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Abstract. We solve variationally certain equations of stellar dynamics of the

form −
∑

i ∂iiu(x) =
|u|p−2u(x)
dist(x,A)s

in a domain Ω of Rn, where A is a proper

linear subspace of Rn. Existence problems are related to the question of at-
tainability of the best constant in the following inequality due to Maz’ya [20]:

0 < µs,P (Ω) = inf

{∫
Ω
|∇u|2 dx

∣∣∣∣∣ u ∈ H2
1,0(Ω) and

∫
Ω

|u(x)|2?(s)

|π(x)|s
dx = 1

}
where 0 < s < 2, 2?(s) =

2(n−s)
n−2

and where π is the orthogonal projection

on a linear space P, where dimRP ≥ 2 (see also Badiale-Tarantello [1]). We

investigate this question and how it depends on the relative position of the

subspace P⊥, the orthogonal of P, with respect to the domain Ω as well as on
the curvature of the boundary ∂Ω at its points of intersection with P⊥.

1. Introduction

Let Ω be a smooth domain of Rn, where n ≥ 3, and denote by H2
1,0(Ω) the

completion of C∞c (Ω), the set of smooth functions compactly supported in Ω, for

the norm ‖u‖H2
1,0(Ω) =

√∫
Ω
|∇u|2 dx. In [20] (Corollary 2 in 2.1.6.), Maz’ya proved

that if P is a linear subspace of Rn such that 2 ≤ dimRP ≤ n, then there exists
C > 0 such that for all u ∈ H2

1,0(Rn),(∫
Rn

|u|2?

|π(x)|s
dx

) 2
2?

≤ C
∫
Rn
|∇u|2 dx, (1)

where here 2? := 2(n−s)
n−2 , s ∈ (0, 2) and π is the orthogonal projection on P with

respect to the Euclidean structure. Recently, an alternative proof of this inequality
was given by Badiale and Tarantello [1]. Define

µs,P(Ω) := inf


∫

Ω
|∇u|2 dx(∫

Ω
|u|2?
|π(x)|s dx

) 2
2?

∣∣∣∣∣∣∣ u ∈ H2
1,0(Ω) \ {0}

 (2)

and note that (1) and (2) give that for all smooth domain Ω ⊂ Rn, we have

µs,P(Ω) ≥ µs,P(Rn) > 0. (3)
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In this article, we adress the question of the value of the best constant µs,P(Ω)
as well as the issue of its attainability. As we will see, both questions are closely
related to the relative positions of P⊥ and Ω, and to the geometry of the boundary
∂Ω at the points of P⊥ ∩ ∂Ω.

The case when s = 0 (i.e., the non-singular case) is the well known Sobolev inequal-
ity. In this situation the infimum µs,P(Ω) = µ0,P(Rn) is not attained unless Ω is
essentially the whole of Rn.

The case s ∈ (0, 2) and dimRP = n (that is P = Rn) was tackled in [11], [12],
[13]. It was proved that when 0 ∈ ∂Ω, the infimum in (2) is then attained as soon
as the mean curvature of ∂Ω (oriented with outward pointing normal vectors) at
0 is negative. The proof of this result required refined asymptotics for blown-up
solutions of associated second order elliptic equations, the difficult case being when
these solutions develop a ”bubble” located precisely at the point 0. However, the
bubble inherits the symmetry properties of the problem, and this allowed us to
show in [12] that mean curvature conditions –as opposed to sectional curvature–
suffice to eliminate the possibility of a bubbling-off phenomenon.

In the present paper, we tackle the case of a larger affine subspace of singularities
(1 ≤ dimRP ≤ n − 1) and in particular when P⊥ contains at least a line. The
situation here closely depends on the relative positions of P⊥ and Ω, the most
interesting case being when the subspace P⊥ does not touch the domain Ω but
does touch its boundary (i.e., when P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅). A large part
of the analysis is similar to what we have done in [12, 13] for the case of a single
point of singularity on the boundary of Ω. However, a new set of difficulties arise in
this situation: for one, the centers of the appearing bubbles are not bound to any
particular location and may appear anywhere on ∂Ω. They do eventually converge
to a point in P⊥∩∂Ω 6= ∅, and an important new issue becomes the precise control
of the distance between the center of the bubble and this limiting point.

