1

|x|s on Ω

v > 0 on Ω
v = 0 on ∂Ω,

(1.13)

where

(1.14) γ = a(n− 2− a), s = (b− a)q and 2? = 2n
n−2+2(b−a) .

The Caffarelli-Kohn-Nirenberg inequalities are then equivalent to the Hardy-Sobolev inequality

(1.15) C
(∫

Ω
u2?(s)

|x|s dx
) 2

2?(s) ≤
∫

Ω
|∇u|2dx− γ

∫
Ω

u2

|x|2 dx for all u ∈ D1,2(Ω),

at least in the case when γ < (n−2)2

4 , which is optimal for domains Ω having 0 in their interior. If
Ω is also bounded, then the best constant in (1.15) is never attained, that is (1.13) has no energy
minimizing solution.

However, when 0 ∈ ∂Ω, inequality (1.15) holds for γ all the way to n2

4 , and we shall work thereafter
towards solving (1.13) by finding extremals for the variational problem

(1.16) µγ,s(Ω) := inf
{
JΩ
γ,s(u);u ∈ D1,2(Ω) \ {0}

}
,

where JΩ
γ,s is the functional on D1,2(Ω) defined by

(1.17) JΩ
γ,s(u) :=

∫
Ω
|∇u|2 − γ

∫
Ω

u2

|x|2 dx

(
∫

Ω
u2?(s)

|x|s dx)
2

2?(s)

.

We shall therefore consider thereafter the more general equation (1.13). The study of this type
of nonlinear singular problems when 0 ∈ ∂Ω was initiated by Ghoussoub-Kang [13] and studied
extensively by Ghoussoub-Robert [15,16] in the case γ = 0. C. S. Lin and his collaborators [5,6,22]

dealt with the case γ < (n−2)2

4 . For more contributions, we refer to Attar-Merchán-Peral [1], Dávila-
Peral [8], and Gmira-Véron [19].

Theorem 1.2. Let Ω be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂Ω. Assume

γ ≤ n2−1
4 and 0 ≤ s < 2. If either {s > 0} or {s = 0, n ≥ 4 and γ > 0}, then there are extremals

for µγ,s(Ω) provided the mean curvature of ∂Ω at 0 is negative.

As mentioned above, our main contribution here to this problem is however to consider the cases

when n2−1
4 ≤ γ < n2

4 , as well as the case when n = 3, s = 0 and γ > 0, which were left open by
Chern-Lin [6]. We now discuss the new ingredients that we bring to the discussion.
We first note that standard compactness arguments [6,13] yield that for µγ,s(Ω) to be attained it is
sufficient to have that

(1.18) µγ,s(Ω) < µγ,s(Rn+),

and in order to prove the existence of such a gap, one tries to construct test functions for µγ,s(Ω) that
are based on the extremals of µγ,s(Rn+) provided the latter exist. The cases where this is known are
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given by the following standard proposition. See for instance Bartsch-Peng-Zhang [3] and Chern-Lin
[6]. A complete proof is given in [17].

Proposition 1.3. Assume γ < n2

4 , n ≥ 3 and 0 ≤ s < 2. Then,

(1) µγ,s(Rn+) is attained provided either {s > 0} or {s = 0, n ≥ 4 and γ > 0}.
(2) On the other hand, there are no extremals for µγ,s(Rn+) for any n ≥ 3, if {s = 0 and γ ≤ 0}.
(3) Furthermore, whenever µγ,0(Rn+) has no extremals, then necessarily

(1.19) µγ,0(Rn+) = inf
u∈D1,2(Rn)\{0}

∫
Rn |∇u|

2 dx(∫
Rn |u|2

? dx
) 2

2?
=

1

K(n, 2)2
,

where 2? := 2n
n−2 and 1

K(n,2)2 is the best constant in the Sobolev inequality.

The only unknown situation on Rn+ is again when s = 0, n = 3 and γ > 0, which we address in
Section 10.
Assuming first that an extremal for µγ,s(Rn+) exists and that one knows its profile at infinity and at
0, then this information can be used to construct test functions for µγ,s(Ω). This classical method
has been used by Kang-Ghoussoub [13], Ghoussoub-Robert [15, 16] when γ = 0, and by Chern-Lin

[6] for 0 < γ < (n−2)2

4 in order to establish (1.18) under the assumption that ∂Ω has a negative
mean curvature at 0. Actually, the estimates of Chern-Lin [6] extend directly to establish Theorem

1.2 for all γ < n2−1
4 under the same negative mean curvature condition. However, the case where

γ = n2−1
4 already requires estimates on the profile of variational solutions of (1.13) on Rn+ that are

finer than those used by Chern-Lin [6]. The following description of such a profile will allow us to

construct sharper test functions and to prove existence of solutions for (1.13) when γ = n2−1
4 .

Theorem 1.4. Assume γ < n2

4 , 0 ≤ s < 2, and let u ∈ D1,2(Rn+), u ≥ 0, u 6≡ 0 be a weak solution
to

(1.20) −∆u− γ

|x|2
u =

u2?(s)−1

|x|s
in Rn+.

Then, there exist K1,K2 > 0 such that

u(x) ∼x→0 K1
x1

|x|α−(γ)
and u(x) ∼|x|→+∞ K2

x1

|x|α+(γ)
.

The solution of the problem on Rn+ also enjoys the following natural symmetry that will be crucial
for the sequel. This was carried out by Ghoussoub-Robert [16] when γ = 0, and their proof extends
immediately to the case 0 ≤ γ < n2/4. Chern-Lin [6] gave another proof which also includes the
case where γ < 0.

Theorem 1.5. (Chern-Lin [6]) If u is a non-negative solution to (1.20) in D1,2(Rn+), then u◦σ = u
for all isometries of Rn such that σ(Rn+) = Rn+. In particular, there exists v ∈ C∞((0,+∞) × R)
such that for all x1 > 0 and all x′ ∈ Rn−1, we have that u(x1, x

′) = v(x1, |x′|).

The following theorem summarizes the situation for low dimensions.

Theorem 1.6. Let Ω be a bounded smooth domain of Rn (n ≥ 3) such that 0 ∈ ∂Ω, hence (n−2)2

4 <

γH(Ω) ≤ n2

4 . Let 0 ≤ s < 2.

(1) If γH(Ω) ≤ γ < n2

4 , then there are extremals for µγ,s(Ω) for all n ≥ 3.

(2) If n2−1
4 < γ < γH(Ω) and either {s > 0} or {s = 0, n ≥ 4 and γ > 0}, then there are

extremals for µγ,s(Ω) provided the Hardy singular boundary mass mγ(Ω) is positive.
(3) If {s = 0 and γ ≤ 0}, then there are no extremals for µγ,0(Ω) for any n ≥ 3.
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Finally, we address in section 10 the only remaining case, i.e., n = 3, s = 0 and γ ∈ (0, 9
4 ). In this

situation, there may or may not be extremals for µγ,0(R3
+). If they do exist, we can then argue as

before –using the same test functions– to conclude existence of extremals under the same conditions,
that is either γ ≤ 2 and the mean curvature of ∂Ω at 0 is negative, or γ > 2 and the mass mγ(Ω) is
positive. However, if no extremal exist for µγ,0(R3

+), then as noted in (1.19), we have that

µγ,0(R3
+) = inf

u∈D1,2(R3)\{0}

∫
R3 |∇u|2 dx(∫
R3 |u|2? dx

) 2
2?

=
1

K(3, 2)2
,

and we are back to the case of the Yamabe problem with no boundary singularity. This means that
one needs to resort to a more standard notion of mass Rγ(Ω, x0) associated to Lγ and an interior
point x0 ∈ Ω, in order to construct suitable test-functions in the spirit of Schoen [26]. Such an
“interior mass” will be introduced in section 10. We get the following (note that the boundary mass
mγ(Ω) was defined in Theorem 1.1).

Theorem 1.7. Let Ω be a bounded smooth domain of R3 such that 0 ∈ ∂Ω. In particular 1
4 <

γH(Ω) ≤ 9
4 .

(1) If γH(Ω) ≤ γ < 9
4 , then there are extremals for µγ,0(Ω).

(2) If 0 < γ < γH(Ω) and if there exists x0 ∈ Ω such that Rγ(Ω, x0) > 0, then there are extremals
for µγ,0(Ω), under either one of the following conditions:
(a) γ ≤ 2 and the mean curvature of ∂Ω at 0 is negative.
(b) γ > 2 and the boundary mass mγ(Ω) is positive.

More precisely, if there are extremals for µγ,0(R3), then conditions (a) and (b) are sufficient to get
extremals for µγ,0(Ω). If there are no extremals for µγ,0(R3), then the positivity of the internal mass
Rγ(Ω, x0) is sufficient to get extremals for µγ,0(Ω). The following table summarizes our findings.

Table 1. Singular Sobolev-Critical term: s > 0

Hardy term Dimension Geometric condition Extremal

−∞ < γ ≤ n2−1
4 n ≥ 3 Negative mean curvature at 0 Yes

n2−1
4 < γ < n2

4 n ≥ 3 Positive boundary-mass Yes

Table 2. Non-singular Sobolev-Critical term: s = 0

Hardy term Dim. Geometric condition Extr.

0 < γ ≤ n2−1
4 n = 3 Negative mean curvature at 0 & Positive internal mass Yes

n ≥ 4 Negative mean curvature at 0 Yes
n2−1

4 < γ < n2

4 n = 3 Positive boundary-mass & Positive internal mass Yes
n ≥ 4 Positive boundary mass Yes

γ ≤ 0 n ≥ 3 – No

Notations: in the sequel, Ci(a, b, ...) (i = 1, 2, ...) will denote constants depending on a, b, .... The
same notation can be used for different constants, even in the same line. We will always refer to the
monograph [18] by Gilbarg and Trudinger for the standard results on elliptic PDEs.
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2. Old and new inequalities involving singular weights

The following general form of the Hardy inequality is well known. See for example Cowan [7] or the
book of Ghoussoub-Moradifam [14].

Theorem 2.1. Let Ω be a connected open subset of Rn and consider ρ ∈ C∞(Ω) such that ρ > 0
and −∆ρ > 0. Then, for any u ∈ D1,2(Ω) we have

(2.1)

∫
Ω

−∆ρ

ρ
u2 dx ≤

∫
Ω

|∇u|2 dx.

Moreover, the case of equality is achieved exactly on Rρ ∩ D1,2(Ω). In particular, if ρ 6∈ D1,2(Ω),
there are no nontrival extremals for (2.1).

The above theorem applies to various weight functions ρ. See for example [7] or [14]. For this paper,
we use it to derive the following inequality.

Corollary 2.2. Fix 1 ≤ k ≤ n, we then have the following inequality.(
n+ 2k − 2

2

)2

= inf
u

∫
Rk+×Rn−k

|∇u|2 dx∫
Rk+×Rn−k

u2

|x|2 dx
,

where the infimum is taken over all u in D1,2(Rk+ × Rn−k) \ {0}. Moreover, the infimum is never
achieved.

Proof of Corollary 2.2: Take ρ(x) := x1...xk|x|−α for all x ∈ Ω := Rk+ × Rn−k \ {0}. Then
−∆ρ
ρ = α(n+2k−2−α)

|x|2 . We then maximize the constant by taking α := (n + 2k − 2)/2. Since

ρ 6∈ D1,2(Rk+ × Rn−k), Theorem 2.1 applies and we obtain that

(2.2)

(
n+ 2k − 2

2

)2 ∫
Rk+×Rn−k

u2

|x|2
dx ≤

∫
Rk+×Rn−k

|∇u|2 dx

for all u ∈ D1,2(Rk+ × Rn−k), and that the extremals are trivial.

It remains to prove that the constant in (2.2) is optimal. This will be achieved via the following
test-function estimates. Construct a sequence (ρε)ε>0 ∈ D1,2(Rk+ × Rn−k) as follows. Starting with
ρ(x) = x1...xk|x|−α, we fix β > 0 and define

(2.3) ρε(x) :=


∣∣x
ε

∣∣β ρ(x) if |x| < ε
ρ(x) if ε ≤ |x| ≤ 1

ε
|ε · x|−βρ(x) if |x| > 1

ε

with α := (n + 2k − 2)/2. As one checks, ρε ∈ D1,2(Rk+ × Rn−k) for all ε > 0. The changes of
variables x = εy and x = ε−1z yield

(2.4)

∫
Bε(0)

ρ2ε
|x|2 dx = O(1),

∫
Bε(0)

|∇ρε|2 dx = O(1),∫
Rn\Bε−1 (0)

ρ2ε
|x|2 dx = O(1),

∫
Rn\Bε−1 (0)

|∇ρε|2 dx = O(1)

when ε→ 0. By integrating by parts, we get∫
Bε−1 (0)\Bε(0)

|∇ρε|2 dx =

∫
Bε−1 (0)\Bε(0)

−∆ρ

ρ
ρ2 dx+O(1)

=

(
n+ 2k − 2

2

)2 ∫
Bε−1 (0)\Bε(0)

ρ2

|x|2
dx+O(1),(2.5)
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when ε→ 0. Using polar coordinates, we obtain

(2.6)

∫
Bε−1 (0)\Bε(0)

ρ2

|x|2
dx = C(2) ln

1

ε
where C(2) := 2

∫
Sn−1

∣∣∣∣∣
k∏
i=1

xi

∣∣∣∣∣
2

dσ.

Therefore, by using (2.4), (2.5) and (2.6),∫
Rk+×Rn−k

|∇ρε|2 dx∫
Rk+×Rn−k

ρ2ε
|x|2 dx

=

(
n+ 2k − 2

2

)2

+ o(1)

as ε→ 0, and we are done. Note that the infimum is never achieved since ρ 6∈ D1,2(Rk+ ×Rn−k). �

Another approach to prove Corollary 2.2 is to see Rk+×Rn−k as a cone generated by a domain of the
unit sphere. Then the Hardy constant is given by the Hardy constant of Rn plus the first eigenvalue
of the Laplacian of the Dirichlet of the above domain of the unit sphere endowed with its canonical
metric. This point of view is developed in Pinchover-Tintarev [24] (see also Fall-Musina [12] and
Ghoussoub-Moradifam [14] for an exposition in book form).

We also have the following generalized Caffarelli-Kohn-Nirenberg inequality.

Proposition 2.3. Let Ω be an open subset of Rn. Let ρ, ρ′ ∈ C∞(Ω) be such that ρ, ρ′ > 0 and
−∆ρ,−∆ρ′ > 0. Fix s ∈ [0, 2] and assume that there exists ε ∈ (0, 1) and ρε ∈ C∞(Ω) such that

−∆ρ

ρ
≤ (1− ε)−∆ρε

ρε
in Ω with ρε,−∆ρε > 0.

Then, for all u ∈ C∞c (Ω),

(2.7)

(∫
Ω

(
−∆ρ′

ρ′

)s/2
ρ2?(s)|u|2

?(s) dx

) 2
2?(s)

≤ C
∫

Ω

ρ2|∇u|2 dx.

Proof: The Sobolev inequality yields the existence of C(n) > 0 such that(∫
Ω

|u|2
?

dx

) 2
2?

≤ C(n)

∫
Ω

|∇u|2 dx

for all u ∈ C∞c (Ω), where 2? = 2?(0) = 2n
n−2 . A Hölder inequality interpolating between this Sobolev

inequality and the Hardy inequality (2.1) for ρ′ yields the existence of C > 0 such that for all
u ∈ C∞c (Ω),

(2.8)

(∫
Ω

(
−∆ρ′

ρ′

)s/2
|u|2

?(s) dx

) 2
2?(s)

≤ C
∫

Ω

|∇u|2 dx

By applying (2.1) to ρε, we get for v ∈ C∞c (Ω),∫
Ω

ρ2|∇v|2 dx =

∫
Ω

|∇(ρv)|2 dx−
∫

Ω

−∆ρ

ρ
(ρv)2 dx

≥
∫

Ω

|∇(ρv)|2 dx− (1− ε)
∫

Ω

−∆ρε
ρε

(ρv)2 dx

≥ ε

∫
Ω

|∇(ρv)|2.

Taking u := ρv in (2.8) and using this latest inequality yield (2.7). �
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Corollary 2.4. Fix k ∈ {1, . . . , n− 1}. There exists then a constant C := C(a, b, n) > 0 such that
for all u ∈ C∞c (Rk+ × Rn−k),

(2.9)

(∫
Rk+×Rn−k

|x|−bq
(
Πk
i=1xi

)q |u|q) 2
q

≤ C
∫
Rk+×Rn−k

(
Πk
i=1xi

)2 |x|−2a|∇u|2dx,

where

(2.10) −∞ < a <
n− 2 + 2k

2
, 0 ≤ b− a ≤ 1, q =

2n

n− 2 + 2(b− a)
.

Proof: Apply Proposition 2.3 with ρ(x) = ρ′(x) =
(
Πk
i=1xi

)
|x|−a and ρε(x) =

(
Πk
i=1xi

)
|x|−n−2+2k

2

for all x ∈ Rk+ × Rn−k. Corollary 2.4 then follows for suitable a, b, q. �

Remark: Observe that by taking k = 0, we recover the classical Caffarelli-Kohn-Nirenberg inequal-
ities (1.9). However, one does not see any improvement in the integrability of the weight functions
since

(
Πk
i=1xi

)
|x|−a is of order k− a > −(n− 2)/2, hence as close as we wish to (n− 2)/2 with the

right choice of a. The relevance here appears when one considers the Hardy inequality of Corollary
2.2.

3. On the best constants in the Hardy and Hardy-Sobolev inequalities

As mentioned in the introduction, the best constant in the Hardy inequality γH(Ω) does not depend
on the domain Ω ⊂ Rn if the singularity 0 belongs to the interior of Ω, and it is always equal to
(n−2)2

4 . We have seen, however, in the last section that the situation changes whenever 0 ∈ ∂Ω, since

γH(Rn+) = n2

4 . Some properties of the best Hardy constants have been studied by Fall-Musina [12]
and Fall [11]. In this section, we shall collect whatever information we shall need later on about γH .

Proposition 3.1. The best Hardy constant γH satisfies the following properties:

(1) γH(Ω) = (n−2)2

4 for any smooth domain Ω such that 0 ∈ Ω.

(2) If 0 ∈ ∂Ω, then (n−2)2

4 < γH(Ω) ≤ n2

4 .

(3) γH(Ω) = n2

4 for every Ω such that 0 ∈ ∂Ω and Ω ⊂ Rn+.

(4) If γH(Ω) < n2

4 , then it is attained in D1,2(Ω).

(5) We have inf{γH(Ω); 0 ∈ ∂Ω} = (n−2)2

4 for n ≥ 3.
(6) For every ε > 0, there exists a smooth domain Rn+ ( Ωε ( Rn such that 0 ∈ ∂Ωε and

n2

4 − ε ≤ γH(Ωε) <
n2

4 .

Proof of Proposition 3.1: Properties (1)-(2)-(3)-(4) are well known (See [12] and [11]). We sketch
proofs since we will make frequent use of the test functions involved. Note first that Corollary 2.2

already yields that γH(Rn+) = n2

4 .

(2) Since Ω ⊂ Rn, we have that γH(Ω) ≥ γH(Rn) = (n−2)2

4 . Assume by contradiction that γH(Ω) =
(n−2)2

4 . It then follows from Theorem 3.6 below (applied with s = 2) that γH(Ω) is achieved by a

function in u0 ∈ D1,2(Ω) \ {0} (note that µ0,γ(Ω) = γH(Ω) − γ). Therefore, γH(Rn) is achieved in
D1,2(Rn). Up to taking |u0|, we can assume that u0 ≥ 0. Therefore, the Euler-Lagrange equation
and the maximum principle yield u0 > 0 in Rn: this is impossible since u0 ∈ D1,2(Ω). Therefore

γH(Ω) > (n−2)2

4 .

For the other inequality, the standard proof normally uses the fact that the domain contains an
interior sphere that is tangent to the boundary at 0. We choose here to perform another proof based
on test-functions, which will be used again to prove Proposition 3.3. It goes as follows: since Ω is
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a smooth bounded domain of Rn such that 0 ∈ ∂Ω, there exist U, V open subsets of Rn such that
0 ∈ U , 0 ∈ V and there exists ϕ ∈ C∞(U, V ) a diffeomophism such that ϕ(0) = 0 and

ϕ(U ∩ {x1 > 0}) = ϕ(U) ∩ Ω and ϕ(U ∩ {x1 = 0}) = ϕ(U) ∩ ∂Ω.

Moreover, we can and shall assume that dϕ0 is an isometry. Let η ∈ C∞c (U) such that η(x) = 1
for x ∈ Bδ(0) for some δ > 0 small enough, and consider (αε)ε>0 ∈ (0,+∞) such that αε = o(ε) as
ε→ 0. For ε > 0, define

(3.1) uε(x) :=

{
η(y)α

−n−2
2

ε ρε

(
y
αε

)
for all x ∈ ϕ(U) ∩ Ω, x = ϕ(y),

0 elsewhere.

Here ρε is constructed as in (2.3) with k = 1. Now fix σ ∈ [0, 2], and note that only the case σ = 2
is needed for the above proposition. Immediate computations yield

(3.2)

∫
Ω

|uε(y)|2?(σ)

|y|σ
dy = C(σ) ln

1

ε
+O(1) as ε→ 0,

where C(σ) := 2
∫
Sn−1

∣∣∣∏k
i=1 xi

∣∣∣2?(σ)

dσ. Similar arguments yield

(3.3)

∫
Ω

|∇uε|2 dy =
n2

4
C(2) ln

1

ε
+O(1) as ε→ 0.