Another new problem related to this setting is the lack of symmetry of the
bubble. As described by the next proposition, we do show that it enjoys the best
symmetry possible in the P-direction. Here and in the sequel, ∆ = −

∑
i ∂ii will

denote the Laplacian with minus sign convention and Rn− = {x ∈ Rn−/ x1 < 0}.

Proposition 1.1. Let π be the projection on a linear subspace Q of Rn such that
2 ≤ dimRQ and Q⊥ ⊂ ∂Rn−. Assume s ∈ (0, 2) and consider u ∈ C2(Rn−)∩C1(Rn−)
such that 

∆u = u2?−1

|π(x)|s in Rn−
u > 0 in Rn−
u = 0 on ∂Rn−.

(4)

and for some C > 0,

u(x) ≤ C(1 + |x|)1−n for all x ∈ Rn−. (5)

Then there exists v ∈ C2(R?−×R×Q⊥)∩C1(R−×R×Q⊥) such that for all z ∈ Q⊥,
and all x1 < 0 and y ∈ Rn with (x1, y) ∈ Q, we have that u(x1, y, z) = v(x1, |y|, z).

But this is not sufficient since the behavior of the bubble in the P-direction and
the P⊥-direction often cannot be related. Overcoming these difficulties, we prove
the following theorem. In the sequel, Tx∂Ω denotes the tangent space of ∂Ω at the
point x.
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Theorem 1.1. Let Ω be a smooth bounded oriented domain of Rn, n ≥ 3, and let
P be a linear subspace of Rn such that 2 ≤ dimRP. Assume s ∈ (0, 2).

(A) If P⊥∩Ω 6= ∅, then µs,P(Ω) = µs,P(Rn) and the infimum in (2) is not achieved.

(B) If P⊥ ∩ Ω = ∅, then the infimum in (2) is achieved.

(C) If P⊥∩Ω = ∅ and P⊥∩∂Ω 6= ∅, then the infimum in (2) is achieved and the set
of minimizers is pre-compact in H2

1,0(Ω), provided that at any point x ∈ P⊥ ∩ ∂Ω
the principal curvatures of ∂Ω at x are non-positive, but do not all vanish.
Moreover, at those points x ∈ P⊥ ∩ ∂Ω where P ∩ Tx∂Ω and P⊥ are orthogonal
with respect to the second fundamental form of ∂Ω at x, it suffices that the mean
curvature vector of ∂Ω∩(x+(P⊥+(Tx∂Ω)⊥)) at x be null, while the mean curvature
of ∂Ω at x is negative.

The second part in (C) makes connection with the case where P = Rn (i.e.,
P⊥ = {0} studied in [12]. Then the negativity of the mean curvature of ∂Ω at that
point is sufficient for µs,P(Ω) to be attained. One may ask what happens in the
case dimRP ∈ {0, 1}. In the case when P = {0}, inequality (1) is clearly irrelevant,
however the case dimRP = 1 presents some interest, and this is the object of the
following proposition:

Proposition 1.2. Let Ω be a smooth bounded oriented domain of Rn, n ≥ 3, and
let P be a linear subspace of Rn such that dimRP = 1. Assume s ∈ (0, 2).

(A) If P⊥ ∩ Ω 6= ∅, then the infimum in (2) is not achieved.

(B) If P⊥ ∩ Ω = ∅, then the infimum µs,P(Ω) in (2) is positive and is achieved.

(C) If P⊥ ∩ Ω = ∅ while P⊥ ∩ ∂Ω 6= ∅, then µs,P(Ω) > 0 and the infimum is not
achieved.

Actually, when dealing with case (C) of Theorem 1.1 and Proposition 1.2, the
crucial point is to have negative principal curvatures at each point of P⊥∩∂Ω. But
the fact that P⊥ only touches Ω at its boundary means that the principal curvatures
in the P⊥−direction are all nonnegative at these points –at least for those where P⊥
and P∩Tx∂Ω are orthogonal for the fundamental form of ∂Ω: therefore, for µs,P(Ω)
to be achieved, one needs the negativity of the principal curvatures in some of the
orthogonal directions, which is obviously impossible if P⊥ is (n − 1)−dimensional
and therefore the best constant is never achieved in this case. This means that
the dimension restriction on the linear subspace in Theorem 1.1 is optimal. As a
consequence of the techniques developed for the proof of Theorem 1.1, we get the
following corollary.

Corollary 1.1. Let Ω be a smooth bounded oriented domain of Rn and let π be
the orthogonal projection onto a linear subspace Q ⊂ Rn such that 2 ≤ dimRQ.
We assume that Q⊥ ∩ Ω = ∅ and Q⊥ ∩ ∂Ω 6= ∅. Assume s ∈ (0, 2) and consider
a ∈ C1(Ω) such that the operator ∆ + a is coercive on Ω. Then there exists a
solution u ∈ H2

1,0(Ω) ∩ C1(Ω) for
∆u+ au = u2?−1

|π(x)|s in D′(Ω)

u > 0 in Ω
u = 0 on ∂Ω
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provided that at any point x ∈ Q⊥ ∩ ∂Ω the principal curvatures of ∂Ω at x are
non-positive, but do not all vanish.
Moreover, at those points x ∈ ∂Ω ∩ Q⊥ where Q⊥ and Q ∩ Tx∂Ω are orthogonal
with respect to the second fundamental form of ∂Ω at x, it suffices to assume that
the mean curvature vector of ∂Ω ∩ (x + (Q⊥ + (Tx∂Ω)⊥)) at x is null, while the
mean curvature of ∂Ω at x is negative.

Related references for best constant problems in Sobolev inequalities are Druet
[5], Hebey-Vaugon [18, 19] and Egnell [10]. Concerning asymptotics for blown-up
sequences of solutions to elliptic equations, we also refer to Atkinson-Peletier [2],
Brézis-Peletier [3], Han [17], Druet [6], Druet-Hebey [7], Druet-Hebey-Robert [8]
and Schoen-Zhang [23].

The rest of the paper is devoted to the proof of these results. As mentioned
above, a significant part of the analysis was developed in [12, 13] for the case of a
unique singular point at the boundary, and to which we shall refer frequently. On
the other hand, we shall give all the details relating to the new difficulties arising in
this new setting of large set of singularities. The paper is organized as follows. In
section 2, we deal with points (A) and (B) of Theorem 1.1 and prove a symmetry
result. Sections 3 to 5 are devoted to the proof of point (C) of Theorem 1.1 which
is much more intricate, as it will require the full range of modern techniques for
blow-up analysis and strong pointwise estimates for minimizers of the subcritical
functional associated to (2). In section 6, we prove Proposition 1.2, while the
appendix in section 7 provides a required regularity result for the family of elliptic
pde’s with singularities that we are dealing with in this paper. As a last remark,
note that all the statements can be straightforwardly adapted to the case when P
is an affine subspace of Rn, and not only a linear space.

2. Partial symmetry of bubbles and Part (A), (B) of Theorem 1.1

We let P be a linear subspace of Rn with 2 ≤ dimRP ≤ n− 1. We shall denote
by π the orthogonal projection on P, and

µs,P(Ω) := inf


∫

Ω
|∇u|2 dx(∫

Ω
|u|2?
|π(x)|s dx

) 2
2?

∣∣∣∣∣∣∣ u ∈ H2
1,0(Ω) \ {0}

 (6)

Proof of Proposition 1.1. We first prove the partial symmetry property for the
positive solutions to the limit equation on Rn−. For that, we consider u ∈ C2(Rn−)∩
C1(Rn−) that verifies the system (4) while verifying for some C > 0 the bound

u(x) ≤ C
(1+|x|)n−1 . We follow the proof of [12] to which we refer for details. For

simplicity, up to a change of coordinates, we write any point x ∈ Rn as x = (x1, y, z),
where (x1, y) ∈ Q = Rk and z ∈ Q⊥ = Rn−k. Therefore π(x) = (x1, y, 0). We let
~e1 be the first vector of the canonical basis of Rn and consider the open ball

D := B1/2

(
−1

2
~e1

)
.

We define

v(x) := |x|2−nu
(
~e1 +

x

|x|2

)
(7)
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for all x ∈ D \ {0}. We extend v by 0 at 0. This is then well-defined and v ∈
C2(D) ∩ C1(D \ {0}). Moreover, v(x) > 0 for all x ∈ D and v(x) = 0 for all
x ∈ ∂D \ {0}. The function v verifies the equation

∆v =
v2?−1

|π(x+ |x|2~e1)|s
(8)

in D. Since v > 0 in D, it follows from Hopf’s Lemma that ∂v
∂ν < 0 on ∂D \ {0}.