As a consequence, we get that ∫
Ω
|∇uε|2 dx∫
Ω

u2
ε

|x|2 dx
=
n2

4
+ o(1) as ε→ 0.

In particular, we get that γH(Ω) ≤ n2

4 , which proves the upper bound in item 2) of the proposition.

(3) Assume that Ω ⊂ Rn+, then D1,2(Ω) ⊂ D1,2(Rn+), and therefore γH(Ω) ≥ γH(Rn+) = n2/4. With
the reverse inequality already given by Point (2), we get that γH(Ω) = n2/4 for all Ω ⊂ Rn+ such
that 0 ∈ ∂Ω.

(4) This will be a particular case of Theorem 3.6 when s = 2.

(5) Let Ω0 be a bounded domain of Rn such that 0 ∈ Ω0 (i.e., it is not on the boundary). Given δ > 0,
we chop out a ball of radius δ/4 with 0 on its boundary to define Ωδ := Ω0 \ B δ

4

(
(−δ4 , 0, . . . , 0)

)
.

Note that for δ > 0 small enough, Ω is smooth and 0 ∈ ∂Ω. We now prove that

(3.4) lim
δ→0

γH(Ωδ) =
(n− 2)2

4
.

Define η1 ∈ C∞(Rn) such that η1(x) = 0 if |x| < 1 η1(x) = 1 if |x| > 2. Let ηδ(x) := η1(δ−1x)
for all δ > 0 and x ∈ Rn. Fix U ∈ C∞c (Rn) and consider for any δ > 0, an εδ > 0 such that
limδ→0

δ
εδ

= limδ→0 εδ = 0. For δ > 0, we define

uδ(x) := ηδ(x)ε
−n−2

2

δ U(ε−1
δ x) for all x ∈ Ωδ.

For δ > 0 small enough, we have that uδ ∈ C∞c (Ωδ). Since δ = o(εδ) as δ → 0, a change of variable

yields limδ→0

∫
Ωδ

u2
δ

|x|2 dx =
∫
Rn

U2

|x|2 dx. We also have for δ small,∫
Ωδ

|∇uδ|2 dx =

∫
Rn
|∇uδ|2 dx =

∫
Rn
|∇
(
U · η δ

εδ

)
|2 dx

=

∫
Rn
|∇U |2η2

δ
εδ

dx+

∫
Rn
η δ
εδ

(
−∆η δ

εδ

)
U2 dx.(3.5)
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Let R > 0 be such that U has support in BR(0). Since n ≥ 3, we have∫
Rn
η δ
εδ

(
−∆η δ

εδ

)
U2 dx = O

((εδ
δ

)2

Vol(BR(0) ∩ Supp
(
−∆η δ

εδ

)
)

)
= O

((
δ

εδ

)n−2
)

= o(1)

as δ → 0. This latest identity, (3.5) and the dominated convergence theorem yield

lim
δ→0

∫
Ωδ

|∇uδ|2 dx =

∫
Rn
|∇U |2 dx.

Therefore, for U ∈ C∞c (Rn), we have

lim sup
δ→0

γH(Ωδ) ≤ lim
δ→0

∫
Ωδ
|∇uδ|2 dx∫

Ωδ

u2
δ

|x|2 dx
=

∫
Rn |∇U |

2 dx∫
Rn

U2

|x|2 dx
.

Taking the infimum over all U ∈ C∞c (Rn), we get that

lim sup
δ→0

γH(Ωδ) ≤ inf
U∈D1,2(Rn)\{0}

∫
Rn |∇U |

2 dx∫
Rn

U2

|x|2 dx
= γH(Rn) =

(n− 2)2

4
.

Since γH(Ωδ) ≥ (n−2)2

4 for all δ > 0, this completes the proof of (3.4), yielding (5).

For (6) we use the following observation.

Lemma 3.2. Let (Φk)k∈N ∈ C1(Rn,Rn) be such that

(3.6) lim
k→+∞

(‖Φk − IdRn‖∞ + ‖∇(Φk − IdRn)‖∞) = 0 and Φk(0) = 0.

Let D ⊂ Rn be an open domain such that 0 ∈ ∂D (not necessarily bounded nor regular), and set
Dk := Φk(D) for all k ∈ N. Then 0 ∈ ∂Dk for all k ∈ N and

(3.7) lim
k→+∞

γH(Dk) = γH(D).

Proof of Lemma 3.2: If u ∈ C∞c (Dk), then u ◦ Φk ∈ C∞c (D) and∫
Dk

|∇u|2 dx =

∫
Rn+
|∇(u ◦ Φk)|2

Φ?kEucl|Jac(Φk)| dx,(3.8) ∫
Dk

u2

|x|2
dx =

∫
Rn+

(u ◦ Φk(x))2

|Φk(x)|2
|Jac(Φk)| dx,(3.9)

where here and in the sequel Φ?kEucl is the pull-back of the Euclidean metric via the diffeomorphism
Φk. Assumption (3.6) yields

lim
k→+∞

sup
x∈D

(∣∣∣∣ |Φk(x)|
|x|

− 1

∣∣∣∣+ sup
i,j
|(∂iΦk(x), ∂jΦk(x))− δij)|+ |Jac(Φk)− 1|

)
= 0,

where δij = 1 if i = j and 0 otherwise. This limit, (3.8), (3.9) and a density argument yield (3.7). �

We now prove (6) of Proposition 3.1. Let ϕ ∈ C∞(Rn−1) such that 0 ≤ ϕ ≤ 1, ϕ(0) = 0, and
ϕ(x′) = 1 for all x′ ∈ Rn−1 be such that |x′| ≥ 1. For t ≥ 0, define Φt(x1, x

′) := (x1−tϕ(x′), x′) for all

(x1, x
′) ∈ Rn. Set Ω̃t := Φt(Rn+) and apply Lemma 3.2 to note that limε→0 γH(Ω̃t) = γH(Rn+) = n2

4 .

Since ϕ ≥ 0, ϕ 6≡ 0, we have that Rn+ ( Ω̃t for all t > 0. To get (6) it suffices to take Ωε := Ω̃t for
t > 0 small enough. �
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As in the case of γH(Ω), the best Hardy-Sobolev constant

µγ,s(Ω) := inf


∫

Ω
|∇u|2 dx− γ

∫
Ω

u2

|x|2 dx

(
∫

Ω
u2?(s)

|x|s dx)
2

2?(s)

; u ∈ D1,2(Ω) \ {0}


will depend on the geometry of Ω whenever 0 ∈ ∂Ω.

Proposition 3.3. Let Ω be a bounded smooth domain such that 0 ∈ ∂Ω.

(1) If γ < n2

4 , then µγ,s(Ω) > −∞.
(2) If γ > n2

4 , then µγ,s(Ω) = −∞.
Moreover,

(3) If γ < γH(Ω), then µγ,s(Ω) > 0.

(4) If γH(Ω) < γ < n2

4 , then 0 > µγ,s(Ω) > −∞.

(5) If γ = γH(Ω) < n2

4 , then µγ,s(Ω) = 0.

Proof: Assume that γ < n2

4 and let ε > 0 be such that (1 + ε)γ ≤ n2

4 . It follows from Proposition

3.5 that there exists Cε > 0 such that for u ∈ D1,2(Ω),

n2

4

∫
Ω

u2

|x|2
dx ≤ (1 + ε)

∫
Ω

|∇u|2 dx+ Cε

∫
Ω

u2 dx.

For any u ∈ D1,2(Ω) \ {0}, we have

JΩ
γ,s(u) ≥

(
1− 4γ

n2 (1 + ε)
) ∫

Ω
|∇u|2 dx− 4γ

n2Cε
∫

Ω
u2 dx(∫

Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

≥ −4γ

n2
Cε

∫
Ω
u2 dx(∫

Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

.

It follows from Hölder’s inequality that there exists C > 0 independent of u such that
∫

Ω
u2 dx ≤

C
(∫

Ω
|u|2

?(s)

|x|s dx
) 2

2?(s)

. It then follows that JΩ
γ,s(u) ≥ − 4γ

n2CεC for all u ∈ D1,2(Ω) \ {0}. Therefore

µγ,s(Ω) > −∞ whenever γ < n2

4 .

Assume now that γ > n2

4 and define for every ε > 0 a function uε ∈ D1,2(Ω) as in (3.1). It then
follows from (3.2) and (3.3) that as ε→ 0,

JΩ
γ,s(uε) =

(
n2

4 − γ
)
C(2) ln 1

ε +O(1)(
C(s) ln 1

ε +O(1)
) 2

2?(s)

=

((
n2

4
− γ
)

C(2)

C(s)
2

2?(s)

+ o(1)

)(
ln

1

ε

) 2−s
n−s

.

Since s < 2 and γ > n2

4 , we have limε→0 J
Ω
γ,s(uε) = −∞, therefore µγ,s(Ω) = −∞.

If γ < γH(Ω), Sobolev’s embedding theorem yields µ0,s(Ω) > 0, hence the result is clear for all γ ≤ 0
since then µγ,s(Ω) ≥ µ0,s(Ω). If now 0 ≤ γ < γH(Ω), it follows from the definition of γH(Ω) that
for all u ∈ D1,2(Ω) \ {0},

JΩ
γ,s(u) =

∫
Ω
|∇u|2 − γ

∫
Ω

u2

|x|2 dx

(
∫

Ω
u2?(s)

|x|s dx)
2

2?(s)

≥
(

1− γ

γH(Ω)

) ∫
Ω
|∇u|2 dx(∫

Ω
|u|2?(s)
|x|s dx

) 2
2?(s)

≥
(

1− γ

γH(Ω)

)
µ0,s(Ω).
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Therefore µγ,s(Ω) ≥
(

1− γ
γH(Ω)

)
µ0,s(Ω) > 0 when γ < γH(Ω).

If γH(Ω) < γ < n2

4 , then Proposition 3.1 (4) yields that γH(Ω) is attained. We let u0 be such

an extremal. In particular JΩ
γH(Ω),s(u) ≥ 0 = JΩ

γH(Ω),s(u0), and therefore µγH(Ω),s(Ω) = 0. Since

γH(Ω) < γ < n2

4 , we have that JΩ
γ,s(u0) < 0, and therefore µγ,s(Ω) < 0 when γH(Ω) < γ < n2

4 . �

Remark 3.4. The case γ = n2

4 is unclear and anything can happen at that value of γ. For example,

if γH(Ω) < n2

4 then µn2

4 ,s
(Ω) < 0, while if γH(Ω) = n2

4 then µn2

4 ,s
(Ω) ≥ 0. It is our guess that many

examples reflecting different regimes can be constructed.

We shall need the following standard result.

Proposition 3.5. Assume γ < n2

4 and s ∈ [0, 2]. Then, for any ε > 0, there exists Cε > 0 such

that for all u ∈ D1,2(Ω),

(3.10)

(∫
Ω

|u|2?(s)

|x|s
dx

) 2
2?(s)

≤
(

1

µγ,s(Rn+)
+ ε

)∫
Ω

(
|∇u|2 − γ u

2

|x|2

)
dx+ Cε

∫
Ω

u2 dx.

This result says that, up to adding an L2−term (indeed, any subcritical term fits), the best constant
in the Hardy-Sobolev embedding can be chosen to be as close as one wishes to the best constant in
the model space Rn+. One can see this by noting that for functions that are supported in a small
neighborhood of 0, the domain Ω looks like Rn+, and the distortion is determined by the radius of
the neighborhood. The case of general functions in D1,2(Ω) is dealt with by using a cut-off, which
induces the L2−norm. A detailed proof is given in [17].

The following result is central for the sequel. The proof is standard, ever since T. Aubin’s proof
of the Yamabe conjecture in high dimensions, where he noted that the compactness of minimizing
sequences is restored if the infimum is strictly below the energy of a “bubble”. In our case below,
this translates to µγ,s(Ω) < µγ,s(Rn+). We omit the proof, which can be found in [17].

Theorem 3.6. Assume that γ < n2

4 , 0 ≤ s ≤ 2 and that µγ,s(Ω) < µγ,s(Rn+). Then there are

extremals for µγ,s(Ω). In particular, there exists a minimizer u in D1,2(Ω) \ {0} that is a positive
solution to the equation

−∆u− γ u
|x|2 = µγ,s(Ω)u

2?(s)−1

|x|s in Ω

u > 0 in ∂Ω
u = 0 on ∂Ω.

(3.11)

4. Profile at 0 of the variational solutions of Lγu = a(x)u

Here and in the sequel, we shall assume that 0 ∈ ∂Ω, where Ω is a smooth domain. Recall from the
introduction that two solutions for Lγu = 0, with u = 0 on ∂Rn+ are of the form uα(x) = x1|x|−α,
where α ∈ {α−(γ), α+(γ)} with

(4.1) α−(γ) := n
2 −

√
n2

4 − γ and α+(γ) := n
2 +

√
n2

4 − γ.

These solutions will be the building blocks for sub- and super-solutions of more general linear
equations involving Lγ on other domains. This section is devoted to the proof of the following
result. To state the theorem, we use the following terminology:
We say that u ∈ D1,2(Ω)loc,0 if there exists η ∈ C∞c (Rn) such that η ≡ 1 around 0 and ηu ∈ D1,2(Ω).
Say that u ∈ D1,2(Ω)loc,0 is a weak solution to the equation

−∆u = F ∈
(
D1,2(Ω)loc,0

)′
,
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if for any ϕ ∈ D1,2(Ω) and η ∈ C∞c (Rn) with sufficiently small support around 0, we have∫
Ω

(∇u,∇(ηϕ)) dx = 〈F, ηϕ〉 .

Theorem 4.1. Fix γ < n2

4 , τ > 0, and let u ∈ D1,2(Ω)loc,0 be a weak solution of

(4.2) −∆u− γ +O(|x|τ )

|x|2
u = 0 in D1,2(Ω)loc,0.

Then, there exists K ∈ R such that

lim
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
= K.

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.

By a slight abuse of notation, u 7→ −∆u− γ+O(|x|τ )
|x|2 u will denote an operator u 7→ −∆u− γ+a(x)

|x|2 u

where a ∈ C0(Ω) such that a(x) = O(|x|τ ) as τ → 0. In section 6, we will make a full description
of solutions to (4.2) that are not necessarily variational (we also refer to Pinchover [23] for related
problems).

We need the following lemmas, which will be used frequently throughout the paper. The first is
only a first step towards proving rigidity for the solutions of Lγu = 0 on Rn+. Indeed, the pointwise
assumption u(x) ≤ C|x|1−α will not be necessary as it will be eventually removed in Proposition
6.4, which will be a consequence of the classification Theorem 6.1. We omit the proof as it can be
inferred from the work of Pinchover-Tintarev [24].

Lemma 4.2. (Rigidity) Let u ∈ C2(Rn+ \ {0}) be a nonnegative solution of

(4.3) −∆u− γ

|x|2
u = 0 in Rn+ ; u = 0 on ∂Rn+.

Suppose u(x) ≤ C|x|1−α on Rn+ for α ∈ {α−(γ), α+(γ)}, then there exists λ ≥ 0 such that u(x) =
λx1|x|−α for all x ∈ Rn+.

We now construct basic sub- and super-solutions for the equation Lγu = a(x)u, where a(x) =
O(|x|τ−2) for some τ > 0.

Proposition 4.3. Let γ < n2

4 and α ∈ {α−(γ), α+(γ)}. Let 0 < τ ≤ 1 and β ∈ R such that

α − τ < β < α and β 6∈ {α−(γ), α+(γ)}. Then, there exist r > 0, and uα,+, uα,− ∈ C∞(Ω \ {0})
such that

(4.4)


uα,+, uα,− > 0 in Ω ∩Br(0)
uα,+, uα,− = 0 on ∂Ω ∩Br(0)

−∆uα,+ − γ+O(|x|τ )
|x|2 uα,+ > 0 in Ω ∩Br(0)

−∆uα,− − γ+O(|x|τ )
|x|2 uα,− < 0 in Ω ∩Br(0).

Moreover, we have as x→ 0, x ∈ Ω, that

(4.5) uα,+(x) =
d(x, ∂Ω)

|x|α
(1 +O(|x|α−β)) & uα,−(x) =

d(x, ∂Ω)

|x|α
(1 +O(|x|α−β)).

Proof of Proposition 4.3: We first choose an adapted chart to lift the basic solutions from Rn+. Since

0 ∈ ∂Ω and Ω is smooth, there exist Ũ , Ṽ two bounded domains of Rn such that 0 ∈ Ũ , 0 ∈ Ṽ , and
there exists c ∈ C∞(Ũ , Ṽ ) a C∞−diffeomorphism such that c(0) = 0,

c(Ũ ∩ {x1 > 0}) = c(Ũ) ∩ Ω and c(Ũ ∩ {x1 = 0}) = c(Ũ) ∩ ∂Ω.

The orientation of ∂Ω is chosen in such a way that for any x′ ∈ Ũ ∩ {x1 = 0},
{∂1c(0, x

′), ∂2c(0, x
′), . . . , ∂nc(0, x

′)}
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is a direct basis of Rn (canonically oriented). For x′ ∈ Ũ∩{x1 = 0}, we define ν(x′) as the unique or-
thonormal inner vector at the tangent space Tc(0,x′)∂Ω (it is chosen such that {ν(x′), ∂2c(0, x

′), . . . , ∂nc(0, x
′)}

is a direct basis of Rn). In particular, on Rn+ := {x1 > 0}, ν(x′) := (1, 0, . . . , 0).

Here and in the sequel, we write for any r > 0

(4.6) B̃r := (−r, r)×B(n−1)
r (0)

where B
(n−1)
r (0) denotes the ball of center 0 and radius r in Rn−1. It is standard that there exists

δ > 0 such that

(4.7)
ϕ : B̃2δ → Rn

(x1, x
′) ∈ R× Rn−1 7→ c(0, x′) + x1ν(x′)

is a C∞−diffeomorphism onto its open image ϕ(B̃2δ), and

(4.8) ϕ(B̃2δ ∩ {x1 > 0}) = ϕ(B̃2δ) ∩ Ω and ϕ(B̃2δ ∩ {x1 = 0}) = ϕ(B̃2δ) ∩ ∂Ω.

We also have for all x′ ∈ Bδ(0)(n−1),

(4.9) ν(x′) is the inner orthonormal unit vector at the tangent space Tϕ(0,x′)∂Ω.

An important remark is that

(4.10) d(ϕ(x1, x
′), ∂Ω) = |x1| for all (x1, x

′) ∈ B̃2δ close to 0.

Consider the metric g := ϕ?Eucl on B̃2δ, that is the pull-back of the Euclidean metric Eucl via the
diffeomorphism ϕ. Following classical notations, we define

(4.11) gij(x) := (∂iϕ(x), ∂jϕ(x))Eucl for all x ∈ B̃2δ and i, j = 1, ..., n.

Up to a change of coordinates, we can assume that (∂2ϕ(0), ..., ∂nϕ(0)) is an orthogonal basis of
T0∂Ω. In other words, we then have that

(4.12) gij(0) = δij for all i, j = 1, ..., n.

As one checks,

(4.13) gi1(x) = δi1 for all x ∈ B̃2δ and i = 1, ..., n.

Fix now α ∈ R and consider Θ ∈ C∞(B̃2δ) such that Θ(0) = 0 and which will be constructed later

(independently of α) with additional needed properties. Fix η ∈ C∞c (B̃2δ) such that η(x) = 1 for all

x ∈ B̃δ. Define uα ∈ C∞(Ω \ {0}) as

(4.14) uα ◦ ϕ(x1, x
′) := η(x)x1|x|−α(1 + Θ(x)) for all (x1, x

′) ∈ B̃2δ \ {0}.

In particular, uα(x) > 0 for all x ∈ ϕ(B̃2δ) ∩ Ω and uα(x) = 0 on Ω \ ϕ(B̃2δ).

We claim that with a good choice of Θ, we have that

(4.15) −∆uα = α(n−α)
|x|2 uα +O

(
uα(x)
|x|

)
as x→ 0.

Indeed, using the chart ϕ, we have that

(−∆uα) ◦ ϕ(x1, x
′) = −∆g(uα ◦ ϕ)(x1, x

′)

for all (x1, x
′) ∈ B̃δ \ {0}. Here, −∆g is the Laplace operator associated to the metric g, that is

−∆g := −gij
(
∂ij − Γkij∂k

)
,

where

Γkij :=
1

2
gkm (∂igjm + ∂jgim − ∂mgij) ,
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and (gij) is the inverse of the matrix (gij). Here and in the sequel, we have adopted Einstein’s
convention of summation. It follows from (4.13) that

(−∆uα) ◦ ϕ = −∆Eucl(uα ◦ ϕ)−
∑
i,j≥2

(
gij − δij

)
∂ij(uα ◦ ϕ)

+gijΓ1
ij∂1(uα ◦ ϕ) +

∑
k≥2

gijΓkij∂k(uα ◦ ϕ).(4.16)

It follows from the definition (4.14) that there exists C > 0 such that for any i, j, k ≥ 2, we have
that

|∂ij(uα ◦ ϕ)(x1, x
′)| ≤ C|x1| · |x|−α−2 and |∂k(uα ◦ ϕ)(x1, x

′)| ≤ C|x1| · |x|−α−1,

for all (x1, x
′) ∈ B̃δ \ {0}. It follows from (4.12) that gij − δij = O(|x|) as x→ 0. Therefore, (4.16)

yields that as x→ 0,

(−∆uα) ◦ ϕ = −∆Eucl(uα ◦ ϕ) + gijΓ1
ij∂1(uα ◦ ϕ) +O(x1|x|−α−1)(4.17)

The definition of gij and the expression of ϕ(x1, x
′) then yield that as x→ 0,

gijΓ1
ij = −1

2

∑
i,j≥2

gij∂1gij

= −
∑
i,j≥2

gij(x1, x
′) ((∂iϕ(0, x′), ∂jν(x′)) + x1(∂i(x

′), ∂jν(x′)))

= −
∑
i,j≥2

gij(0, x′) (∂iϕ(0, x′), ∂jν(x′)) +O(|x1|)

= H(x′) +O(|x1|),

where H(x′) is the mean curvature of the (n − 1)−manifold ∂Ω at ϕ(0, x′) oriented by the outer
normal vector −ν(x′). Using the expression (4.14) and using the smoothness of Θ, (4.17) yields

(−∆uα) ◦ ϕ =
(
−∆Eucl(x1|x|−α)

)
· (1 + Θ) + |x|−α (H(x′)(1 + Θ)− 2∂1Θ)

+O(x1|x|−α−1) as x→ 0.