We prove the symmetry of u by proving a symmetry property of v, which is
defined on a ball. Our proof uses the moving plane method. We take largely
inspiration in [4] and [15]. We let i ∈ {2, ..., k}. For any µ ≥ 0 and x ∈ Rn, we let

xµ = (x1, ..., 2µ− xi, ..., xn) and Dµ = {x ∈ D/xµ ∈ D}.
It follows from Hopf’s Lemma that there exists ε0 > 0 such that for any µ ∈
( 1

2 − ε0,
1
2 ), we have that Dµ 6= ∅ and v(x) ≥ v(xµ) for all x ∈ Dµ such that xi ≤ µ.

We let µ ≥ 0. We say that (Pµ) holds if Dµ 6= ∅ and v(x) ≥ v(xµ) for all x ∈ Dµ

such that xi ≤ µ. We let

λ := min

{
µ ≥ 0

∣∣∣∣ (Pν) holds for all ν ∈
(
µ,

1

2

)}
. (9)

We claim that λ = 0. Indeed we proceed by contradiction and assume that
λ > 0. We then get that Dλ 6= ∅ and that (Pλ) holds. We let w(x) := v(x)− v(xλ)
for all x ∈ Dλ ∩ {xn < λ}. Since (Pλ) holds, we have that w(x) ≥ 0 for all
x ∈ Dλ ∩ {xi < λ}. With the equation (8) of v and (Pλ), we get that

∆w =
v(x)2?−1

|π(x+ |x|2~e1)|s
− v(xλ)2?−1

|π(xλ + |xλ|2~e1)|s

≥ v(xλ)2?−1

(
1

|π(x+ |x|2~e1)|s
− 1

|π(xλ + |xλ|2~e1)|s

)
for all x ∈ Dλ ∩ {xi < λ}. Since 2 ≤ i ≤ k, we get that the RHS is positive (see
[12]), and then ∆w(x) > 0 for all x ∈ Dλ ∩ {xi < λ}. It then follows from Hopf’s
Lemma and the strong comparison principle that

w > 0 in Dλ ∩ {xi < λ} and
∂w

∂ν
< 0 on Dλ ∩ {xi = λ}.

The contradiction then follows from standard arguments, we refer to [12, 13] for
details. This yields λ = 0.

Here goes the final argument. Since λ = 0, it follows from the definition (9)
of λ that v(x) ≥ v(x1, ...,−xi, ..., xn) for all x ∈ D such that xi ≤ 0. With
the same technique, we get the reverse inequality, and then, we get that v(x) =
v(x1, ...,−xi, ..., xn) for all x = (x′, xn) ∈ D. In other words, v is symmetric with
respect to the hyperplane {xi = 0}. The same analysis holds for any hyperplane
containing Span{~e1, ~ek+1, ...., ~en}. Coming back to the initial function u, this proves
Proposition 1.1 and the symmetry property.

The object of the following proposition is to deal with case (A) of Theorem 1.1 that
is when P⊥ ∩ Ω 6= ∅.

Proposition 2.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3. Let P ⊂ Rn be
a linear subspace of Rn, where 2 ≤ dimRP ≤ n− 1. Let s ∈ (0, 2) and assume that
P⊥ ∩ Ω 6= ∅, then µs,P(Ω) = µs,P(Rn) and the infimum µs,P(Ω) is not achieved.
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Proof: Fix x0 ∈ P⊥ ∩ Ω, and let δ > 0 such that Bδ(x0) ⊂ Ω. Let α > 0 and
u ∈ C∞c (Rn) \ {0} such that∫

Rn |∇u|
2 dx(∫

Rn
|u|2?
|π(x)|s dx

) 2
2?
≤ µs,P(Rn) + α.

For ε > 0, we let uε(x) := ε−
n−2
2 u

(
x−x0

ε

)
for all x ∈ Ω. As is easily checked,

uε ∈ C∞c (Ω) for ε > 0 small and∫
Ω
|∇uε|2 dx(∫

Ω
|uε|2?
|π(x)|s dx

) 2
2?

=

∫
Rn |∇u|

2 dx(∫
Rn

|u|2?
|π(x)|s dx

) 2
2?
≤ µs,P(Rn) + α.