We now define

Θ(x1, x
′) := e−

1
2x1H(x′) − 1 for all x = (x1, x

′) ∈ B̃2δ.

Clearly Θ(0) = 0 and Θ ∈ C∞(B̃2δ). We then get that as x→ 0,

(−∆uα) ◦ ϕ =
α(n− α)

|x|2
x1|x|−α · (1 + Θ) +O(x1|x|−α−1).(4.18)

With the choice that gij(0) = δij , we have that (∂iϕ(0))i=1,...,n is an orthonormal basis of Rn, and
therefore |ϕ(x)| = |x|(1 +O(|x|)) as x→ 0. It then follows from (4.18) and (4.14) that

(4.19) −∆uα =
α(n− α)

|x|2
uα +O(|x|−1uα) as x→ 0.

This proves (4.15). We now proceed with the construction of the sub- and super-solutions. Let
α ∈ {α−(γ), α+(γ)} in such a way that α(n − α) = γ and consider β, λ ∈ R to be chosen later. It
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follows from (4.15) that(
−∆− γ +O(|x|τ )

|x|2

)
(uα + λuβ) =

λ(β(n− β)− γ)

|x|2
uβ

+
O(|x|τ )

|x|2
uα +O(|x|−1uα) +O(|x|τ−2uβ)

=
uβ
|x|2

(
λ(β(n− β)− γ)

+O(|x|τ ) +O(|x|τ+β−α) +O(|x|1+β−α)
)

as x → 0. Choose β such that α − τ < β < α in such a way that β 6= α−(γ) and β 6= α+(γ). In
particular, β > α− 1 and β(n− β)− γ 6= 0. We then have

(4.20)

(
−∆− γ +O(|x|τ )

|x|2

)
(uα + λuβ) =

uβ
|x|2

(
λ(β(n− β)− γ) +O(|x|τ+β−α))

)
as x → 0. Choose λ ∈ R such that λ(β(n − β) − γ) > 0. Finally, let uα,+ := uα + λuβ and
uα,− := uα − λuβ . They clearly satisfy (4.4) and (4.5), which completes the proof of Proposition
4.3. �

Lemma 4.4. Assume that u ∈ D1,2(Ω)loc,0 is a weak solution of

(4.21)

{
−∆u− γ+O(|x|τ )

|x|2 u = 0 in D1,2(Ω)loc,0
u = 0 on B2δ(0) ∩ ∂Ω,

for some τ > 0 and δ > 0. Then, there exists C1 > 0 such that

(4.22) |u(x)| ≤ C1d(x, ∂Ω)|x|−α−(γ) for x ∈ Ω ∩Bδ(0).

Moreover, if u > 0 in Ω, then there exists C2 > 0 such that

(4.23) u(x) ≥ C2d(x, ∂Ω)|x|−α−(γ) for x ∈ Ω ∩Bδ(0).

Proof of Lemma 4.4: Assume first that u ∈ D1,2(Ω)loc,0 and u > 0 on Bδ(0) ∩ Ω. We claim that
there exists C0 > 0 such that

(4.24)
1

C0

d(x, ∂Ω)

|x|α−(γ)
≤ u(x) ≤ C0

d(x, ∂Ω)

|x|α−(γ)
for all x ∈ Ω ∩Bδ(0).

Indeed, since u is smooth outside 0, it follows from Hopf’s Maximum principle that there exists
C1, C2 > 0 such that

(4.25) C1d(x, ∂Ω) ≤ u(x) ≤ C2d(x, ∂Ω) for all x ∈ Ω ∩ ∂Bδ(0).

Let uα−(γ),+ be the super-solution constructed in Proposition 4.3. It follows from (4.25) and the
asymptotics (4.5) of uα−(γ),+ that there exists C3 > 0 such that

u(x) ≤ C3uα−(γ),+(x) for all x ∈ ∂(Bδ(0) ∩ Ω).

Since u is a solution and uα−(γ),+ is a supersolution, both being in D1,2(Ω)loc,0, it follows from the

maximum principle (by choosing δ > 0 small enough so that −∆− (γ +O(|x|τ ))|x|−2 is coercive on
Bδ(0)∩Ω) that u(x) ≤ C3uα−(γ),+(x) for all x ∈ Bδ(0)∩Ω. In particular, it follows from the asymp-

totics (4.5) of uα−(γ),+ that there exists C4 > 0 such that u(x) ≤ C4d(x, ∂Ω)|x|−α−(γ) for all x ∈
Ω ∩ Bδ(0). Arguing similarly with the lower-bound in (4.25) and the subsolution uα−(γ),−, we get
the existence of C0 > 0 such that (4.24) holds. This yields Lemma 4.4 for u > 0.
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Now we deal with the case when u is a sign-changing solution for (4.21). We then define u1, u2 :
Bδ(0) ∩ Ω→ R be such that{

−∆u1 − γ+O(|x|τ )
|x|2 u1 = 0 in Bδ(0) ∩ Ω

u1(x) = max{u(x), 0} on ∂(Bδ(0) ∩ Ω).{
−∆u2 − γ+O(|x|τ )

|x|2 u2 = 0 in Bδ(0) ∩ Ω

u2(x) = max{−u(x), 0} on ∂(Bδ(0) ∩ Ω).

The existence of such solutions is ensured by choosing δ > 0 small enough so that the operator
−∆ − (γ + O(|x|τ ))|x|−2 is coercive on Bδ(0) ∩ Ω. In particular, u1, u2 ∈ D1,2(Ω)loc,0, u1, u2 ≥ 0
and u = u1 − u2. It follows from the maximum principle that for all i, either ui ≡ 0 or ui > 0. The
first part of the proof yields the upper bound for u1, u2. Since u = u1 − u2, we then get (4.22). �
The following lemma allows to construct sub- and super solutions with Dirichlet boundary conditions
on any small smooth domain.

Proposition 4.5. Let Ω be a smooth bounded domain of Rn, and let W be a smooth domain of Rn
such that for some r > 0 small enough, we have

(4.26) Br(0) ∩ Ω ⊂W ⊂ B2r(0) ∩ Ω and Br(0) ∩ ∂W = Br(0) ∩ ∂Ω.

Fix γ < n2

4 , 0 < τ ≤ 1 and β ∈ R such that α+(γ) − τ < β < α+(γ) and β 6= α−(γ). Then, for r

small enough, there exists u
(d)
α+(γ),+, u

(d)
α+(γ),− ∈ C

∞(W \ {0}) such that

(4.27)


u

(d)
α+(γ),+, u

(d)
α+(γ),+ = 0 in ∂W \ {0}

−∆u
(d)
α+(γ),+ −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),+ > 0 in W

−∆u
(d)
α+(γ),− −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),− < 0 in W.

Moreover, we have as x→ 0, x ∈ Ω that

(4.28) u
(d)
α+(γ),+(x) =

d(x, ∂Ω)

|x|α+(γ)
(1 +O(|x|α−β)),

and

(4.29) u
(d)
α+(γ),−(x) =

d(x, ∂Ω)

|x|α+(γ)
(1 +O(|x|α−β)).

Proof of Proposition 4.5: Take η ∈ C∞(Rn) such that η(x) = 0 for x ∈ Bδ/4(0) and η(x) = 1 for
x ∈ Rn \Bδ/3(0). Define on W the function

f(x) :=

(
−∆− γ +O(|x|τ )

|x|2

)
(ηuα+(γ),+),

where uα+(γ),+ is given by Proposition 4.3. Note that f vanishes around 0 and that it is in C∞(W ).

Let v ∈ D1,2(W ) be such that {
−∆v − γ+O(|x|τ )

|x|2 v = f in W

v = 0 on ∂W.

Note that for r > 0 small enough, −∆ − (γ + O(|x|τ ))|x|−2 is coercive on W , and therefore, the
existence of v is ensured for small r. Define

u
(d)
α+(γ),+ := uα+(γ),+ − ηuα+(γ),+ + v.
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The properties of W and the definition of η and v yield{
u

(d)
α+(γ),+ = 0 in ∂W \ {0}

−∆u
(d)
α+(γ),+ −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),+ > 0 in W.

Since −∆v − (γ + O(|x|τ ))|x|−2v = 0 around 0 and v ∈ D1,2(W ), it follows from Lemma 4.4 that
there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x|−α−(γ) for all x ∈ W . Then (4.28) follows from

the asymptotics (4.5) of uα+(γ),+ and the fact that α−(γ) < α+(γ). We argue similarly for u
(d)
α+(γ),−.

�

Lemma 4.6. Let u ∈ D1,2(Ω)loc,0 such that (4.2) holds. Assume there exists C > 0 and α ∈
{α+(γ), α−(γ)} such that

(4.30) |u(x)| ≤ C|x|1−α for x→ 0, x ∈ Ω.

(1) Then, there exists C1 > 0 such that

(4.31) |∇u(x)| ≤ C1|x|−α as x→ 0, x ∈ Ω.

(2) If limx→0 |x|α−1u(x) = 0, then limx→0 |x|α|∇u(x)| = 0. Moreover, if u > 0, then there exists
l ≥ 0 such that

(4.32) lim
x→0

|x|αu(x)

d(x, ∂Ω)
= l and lim

x→0, x∈∂Ω
|x|α|∇u(x)| = l.

Proof of Lemma 4.6: Assume that (4.30) holds. Set ω(x) := |x|αu(x)
d(x,∂Ω) for x ∈ Ω. Let (xi)i ∈ Ω be

such that

(4.33) lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi) = l.

Choose a chart ϕ as in (4.7) such that dϕ0 = IdRn . For any i, define Xi ∈ Rn+ such that xi = ϕ(Xi),

ri := |Xi| and θi := Xi
|Xi| . In particular, limi→+∞ ri = 0 and |θi|=1 for all i. Set

ũi(x) := rα−1
i u(ϕ(rix)) for all i and x ∈ BR(0) ∩ Rn+ ; x 6= 0.

Equation (4.2) then rewrites

(4.34)

{
−∆gi ũi −

γ+o(1)
|x|2 ũi = 0 in BR(0) ∩ Rn+

ũi = 0 in BR(0) ∩ ∂Rn+,

where gi(x) := (ϕ?Eucl)(rix) is a metric that goes to Eucl on every compact subset of Rn as i→∞.
Here, o(1)→ 0 in C0

loc(Rn+ \ {0}). It follows from (4.30) and (4.33) that

(4.35) |ũi(x)| ≤ C|x|1−α for all i and all x ∈ BR(0) ∩ Rn+,

It follows from elliptic theory, that there exists ũ ∈ C2(Rn+ \{0}) such that ũi → ũ in C1
loc(Rn+ \{0}).

By letting θ := limi→+∞ θi (|θ| = 1), we then have that for any j = 1, ..., n, ∂j ũi(θi) → ∂j ũ(θ) as
i→ +∞, which rewrites

(4.36) lim
i→+∞

|xi|α∂ju(xi) = ∂j ũ(θ) for all j = 1, ..., n.

We now prove (4.31). For that, we argue by contradiction and assume that there exists a sequence
(xi)i ∈ Ω that goes to 0 as i→ +∞ and such that |xi|α|∇u(xi)| → +∞ as i→ +∞. It then follows
from (4.36) that |xi|α|∇u(xi)| = O(1) as i→ +∞. This is a contradiction to our assumption, which
proves (4.31). The case when |x|αu(x)→ 0 as x→ 0 goes similarly.

Now we consider the case when u > 0, which implies that ũi ≥ 0 and ũ ≥ 0. We let l ∈ [0,+∞] and
(xi)i ∈ Ω be such that

(4.37) lim
i→+∞

xi = 0 and lim
i→+∞

ω(xi) = l.
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We claim that

(4.38) 0 ≤ l < +∞ and lim
x→0

ω(x) = l ∈ [0,+∞).

Indeed, using the notations above, we get that

lim
i→+∞

ũi(θi)

(θi)1
= l.

The convergence of ũi in C1
loc(Rn+ \ {0}) then yields l < +∞. Passing to the limit as i → +∞ in

(4.34), we get 
−∆Euclũ−

γ
|x|2 ũ = 0 in Rn+

ũ ≥ 0 in Rn+
ũ = 0 in ∂Rn+.

The limit (4.37) can be rewritten as ũ(θ) = lθ1 if θ ∈ Rn+ and ∂1ũ(θ) = l if θ ∈ ∂Rn+. The rigidity
Lemma 4.2 then yields

ũ(x) = lx1|x|−α for all x ∈ Rn+.
In particular, since the differential of ϕ at 0 is the identity map, it follows from the convergence of
ũi to ũ locally in C1 that

(4.39) lim
i→+∞

sup
x∈Ω∩∂Bri (0)

u(x)

d(x, ∂Ω)|x|−α
= sup
x∈Rn+∩∂B1(0)

ũ(x)

x1|x|−α
= l

and

(4.40) lim
i→+∞

inf
x∈Ω∩∂Bri (0)

u(x)

d(x, ∂Ω)|x|−α
= inf
x∈Rn+∩∂B1(0)

ũ(x)

x1|x|−α
= l.

We distinguish two cases:

Case 1: α = α+(γ). Let W and u
(d)
α+(γ),− be as in Proposition 4.5, and fix ε > 0. Note that the

existence and properties of u
(d)
α+(γ),− do not use the Lemma that is currently proved. It follows from

(4.40) that there exists i0 such that for i ≥ i0, we have that

u(x) ≥ (l − ε)u(d)
α+(γ),−(x) for all x ∈W ∩ ∂Bri(0).

Since (−∆− (γ +O(|x|τ ))|x|−2)(u− (l− ε)u(d)
α+(γ),−) ≥ 0 in W \Bri(0) and since uα+(γ),− vanishes

on ∂W \ {0}, it follows from the comparison principle that

u(x) ≥ (l − ε)u(d)
α+(γ),−(x) for all x ∈W \ ∂Bri(0).

Letting i→ +∞ yields

u(x) ≥ (l − ε)u(d)
α+(γ),−(x) for all x ∈W \ {0}.

It follows from this inequality and the asymptotics for u
(d)
α+(γ),− that

lim inf
x→0

ω(x) ≥ l.

Note that this is valid for any l ∈ R satisfying (4.37). By taking l := lim supx→0 ω(x), we then get
that limx→0 ω(x) = l.

Case 2: α = α−(γ). Consider the super- and sub-solutions uα−(γ),+, uα−(γ),− constructed in
Proposition 4.3. It follows from (4.39) and (4.40) that for ε > 0, there exists i0 such that for i ≥ i0,
we have

(l − ε)uα−(γ),−(x) ≤ u(x) ≤ (l + ε)uα−(γ),+(x) for all x ∈ Ω ∩ ∂Bri(0).
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Since the operator −∆ − (γ + O(|x|τ ))|x|−2 is coercive on Ω ∩ Bri(0) and that the functions we

consider are in D1,2
loc,0(Ω∩Bri(0)) (i.e., they are variational), it follows from the maximum principle

that

(l − ε)uα−(γ),−(x) ≤ u(x) ≤ (l + ε)uα−(γ),+(x) for all x ∈ Ω ∩Bri(0).

Using the asymptotics (4.5) of the sub- and super-solution, we get that

(l − ε) ≤ lim inf
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
≤ lim sup

x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
≤ (l + ε).

Letting ε→ 0 yields limx→0 ω(x) = l ≥ 0. This ends Case 2 and completes the proof of (4.38).

The case u > 0 is a consequence of (4.38) and (4.36) (note that for the second limit, xi ∈ ∂Ω rewrites
as θi ∈ ∂Rn+ and therefore (θi)1 = 0). This ends the proof of Lemma 4.6. �

Proof of Theorem 4.1: First, assume that u ∈ D1,2(Ω)loc,0 satisfies (4.2) and u > 0 on Bδ(0) ∩ Ω.
It then follows from Lemma 4.4 that there exists C0 > 0 such that

1

C0

d(x, ∂Ω)

|x|α−(γ)
≤ u(x) ≤ C0

d(x, ∂Ω)

|x|α−(γ)
for all x ∈ Ω ∩Bδ(0).

Since u > 0, this estimate coupled with Lemma 4.6 yields the theorem for u > 0.

If now u is a sign-changing solution for (4.2), we define u1, u2 : Bδ(0) ∩ Ω→ R≥0 as in the proof of
Lemma 4.4. The first part of the proof yields that there exist l1, l2 ≥ 0 such that

lim
x→0

u1(x)

d(x, ∂Ω)|x|−α−(γ)
= l1 and lim

x→0

u2(x)

d(x, ∂Ω)|x|−α−(γ)
= l2.

Since u = u1 − u2, we get Theorem 4.1 by taking l := l1 − l2. �
Here is an immediate consequence.

Corollary 4.7. Suppose γ < γH(Ω) and consider the first eigenvalue of Lγ , i.e.,

λ1(Ω, γ) := inf
u∈D1,2(Ω)\{0}

∫
Ω

(
|∇u|2 − γ

|x|2u
2
)
dx∫

Ω
u2 dx

> 0.

If u0 ∈ D1,2(Ω) \ {0} is a minimizer, then there exists A 6= 0 such that

u0(x) ∼x→0 A
d(x, ∂Ω)

|x|α−(γ)
.

Proof: The existence of a minimizer u0 that doesn’t change sign is standard. The Euler-Lagrange
equation is −∆u− γ

|x|2u = ku for some k ∈ R. We then apply Theorem 4.1. �

5. Regularity of solutions for related nonlinear variational problems

This section is devoted to the proof of the following key result.

Theorem 5.1 (Optimal regularity and Generalized Hopf’s Lemma). Fix γ < n2

4 and let f : Ω×R→
R be a Caratheodory function such that

|f(x, v)| ≤ C|v|
(

1 +
|v|2?(s)−2

|x|s

)
for all x ∈ Ω and v ∈ R.

Let u ∈ D1,2(Ω)loc,0 be a weak solution of

(5.1) −∆u− γ +O(|x|τ )

|x|2
u = f(x, u) in D1,2(Ω)loc,0
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for some τ > 0. Then, there exists K ∈ R such that

(5.2) lim
x→0

u(x)

d(x, ∂Ω)|x|−α−(γ)
= K.

Moreover, if u ≥ 0 and u 6≡ 0, we have that K > 0.

Note that when f ≡ 0, this is nothing but Theorem 4.1. The result can be viewed as a generalization
of Hopf’s Lemma in the following sense: when γ = 0 (and then α−(γ) = 0), the classical Nash-
Moser regularity scheme yields u ∈ C1

loc, and when u ≥ 0, u 6≡ 0, Hopf’s comparison principle yields
∂νu(0) < 0, which is a reformulation of (5.2) when α−(γ) = 0.
The following lemma will be of frequent use in the sequel.

Lemma 5.2. Let f : Ω×R→ R be as in the statement of Theorem 5.1, and consider u ∈ D1,2(Ω)loc,0
such that (5.1) holds. Assume that for some C > 0,

(5.3) |u(x)| ≤ C|x|1−α−(γ) for x→ 0, x ∈ Ω.

Then, u satisfies the conclusion of Lemma 4.6.

Proof of Lemma 5.2: Assume that (5.3) holds. We claim that we can assume that for some τ > 0,

(5.4) −∆u− γ +O(|x|τ )

|x|2
u = 0 in D1,2(Ω)loc,0.

Indeed, we have as x→ 0,

|f(x, u)| ≤ C|u|
(

1 + |x|−s|x|−(2?(s)−2)(α−(γ)−1)
)

≤ C |u|
|x|2

(
|x|2 + |x|(2

?(s)−2)(n2−α−(γ))
)

= O

(
|x|τ

′ u

|x|2

)
for some τ ′ > 0. Plugging this inequality into (5.1) and replacing τ by min{τ, τ ′} yields (5.4). The
lemma now follows from Lemma 4.6. �

Proof of Theorem 5.1: We let here u ∈ D1,2(Ω)loc,0 be a solution to (5.1), that is

(5.5) −∆u− γ +O(|x|τ )

|x|2
u = f(x, u) weakly in D1,2(Ω)loc,0

for some τ > 0. We shall first use the classical DeGiorgi-Nash-Moser iterative scheme (see Gilbarg-
Trudinger [18], and Hebey [20] for expositions in book form). We skip most of the computations
and refer to Ghoussoub-Robert (Proposition A.1 of [16]) for the details. We fix δ0 > 0 such that
(i) there exists η̃ ∈ C∞(B4δ0(0)) such that η̃(x) = 1 for x ∈ B2δ0(0).
(ii) η̃u ∈ D1,2(Ω) and,
(iii) u is a weak solution to (5.5) when tested on η̃ϕ with ϕ ∈ D1,2(Ω) (see the definition of weak
solution given in the preceding section).
The proof goes through four steps.

Step 1: Let β ≥ 1 be such that 4β
(β+1)2 >

4
n2 γ. Assume that u ∈ Lβ+1(Ω ∩Bδ0(0)). We claim that

(5.6) u ∈ L
n
n−2 (β+1)(Ω ∩Bδ0(0)).

Indeed, fix β ≥ 1, L > 0, and define GL, HL : R→ R as

(5.7) GL(t) :=

 |t|
β−1t if |t| ≤ L

βLβ−1(t− L) + Lβ if t ≥ L
βLβ−1(t+ L)− Lβ if t ≤ −L
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and

(5.8) HL(t) :=


|t|

β−1
2 t if |t| ≤ L

β+1
2 L

β−1
2 (t− L) + L

β+1
2 if t ≥ L

β+1
2 L

β−1
2 (t+ L)− L

β+1
2 if t ≤ −L

As it is easily checked,

(5.9) 0 ≤ tGL(t) ≤ HL(t)2 and G′L(t) =
4β

(β + 1)2
(H ′L(t))2

for all t ∈ R and all L > 0. We fix δ > 0 small that will be chosen later. We let η ∈ C∞c (Rn) be
such that η(x) = 1 for x ∈ Bδ/2(0) and η(x) = 0 for x ∈ Rn \ Bδ(0). Multiplying equation (5.5)

with η2GL(u) ∈ D1,2(Ω), we get that∫
Ω

(∇u,∇(η2GL(u))) dx −
∫

Ω

γ +O(|x|τ )

|x|2
η2uGL(u) dx

=

∫
Ω

f(x, u)η2GL(u) dx.(5.10)

Integrating by parts, and using formulae (5.7) to (5.9) (see [16] for details) yields∫
Ω

(∇u,∇(η2GL(u))) dx =
4β

(β + 1)2

∫
Ω

(
|∇(ηHL(u))|2 − η(−∆)ηHL(u)2

)
dx

+

∫
Ω

−∆(η2)JL(u) dx(5.11)

where JL(t) :=
∫ t

0
GL(τ) dτ . This identity and (5.10) yield

4β

(β + 1)2

∫
Ω

|∇(ηHL(u))|2 dx −
∫

Ω

γ +O(|x|τ )

|x|2
η2uGL(u) dx

≤
∫

Ω

| −∆(η2)| · |JL(u)| dx

+C(β, δ)

∫
Ω∩Bδ(0)

|HL(u)|2 dx

+C

∫
Ω

|u|2?(s)−2

|x|s
(ηHL(u))2 dx.(5.12)

Hölder’s inequality and the Sobolev constant given in (1.16) yield∫
Ω

|u|2?(s)−2

|x|s
(ηHL(u))2 dx

≤

(∫
Ω∩Bδ(0)

|u|2?(s)

|x|s
dx

) 2?(s)−2
2?(s) (∫

Ω

|ηHL(u)|2?(s)

|x|s
dx

) 2
2?(s)

≤

(∫
Ω∩Bδ(0)

|u|2?(s)

|x|s
dx

) 2?(s)−2
2?(s)

· 1

µ0,s(Ω)

∫
Ω

|∇(ηHL(u))|2 dx.
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Plugging this estimate into (5.12) and defining γ+ := max{γ, 0} yields

4β

(β + 1)2

∫
Ω

|∇(ηHL(u))|2 dx − (γ+ + Cδτ )

∫
Ω

(ηHL(u))2

|x|2
dx

≤ C(β, δ)

∫
Ω∩Bδ(0)

(
|HL(u)|2 + |JL(u)|

)
dx

+α(δ)

∫
Ω

|∇(ηHL(u))|2 dx,

where

α(δ) := C

(∫
Ω∩Bδ(0)

|u|2?(s)

|x|s
dx

) 2?(s)−2
2?(s)

· 1

µ0,s(Ω)
,

so that
lim
δ→0

α(δ) = 0.

It follows from Hardy’s inequality that

n2

4

∫
Ω

(ηHL(u))2

|x|2
dx ≤ (1 + ε(δ))

∫
Ω

|∇(ηHL(u))|2 dx,

where limδ→0 ε(δ) = 0. Therefore, we get that(
4β

(β + 1)2
− α(δ)− (γ+ + Cδτ )

4

n2
(1 + ε(δ))

)∫
Ω

|∇(ηHL(u))|2 dx

≤ C(β, δ)

∫
Ω∩Bδ(0)

(
|HL(u)|2 + |JL(u)|

)
dx ≤ C(β, δ)

∫
Bδ(0)∩Ω

|u|β+1 dx.

Let δ ∈ (0, δ0) be such that

4β

(β + 1)2
− α(δ)− (γ+ + Cδτ )

4

n2
(1 + ε(δ)) > 0.

This is possible since 4β
(β+1)2 >

4
n2 γ. Using Sobolev’s embedding, we then get that(∫

Bδ/2(0)∩Ω

|HL(u)|2
?

dx

) 2
2?

≤
(∫

Rn
|ηHL(u)|2

?

dx

) 2
2?

≤ µ0,0(Ω)−1

∫
Ω

|∇(ηHL(u))|2 dx

≤ C(β, δ, γ)

∫
Bδ(0)∩Ω

|u|β+1 dx.

Since u ∈ Lβ+1(Bδ0(0)∩Ω), let L→ +∞ and use Fatou’s Lemma to obtain that u ∈ L 2?

2 (β+1)(Bδ/2(0)∩
Ω). The standard iterative scheme then yields that u ∈ C1(Ω ∩ Bδ0(0) \ {0}). Therefore u ∈
L

2?

2 (β+1)(Bδ0(0) ∩ Ω).

Step 2: We now show that

if γ ≤ 0, then u ∈ Lp(Ω ∩Bδ(0)) for all p ≥ 1,(5.13)

if γ > 0, then u ∈ Lp(Ω ∩Bδ(0)) for all p ∈
(

1,
n

n− 2

n

α−(γ)

)
.(5.14)

The case γ ≤ 0 is standard, so we only consider the case where γ > 0. Fix p ≥ 2 and set β := p− 1.
we have

4β

(β + 1)2
>

4

n2
γ ⇔ n

α+(γ)
< p <

n

α−(γ)
.
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Since α+(γ) > n/2 and p ≥ 2, then

4β

(β + 1)2
>

4

n2
γ ⇔ p <

n

α−(γ)
.

Therefore, it follows from Step 1 that if u ∈ Lp(Ω∩Bδ0), with p < n/α−(γ), then u ∈ L
n
n−2p(Ω∩Bδ0).

Since u ∈ L2(Ω ∩Bδ0), (5.14) follows.

Step 3: We claim that for any λ > 0, then

(5.15) |x|n−2
2 |u(x)| = O(|x|

n−2
n (n2−max{α−(γ),0}−λ) as x→ 0.

Indeed, take p ∈
(

2?, n2

(n−2)α−(γ)

)
if γ > 0, and p > 2? if γ ≤ 0. This is possible since 2? = 2n/(n−2)

and α−(γ) < n/2. We fix a sequence (εi)i ∈ (0,+∞) such that limi→+∞ εi = 0 and we fix a chart
ϕ as in (4.7) to (4.12). For any i ∈ N, we define

ui(x) := ε
n
p

i u(ϕ(εix)) for all x ∈ B̃δ/εi .

Equation (5.5) then rewrites

(5.16) −∆giui −
ε2i (γ +O(ετi |x|τ ))

|ϕ(εix)|2
ui = fi(x, ui) ; ui = 0 on ∂Rn+ ∩ B̃δ/εi

where gi(x) := ϕ?Eucl(εix) and

|fi(x, ui)| ≤ Cε2i |ui|+ Cε
(2?(s)−2)(n−2

2 −
n
p )

i |x|−s|ui|2
?(s)−1 in B̃δ/εi .

We fix R > 0 and define ωR :=
(
B̃R \ B̃R−1

)
∩ Rn+. With our choice of p above and using (5.14),

we get that

(5.17) ‖ui‖Lp(ωR) ≤ C,

and

(5.18) |fi(x, ui)| ≤ CR|ui|+ CR|ui|2
?(s)−1 for all x ∈ ωR.

Fix q ≥ p > 2?. It follows from elliptic regularity that

‖ui‖Lq(ωR) ≤ C ⇒


‖ui‖Lq′ (ωR/2) ≤ C ′ if q < n

2 (2?(s)− 1)

‖ui‖Lr(ωR/2) ≤ C ′ for all r ≥ 1 if q = n
2 (2?(s)− 1)

‖ui‖L∞(ωR/2) ≤ C ′ if q > n
2 (2?(s)− 1)

where 1
q′ = 2?(s)−1

q − 2
n and the constants C,C ′ are uniform with respect to i. It then follows from

the standard bootstrap iterative argument and the initial bound (5.17) that ‖ui‖L∞(ωR/4) ≤ C ′.
Taking R > 0 large enough and going back to the definition of ui, we get that for all i ∈ N,

|x|
n
p |u(x)| ≤ C for all x ∈ Ω ∩B2εi(0) \Bεi/2(0).

Since this holds for any sequence (εi)i, we get that |x|
n
p |u(x)| ≤ C around 0 for any 2? < p <

n2

(n−2)α−(γ) when γ > 0. Letting p go to n2

(n−2)α−(γ) yields (5.15) when γ > 0. For γ ≤ 0, we let
p→ +∞.

To finish the proof of Theorem 5.1, we rewrite equation (5.5) as

−∆u− a(x)

|x|2
u = 0,
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where for x ∈ Ω,

a(x) = γ +O(|x|τ ) +O(|x|2) +O
(
|x|2−s|u|2

?(s)−2
)

= γ +O(|x|τ ) +O(|x|2) +O
(
|x|

n−2
2 |u(x)|

)2?(s)−2

Since α−(γ) < n
2 , it then follows from (5.15) that there exists τ ′ > 0 such that a(x) = γ +O(|x|τ ′)

as x → 0. We are therefore back to the linear case, hence we can apply Theorem 4.1 and deduce
Theorem 5.1. �

As a consequence we get the following result that will be crucial for the sequel.

Corollary 5.3. Suppose u ∈ D1,2(Rn+), u ≥ 0, u 6≡ 0 is a weak solution of

−∆u− γ

|x|2
u =

u2?−1

|x|s
in Rn+.

Then, there exist K1,K2 > 0 such that

(5.19) u(x) ∼x→0 K1
x1

|x|α−(γ)
and u(x) ∼|x|→+∞ K2

x1

|x|α+(γ)
.

Proof: Theorem 5.1 yields the behavior when x→ 0. The Kelvin transform û(x) := |x|2−nu(x/|x|2)
is a solution to the same equation in D1,2(Rn+), and its behavior at 0 is given by Theorem 5.1. Going
back to u yields the behavior at ∞. �

6. Profile around 0 of positive singular solutions of Lγu = a(x)u

In this section we describe the profile of any positive solution –variational or not– of linear equations
involving Lγ . Here is the main result of this section.

Theorem 6.1. Let u ∈ C2(Bδ(0) ∩ (Ω \ {0})) be such that

(6.1)

 −∆u− γ+O(|x|τ )
|x|2 u = 0 in Ω ∩Bδ(0)

u > 0 in Ω ∩Bδ(0)
u = 0 on (∂Ω ∩Bδ(0)) \ {0}.

Then, there exists K > 0 such that

either u(x) ∼x→0 K
d(x, ∂Ω)

|x|α−(γ)
or u(x) ∼x→0 K

d(x, ∂Ω)

|x|α+(γ)
.

In the first case, the solution u ∈ D1,2(Ω)loc,0 is a variational solution to (6.1).

It is worth noting that Pinchover [23] tackled similar issues. The proof of Theorem 6.1 will require
the following two lemmas. The first is a Harnack-type result.

Proposition 6.2. Let Ω be a smooth bounded domain of Rn, and let a ∈ L∞(Ω) be such that
‖a‖∞ ≤M for some M > 0. Assume U is an open subset of Rn and consider u ∈ C2(U ∩ Ω) to be
a solution of  −∆gu+ au = 0 in U ∩ Ω

u ≥ 0 in U ∩ Ω
u = 0 on U ∩ ∂Ω.

Here g is a smooth metric on U . If U ′ ⊂⊂ U is such that U ′ ∩ Ω is connected, then there exists
C > 0 depending only on Ω, U ′,M and g such that

(6.2)
u(x)

d(x, ∂Ω)
≤ C u(y)

d(y, ∂Ω)
for all x, y ∈ U ′ ∩ Ω.
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Proof of Proposition 6.2: We first prove a local result. The global result will be the consequence of
a covering of U ′. Fix x0 ∈ ∂Ω. For δ > 0 small enough, there exists a smooth open domain W such
that

(6.3) Bδ(x0) ∩ Ω ⊂W ⊂ B2δ(x0) ∩ Ω and Bδ(x0) ∩ ∂W = Bδ(x0) ∩ ∂Ω.

Let G be the Green’s function of −∆g + a with Dirichlet boundary condition on W , then its repre-
sentation formula reads as

(6.4) u(x) =

∫
∂W

u(σ) (−∂ν,σG(x, σ)) dσ =

∫
∂W\∂Ω

u(σ) (−∂ν,σG(x, σ)) dσ,

for all x ∈ W , where ∂ν,σG(x, σ) is the normal derivative of y 7→ G(x, y) at σ ∈ ∂W . Estimates of
the Green’s function (see Robert [25] and Ghoussoub-Robert [16]) yield the existence of C > 0 such
that for all x ∈W and σ ∈ ∂W ,

1

C

d(x, ∂W )

|x− σ|n
≤ −∂ν,σG(x, σ) ≤ C d(x, ∂W )

|x− σ|n
.

It follows from (6.3) that there exists C(δ) > 0 such that for all x ∈ Bδ/2(x0) ∩ Ω ⊂ W and
σ ∈ ∂W \ ∂Ω,

1

C(δ)
d(x, ∂W ) ≤ −∂ν,σG(x, σ) ≤ C(δ)d(x, ∂W )

Since u vanishes on ∂Ω, it then follows from (6.4) that for all x ∈ Bδ/2(x0) ∩ Ω,

1

C(δ)
d(x, ∂W )

∫
∂W

u(σ) dσ ≤ u(x) ≤ C(δ)d(x, ∂W )

∫
∂W

u(σ) dσ.

It is easy to check, that under the assumption (6.3), we have that d(x, ∂Ω) = d(x, ∂W ). Therefore,
we have for all x ∈ Bδ/2(x0) ∩ Ω,

1

C(δ)

∫
∂W

u(σ) dσ ≤ u(x)

d(x, ∂Ω)
≤ C(δ)

∫
∂W

u(σ) dσ.

These lower and upper bounds being independent of x, we get inequality (6.2) for any x, y ∈
Bδ/2(x0) ∩ Ω.

The general case is a consequence of a covering of U ′ ∩Ω by finitely many balls. Note that for balls
intersecting ∂Ω, we apply the preceding result, while for balls not intersecting ∂Ω, we apply the
classical Harnack inequality. This completes the proof of Proposition 6.2. �

Proof of Theorem 6.1: Let u be a solution of (6.1) as in the statement of Theorem 6.1. We claim
that

(6.5) u(x) = O(d(x, ∂Ω)|x|−α+(γ)) for x→ 0, x ∈ Ω.

Indeed, otherwise we can assume that

(6.6) lim sup
x→0

u(x)

d(x, ∂Ω)|x|−α+(γ)
= +∞.

In particular, there exists (xk)k ∈ Ω such that for all k ∈ N,

(6.7) lim
k→+∞

xk = 0 and
u(xk)

d(xk, ∂Ω)|xk|−α+(γ)
≥ k.

We claim that there exists C > 0 such that

(6.8) u(x)

d(x,∂Ω)|x|−α+(γ) ≥ Ck for all x ∈ Ω ∩ ∂Brk(0), with rk := |xk| → 0.
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We prove the claim by using the Harnack inequality (6.2): first take the chart ϕ at 0 as in (4.7),
and define

uk(x) := u ◦ ϕ(rkx) for x ∈ Rn+ ∩B3(0) \ {0}.
Equation (6.1) rewrites

(6.9) −∆gkuk + akuk = 0 in Rn+ ∩B3(0) \ {0},

with ak(x) := −r2
k
γ+O(rτk |x|

τ )
|ϕ(rkx)|2 . In particular, there exists M > 0 such that |ak(x)| ≤ M for all

x ∈ Rn+ ∩B3(0) \B1/3(0). Since uk ≥ 0, the Harnack inequality (6.2) yields the existence of C > 0
such that

(6.10)
uk(y)

y1
≥ Cuk(x)

x1
for all x, y ∈ Rn+ ∩B2(0) \B1/2(0).

Let x̃k ∈ Rn+ be such that xk = ϕ(rkx̃k). In particular, |x̃k| = 1 + o(1) as k → +∞. It then follows
from (6.7), (6.9) and (6.10) that

u ◦ ϕ(rky)

d(ϕ(rky), ∂Ω)
≥ C · k for all y ∈ Rn+ ∩B2(0) \B1/2(0).

In particular, (6.8) holds.

We let now W be a smooth domain such that (4.26) holds for r > 0 small enough. Take the

super-solution u
(d)
α+(γ),− defined in Proposition 4.5. We have that

u(x) ≥ C · k
2

u
(d)
α+(γ),−(x) for all x ∈W ∩ ∂Brk(0).

Since u
(d)
α+(γ),− vanishes on ∂W , we have u(x) ≥ C·k

2 u
(d)
α+(γ),−(x) for all x ∈ ∂(W ∩Brk(0)). Moreover,

we have that

−∆u
(d)
α+(γ),− −

γ+O(|x|τ )
|x|2 u

(d)
α+(γ),− < 0 = −∆u− γ+O(|x|τ )

|x|2 u on W .

Up to taking r even smaller, it follows from the coercivity of the operator and the maximum principle
that

(6.11) u(x) ≥ C · k
2

u
(d)
α+(γ),−(x) for all x ∈W ∩Brk(0).

For any x ∈ W , we let k0 ∈ N such that rk < |x| for all k ≥ k0. It then follows from (6.11) that

u(x) ≥ C·k
2 u

(d)
α+(γ),−(x) for all k ≥ k0. Letting k → +∞ yields that u

(d)
α+(γ),−(x) goes to zero for all

x ∈W . This is in contradiction with (4.29). Hence (6.6) does not hold, and therefore (6.5) holds.
A straightforward consequence of (6.5) and Lemma 5.2 is that there exists l ∈ R such that

(6.12) lim
x→0

u(x)

d(x, ∂Ω)|x|−α+(γ)
= l.

We now show the following lemma:

Lemma 6.3. If limx→0
u(x)

d(x,∂Ω)|x|−α+(γ) = 0, then u ∈ D1,2(Ω)loc,0 and there exists K > 0 such that

u(x) ∼x→0 K
d(x,∂Ω)

|x|α−(γ) .

Proof of Lemma 6.3: We shall use Theorem 4.1. Take W as in (4.26) and let η ∈ C∞(Rn) be such
that η(x) = 0 for x ∈ Bδ/4(0) and η(x) = 1 for x ∈ Rn \Bδ/3(0). Define

f(x) :=
(
−∆− γ+O(|x|τ )

|x|2

)
(ηu) for x ∈W .
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The function f ∈ C∞(W ) vanishes around 0. Let v ∈ D1,2(Ω) be such that{
−∆v − γ+O(|x|τ )

|x|2 v = f in W

v = 0 on ∂W.

Note again that for r > 0 small enough, −∆ − (γ + O(|x|τ ))|x|−2 is coercive on W , and therefore,
the existence of v is ensured for small r. Define

ũ := u− ηu+ v.

The properties of W and the definition of η and v yield{
−∆ũ− γ+O(|x|τ )

|x|2 ũ = 0 in W

ũ = 0 in ∂W \ {0}.

Moreover, since −∆v− (γ+O(|x|τ ))|x|−2v = 0 around 0 and v ∈ D1,2(W ), it follows from Theorem
4.1 that there exists C > 0 such that |v(x)| ≤ Cd(x,W )|x|−α−(γ) for all x ∈W . Therefore, we have
that

(6.13) lim
x→0

ũ(x)

d(x, ∂Ω)|x|−α+(γ)
= 0.

It then follows from Lemma 5.2 that

(6.14) lim
x→0
|x|α+(γ)|∇ũ(x)| = 0.

Let ψ ∈ C∞c (W ) and w ∈ D1,2(W ) be such that{
−∆w − γ+O(|x|τ )

|x|2 w = ψ in W

w = 0 on ∂W.

Since ψ vanishes around 0, it follows from Theorem 4.1 and Lemma 5.2 that

(6.15) w(x) = O(d(x, ∂W )|x|−α−(γ)) and |∇w(x)| = O(|x|−α−(γ)) as x→ 0.

Fix ε > 0 small and integrate by parts using that both ũ and w vanish on ∂W , to get

0 =

∫
W\Bε(0)

(
−∆ũ− γ +O(|x|τ )

|x|2
ũ

)
w dx

=

∫
W\Bε(0)

(
−∆w − γ +O(|x|τ )

|x|2
w

)
ũ dx+

∫
∂(W\Bε(0))

(−w∂ν ũ+ ũ∂νw) dσ

=

∫
W\Bε(0)

ψũ dx−
∫

Ω∩∂Bε(0)

(−w∂ν ũ+ ũ∂νw) dσ.

Using the limits and estimates (6.13), (6.14) and (6.15), and that ψ vanishes around 0, we get

0 =

∫
W\Bε(0)

ψũ dx+ o
(
εn−1(ε1−α−(γ)ε−α+(γ) + ε1−α+(γ)ε−α−(γ))

)
=

∫
W\Bε(0)

ψũ dx+ o(1), as ε→ 0.