Here, we have used that x0 ∈ P⊥, that is π(x0) = 0. Coming back to the definition
(6) of µs,P(Ω) letting α→ 0 and using (3), we get that µs,P(Ω) = µs,P(Rn).

We claim that µs,P(Ω) is not achieved. Indeed, assuming it is achieved by a
function u ∈ H2

1,0(Ω) \ {0}, we can assume without loss that u ≥ 0. Since
µs,P(Ω) = µs,P(Rn), we get that µs,P(Rn) is also attained by u which then veri-

fies ∆u = u2?−1

|π(x)|s in D′(Rn). Since u ≥ 0, it follows from the regularity results of

section 7 and the maximum principle that u > 0 on Rn \ P, a contradiction since
u ∈ H2

1,0(Ω). �

The case where P⊥ ∩ Ω = ∅ is dealt with in the following proposition.

Proposition 2.2. Let Ω be a smooth bounded domain of Rn, n ≥ 3, and let P be
a linear subspace of Rn such that 2 ≤ dimRP ≤ n− 1. Assume s ∈ (0, 2) and that
P⊥ ∩ Ω = ∅, then the infimum µs,P(Ω) is attained.

Proof: Since P⊥ ∩ Ω = ∅, there exists c, C > 0 such that c ≤ |π(x)| ≤ C for all
x ∈ Ω. In particular, since 2? < 2n

n−2 , we have compactness of the embedding of

H2
1,0(Ω) in L2?(Ω, |π(x)|−s) and therefore the existence of minimizers. This ends

the proof of the Proposition. �

3. Blow-up analysis, Part I

Throughout this section, we let Ω be a smooth bounded domain of Rn, n ≥ 3,
and P be a linear subspace of Rn such that 2 ≤ dimRP ≤ n− 1. Let s ∈ (0, 2) and
assume that

P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅. (10)

Here and in the sequel, we let π be the orthogonal projection on P. This is the
most intricate case to which the rest of the paper is essentially devoted.

Proposition 3.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3, and let P be
a linear subspace of Rn, such that 2 ≤ dimRP ≤ n − 1. Let s ∈ (0, 2) and assume
that P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅, then µs,P(Ω) ≤ µs,P(Rn−).

Proof: Let x0 ∈ P⊥ ∩ ∂Ω. Since P⊥ ∩ Ω = ∅, we have that

P⊥ ⊂ Tx0
∂Ω, (11)
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where Tx0∂Ω is the tangent space at x0 of the smooth manifold ∂Ω. It follows from
(11) that (Tx0

∂Ω)⊥ ⊂ P. We choose a direct orthonormal basis (~e1, ..., ~en) of Rn
such that

~e1 = ~nx0
is the normal outward vector at x0 of ∂Ω

(~e1, ..., ~ek) is an orthonormal basis of P
(~ek+1, ..., ~en) is an orthonormal basis of P⊥.

(12)

Here and in what follows, k = dimRP, so that 2 ≤ k ≤ n − 1. In particular,
(~e2, ..., ~en) is an orthonormal basis of Tx0

∂Ω. For the rest of this section, we shall
be refering to this particular basis. In particular, we adopt the following notation:
we write any element x ∈ Rn as x = (x1, y, z), with x1 ∈ R, y ∈ span(~e2, ..., ~ek) and
z ∈ span(~ek+1, ..., ~en) = P⊥.

Since ∂Ω is smooth, there exist U, V open subsets of Rn, such that 0 ∈ U and
x0 ∈ V , there exists ϕ ∈ C∞(U, V ) and ϕ0 ∈ C∞(U ′) (where U ′ = {(y, z)/∃x1 ∈
R s.t. (x1, y, z) ∈ U}) such that

(i) ϕ : U → V is a C∞ − diffeomorphism
(ii) ϕ(0) = x0

(iii) ϕ(U ∩ {x1 < 0}) = ϕ(U) ∩ Ω and ϕ(U ∩ {x1 = 0}) = ϕ(U) ∩ ∂Ω.
(iv) ϕ0(0) = 0 and ∇ϕ0(0) = 0
(v) ϕ(x1, y, z) = (x1 + ϕ0(y, z), y, z) + x0 for all (x1, y, z) ∈ U

(13)

where Dxϕ0 denotes the differential of ϕ0 at x. Let α > 0 and u ∈ C∞c (Rn−) \ {0}
such that ∫

Rn−
|∇u|2 dx(∫

Rn−
|u|2?
|π(x)|s dx

) 2
2?
≤ µs,P(Rn−) + α.

Define uε(x) := ε−
n−2
2 u

(
ϕ−1(x)

ε

)
for all x ∈ Ω and all ε > 0. As easily checked, for

ε > 0 small enough, we have that uε ∈ C∞c (Ω). Standard computations yield that

µs,P(Ω) ≤
∫

Ω
|∇uε|2 dx(∫

Ω
|uε|2?
|π(x)|s dx

) 2
2?

=

∫
Rn−
|∇u|2 dx(∫

Rn−
|u|2?
|π(x)|s dx

) 2
2?

+ o(1) ≤ µs,P(Rn−) + α+ o(1)

where limε→0 o(1) = 0. Letting ε→ 0 and α→ 0, we get the claimed result. �

In order to construct minimizers for µs,P(Ω), we consider a subcritical minimization
problem for which we have compactness. The proof of this result is standard and
we refer to [12] for details.

Proposition 3.2. Let Ω be a smooth bounded domain of Rn, n ≥ 3, and let P be
a linear subspace of Rn such that 2 ≤ dimRP ≤ n − 1. Let s ∈ (0, 2) and assume
that (10) holds, then for any ε ∈ (0, 2? − 2), the infimum

µεs,P(Ω) := inf
u∈H2

1,0(Ω)\{0}

∫
Ω
|∇u|2 dx(∫

Ω
|u|2?−ε
|π(x)|s dx

) 2
2?−ε

,
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is achieved by a function uε ∈ H2
1,0(Ω). Moreover, uε ∈ C∞(Ω \ P⊥) and can be

assumed to satisfy the system
∆uε =

u2?−1−ε
ε

|π(x)|s in D′(Ω)

uε > 0 in Ω∫
Ω

u2?−ε
ε

|π(x)|s dx = (µεs,P(Ω))
2?−ε

2?−2−ε

Moreover, we have that limε→0 µ
ε
s,P(Ω) = µs,P(Ω), and there exists u0 ∈ H2

1,0(Ω)

such that, up to a subsequence, uε ⇀ u0 weakly in H2
1,0(Ω) when ε→ 0. If u0 6≡ 0,

then limε→0 uε = u0 strongly in H2
1,0(Ω) and u0 is a minimizer for µs,P(Ω). In

particular, µs,P(Ω) is attained.

We now start the blow-up analysis for minimizing sequences. Actually, we con-
sider a more general case. Here and in the sequel, we let pε ∈ [0, 2? − 2) such
that

lim
ε→0

pε = 0.

We assume that (10) holds. We consider a family (aε)ε>0 ∈ C1(Ω) such that there
exists λ,C > 0 such that

‖aε‖C1(Ω) ≤ C and

∫
Ω

(|∇ϕ|2 + aεϕ
2) dx ≥ λ

∫
Ω

ϕ2 dx (14)

for all ε→ 0 and all ϕ ∈ C∞c (Ω). For any ε > 0, we consider uε ∈ H2
1,0(Ω)∩C2(Ω \

P⊥) a solution to the system{
∆uε + aεuε =

u2?−1−pε
ε

|π(x)|s in D′(Ω)

uε > 0 in Ω
(15)

We assume that uε is of minimal energy type, that is∫
Ω

|uε|2
?−pε

|π(x)|s
dx = µs,P(Ω)

2?

2?−2 + o(1) (16)

where limε→0 o(1) = 0. We also assume that blow-up occurs, that is

uε ⇀ 0 (17)

weakly in H2
1,0(Ω) when ε → 0. Such a family arises naturally when u0 ≡ 0 in

Proposition 3.2. It follows from Proposition 7.1 of the Appendix that uε ∈ C0(Ω).
We let xε ∈ Ω and µε, kε > 0 such that

max
Ω

uε = uε(xε) = µ
−n−2

2
ε and kε := µ

1− pε
2?−2

ε . (18)

Our goal in this section is to prove the following:

Proposition 3.3. Under the above assumption, there exists x0 ∈ P⊥∩∂Ω, a chart
ϕ as in (13), there exists (z̄ε)ε>0 ∈ ∂Rn− such that limε→0 z̄ε = 0 and such that the
function

vε(x) := µ
n−2
2

ε uε ◦ ϕ(z̄ε + kεx)

defined for x ∈ U−z̄ε
kε

and ε > 0 verifies that there exists v ∈ H2
1,0(Rn−) \ {0} such

that for any η ∈ C∞c (Rn), ηvε ⇀ ηv in H2
1,0(Rn−) weakly in D′(Rn−) when ε → 0.
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The function v verifies that

∆v =
v2?−1

|π(x)|s
in D′(Rn−)

and
∫
Rn−
|∇v|2 dx = µs,P(Ω)

2?