Therefore, we have
∫
W
ψũ dx = 0 for all ψ ∈ C∞c (W ). Since ũ ∈ Lp is smooth outside 0, we then

get that ũ ≡ 0, and therefore u = ηu+ v. In particular, u ∈ D1,2(Ω)loc,0 is a distributional positive

solution to −∆u− γ+O(|x|τ )
|x|2 u = 0 on W . It then follows from Theorem 4.1 that there exists K > 0

such that u(x) ∼x→0 K
d(x,∂Ω)

|x|α−(γ) . This proves Lemma 6.3. �

Combining Lemma 6.3 with (6.12) completes the proof of Theorem 6.1. �

As a consequence of Theorem 6.1, we improve Lemma 4.2 as follows.
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Proposition 6.4. Let u ∈ C2(Rn+ \ {0}) be a nonnegative function such that

(6.16) −∆u− γ

|x|2
u = 0 in Rn+ ; u = 0 on ∂Rn+.

Then there exist λ−, λ+ ≥ 0 such that

u(x) = λ−x1|x|−α−(γ) + λ+x1|x|−α+(γ) for all x ∈ Rn+.

Proof of Proposition 6.4: Without loss of generality, we assume that u 6≡ 0, so that u > 0. We
consider the Kelvin transform of u defined by û(x) := |x|2−nu(x/|x|2) for all x ∈ Rn+. Both u and
û are then nonnegative solutions of (6.16). It follows from Theorem 6.1 that, after performing back
the Kelvin transform, there exist α1, α2 ∈ {α+(γ), α−(γ)} such that

lim
x→0

u(x)

x1|x|−α1
= l1 > 0 and lim

|x|→∞

u(x)

x1|x|−α2
= l2 > 0.

If α1 ≤ α2, then u(x) ≤ Cx1|x|−α1 for all x ∈ Rn+. The result then follows from Lemma 4.2. If
α1 > α2, then α1 = α+(γ) and α2 = α−(γ). We define

ũ(x) := u(x)− l1x1|x|−α+(γ) for all x ∈ Rn+.

to obtain that −∆ũ− γ
|x|2 ũ = 0 in Rn+, ũ = 0 on ∂Rn+, and ũ(x) = o(x1|x|−α+(γ)) as x→ 0. Arguing

as in the proof of Lemma 6.3, we get that ũ ∈ D1,2(Rn+)loc,0 and ũ(x) = O(x1|x|−α−(γ)) as x → 0.

Moreover, we have that ũ(x) = (l2 + o(1))x1|x|−α−(γ) as |x| → +∞, therefore ũ(x) > 0 for |x| >> 1.
Since ũ ∈ D1,2(Rn+)loc,0, the comparison principle then yields ũ > 0 everywhere. We also have that

ũ(x) ≤ Cx1|x|−α−(γ) for all x ∈ Rn+. It then follows from Lemma 4.2 that there exists λ− ≥ 0 such

that ũ(x) = λ−x1|x|−α−(γ) for all x ∈ Rn+, from which Proposition 6.4 follows. �

7. The Hardy singular boundary mass of a domain Ω when 0 ∈ ∂Ω

We shall proceed in the following theorem to define the mass of a smooth bounded domain Ω of Rn
such as 0 ∈ ∂Ω. It will involve the expansion of positive singular solutions of the Dirichlet boundary
problem Lγu = 0.

Theorem 7.1. Let Ω be a smooth bounded domain Ω of Rn such as 0 ∈ ∂Ω, and assume that
n2−1

4 < γ < γH(Ω). Then, up to multiplication by a positive constant, there exists a unique function

H ∈ C2(Ω \ {0}) such that

(7.1) −∆H − γ

|x|2
H = 0 in Ω , H > 0 in Ω , H = 0 on ∂Ω \ {0}.

Moreover, there exists c1 > 0 and c2 ∈ R such that

(7.2) H(x) = c1
d(x,∂Ω)

|x|α+(γ) + c2
d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.

The quantity mγ(Ω) := c2
c1
∈ R, which is independent of the choice of H satisfying (7.1), will be

called the Hardy b-mass of Ω associated to Lγ .

Proof of Theorem 7.1. First, we start by constructing a singular solution H0 for (7.1). For that,
consider uα+(γ) as in (4.14) and let η ∈ C∞c (Rn) be such that η(x) = 1 for x ∈ Bδ/2(0) and η(x) = 0
for x ∈ Rn \Bδ(0). Set

f := −∆(ηuα+(γ))−
γ

|x|2
(ηuα+(γ)) in Ω \ {0}.

It follows from (4.19) and (4.5) that f is smooth outside 0 and that

f(x) = O
(
d(x, ∂Ω)|x|−α+(γ)−1

)
= O

(
|x|−α+(γ)

)
in Ω ∩Bδ/2(0).
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Since γ > n2−1
4 , we have that α+(γ) < n+1

2 , and therefore f ∈ L
2n
n+2 (Ω) =

(
L2?(Ω)

)′ ⊂ (D1,2(Ω)
)′

.

It then follows from the coercivity assumption γ < γH(Ω) that there exists v ∈ D1,2(Ω) such that

−∆v − γ

|x|2
v = f in

(
D1,2(Ω)

)′
.

Let v1, v2 ∈ D1,2(Ω) be such that

(7.3) −∆v1 −
γ

|x|2
v1 = f+ and −∆v2 −

γ

|x|2
v2 = f− in

(
D1,2(Ω)

)′
.

In particular, v = v1 − v2 and v1, v2 ∈ C1(Ω \ {0}), and they vanish on ∂Ω \ {0}. Assume that

f+ 6≡ 0. Since f+ ≥ 0, the comparison principle yields v1 > 0 on Ω \ {0} and ∂νv1 < 0 on ∂Ω \ {0}.
Therefore, for any δ > 0 small enough, there exists C(δ) > 0 such that v1(x) ≥ C(δ)d(x, ∂Ω) for all
x ∈ ∂Bδ(0) ∩ Ω. Let uα−(γ),− be the sub-solution defined in (4.4). It follows from the asymptotic
(4.5) that there exists C ′(δ) > 0 such that v1 ≥ C ′(δ)uα−(γ),− in ∂Bδ(0) ∩ Ω. Since this inequality
also holds on ∂(Bδ(0) ∩ Ω) and that

(−∆− γ
|x|2 )(v1 − C ′(δ)uα−(γ),−) ≥ 0 in Bδ(0) ∩ Ω,

coercivity and the maximum principle yield v1 ≥ C ′(δ)uα−(γ),− in Bδ(0) ∩ Ω. It then follows from
(4.5) that there exists c > 0 such that

v1(x) ≥ c · d(x, ∂Ω)|x|−α−(γ) in Bδ(0) ∩ Ω.

Therefore, we have for x ∈ Bδ(0) ∩ Ω,

f+(x) ≤ Cd(x, ∂Ω)|x|−α+(γ)−1

≤ C

c
|x|α−(γ)−α+(γ)−1v1(x)

≤ C

c
|x|α−(γ)−α+(γ)+1 v1(x)

|x|2

Therefore, (7.3) yields

−∆v1 +
γ +O(|x|α−(γ)−α+(γ)+1)

|x|2
v1 = 0 in Bδ(0) ∩ Ω.

Since γ > n2−1
4 , we have that α−(γ) − α+(γ) + 1 > 0. Since v1 ∈ D1,2(Ω), v1 ≥ 0 and v1 6≡ 0, it

follows from Theorem 4.1 that there exists K1 > 0 such that

(7.4) v1(x) = K1
d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.

If f+ ≡ 0, then v1 ≡ 0 and (7.4) holds with K1 = 0. Arguing similarly for f−, and using that
v = v1 − v2, we then get that there exists K ∈ R such that

(7.5) v(x) = −K d(x,∂Ω)

|x|α−(γ) + o
(
d(x,∂Ω)

|x|α−(γ)

)
as x→ 0.

Set

(7.6) H0(x) := η(x)uα+(γ)(x)− v(x) for all x ∈ Ω \ {0}.

It follows from the definition of v and the regularity outside 0 that

−∆H0 −
γ

|x|2
H0 = 0 in Ω ; H0(x) = 0 in ∂Ω \ {0}.

Moreover, the asymptotics (4.5) and (7.5) yield H0(x) > 0 on Ω ∩ Bδ′(0) for some δ′ > 0 small
enough. It follows from the comparison principle that H0 > 0 in Ω.
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We now perform an expansion of H0. First note that from the definition (4.14) of uα+(γ), the
asymptotic (7.5) of v and the fact that α+(γ)− α−(γ) < 1, we have

H0(x) =
d(x, ∂Ω)

|x|α+(γ)
(1 +O(|x|)) +K

d(x, ∂Ω)

|x|α−(γ)
+ o

(
d(x, ∂Ω)

|x|α−(γ)

)
=

d(x, ∂Ω)

|x|α+(γ)
+K

d(x, ∂Ω)

|x|α−(γ)
+ o

(
d(x, ∂Ω)

|x|α−(γ)

)
as x→ 0. In particular, since in addition H0 > 0 in Ω, there exists c > 1 such that

(7.7) 1
c
d(x,∂Ω)

|x|α+(γ) ≤ H0(x) ≤ c d(x,∂Ω)

|x|α+(γ) for all x ∈ Ω.

Finally, we establish the uniqueness. For that, we let H ∈ C2(Ω \ {0}) be as in (7.1) and set

λ0 := max{λ ≥ 0/ H ≥ λH0}.

The number λ0 is clearly defined, and so we set H̃ := H − λ0H0 ≥ 0. Assume that H̃ 6≡ 0. Since
−∆H̃ − γ|x|−2H̃ = 0, it follows from Theorem 6.1 that there exists α ∈ {α+(γ), α−(γ)} and K > 0
such that

(7.8) H(x) ∼x→0 K
d(x, ∂Ω)

|x|α
.

If α = α−(γ), then H̃ ∈ D1,2(Ω) is a variational solution to −∆H̃ − γ
|x|2 H̃ = 0 in Ω. The coercivity

then yields that H̃ ≡ 0, contradicting the initial hypothesis.

Therefore α = α+(γ). Since H̃ > 0 vanishes on ∂Ω \ {0}, then for any δ > 0, there exists c(δ) > 0
such that

(7.9) H̃(x) ≥ c(δ)d(x, ∂Ω) for x ∈ Ω \Bδ(0).

Therefore, (7.8), (7.9) and (7.7) yield the existence of c > 0 such that H̃ ≥ cH0, and then H ≥
(λ0 + c)H0, contradicting the definition of λ0. It follows that H̃ ≡ 0, which means that H = λ0H0

for some λ0 > 0. This proves uniqueness and completes the proof of Theorem 7.1. �
Now we establish the monotonicity of the mass with respect to set inclusion.

Proposition 7.2. The mass mγ is a strictly increasing set-function in the following sense: Assume

Ω1,Ω2 are two smooth bounded domains such that 0 ∈ ∂Ω1∩∂Ω2, and n2−1
4 < γ < min{γH(Ω1), γH(Ω2)},

then

(7.10) Ω1 ( Ω2 ⇒ mγ(Ω1) < mγ(Ω2).

Moreover, if Ω ( Rn+ and n2−1
4 < γ < n2

4 , then mγ(Ω) < 0.

Proof of Proposition 7.2: It follows from the definition of the mass that for i = 1, 2, there exists
Hi ∈ C2(Ωi \ {0}) such that

(7.11) −∆Hi −
γ

|x|2
Hi = 0 in Ωi , Hi > 0 in Ωi , Hi = 0 on ∂Ωi,

with

(7.12) Hi(x) =
d(x, ∂Ωi)

|x|α+(γ)
+mγ(Ωi)

d(x, ∂Ωi)

|x|α−(γ)
+ o

(
d(x, ∂Ωi)

|x|α−(γ)

)
as x→ 0, x ∈ Ωi. Set h := H2 −H1 on Ω1. Since Ω1 ( Ω2, we have that

(7.13)

{
−∆h− γ

|x|2h = 0 in Ω1

h ≥ 0, h 6≡ 0 on ∂Ω1
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First, we claim that h ∈ H1,2(Ω1). Indeed, it follows from the construction of the singular function
(see (7.6)), that there exists w ∈ H1,2(Ω1) such that

(7.14) h(x) =
d(x, ∂Ω2)− d(x, ∂Ω1)

|x|α+(γ)
+ w(x) for all x ∈ Ω1.

Since Ω1 ⊂ Ω2 and 0 is on the boundary of both domains, then the tangent spaces at 0 of Ω1 and
Ω2 are equal, and one gets that d(x, ∂Ω1)−d(x, ∂Ω2) = O(|x|2) as x→ 0. Since α+(γ)−α−(γ) < 1,
we then get that

h̃(x) :=
d(x, ∂Ω2)− d(x, ∂Ω1)

|x|α+(γ)
= O(|x|1−α−(γ)) as x→ 0.

Similarly, |∇h̃(x)| = O(|x|−α−(γ)) as x → 0. Therefore, we deduce that h̃ ∈ H1,2(Ω1). It then
follows from (7.14) that h ∈ H1,2(Ω1).
To prove the monotonicity, note first that since γ < γH(Ω1) and h ∈ H1,2(Ω1), it follows from
(7.13) and the comparison principle that h ≥ 0 in Ω1 (indeed, this is obtained by multiplying
(7.13) by h− ∈ D2

1(Ω) and integrating: therefore, coercivity yields h− ≡ 0). Since h 6≡ 0, it
follows from Hopf’s maximum principle that for any δ > 0 small, there exists C(δ) > 0 such
that h(x) ≥ C(δ)d(x, ∂Ω1) for all x ∈ ∂Bδ(0) ∩ Ω1. We define the sub-solution uα−(γ),− as in
Proposition 4.3. It then follows from the inequality above and the asymptotics in (4.5) that there
exists ε0 > 0 such that h(x) ≥ 2ε0uα−(γ),−(x) for all x ∈ ∂Bδ(0) ∩ Ω1. This inequality also holds
on Bδ(0) ∩ ∂Ω1 since uα−(γ),− vanishes on ∂Ω1. It then follows from the maximum principle that
h(x) ≥ 2ε0uα−(γ),−(x) for all x ∈ Bδ(0)∩Ω1. With the definition of h and the asymptotic (4.5), we
then have that for δ′ > 0 small enough

(7.15) H2(x)−H1(x) ≥ ε0
d(x, ∂Ω1)

|x|α−(γ)
for all x ∈ Bδ′(0) ∩ Ω1.

We let ~ν be the inner unit normal vector of ∂Ω1 at 0. This is also the inner unit normal vector of
∂Ω2 at 0. Therefore, for any t > 0 small enough, we have that d(t~ν, ∂Ωi) = t for i = 1, 2. It then
follows from the expressions (7.12) and (7.15) that

(mγ(Ω2)−mγ(Ω1)) t

tα−(γ) + o
(

t

tα−(γ)

)
≥ ε0 t

tα−(γ) as t ↓ 0.

We then get that mγ(Ω2)−mγ(Ω1) ≥ ε0, and therefore mγ(Ω2) > mγ(Ω1). This proves (7.10) and
ends the first part of Proposition 7.2.

The proof of the second part is similar. Indeed, we take Ω2 := Rn+ and we define H2(x) := x1

|x|α+(γ) .

Arguing as above, we get that 0 > mγ(Ω), which completes the proof of Proposition 7.2. �

The proof of the second part is similar. Indeed, we take Ω2 := Rn+ and we define H2(x) := x1

|x|α+(γ) .

Arguing as above, we get that 0 > mγ(Ω), which completes the proof of Proposition 7.2. �

Note that we have used above that the mass mγ(Rn+) = 0 even though we had only defined the mass
for bounded sets. In the rest of the section, we shall extend the notion of mass to certain unbounded
sets that include Rn+. For that, we shall use the Kelvin transformation, defined as follows: For any
x0 ∈ Rn, let

(7.16) ix0
(x) := x0 + |x0|2

x− x0

|x− x0|2
for all x ∈ Rn \ {x0}.

The inversion ix0
is clearly the identity map on ∂B|x0|(x0) (the ball of center x0 and of radius |x0|),

and in particular ix0(0) = 0.
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Definition 7.3. We say that a domain Ω ⊂ Rn (0 ∈ ∂Ω) is conformally bounded if there exists
x0 6∈ Ω such that ix0

(Ω) is a smooth bounded domain of Rn having both 0 and x0 on its boundary
∂(ix0(Ω)).

One can easily check that Rn+ is a smooth domain at infinity (take x0 := (−1, 0, . . . , 0)). The following
proposition shows that the notion of mass extends to unbounded domains that are conformally
bounded.

Proposition 7.4. Let Ω be a conformally bounded domain in Rn such that 0 ∈ ∂Ω. Assume that

γH(Ω) > n2−1
4 and that γ ∈

(
n2−1

4 , γH(Ω)
)

. Then, up to a multiplicative constant, there exists a

unique function H ∈ C2(Ω \ {0}) such that

(7.17)


−∆H − γ

|x|2H = 0 in Ω

H > 0 in Ω
H = 0 on ∂Ω \ {0}

H(x) ≤ C|x|1−α+(γ) for x ∈ Ω.

Moreover, there exists c1 > 0 and c2 ∈ R such that

H(x) = c1
d(x, ∂Ω)

|x|α+(γ)
+ c2

d(x, ∂Ω)

|x|α−(γ)
+ o

(
d(x, ∂Ω)

|x|α−(γ)

)
as x→ 0.

We define the mass bγ(Ω) := c2
c1

, which is independent of the choice of H in (7.17).

Proof: For convenience, up to a rotation and a dilation, we can assume that x0 := (−1, 0, . . . , 0) ∈ Rn
so that the inversion becomes

i(x) := x0 +
x− x0

|x− x0|2
for all x ∈ Rn \ {x0}.

For any u ∈ C2(U), with U ⊂ Rn, we define its Kelvin transform û : Û → R by

û(x) := |x− x0|2−nu(i(x)) for all x ∈ Û := i−1(U \ {x0}).

This transform leaves the Laplacian invariant in the following sense:

(7.18) −∆û(x) = |x− x0|−(n+2)(−∆u)(i(x)) for all x ∈ Û .

Define Ω̃ := i(Ω) and suppose u ∈ C2(Ω \ {0}) is such that

−∆u− γ

|x|2
u = 0 in Ω , u > 0 in Ω , u = 0 on ∂Ω.

The Kelvin transform ũ of u then satisfies

−∆ũ− V ũ = 0 in Ω̃,

where

(7.19) V (x) :=
γ

|x|2|x− x0|2
for x ∈ Rn \ {0, x0}.

It is easy to check that

V (x) =
γ +O(|x|)
|x|2

as x→ 0 and V (x) =
γ +O(|x− x0|)
|x− x0|2

as x→ x0.

In other words, the Kelvin transform allows us to reduce the study of the Hardy-singular boundary
mass of a conformally bounded domain Ω into defining a notion of mass for the Schrödinger operator
−∆ + V on Ω̃.
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Note that the coercivity of −∆− γ|x|−2 on Ω (since γ < γH(Ω)) yields the coercivity of −∆− V on

Ω̃, that is there exists c0 > 0 such that∫
Ω̃

(
|∇u|2 − V (x)u2

)
dx ≥ c0

∫
Ω̃

|∇u|2 dx for all u ∈ D1,2(Ω̃).

Arguing as is Section 4, we get for δ > 0 small enough, a function uα+
(−∆− V )uα+ = O(d(x, ∂Ω̃)|x|−α+(γ)−1) in Ω̃ ∩ B̃δ

uα+
> 0 in Ω̃ ∩ B̃δ

uα+
= 0 on ∂Ω̃ \ {0},

and

uα+(x) =
d(x, ∂Ω̃)

|x|α+(γ)
(1 +O(|x|) as x→ 0.

The function f0 := −∆uα+ − V uα+ , then satisfies for all x ∈ Ω̃ ∩ B̃δ,

|f0(x)| ≤ Cd(x, ∂Ω̃)|x|−α+(γ)−1 ≤ C|x|−α+(γ)

where C is a positive constant. Since γ > n2−1
4 , it follows that f0 ∈ L

2n
n+2 (Ω̃). Let now v0 ∈ D1,2(Ω̃)

be such that

(7.20) −∆v0 − V v0 = f0 weakly in D1,2(Ω̃).

The existence follows from the coercivity of −∆ − V on Ω̃, and the proof of Theorem 7.1) yields
that around 0, |v0(x)| is bounded by |x|1−α−(γ). Note that around x0, we have −∆v0 − V v0 = 0
and the regularity Theorem 5.1 yields a control by |x − x0|1−α−(γ), which means that there exists
C > 0 such that

|v0(x)| ≤ Cd(x, ∂Ω̃)
(
|x|−α−(γ) + |x− x0|−α−(γ)

)
for all x ∈ Ω̃.

The construction of the mass (Theorem 7.1) and the regularity Theorem 5.1 then yield that there
exists K0 ∈ R such that

(7.21) v0(x) = K0
d(x, ∂Ω̃)

|x|α−(γ)
+ o

(
d(x, ∂Ω̃)

|x|α−(γ)

)
.

Define now H̃0(x) := uα+(γ)(x)− v0(x) for all x ∈ Ω̃ \ {0, x0}, and consider its Kelvin transform

(7.22) H0(x) := |x− x0|2−nH̃0(i(x)) = |x− x0|2−n
(
uα+(γ) − v0

)
(i(x)), x ∈ Ω.

It follows from (7.18), the definitions of uα+(γ) and v0 that H0 satisfies the following properties:

(7.23)


−∆H0 − γ

|x|2H0 = 0 in Ω

H0 > 0 in Ω
H0 = 0 in ∂Ω \ {0}.

Concerning the pointwise behavior, we have that

(7.24) H0(x) =
d(x, ∂Ω)

|x|α+
−K0

d(x, ∂Ω)

|x|α−
+ o

(
d(x, ∂Ω)

|x|α−

)
as x→ 0, x ∈ Ω,

and

(7.25) H0(x) ≤ C|x|1−α+ for all x ∈ Ω, |x| > 1.
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This proves the existence part in Proposition 7.4. In order to show uniqueness, we let H ∈ C2(Ω\{0})
be as in Proposition 7.4, and consider its Kelvin transform H̃(x) := |x − x0|2−nH(i(x)) for all

x ∈ Ω̃ \ {0, x0}. The transformation law (7.18) yields

(7.26)


−∆H̃ − V H̃ = 0 in Ω̃

H̃ > 0 in Ω̃

H̃ = 0 in ∂Ω̃ \ {0, x0}.

Moreover, we have that H̃(x) ≤ C|x|1−α+(γ) + C|x− x0|1−α−(γ) for all x ∈ Ω̃. It then follows from
Theorem 6.1 that there exist C1, C2 > 0 such that

(7.27) H̃(x) ∼x→0 C1
d(x, ∂Ω̃)

|x|α
and H̃(x) ∼x→x0 C2

d(x, ∂Ω̃)

|x− x0|α−(γ)
,

where α ∈ {α−(γ), α+(γ)}. We claim that α = α+(γ). Indeed, otherwise, we would have H̃ ∈
D1,2(Ω̃) (see Theorem 6.1) and then (7.26) and coercivity would yield H̃ ≡ 0, which is a contradic-

tion. Therefore α = α+(γ). By the same reasoning, the estimates (7.27) hold for H̃0 (with different
constants C1, C2). Arguing as in the proof of Theorem 7.1, we get that there exists λ > 0 such that

H̃ = λH̃0, and therefore H = λH0. This proves uniqueness and completes the proof of Proposition
7.4. Note that as a consequence of (7.24), the mass mγ(Ω) is well-defined and is equal to −K0.

8. Test functions and the existence of extremals

Let Ω be a domain of Rn such that 0 ∈ ∂Ω. For γ ∈ R and s ∈ [0, 2), recall that

(8.1) µγ,s(Ω) := inf
u∈D1,2(Ω)\{0}

JΩ
γ,s(u),

where

JΩ
γ,s(u) :=

∫
Ω

(
|∇u|2 − γ

|x|2u
2
)
dx(∫

Ω
|u|2?
|x|s dx

) 2
2?

.

Note that critical points u ∈ D1,2(Ω) of JΩ
γ,s are weak solutions to the pde

(8.2) −∆u− γ

|x|2
= λ
|u|2?−2u

|x|s
for some λ ∈ R,

which can be rescaled to be equal to 1 if λ > 0 and to be −1 if λ < 0. In this section, we investigate
the existence of minimizers for JΩ

γ,s. We start with the following easy case, where we do not have
extremals.

Proposition 8.1. Let Ω ⊂ Rn be a smooth domain such that 0 ∈ ∂Ω (no boundedness is assumed).
When s = 0 and γ ≤ 0, we have that µγ,0(Ω) = 1

K(n,2)2 (where K(n, 2)−2 = µ0,0(Rn) is the best

constant in the Sobolev inequality (1.19)) and there is no extremal.

Proof of Proposition 8.1: Note that 2?(s) = 2?(0) = 2?. Since γ ≤ 0, we have for any u ∈
C∞c (Ω) \ {0},

(8.3)

∫
Ω

(
|∇u|2 − γ u2

|x|2

)
dx(∫

Ω
|u|2? dx

) 2
2?

≥
∫

Ω
|∇u|2 dx(∫

Ω
|u|2? dx

) 2
2?
≥ 1

K(n, 2)2
,

and therefore µγ,0(Ω) ≥ 1
K(n,2)2 . Fix now x0 ∈ Ω and let η ∈ C∞c (Ω) be such that η(x) = 1 around

x0. Set uε(x) := η(x)
(

ε
ε2+|x−x0|2

)n−2
2

for all x ∈ Ω and ε > 0. Since x0 6= 0, it is classical (see



HARDY-SCHRÖDINGER BOUNDARY MASS 37

for example Aubin [2]) that limε→0 J
Ω
0,0(uε) = K(n, 2)−2. It follows that µγ,0(Ω) ≤ 1

K(n,2)2 . This

proves that µγ,0(Ω) = 1
K(n,2)2 .

Assume now that there exists an extremal u0 for µγ,0(Ω) in D1,2(Ω)\{0}. It then follows from (8.3)
that u0 ∈ D1,2(Ω) ⊂ D1,2(Rn) is an extremal for the classical Sobolev inequality on Rn. But these
extremals are known (see Aubin [2]) and their support is the whole of Rn, which is a contradiction
since u0 has bounded support in Ω. It follows that there is no extremal for µγ,0(Ω). �
The remainder of the section is devoted to the proof of the following.

Theorem 8.2. Let Ω be a smooth bounded domain in Rn (n ≥ 3) such that 0 ∈ ∂Ω and let 0 ≤ s < 2

and γ < n2

4 . Assume that either s > 0, or that {s = 0, n ≥ 4 and γ > 0}. There are then extremals
for µγ,s(Ω) under one of the following two conditions:

(1) γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative.

(2) γ > n2−1
4 and the mass mγ(Ω) of Ω is positive.

Moreover, if γ < γH(Ω) (resp., γ ≥ γH(Ω)), then such extremals are positive solutions for (8.2) with
λ > 0 (resp., λ ≤ 0).

The remaining case n = 3, s = 0 and γ > 0 will be dealt with in Section 11.

According to Theorem 3.6, in order to establish existence of extremals, it suffices to show that
µγ,s(Ω) < µγ,s(Rn+). The rest of the section consists in showing that the above mentioned geometric
conditions lead to such gap. The existence of extremals on Rn+ as described in Theorem 1.3 is
essential here.

In the sequel, hΩ(0) will denote the mean curvature of ∂Ω at 0. The orientation is chosen such that
the mean curvature of the canonical sphere (as the boundary of the ball) is positive. Since {s > 0},
or that {s = 0, n ≥ 4 and γ > 0}, it follows from Theorem 1.3 that there are extremals for µγ,s(Rn+).
The following proposition combined with Theorem 3.6 clearly yield the claims in Theorem 8.2.

Proposition 8.3. We fix γ < n2

4 . Assume that there are extremals for µγ,s(Rn+). There exist then

two families (u1
ε)ε>0 and (u2

ε)ε>0 in D1,2(Ω), and two positive constants c1γ,s and c2γ,s such that:

(1) For γ < n2−1
4 , we have that

(8.4) J(u1
ε) = µγ,s(Rn+)

(
1 + c1γ,s · hΩ(0) · ε+ o(ε)

)
when ε→ 0.

(2) For γ = n2−1
4 , we have that

(8.5) J(u1
ε) = µγ,s(Rn+)

(
1 + c1γ,s · hΩ(0) · ε ln

1

ε
+ o

(
ε ln

1

ε

))
when ε→ 0.

(3) For γ > n2−1
4 , we have as ε→ 0, that

(8.6) J(u2
ε) = µγ,s(Rn+)

(
1− c2γ,s ·mγ(Ω) · εα+(γ)−α−(γ) + o(εα+(γ)−α−(γ))

)
.

Remark: When γ < n2−1
4 , this result is due to Chern-Lin [6]. Actually, they stated the result

for γ < (n−2)2

4 , but their proof works for γ < n2−1
4 . However, when γ ≥ n2−1

4 , we need the exact
asymptotic profile of U that was described by Corollary 5.3.

Proof of Proposition 8.3: By assumption, there exists U ∈ D1,2(Rn+)\{0}, U ≥ 0, that is a minimizer
for µγ,s(Rn+). In other words,

J
Rn+
γ,s (U) =

∫
Rn+

(
|∇U |2 − γ

|x|2U
2
)
dx(∫

Rn+
|U |2?(s)
|x|s dx

) 2
2?(s)

= µγ,s(Rn+).
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Therefore, there exists λ > 0 such that

(8.7)


−∆U − γ

|x|2U = λU
2?(s)−1

|x|s in Rn+
U > 0 in Rn+
U = 0 in ∂Rn+


and there exist K1,K2 > 0 such that

(8.8) U(x) ∼x→0 K1
x1

|x|α−
and U(x) ∼|x|→+∞ K2

x1

|x|α+
,

where here and in the sequel, we write for convenience

α+ := α+(γ) and α− := α−(γ).

In particular, it follows from Lemma 5.2 (after reducing all limits to happen at 0 via the Kelvin
transform) that there exists C > 0 such that

(8.9) U(x) ≤ Cx1|x|−α+ and |∇U(x)| ≤ C|x|−α+ for all x ∈ Rn+.

We shall now construct a suitable test-function for each range of γ. First note that

γ <
n2 − 1

4
⇔ α+ − α− > 1

γ =
n2 − 1

4
⇔ α+ − α− = 1.

Concerning terminology, here and in the sequel, we define as in (4.6)

B̃r := (−r, r)×B(n−1)
r (0) ⊂ R× Rn−1,

for all r > 0 and

V+ := V ∩ Rn+
for all V ⊂ Rn. Since Ω is smooth, up to a rotation, there exists δ > 0 and ϕ0 : B

(n−1)
δ (0)→ R such

that ϕ0(0) = |∇ϕ0(0)| = 0 and

(8.10)

{
ϕ : B̃3δ → Rn

(x1, x
′) 7→ (x1 + ϕ0(x′), x′),

that realizes a diffeomorphism onto its image and such that

ϕ(B̃3δ ∩ Rn+) = ϕ(B̃3δ) ∩ Ω and ϕ(B̃3δ ∩ ∂Rn+) = ϕ(B̃3δ) ∩ ∂Ω.

Let η ∈ C∞c (Rn) be such that η(x) = 1 for all x ∈ B̃δ, η(x) = 0 for all x 6∈ B̃2δ.

Case 1: γ ≤ n2−1
4 . As in Chern-Lin [6], for any ε > 0, we define

uε(x) :=
(
ηε−

n−2
2 U(ε−1x)

)
◦ ϕ−1(x) for x ∈ ϕ(B̃2δ) ∩ Ω and 0 elsewhere.

This subsection is devoted to give a Taylor expansion of JΩ
γ,s(uε) as ε→ 0. In the sequel, we adopt

the following notation: given (aε)ε>0 ∈ R, Θγ(aε) denotes a quantity such that, as ε→ 0.

Θγ(aε) :=

{
o(aε) if γ < n2−1

4

O(aε) if γ = n2−1
4 .

A. Estimate of
∫

Ω
|∇uε|2 dx

It follows from (8.9) that

(8.11) |∇uε(x)| ≤ Cεα+−n2 |x|−α+ for all x ∈ Ω and ε > 0.
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Therefore,
∫
ϕ((B̃3δ\B̃δ)∩Rn+)

|∇uε|2 dx = Θγ(ε) as ε→ 0. It follows that∫
Ω

|∇uε|2 dx =

∫
B̃δ,+

|∇(uε ◦ ϕ)|2
ϕ?Eucl|Jac(ϕ)| dx+ Θγ(ε) as ε→ 0,

where B̃δ,+ := B̃δ ∩ Rn+. The definition (8.10) of ϕ yields Jac(ϕ) = 1. Moreover, for any θ ∈ (0, 1),
we have as x→ 0,

ϕ?Eucl :=

(
1 ∂jϕ0

∂iϕ0 δij + ∂iϕ0∂jϕ0

)
= Id+H +O(|x|1+θ)

where

H :=

(
0 ∂jϕ0

∂iϕ0 0

)
.

It follows that∫
Ω

|∇uε|2 dx =

∫
B̃δ,+

|∇(uε ◦ ϕ)|2Eucl dx−
∫
B̃δ,+

Hij∂i(uε ◦ ϕ)∂j(uε ◦ ϕ) dx

+O

(∫
B̃δ,+

|x|1+θ|∇(uε ◦ ϕ)|2 dx

)
+ Θγ(ε) as ε→ 0.(8.12)

We have that ∫
B̃δ,+

Hij∂i(uε ◦ ϕ)∂j(uε ◦ ϕ) dx

= 2
∑
i≥2

∫
B̃δ,+

H1i∂1(uε ◦ ϕ)∂i(uε ◦ ϕ) dx

= 2
∑
i≥2

∫
B̃δ,+

∂iϕ0(x′)∂1(uε ◦ ϕ)∂i(uε ◦ ϕ) dx

= 2
∑
i,j≥2

∫
B̃δ,+

∂ijϕ0(0)(x′)j∂1(uε ◦ ϕ)∂i(uε ◦ ϕ) dx

+O

(∫
B̃δ,+

|x|2|∇(uε ◦ ϕ)|2 dx

)
as ε→ 0.(8.13)

We let II be the second fundamental form at 0 of the oriented boundary ∂Ω. By definition, for any
X,Y ∈ T0∂Ω, we have that

II(X,Y ) := (d~ν0(X), Y )Eucl
where ~ν : ∂Ω → Rn is the outer unit normal vector of ∂Ω. In particular, we have that ~ν(0) =
(−1, 0, ·, 0). For any i, j ≥ 2, we have that

IIij := II(∂iϕ(0), ∂jϕ(0)) = (∂i(~ν ◦ ϕ)(0), ∂jϕ(0)) = −(~ν(0), ∂ijϕ(0)) = ∂ijϕ0(0).

Plugging (8.13) in (8.12), and using a change of variables, we get that∫
Ω

|∇uε|2 dx =

∫
B̃ε−1δ,+

|∇U |2 dx− 2IIij
∑
i,j≥2

∫
B̃ε−1δ,+

(x′)j∂1U∂iU dx

+O

(∫
B̃δ,+

|x|1+θ|∇(uε ◦ ϕ)|2 dx

)
+ Θγ(ε) as ε→ 0.(8.14)

We now choose θ in the following way:

(i) If γ < n2−1
4 , then take θ in (0, α+ − α− − 1),
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(ii) If γ = n2−1
4 , take θ ∈ (0, 1).

In both cases, we get by using (8.11), that

(8.15)

∫
B̃δ,+

|x|1+θ|∇(uε ◦ ϕ)|2 dx = Θγ(ε) as ε→ 0.

Moreover, using (8.9), we have that

(8.16)
∫
B̃ε−1δ,+

|∇U |2 dx =
∫
Rn+
|∇U |2 dx+ Θγ(ε) as ε→ 0.

Plugging together (8.14), (8.15), (8.16) yields∫
Ω

|∇uε|2 dx =

∫
Rn+
|∇U |2 dx

−2IIij
∑
i,j≥2

∫
B̃ε−1δ,+

(x′)j∂1U∂iU dx+ Θγ(ε).(8.17)

B. Estimate of
∫

Ω
|uε|2

?(s)

|x|s dx

Fix σ ∈ [0, 2]. We will apply the estimates below to σ = s ∈ [0, 2) or to σ := 2. The first estimate
in (8.9) yields

(8.18) |uε(x)| ≤ Cεα+−n2 d(x, ∂Ω)|x|−α+ ≤ Cεα+−n2 |x|1−α+

for all ε > 0 and all x ∈ Ω. Since Jac ϕ = 1, this estimate then yields∫
Ω

|uε|2
?(σ)

|x|σ
dx =

∫
ϕ(B̃δ,+)

|uε|2
?(σ)

|x|σ
dx+ Θγ(ε)

=
∫
B̃δ,+

|uε◦ϕ|2
?(σ)

|ϕ(x)|σ dx+ Θγ(ε) as ε→ 0.(8.19)

If γ < n2−1
4 or if γ = n2−1

4 and σ < 2, we choose θ ∈ (0, (α+ − α−) 2?(σ)
2 − 1) ∩ (0, 1). If γ = n2−1

4
and σ = 2, we choose any θ ∈ (0, 1). Using the expression of ϕ(x1, x

′), a Taylor expansion yields

(8.20) |ϕ(x)|−σ = |x|−σ
1− σ

2

x1

|x|2
∑
i,j≥2

∂ijϕ0(0)(x′)i(x′)j +O(|x|1+θ)

 as ε→ 0.

The choice of θ yields

(8.21)
∫
B̃δ,+

|uε◦ϕ|2
?(σ)

|ϕ(x)|σ |x|
1+θ dx = Θγ(ε) as ε→ 0.

Plugging together (8.19), (8.20), (8.21), using a change of variable and (8.9), we get as ε→ 0 that∫
Ω

|uε|2
?(σ)

|x|σ
dx =

∫
Rn+

|U |2?(σ)

|x|σ
dx

−σ
2

∑
i,j≥2

εIIij

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
(x′)i(x′)j dx+ Θγ(ε).(8.22)

We now compute the terms in U by using its symmetry property established in Chern-Lin [6]. Indeed,

there exists Ũ : (0,+∞) × R such that U(x1, x
′) = Ũ(x1, |x′|) for all (x1, x

′) ∈ Rn+. Therefore, for
any i, j ≥ 2, we get that∫

B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
(x′)i(x′)j dx =

δij
n− 1

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
|x′|2 dx
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and that ∫
B̃ε−1δ,+

(x′)j∂1U∂iU dx =
δij
n− 1

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx

where x = (x1, x
′) ∈ Rn+. Therefore, the identities (8.17) and (8.22) rewrite as

∫
Ω

|∇uε|2 dx =

∫
Rn+
|∇U |2 dx− 2hΩ(0)

n− 1
ε

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx+ Θγ(ε)(8.23)

and

∫
Ω

|uε|2
?(σ)

|x|σ
dx =

∫
Rn+

|U |2?(σ)

|x|σ
dx(8.24)

− σhΩ(0)

2(n− 1)
ε

∫
B̃ε−1δ,+

|U |2?(σ)

|x|σ
x1

|x|2
|x′|2 dx+ Θγ(ε)

as ε→ 0, where hΩ(0) =
∑
i IIii is the mean curvature at 0.

C. An intermediate identity. We now claim that as ε→ 0,

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx =

∫
B̃ε−1δ,+

|x′|2x1

2|x|2

(
λ

s

2?(s)

U2?(s)

|x|s
+ γ

U2

|x|2

)
dx

−
∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

4
dx+ Θγ(1)(8.25)

where λ > 0 is as in (8.7). This was shown by Chern-Lin [6], and we include it for the sake of
completeness. Here and in the sequel, νi denotes the ith coordinate of the direct outward normal
vector on the boundary of the relevant domain (for instance, on ∂Rn+, we have that νi = −δ1i). We
write ∫

B̃ε−1δ,+

∂1U(x′,∇U) dx =
∑
j≥2

∫
B̃ε−1δ,+

∂1U(x′)j∂jU dx

=
∑
j≥2

∫
B̃ε−1δ,+

∂1U∂j

(
|x′|2

2

)
∂jU dx

=
∑
j≥2

∫
∂(B̃ε−1δ,+)

∂1U
|x′|2

2
∂jUνj dσ −

∑
j≥2

∫
B̃ε−1δ,+

|x′|2

2
∂j (∂1U∂jU) dx

=
∑
j≥2

∫
∂Rn+∩B̃ε−1δ

∂1U
|x′|2

2
∂jUνj dσ +O

(∫
Rn+∩∂B̃ε−1δ

|x′|2|∇U |2(x) dσ

)

−
∑
j≥2

∫
B̃ε−1δ,+

|x′|2

2
(∂1jU∂jU + ∂1U∂jjU) dx.(8.26)
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Since U(0, x′) = 0 for all x′ ∈ Rn−1, using the upper-bound (8.9) and writing ∇′ = (∂2, . . . , ∂n), we
get that

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx = −
∑
j≥2

∫
B̃ε−1δ,+

|x′|2

2
(∂1jU∂jU + ∂1U∂jjU) dx+ Θγ(1)

= −
∫
B̃ε−1δ,+

|x′|2

4
∂1

(
|∇′U |2

)
dx

+

∫
B̃ε−1δ,+

|x′|2

2
∂1U (−∆U + ∂11U) dx+ Θγ(1)

= −
∫
∂(B̃ε−1δ,+)

|x′|2|∇′U |2

4
ν1 dx+

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx

+

∫
B̃ε−1δ,+

∂1

(
|x′|2(∂1U)2

4

)
dx+ Θγ(1).(8.27)

Using again that U vanishes on ∂Rn+ and the bound (8.9), we get as ε→ 0,

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx =

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx

+

∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

4
ν1 dx

+O

(∫
∂(B̃ε−1δ)∩Rn+

|x′|2|∇U |2 dx

)
+ Θγ(1)

=

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx

−
∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

4
dx+ Θγ(1).(8.28)

Now use equation (8.7) to get that

(8.29)

∫
B̃ε−1δ,+

|x′|2

2
∂1U(−∆U) dx =

∫
B̃ε−1δ,+

|x′|2

2
∂1U

(
λ
U2?(s)−1

|x|s
+ γ

U

|x|2

)
dx.
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Integrating by parts, using that U vanishes on ∂Rn+ and the upper-bound (8.9), for σ ∈ [0, 2], we
get that∫

B̃ε−1δ,+

|x′|2∂1U
U2?(σ)−1

|x|σ
dx =

∫
B̃ε−1δ,+

|x′|2|x|−σ∂1

(
U2?(σ)

2?(σ)

)
dx

=

∫
∂(B̃ε−1δ,+)

|x′|2|x|−σU
2?(σ)

2?(σ)
ν1 dx

−
∫
B̃ε−1δ,+

∂1(|x′|2|x|−σ)

(
U2?(σ)

2?(σ)

)
dx

= O

(∫
Rn+∩∂B̃ε−1δ,+

|x|2−σU2?(σ) dσ

)

+
σ

2?(s)

∫
B̃ε−1δ,+

|x′|2x1

|x|σ+2
U2?(σ) dx

=
σ

2?(s)

∫
B̃ε−1δ,+

|x′|2x1

|x|σ+2
U2?(σ) dx+ Θγ(1) as ε→ 0.(8.30)

Putting together (8.28) to (8.30) yields (8.25).