2?−2 = µs,P(Rn−)
2?

2?−2 . In addition, v ∈ C1(Rn−) and

lim
ε→0

vε = v in C1
loc(Rn−). (19)

Moreover,

lim
ε→0

µpεε = 1.

Proof: The proof goes in five steps.

Step 3.1: We claim that

µε = o(1) and π(xε) = O(kε) (20)

when ε→ 0.

Indeed assume that limε→0 µε 6= 0, then up to a subsequence, there exists C > 0
such that |uε(x)| ≤ C for all x ∈ Ω and all ε > 0. Mimicking the proof of the
Appendix, we get that there exists C > 0 such that ‖uε‖C1(Ω) ≤ C. Since (17)

holds, it follows from Ascoli’s theorem that, up to a subsequence, limε→0 uε = 0 in
C0(Ω). A contradiction with (16). This proves that limε→0 µε = 0.

To prove the second part of the claim assume that

lim
ε→0

|π(xε)|
kε

= +∞. (21)

For any ε > 0, set

βε = |π(xε)|
s
2uε(xε)

2+pε−2?

2 = |π(xε)|
s
2 k

2−s
2

ε . (22)

It follows from the definition (22) of βε and (21) that

lim
ε→0

βε = 0, lim
ε→0

(
βε
kε

)2

= +∞ and lim
ε→0

(
βε
|π(xε)|

)2

= 0 (23)

when ε→ 0.

Case 3.1.1: Assume first there exists ρ > 0 such that d(xε,∂Ω)
βε

≥ 2ρ for all ε > 0.

For x ∈ B2ρ(0) and ε > 0, define

vε(x) :=
uε(xε + βεx)

uε(xε)
.

This is well defined since xε + βεx ∈ Ω for all x ∈ B2ρ(0). As easily checked, with
(15), we have that

∆vε + k2
εaε(xε + βεx)vε =

v2?−1−pε
ε∣∣∣ π(xε)

|π(xε)| + βε
|π(xε)|π(x)

∣∣∣s
weakly in B2ρ(0). Since 0 ≤ vε(x) ≤ vε(0) = 1 for all x ∈ Bρ(0), it follows from
standard elliptic theory and (23) that there exists v ∈ C1(B2ρ(0)) such that vε → v
in C1

loc(B2ρ(0)) as ε→ 0. In particular,

v(0) = lim
ε→0

vε(0) = 1 (24)
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With a change of variables and the definition (22) of βε, we get that∫
Ω∩Bρβε (xε)

u2?−pε
ε

|π(x)|s
dx =

uε(xε)
2?−pεβnε

|π(xε)|s

∫
Bρ(0)

v2?−pε
ε∣∣∣ π(xε)

|π(xε)| + βε
|π(xε)|π(x)

∣∣∣s dx
≥
(
βε
kε

)n−2

µ
−pε n−2

2?−2
ε

∫
Bρ(0)

v2?−pε
ε∣∣∣ π(xε)

|π(xε)| + βε
|π(xε)|π(x)

∣∣∣s dx.
Using (16), (23) and passing to the limit ε→ 0 (note that µ−1

ε ≥ 1 for ε > 0 small),
we get that

∫
Bρ(0)

v2? dx = 0, and then v ≡ 0. This contradicts (24) and therefore

(21) does not hold, which proves the claim in Case 3.1.1.

Case 3.1.2: Now assume that, up to a subsequence, limε→0
d(xε,∂Ω)

βε
= 0. We then

get a contradiction by a rescaling of uε as in [12]. The proof uses the techniques of
Case 3.1.1 and is rather similar to [12] to which we refer for the details.

In both cases, we have obtained a contradiction and Step 3.1 is established. �

Step 3.2: Up to a subsequence, we claim that x0 defined as

x0 := lim
ε→0

xε (25)

belongs to P⊥ ∩ ∂Ω.