D. Estimate for JΩ
γ,s(uε)

Since U ∈ D1,2(Rn), it follows from (8.7) that

(8.31)

∫
Rn+

(
|∇U |2 − γ

|x|2
U2

)
dx = λ

∫
Rn+

U2?(s)

|x|s
dx.

This equality, combined with (8.23) and (8.24) gives

JΩ
γ,s(uε) =

∫
Ω

(
|∇uε|2 − γ

|x|2u
2
ε

)
dx(∫

Ω
|uε|2?(s)
|x|s dx

) 2
2?(s)

=

∫
Rn+

(
|∇U |2 − γ

|x|2U
2
)
dx(∫

Rn+
|U |2?(s)
|x|s dx

) 2
2?(s)

1 + ε
hΩ(0)

(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

Cε + Θγ(ε)

(8.32)

where for all ε > 0,

Cε := −2

∫
B̃ε−1δ,+

∂1U(x′,∇U) dx+ γ

∫
B̃ε−1δ,+

|x′|2x1

|x|2
U2

|x|2
dx

+λ
s

2?(s)

∫
B̃ε−1δ,+

|x′|2x1

|x|2
U2?(s)

|x|s
dx.

The identity (8.25) then yields as ε→ 0,

Cε =

∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2

2
dx+ Θγ(1)

Therefore, (8.32) yields that as ε→ 0,

JΩ
γ,s(uε) = µγ,s(Rn+)

1 + ε
hΩ(0)

∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2 dx′

2(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

+ Θγ(ε)

 .(8.33)
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We now distinguish two cases:

Case i) γ < n2−1
4 : The bound (8.9) then yields x′ 7→ |x′|2|∂1U(x′)|2 is in L1(∂Rn+) and so we get

from (8.33) that

JΩ
γ,s(uε) = µγ,s(Rn+) (1 + C0 · hΩ(0) · ε+ o(ε)) as ε→ 0,(8.34)

with

C0 :=

∫
∂Rn+
|x′|2(∂1U)2 dx′

2(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

> 0.

Case ii) γ = n2−1
4 : From (8.8), Lemma 5.2 and the Kelvin transform, we have that lim|x′|→+∞ |x′|α+ |∂1U(0, x′)| =

K2 > 0. Since 2α+ − 2 = n− 1, we get that∫
∂Rn+∩B̃ε−1δ

|x′|2(∂1U)2 dx′ = ωn−1K
2
2 ln

1

ε
+ o

(
ln

1

ε

)
as ε→ 0. Therefore, (8.33) yields

JΩ
γ,s(uε) = µγ,s(Rn+)

(
1 + C ′0hΩ(0)ε ln 1

ε + o
(
ln 1

ε

))
as ε→ 0,(8.35)

where

C ′0 :=
ωn−1K

2
2

2(n− 1)λ
∫
Rn+
|U |2?(s)
|x|s dx

> 0.

Cases i) and ii) prove Proposition 8.3 when γ ≤ n2−1
4 .

Case 2: γ > n2−1
4 . In this case, the construction of test-functions is more subtle. First, use

Theorem 7.1 to obtain H ∈ C2(Ω \ {0}) such that (7.1) holds and

(8.36) H(x) = d(x,∂Ω)
|x|α+ +mγ(Ω)d(x,∂Ω)

|x|α− + o
(
d(x,∂Ω)
|x|α−

)
when x→ 0.

As above, we fix η ∈ C∞c (Rn) such that η(x) = 1 for all x ∈ B̃δ, η(x) = 0 for all x 6∈ B̃2δ. We then
define β such that

H(x) =

(
η
x1

|x|α+

)
◦ ϕ−1(x) + β(x) for all x ∈ Ω.

Here ϕ is as in (4.7) to (4.12). Note that β ∈ D1,2(Ω) and

(8.37) β(x) = mγ(Ω)d(x,∂Ω)
|x|α− + o

(
d(x,∂Ω)
|x|α−

)
as x→ 0.

Indeed, since α+ − α− < 1, an essential point underlying all this subsection is that

|x| = o (|x|α+−α−) as x→ 0.

We choose U as in (8.7). By multiplying by a constant if necessary, we assume that K2 = 1, that is

(8.38) U(x) ∼x→0 K1
x1

|x|α−
and U(x) ∼|x|→+∞

x1

|x|α+
.

Now define

(8.39) uε(x) :=
(
ηε−

n−2
2 U(ε−1·)

)
◦ ϕ−1(x) + ε

α+−α−
2 β(x) for x ∈ Ω and ε > 0.

We start by showing that for any k ≥ 0

(8.40) lim
ε→0

uε

ε
α+−α−

2

= H in Ckloc(Ω \ {0}).
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Indeed, the convergence in C0
loc(Ω\{0}) is a consequence of the definition of uε, the choice K2 = 1 and

the asymptotic behavior (8.38). For convergence in Ck, we need in addition that ∇i(U−x1|x|−α+) =
o
(
|x|1−α+−i

)
as x→ +∞ for all i ≥ 0. This estimate follows from (8.38) and Lemma 5.2.

In the sequel, we adopt the following notation: θεc will denote any quantity such that there exists
θ : R→ R such that limc→0 limε→0 θ

ε
c = 0. We first claim that for any c > 0, we have that∫

Ω\ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx

= εα+−α−
(

(α+ − 1)cn−2α+
ωn−1

2n
+mγ(Ω)

(n− 2)ωn−1

2n

)
+ θεcε

α+−α− .(8.41)

Indeed, it follows from (8.40) that

(8.42) lim
ε→0

∫
Ω\ϕ(Bc(0)+)

(
|∇uε|2 − γ

|x|2u
2
ε

)
dx

εα+−α−
=

∫
Ω\ϕ(Bc(0)+)

(
|∇H|2 − γ

|x|2
H2

)
dx.

Since H vanishes on ∂Ω \ {0} and satisfies −∆H − γ
|x|2H = 0, integrating by parts yields∫

Ω\ϕ(Bc(0)+)

(
|∇H|2 − γ

|x|2
H2

)
dx = −

∫
ϕ(Rn+∩∂Bc(0))

H∂νH dσ

= −
∫
Rn+∩∂Bc(0)

H ◦ ϕ∂ϕ?ν(H ◦ ϕ) d(ϕ?σ),(8.43)

where in the two last equalities, ν(x) is the outer normal vector of Bc(0) at x ∈ ∂Bc(0).

We now estimate H ◦ϕ∂ϕ?νH ◦ϕ. Since ϕ?ν(x) = x
|x| +O(|x|) as x→ 0, it follows from from (8.36)

that

−H ◦ ϕ∂ϕ?ν(H ◦ ϕ) =
(α+−1)x2

1

|x|2α++1 + (n− 2)mγ(Ω)
x2
1

|x|n+1 + o
(
|x|1−n

)
as x→ 0.

Integrating this expression on Bc(0)+ = Rn+ ∩ ∂Bc(0) and plugging into (8.43) yields∫
Ω\ϕ(Bc(0)+)

(
|∇H|2 − γ

|x|2
H2

)
dx =

(α+ − 1)cn−2α+ωn−1

2n

+(n− 2)mγ(Ω)
ωn−1

2n
+ θc,

where limc→0 θc = 0. Here, we have used that∫
Sn−1
+

x2
1 dσ =

1

2

∫
Sn−1

x2
1 dσ =

1

2n

∫
Sn−1

|x|2 dσ =
ωn−1

2n
, ωn−1 :=

∫
Sn−1

dσ.

This equality and (8.42) prove (8.41).

We now claim that∫
Ω

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx = λ

∫
Rn+

U2?(s)

|x|s
dx

+mγ(Ω) (n−2)ωn−1

2n εα+−α− + o (εα+−α−) as ε→ 0.(8.44)

Indeed, define Uε(x) := ε−
n−2
2 U(ε−1x) for all x ∈ Rn+. The definition (8.39) of uε rewrites as:

uε ◦ ϕ(x) = Uε(x) + ε
α+−α−

2 β ◦ ϕ(x) for all x ∈ Rn+ ∩ B̃δ.
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Fix c ∈ (0, δ) that we will eventually let go to 0. Since dϕ0 is an isometry, we get that

∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx(8.45)

=

∫
Bc(0)+

(
|∇(uε ◦ ϕ)|2

ϕ?Eucl −
γ

|ϕ(x)|2
(uε ◦ ϕ)2

)
|Jac(ϕ)| dx

=

∫
Bc(0)+

(
|∇Uε|2ϕ?Eucl −

γ

|ϕ(x)|2
U2
ε

)
|Jac(ϕ)| dx

+2ε
α+−α−

2

∫
Bc(0)+

(
(∇Uε,∇(β ◦ ϕ))

ϕ?Eucl −
γ

|ϕ(x)|2
Uε(uε ◦ ϕ)

)
|Jac(ϕ)| dx

+εα+−α−
∫
Bc(0)+

(
|∇(β ◦ ϕ)|2

ϕ?Eucl −
γ

|ϕ(x)|2
(β ◦ ϕ)2

)
|Jac(ϕ)| dx

Since ϕ?Eucl = Eucl +O(|x|), |ϕ(x)| = |x|+O(|x|2) and β ∈ D1,2(Ω), we get that

∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx =

∫
Bc(0)+

(
|∇Uε|2Eucl −

γ

|x|2
U2
ε

)
| dx(8.46)

+O

(∫
Bc(0)+

|x|
(
|∇Uε|2Eucl +

U2
ε

|x|2

)
| dx

)

+2ε
α+−α−

2

∫
Bc(0)+

(
(∇Uε,∇(β ◦ ϕ))Eucl −

γ

|x|2
Uε(β ◦ ϕ)

)
dx

+O

(
ε
α+−α−

2

∫
Bc(0)+

|x|
(
|∇Uε| · |∇(β ◦ ϕ)|+ Uε|β ◦ ϕ|

|x|2

)
dx

)
+ εα+−α−θεc

as ε→ 0. The pointwise estimates (8.38) yield

∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx =

∫
Bc(0)+

(
|∇Uε|2Eucl −

γ

|x|2
U2
ε

)
dx

+2ε
α+−α−

2

∫
Bc(0)+

(
(∇Uε,∇(β ◦ ϕ))Eucl −

γ

|x|2
Uε(β ◦ ϕ)

)
dx

+εα+−α−θεc

as ε→ 0. Integrating by parts yields

∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx

=

∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
Uε dx+

∫
∂(Bc(0)+)

Uε∂νUε dσ

+2ε
α+−α−

2

(∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
β ◦ ϕdx+

∫
∂(Bc(0)+)

β ◦ ϕ∂νUε dσ

)
+εα+−α−θεc
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as ε→ 0. Since both U and β ◦ ϕ vanish on ∂Rn+ \ {0}, we get that∫
ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx(8.47)

=

∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
Uε dx+

∫
Rn+∩∂Bc(0)

Uε∂νUε dσ

+2ε
α+−α−

2

(∫
Bc(0)+

(
−∆Uε −

γ

|x|2
Uε

)
β ◦ ϕdx+

∫
Rn+∩∂Bc(0)

β ◦ ϕ∂νUε dσ

)
+εα+−α−θεc ,

as ε→ 0. The asymptotic estimate (8.38) of U and Lemma 5.2 yield (after a Kelvin transform)

∂νUε = −(α+ − 1)ε
α+−α−

2 x1|x|−α+−1 + o
(
ε
α+−α−

2 |x|−α+

)
as ε→ 0 uniformly on compact subsets of Rn+ \ {0}. We then get that

β ◦ ϕ∂νUε = ε
α+−α−

2

(
−mγ(Ω)(α+ − 1)x2

1|x|−n−1 + o
(
|x|1−n

))
and

Uε∂νUε = εα+−α−
(
−(α+ − 1)x2

1|x|−2α+−1 + o
(
|x|1−2α+

))
as ε → 0 uniformly on compact subsets of Rn+ \ {0}. Plugging these identities in (8.47) and using
equation (8.7) yield, as ε→ 0,∫

ϕ(Bc(0)+)

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx =

∫
Bc(0)+

λ
U

2?(s)
ε

|x|s
dx− (α+ − 1)

ωn−1

2n
cn−2α+εα+−α−

+2ε
α+−α−

2

∫
Bc(0)+

λ
U

2?(s)−1
ε

|x|s
β ◦ ϕdx

−(α+ − 1)
ωn−1

n
mγ(Ω)εα+−α− + εα+−α−θεc .(8.48)

As ε→ 0, we have that∫
Bc(0)+

λ
U

2?(s)
ε

|x|s
dx =

∫
Rn+
λ
U

2?(s)
ε

|x|s
dx+ o

(
εα+−α−

)
.(8.49)

The expansion (8.37) and the change of variable x := εy yield as ε→ 0,

(8.50)

∫
Bc(0)+

λ
U

2?(s)−1
ε

|x|s
β ◦ ϕdx = λmγ(Ω)ε

α+−α−
2

∫
Rn+

U2?(s)−1

|y|s
y1

|y|α−
dy + ε

α+−α−
2 θcε

Integrating by parts, and using the asymptotics (8.38) for U yield

λ

∫
Rn+

U2?(s)−1

|y|s
y1

|y|α−
dy = lim

R→+∞

∫
BR(0)+

λ
U2?(s)−1

|y|s
y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

(
−∆U − γ

|y|2
U

)
y1

|y|α−
dy

= lim
R→+∞

∫
BR(0)+

U

(
−∆− γ

|y|2

)(
y1

|y|α−

)
dy

−
∫
∂BR(0)+

∂νU
y1

|y|α−
dσ = (α+ − 1)

ωn−1

2n
.(8.51)
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Putting together (8.49), (8.50) and (8.51) yield∫
Ω

(
|∇uε|2 −

γ

|x|2
u2
ε

)
dx = λ

∫
Rn+

U2?(s)

|x|s
dx

+mγ(Ω)
(n− 2)ωn−1

2n
εα+−α− + o

(
εα+−α−

)
as ε→ 0. This finally yields (8.44).

We finally claim that∫
Ω

u
2?(s)
ε

|x|s
dx =

∫
Rn+

U2?(s)

|x|s
dx+

2?(s)

λ
mγ(Ω)

(α+ − 1)ωn−1

2n
εα+−α−

+o
(
εα+−α−

)
as ε→ 0.(8.52)

Indeed, fix c > 0. Due to estimates (8.37) and (8.38), we have that∫
Ω

u
2?(s)
ε

|x|s
dx =

∫
ϕ(Bc(0)+)

u
2?(s)
ε

|x|s
dx+ o

(
εα+−α−

)
=

∫
Bc(0)+

|Uε + ε
α+−α−

2 β ◦ ϕ|2?(s)

|ϕ(x)|s
|Jac(ϕ)| dx+ o

(
εα+−α−

)
=

∫
Bc(0)+

|Uε + ε
α+−α−

2 β ◦ ϕ|2?(s)

|x|s
|(1 +O(|x|)) dx+ o

(
εα+−α−

)
as ε→ 0. As one checks, there exists C > 0 such that for all X,Y ∈ R,

(8.53) ||X + Y |2
?(s) − |X|2

?(s) − 2?(s)|X|2
?(s)−2XY | ≤ C

(
|X|2

?(s)−2|Y |2 + |Y |2
?(s)
)

Therefore, using the asymptotics (8.37) and (8.38) of U and β, we get that∫
Ω

u
2?(s)
ε

|x|s
dx =

∫
Bc(0)+

U
2?(s)
ε

|x|s
|(1 +O(|x|)) dx

+2?(s)ε
α+−α−

2

∫
Bc(0)+

U
2?(s)−1
ε

|x|s
β ◦ ϕ(1 +O(|x|)) dx

+ε
α+−α−

2 θcε

=

∫
Bc(0)+

U
2?(s)
ε

|x|s
dx+ 2?(s)ε

α+−α−
2

∫
Bc(0)+

U
2?(s)−1
ε

|x|s
β ◦ ϕdx

+ε
α+−α−

2 θcε as ε→ 0.

Then (8.52) follows from this latest identity, combined with (8.49), (8.50), and (8.51).

We finally use (8.31), (8.44) and (8.52) to get

JΩ
γ,s(uε) = J

Rn+
γ,s (U)

1−
(
α+ − n

2

)
ωn−1

nλ
∫
Rn+

U2?(s)

|x|s dx
mγ(Ω)εα+−α− + o

(
εα+−α−

) as ε→ 0,

which proves (8.6). This completes Proposition 8.3 and therefore Theorem 8.2.
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9. Domains with positive mass and an arbitrary geometry at 0

In this section, we construct smooth bounded domains in Rn with positive or negative mass, regard-
less of the local geometry of ∂Ω at 0. This is illustrated by the following result.

Theorem 9.1. Let ω be a smooth open set of Rn. Then, there exist r0 > 0 and two smooth bounded
domains Ω+,Ω− of Rn such that

(9.1) Ω+ ∩Br0(0) = Ω− ∩Br0(0) = ω ∩Br0(0),

(9.2) min{γH(Ω+), γH(Ω−)} > n2 − 1

4
,

and

(9.3) mγ(Ω+) > 0 > mγ(Ω−),

whenever n2−1
4 < γ < min{γH(Ω+), γH(Ω−)}.

We shall need the following stability result for the mass under continuous deformations and trunca-
tions.

Proposition 9.2. Let Ω ⊂ Rn be a conformally bounded domain such that 0 ∈ ∂Ω. Assume that

γH(Ω) > n2−1
4 and fix γ ∈

(
n2−1

4 , γH(Ω)
)

. For any R > 0, let DR be a smooth domain of Rn such

that

• BR(x0) ⊂ DR ⊂ B2R(x0),
• Ω ∩DR is a smooth domain of Rn.

Let Φ ∈ C∞(R× Rn,Rn) be such that

• Φt := Φ(t, ·) is a smooth diffeomorphism of Rn,
• Φt(x) = x for all |x| > 1/2 and all t ∈ R,
• Φt(0) = 0 for all t ∈ R,
• Φ0 = IdRn .

Set Ωt,R := Φt(Ω)∩DR. Then as t→ 0, R→ +∞, we have that γH(Ωt,R) > n2−1
4 and mγ(Ωt,R) is

well defined. In addition,
lim

t→0, R→+∞
mγ(Ωt,R) = mγ(Ω).

As a preliminary remark, we claim that if Ω is a conformally bounded domain of Rn such that
0 ∈ ∂Ω, then

(9.4) lim inf
t→0,R→∞

γH(Ωt,R) ≥ γH(Ω),

where Ωt,R are defined as in Proposition 9.2. Indeed, by definition, γH(Ωt,R) ≥ γH(Ωt) = γH(Φt(Ω)).
Inequality (9.4) then follows from (3.7) of Lemma 3.2.
We shall use the same approach as in the proof of Proposition 7.4. Assuming that x0 := (−1, 0, . . . , 0) ∈
Rn, and denoting the corresponding Kelvin inversion by i, this transformation allows to map the
operator −∆− γ

|x|2 on a conformally bounded domain Ω into the Schrödinger operator −∆ + V on

the bounded domain Ω̃, where V is the potential defined in (7.19).

Set now Ω̃ := i(Ω), Φ̃(t, x) := i◦Φ(t, i(x)) for (t, x) ∈ R×Rn, and the complement D̃r := Rn\i(Dr−1)
in Rn. Observe that R → +∞ in Proposition 9.2 is equivalent to r → 0 in here. Note that
Φ̃ ∈ C∞(R× Rn,Rn) is such that

• For any t ∈ (−2, 2), Φ̃t := Φ̃(t, ·) is a C∞−diffeomorphism onto its open image Φ̃t(Rn).

• Φ̃0 = Id,
• Φ̃t(0) = 0 for all t ∈ (−2, 2),

• Φ̃t(x) = x for all t ∈ (−2, 2) and all x ∈ B2δ(x0) with δ < 1/4.
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Set Ω̃t := Φ̃t(Ω̃) and note that the sets D̃r satisfy the following properties:

• Br/2(x0) ⊂ D̃r ⊂ Br(x0),

• Ω̃t,r := Ω̃t \ D̃r is a smooth domain of Rn.

In particular, we have that Ω̃t,r = i(Ωt,r−1). Let u ∈ C2(Ωt,r \ {0}) be such that

−∆u− γ

|x|2
u = 0 in Ωt,r , u > 0 in Ωt,r , u = 0 on ∂Ωt,r.

We shall need the following.

Lemma 9.3. For any t ∈ (−1, 1), there exists ut ∈ C2(Ω̃t \ {0, x0}) such that

(9.5)


−∆ut − V ut = 0 in Ω̃t

ut > 0 in Ω̃t
ut = 0 on ∂Ω̃t \ {0, x0}

ut(x) ≤ C|x|1−α+(γ) + C|x− x0|1−α−(γ) for x ∈ Ω̃t.

Moreover, we have that

(9.6) ut(x) =
d(x, ∂Ω̃t)

|x|α+(γ)
(1 +O(|x|α+(γ)−α−(γ)))

as x→ 0, uniformly with respect to t ∈ (−1, 1).

Proof of Lemma 9.3. We construct approximate singular solutions as in Section 4. For all t ∈ (−2, 2),

there exists a chart ϕt that satisfies (4.7) to (4.12) for Ω̃t. Without restriction, we assume that

limt→0 ϕt = ϕ0 in Ck(B̃2δ,Rn). We define a cut-off function ηδ such that ηδ(x) = 1 for x ∈ B̃δ and

ηδ(x) = 0 for x 6∈ B̃2δ. As in (4.14), we define uα+(γ),t ∈ C2(Ω̃t \ {0}) with compact support in

ϕt(B̃2δ) such that

(9.7) uα+,t ◦ ϕt(x1, x
′) := ηδ(x1, x

′)x1|x|−α+(1 + Θt(x)) for all (x1, x
′) ∈ B̃2δ \ {0},

where Θt(x1, x
′) := e−

1
2x1Ht(x

′) − 1 for all x = (x1, x
′) ∈ B̃2δ and all t ∈ (−2, 2). Here, Ht(x

′) is the

mean curvature of ∂Ω̃t at the point ϕt(0, x
′). Note that limt→0 Θt = Θ0 in Ck(U). Arguing as is

Section 4, we get that
(−∆− V )uα+,t = O(d(x, ∂Ω̃t)|x|−α+(γ)−1) in Ω̃t ∩ B̃δ

uα+,t > 0 in Ω̃t ∩ B̃δ
uα+,t = 0 on ∂Ω̃t \ {0},

and

uα+,t(x) =
d(x, ∂Ω̃t)

|x|α+(γ)
(1 +O(|x|) as x→ 0.

The construction in Section 4 also yields

(9.8) lim
t→0

uα+,t ◦ Φt = uα+,0 in C2
loc(Ω̃ \ {0}).

Note also that all these estimates are uniform in t ∈ (−1, 1). In particular, defining

(9.9) ft := −∆uα+,t − V uα+,t,

then there exists C > 0 such that

(9.10) |ft(x)| ≤ Cd(x, ∂Ω̃t)|x|−α+(γ)−1 ≤ C|x|−α+(γ)

for all t ∈ (−1, 1) and all x ∈ Ω̃t ∩ B̃δ. Therefore, since γ > n2−1
4 , it follows from (9.8) and this

pointwise control that ft ∈ L
2n
n+2 (Ω̃t) for all t ∈ (−1, 1) and that

(9.11) lim
t→0
‖ft ◦ Φt − f0‖

L
2n
n+2 (Ω̃)

= 0.
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For any t ∈ (−1, 1), we let vt ∈ D1,2(Ω̃t) be such that

−∆vt − V vt = ft weakly in D1,2(Ω̃t).

The existence follows from the coercivity of −∆− V on Ω̃t, which follows itself from the coercivity
on Ω̃ = Ω̃0. We then get from (9.11) and the uniform coercivity on Ω̃t that

lim
t→0

vt ◦ Φt = v0 in D1,2(Ω̃) and C1
loc(Ω̃ \ {0, x0}).

It follows from the construction of the mass in Section 7 (see the proof of Theorem 7.1) that around
0, |vt(x)| is bounded by |x|1−α−(γ). Around x0, −∆vt − V vt = 0 and the regularity Theorem 4.1
yields a control by |x−x0|1−α−(γ). These controls are uniform with respect to t ∈ (−1, 1). Therefore,
there exists C > 0 such that

|vt(x)| ≤ Cd(x, ∂Ω̃t)
(
|x|−α−(γ) + |x− x0|−α−(γ)

)
for all t ∈ (−1, 1) and all x ∈ Ω̃t. Now define ut(x) := uα+,t(x)−vt(x) for all t ∈ (−1, 1) and x ∈ Ω̃t.
This function satisfies all the requirements of Lemma 9.3. �

Proof of Proposition 9.2: Let Ω̃t,r = Ω̃t\D̃r, and note that for r ∈ (0, δ/2), we have Ω̃t,r∩Bδ(0) =

Ω̃ ∩Bδ(0). We shall define a mass associated to the potential V as in Proposition 7.4 and prove its
continuity.

Step 1: The function ft : Ω̃t → R defined in (9.9) has compact support in B2δ(0), therefore, it is

well-defined also on Ω̃t,r. Let vt,r ∈ D1,2(Ω̃t,r) be such that

(9.12) −∆vt,r − V vt,r = ft weakly in D1,2(Ω̃t,r).

Since the operator −∆ − V is uniformly coercive on Ω̃t, it is also uniformly coercive on Ω̃t,r with
respect to (t, r), so that the definition of vt,r via (9.12) makes sense. The uniform coercivity and

(9.9)-(9.10) yield the existence of C > 0 such that ‖vt,r‖D1,2(Ω̃t,r) ≤ C for all t, r. Since x0 6∈ Ω̃t,r,

(9.9)-(9.10) and regularity theory yield vt,r ∈ C1(Ω̃t,r \ {0}) and for all ρ > 0, there exists C(ρ) > 0
independent of t and r such that

(9.13) ‖vt,r‖C1(Ω̃t,r\(Bρ(0)∪Bρ(x0))) ≤ C(ρ).

Step 2: There exists C > 0 such that for all t ∈ (−1, 1) and all x ∈ Ω̃t,r,

(9.14) |vt,r(x)| ≤ Cd(x, ∂Ωt)
(
|x|−α−(γ) + |x− x0|−α−(γ)

)
.

Indeed, around 0, Ω̃t,r coincides with Ω̃t, and the proof of the control goes as in the construction of
the mass in Section 7 (see the proof of Proposition 7.1). The argument is different around x0. We

let r0 > 0 be such that Ω̃t ∩B2r0(x0) = Ω̃ ∩B2r0(x0). Therefore, for r ∈ (0, r0), we have that

Ω̃t,r ∩B2r0(x0) = (Ω̃ \ D̃r) ∩B2r0(x0).

Arguing as in the proof of Proposition 4.3, there exists ũα− ∈ C∞(Ω̃ \ {0}) and τ ′ > 0 such that
ũα− > 0 in Ω̃ ∩B2r0(x0)

ũα− = 0 in (∂Ω̃) ∩B2r0(x0)

−∆ũα− − V ũα− > 0 in Ω̃ ∩B2r0(x0).

Moreover, we have that

(9.15) ũα−(x) =
d(x, ∂Ω̃)

|x− x0|α−
(1 +O(|x− x0|)) as x→ x0, x ∈ Ω̃.



52 NASSIF GHOUSSOUB AND FRÉDÉRIC ROBERT

Therefore, since vt,r vanishes on B2r0(x0) ∩ ∂(Ω̃ \ D̃r), it follows from (9.13) and the properties of

ũα− that there exists C > 0 such that vt,r ≤ Cũα− on the boundary of (Ω̃ ∩ D̃r) ∩ B2r0(x0). Since
in addition (−∆ − V )vt,r = 0 < (−∆ − V )(Cũα−), it follows from the comparison principle that

vt,r ≤ Cũα− in (Ω̃ \ D̃r) ∩B2r0(x0). Arguing similarly with −vt,r and using the asymptotic (9.15),
we get (9.14).

Step 3: We have that

(9.16) lim
t,r→0

vt,r ◦ Φt = v0 in D1,2(Ω̃)loc,{x0}c ∩ C
1
loc(Ω̃ \ {0, x0}),

where v0 was defined in (7.20), and the convergence in D1,2(Ω̃)loc,{x0}c means that limt,r→0 ηvt,r ◦
Φt = ηv0 in D1,2(Ω̃) for all η ∈ C∞(Rn) vanishing around x0. Indeed, vt,r ◦ Φt ∈ D1,2(Ω̃ \ D̃r) ⊂
D1,2(Ω̃). Uniform coercivity yields weak convergence in D1,2(Ω̃) to ṽ ∈ D1,2(Ω̃). Passing to the limit,

one gets (−∆− V )ṽ = f0, so that ṽ = v0. Uniqueness then yields convergence in C1
loc(Ω̃ \ {0, x0}).

With a change of variable, equation (9.12) yields an elliptic equation for vt,r ◦ Φt. Multiplying this
equation by η2 ·(vt,r ◦Φt−v0) for η ∈ C∞(Rn) vanishing around x0, one gets convergence of ηvt,r ◦Φt
to ηv0 in D1,2(Ω̃). This proves the claim.

It follows from the construction of the mass (see Theorem 7.1) and the regularity Theorem 4.1, that
there exists K0 ∈ R and for all (t, r) small, there exists Kt,r ∈ R such that

(9.17) vt,r(x) = Kt,r
d(x, ∂Ω̃t)

|x|α−(γ)
+ o

(
d(x, ∂Ω̃t)

|x|α−(γ)

)
and v0(x) = K0

d(x, ∂Ω̃)

|x|α−(γ)
+ o

(
d(x, ∂Ω̃)

|x|α−(γ)

)
as x ∈ Ω̃ goes to 0. Note that around 0, Ω̃t,r coincides with Ω̃t.

Step 4: We claim that

(9.18) lim
t,r→0

Kt,r = K0.

We only give a sketch. Noting ṽt,r := vt,r ◦ Φt, the proof relies on (9.16) and the fact that

−∆
Φ?tEuclṽt,r − V ◦ Φtṽt,r = ft ◦ Φt in Ω̃ ∩Bδ(0).

The comparison principle and the definitions (9.17) then yield (9.18).

Note that

(9.19) mγ(Ω) = −K0,

where the mass of a conformally bounded Ω is defined as in Proposition 7.4.

Step 5: convergence of the mass: We claim that

(9.20) lim
t→0,R→∞

mγ(Ωt,R) = mγ(Ω).

We define H̃t,r := uα+,t − vt,r so that

−∆H̃t,r − V H̃t,r = 0 in Ω̃t,r.

It follows from (9.6) and (9.17) that H̃t,r > 0 around 0. From the maximum principle, we deduce

that H̃t,r > 0 on Ω̃t,r and that it vanishes on ∂Ω̃t,r \ {0, x0}.

It follows from (9.6) and (9.17) that

H̃t,r(x) =
d(x, ∂Ω̃t,r)

|x|α+
−Kt,r

d(x, ∂Ω̃t,r)

|x|α−
+ o

(
d(x, ∂Ω̃t,r)

|x|α−

)
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as x → 0, x ∈ Ω̃t,r. Coming back to Ωt,R with R = r−1 via the inversion i with Ht,R(x) :=

|x− x0|2−nH̃t,r(i(x)) for all x ∈ Ωt,R, we get that
−∆Ht,R − γ

|x|2Ht,R = 0 in Ωt,R
Ht,R > 0 in Ωt,R
Ht,R = 0 in ∂Ωt,R \ {0}

and

Ht,R(x) =
d(x, ∂Ωt,R)

|x|α+
−Kt,r

d(x, ∂Ωt,R)

|x|α−
+ o

(
d(x, ∂Ωt,R)

|x|α−

)
as x → 0, x ∈ Ωt,R. Therefore, it follows from the definition of the mass (see Theorem 7.1) that
mγ(Ωt,R) = −Kt,r for all t, r, R = r−1. Claim (9.20) then follows from (9.18) and (9.19). �

In order to prove Theorem 9.1, we need to exhibit prototypes of unbounded domains with either
positive or negative mass.

Proposition 9.4. Let Ω be a domain such that 0 ∈ ∂Ω and Ω conformally bounded. Assume that

γH(Ω) > n2−1
4 and fix γ ∈

(
n2−1

4 , γH(Ω)
)

. Then mγ(Ω) > 0 if Rn+ ( Ω, and mγ(Ω) < 0 if Ω ( Rn+.

Proof of Proposition 9.4 : With H0 defined as in (7.22), we set

U(x) := H0(x)− x1|x|−α+ for all x ∈ Ω.

We first assume that Rn+ ( Ω . We then have that

(9.21)

{
−∆U − γ

|x|2U = 0 in Rn+
U 	 0 in ∂Rn+ \ {0}.

We claim that

(9.22)

∫
Rn+
|∇U|2 dx < +∞.

Indeed, at infinity, this is the consequence of the fact that |∇U|(x) ≤ C|x|−α+ for all x ∈ Rn+ large,
this latest bound being a consequence of (7.25) combined with elliptic regularity theory. At zero,
the argument is different. Indeed, one first notes that d(x, ∂Ω′) = x1 + O(|x|2) for x ∈ Rn+ close to
0, and therefore, U(x) = O(|x|1−α−) for x→ 0. The control on the gradient |∇U|(x) ≤ C|x|−α− at

0 follows from the construction of H̃0. This yields integrability at 0 and proves (9.22).

We claim that U > 0 in Rn+. Indeed, it follows from (9.21) and (9.22) that U− ∈ D1,2(Rn+).
Multiplying equation (7.23) by U−, integrating by parts on (BR(0) \Bε(0))∩Rn+, and letting ε→ 0
and R → +∞ by using (9.22), one gets U− ≡ 0, and then U ≥ 0. The result follows from Hopf’s
maximum principle.

We now claim that

(9.23) mγ(Ω) > 0.

Indeed, since U > 0 in Rn+, there exists c0 > 0 such that U(x) ≥ c0x1|x|−α− for all x ∈ ∂(B1(0)+).
It then follows from (9.22), (9.21) and the comparison principle that U(x) ≥ c0x1|x|−α− for all
x ∈ B1(0)+. The expansion (7.24) then yields −K0 ≥ c0 > 0. This combined with (9.19) proves the
claim.

When Ω ⊂ Rn+, the argument is similar except that one works on Ω (and not Rn+) and that U � 0
in ∂Ω \ {0}. This ends the proof of Proposition 9.4.
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Proof of Theorem 9.1: Let ω be a smooth domain of Rn such that 0 ∈ ∂Ω. Up to a rotation,
there exists ϕ ∈ C∞(Rn−1) such that ϕ(0) = 0, ∇ϕ(0) = 0 and there exists δ0 > 0 such that

ω ∩Bδ0(0) = {x1 > ϕ(x′)/ (x1, x
′) ∈ Bδ0(0)}.

Let η ∈ C∞c (Bδ0(0)) be such that η(x) = 1 for all x ∈ Bδ0/2(0), and define

Φt(x) :=

(
x1 + η(x)

ϕ(tx′)

t
, x′
)

for all t > 0 and x ∈ Rn,

and Φ0 := IdRn . It is easy to see that Φt satisfies the hypotheses of Proposition 9.2. Moreover, for
0 < t < 1, we have that

ω

t
∩ Φt(Bδ0/2(0)) = Φt(Rn+ ∩Bδ0/2(0)).

We let Ω be a smooth domain at infinity such that

(9.24) Ω ∩B1(0) = Rn+ ∩B1(0) and γH(Ω) >
n2 − 1

4
,

(for example, Rn+), and let Ωt,R be as in Proposition 9.2. It is easy to see that

ω ∩ tΦt(Bδ0/2(0)) = tΩt,R ∩ tΦt(Bδ0/2(0)).

Therefore, for t > 0 small enough, we have that

ω ∩Btδ0/3(0) = tΩt,R ∩Btδ0/3(0).

Moreover, γH(tΩt,R) = γH(Ωt,R) > (n2 − 1)/4 as t → 0 and R → +∞ (see (9.4)). Concerning the
mass, we have that

tα+(γ)−α−(γ)mγ(tΩt,R) = mγ(Ωt,R)→ mγ(Ω) as t→ 0, R→ +∞.

We now choose Ω appropriately.
To get a negative mass, we choose Ω smooth at infinity such that Ω ∩ B1(0) = Rn+ ∩ B1(0) and
Ω ( Rn+. Then γH(Ω) = n2/4, (9.24) holds and Proposition 9.4 yields mγ(Ω) < 0. With this choice
of Ω, we take Ω− := Ωt,R for t small and R large.

To get a positive mass, we choose Rn+ ( Ω such that (9.24) holds (this is possible for any value

of γH(Ω) arbitrarily close to n2

4 , see point (6) of Proposition 3.1). Then Proposition 9.4 yields
mγ(Ω) > 0. With this choice of Ω, we take Ω+ := Ωt,R for t small and R large. This proves
Proposition 9.1.

10. The Hardy singular interior mass and the remaining cases

The remaining situation not covered by Proposition 8.1 and Theorem 8.2 is s = 0, n = 3 and

γ ∈ (0, n
2

4 ). If γ ≥ γH(Ω), then Proposition 3.3 and Theorem 3.6 yield µγ,0(Ω) ≤ 0 < µγ,0(Rn+)
and the existence of extremals is guaranteed. When µγ,0(Rn+) does have an extremal U , then
Proposition 8.3 and Theorem 3.6 provide sufficient conditions for the existence of extremals. The
rest of this section addresses the remaining case, that is when γ ∈ (0, γH(Ω)) and when µγ,0(Rn+)
has no extremal, and therefore µγ,0(R3

+) = K(3, 2)−2 according to Theorem 1.3.

We first define the “interior” mass in the spirit of Schoen-Yau [27].

Proposition 10.1. Let Ω ⊂ R3 be an open smooth bounded domain such that 0 ∈ ∂Ω. Fix x0 ∈ Ω.
If γ ∈ (0, γH(Ω)), then the equation

−∆G− γ
|x|2G = 0 in Ω \ {x0}

G > 0 in Ω \ {x0}
G = 0 on ∂Ω \ {0}
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has a solution G ∈ C2(Ω \ {0, x0}) ∩ D2
1(Ω \ {x0})loc,0, that is unique up to multiplication by a

constant. Moreover, for any x0 ∈ Ω, there exists a unique Rγ(x0) ∈ R independent of the choice of
G and cG > 0 such that

G(x) = cG

(
1

|x− x0|
+Rγ(x0)

)
+ o(1) as x→ x0.

Proof of Proposition 10.1. Since γ < γH(Ω), the operator −∆ − γ|x|−2 is coercive and we can
consider G to be its Green’s function at x0 on Ω with Dirichlet boundary condition. In particular,
for any ϕ ∈ C∞c (Ω), we have that

ϕ(x) =

∫
Ω

Gx(y)

(
−∆ϕ(y)− γϕ(y)

|y|2

)
dy for x ∈ Ω,

where Gx := G(x, ·). Fix x0 ∈ Ω and let η ∈ C∞c (Ω) be such that η(x) = 1 around x0. Define the
distribution βx0

: Ω→ R as

Gx0(x) = 1
ω2

(
η(x)
|x−x0| + βx0(x)

)
for all x ∈ Ω,

where ω2 := 4π is the volume of the canonical 2−sphere. As one checks,(
−∆− γ

|x|2

)
βx0

= −
(
−∆− γ

|x|2

)(
η(x)

|x− x0|

)
:= f = O(|x− x0|−1)

in the distributional sense. Since f ∈ L2(Ω) and, by uniqueness of the Green’s function (since the
operator is coercive), we have that βx0

∈ D1,2(Ω). It follows from standard elliptic theory that
βx0 ∈ C∞(Ω \ {0, x0}) ∩ C0,θ(Ω \ Bδ(0)) for all θ ∈ (0, 1) and δ > 0. Since f vanishes around 0, it
follows from Theorem 4.1 and Lemma 5.2 that

(10.1) βx0(x) = O(|x|1−α−(γ)) and |∇βx0(x)| = O(|x|−α−(γ)) when x→ 0.

We can therefore define the mass of Ω at x0 associated to the operator Lγ by Rγ(Ω, x0) := βx0(x0).
As one checks, βx0(x0) is independent of the choice of η.

The uniqueness is proved as in Theorem 7.1. The behavior on the boundary is given by Theorem
4.1 and the interior behavior around x0 is classical. �

Lemma 10.2. Let Ω ⊂ R3 be an open smooth bounded domain such that 0 ∈ ∂Ω and x0 ∈ Ω.
Assume that γ ∈ (0, γH(Ω)) and that µγ,0(R3

+) = K(3, 2)−2. Then, there exists a family (uε)ε in
D1,2(Ω) such that

(10.2) JΩ
γ,0(uε) = 1

K(n,2)2

(
1− ω2Rγ(x0)

3
∫
R3 U

2? dx
ε+ o(ε)

)
as ε→ 0,

where U(x) := (1 + |x|2)−1/2 for all x ∈ R3 and 2? = 2?(0) = 2n
n−2 .

Proof of Lemma 10.2: The proof is very similar to what was performed by Schoen [26] (see Druet
[9, 10] and Jaber [21]). For ε > 0, define the functions

uε(x) := η(x)
(

ε
ε2+|x−x0|2

) 1
2

+ ε
1
2 βx0

(x) for all x ∈ Ω.

As one checks, uε ∈ D1,2(Ω). Proceeding as in the case γ > n2−1
4 of Section 8, we get (10.2). We

omit the details that are standard. This proves Lemma 10.2. �

We finally get the following.

Theorem 10.3. Let Ω be a bounded smooth domain of R3 such that 0 ∈ ∂Ω.

(1) If γ ≥ γH(Ω), then there are extremals for µγ,0(Ω).
(2) If γ ≤ 0, then there are no extremals for µγ,0(Ω).
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(3) If 0 < γ < γH(Ω) and there are extremals for µγ,0(Rn+), then there are extremals for µγ,0(Ω)
under either one of the following conditions:

• γ ≤ n2−1
4 and the mean curvature of ∂Ω at 0 is negative.

• γ > n2−1
4 and the mass mγ(Ω) is positive.

(4) If 0 < γ < γH(Ω) and there are no extremals for µγ,0(Rn+), then there are extremals for
µγ,0(Ω) if there exists x0 ∈ Ω such that Rγ(Ω, x0) > 0.

Proof of Theorem 10.3: The two first points of the theorem follow from Proposition 8.1 and Theorem
3.6. The third point follows from Proposition 8.3. For the fourth point, in this situation, it follows
from Theorem 1.3 that µγ,0(Rn+) = 1

K(n,2)2 , and then Lemma 10.2 yields µγ,0(Ω) < µγ,0(Rn+), which

yields the existence of extremals by Theorem 3.6. This proves Theorem 10.3. �
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HARDY-SCHRÖDINGER BOUNDARY MASS 57

[23] Yehuda Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic
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