Indeed, it follows from (20) and (18) that π(x0) = 0, that is x0 ∈ P⊥. Since
x0 ∈ Ω, it follows from (10) that x0 ∈ P⊥ ∩ ∂Ω.

Since (10) holds, we have that (11) holds. We choose a basis as in (12) and we choose
a chart ϕ as in (13). In particular, here again, we let k = dimRP ∈ {2, ..., n− 1}.
Step 3.3: Setting

xε = ϕ(x1,ε, yε, zε), (26)

where x1,ε < 0, yε ∈ span(~e2, ..., ~ek) and zε ∈ span(~ek+1, ..., ~en) = P⊥, we claim
that

d(xε, ∂Ω) = (1 + o(1))|x1,ε| = O(kε), yε = O(kε) and ϕ0(0, zε) = O(kε), (27)

when ε→ 0. Here ϕ0 is as in (13).

Proof of the claim: our first remark is that

d(xε, ∂Ω) = O(kε) (28)

when ε → 0. Indeed, since P⊥ ∩ Ω = ∅, we have that xε − π(xε) ∈ P⊥ ∈ Rn \ Ω.
Since xε ∈ Ω, there exists tε ∈ (0, 1) such that tεxε + (1 − tε) · (xε − π(xε)) ∈ ∂Ω.
Consequently,

d(xε, ∂Ω) ≤ |xε− (tεxε + (1− tε) · (xε− π(xε)))| = (1− tε)|π(xε)| ≤ |π(xε)| = O(kε)

when ε→ 0. This proves (28).

As in [12], we get that
d(xε, ∂Ω) = (1 + o(1))|x1,ε| (29)

when ε→ 0. We write that

π(xε) = π(x1,ε + ϕ0(yε, zε), yε, zε) = (x1,ε + ϕ0(yε, zε), yε, 0).
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With (20) and (28), we then get that

ϕ0(yε, zε) = O(kε) and yε = O(kε) (30)

when ε → 0. Noting that ϕ0(yε, zε) = ϕ0(0, zε) + O(|yε|) when ε → 0, we get that
ϕ0(0, zε) = O(kε). These last equalities, (28), (29) and (30) prove (27). �

We let

λε := −x1,ε

kε
> 0, θε :=

yε
kε
∈ P and ρε := −ϕ0(0, zε)

kε
. (31)

It follows from (27) and (29) that there exist λ0 ≥ 0, ρ0 ∈ R and θ0 ∈ P such that

λ0 := lim
ε→0

λε, θ0 := lim
ε→0

θε and ρ0 := lim
ε→0

ρε. (32)

We claim that ρε ≥ 0 for all ε > 0. Indeed, since P⊥ ∩ Ω = ∅, there exists δ > 0
such that for all z ∈ span{~ek+1, ..., ~en} ∩Bδ(0)

ϕ0(0, z) ≤ 0. (33)

The definition (31) of ρε yields that ρε ≥ 0 for all ε > 0. Note that it follows from
(33) that there exists C > 0 such that

d(x, ∂Ω) ≤ C|π(x)| (34)

for all x ∈ Ω.

Step 3.4: From now on, we let z̄ε = (0, 0, zε) for all ε > 0 where zε is defined in
(26), and for any x ∈ U−z̄ε

kε
∩ {x1 ≤ 0}, we set

vε(x) :=
uε ◦ ϕ(z̄ε + kεx)

uε(xε)
, (35)

where ϕ is defined in (13). It follows from (31) that

vε(−λε, θε, 0) = 1. (36)

As easily checked, for any η ∈ C∞c (Rn), we have that ηvε ∈ H2
1,0(Rn−) for all ε > 0.

Step 3.4.1: There exists v ∈ H2
1,0(Rn−) such that for any η ∈ C∞c (Rn),

ηvε ⇀ ηv

weakly in H2
1,0(Rn−) when ε → 0. The proof is rather similar to what was done in

[12] to which we refer for details.

Step 3.4.2: We claim that limε→0 vε = v in C1
loc(Rn−), where v 6≡ 0.

Indeed, letR > 0 and for any i, j = 1, ..., n, we let (g̃ε)ij = (∂iϕ(z̄ε+kεx), ∂jϕ(z̄ε+
kεx)), where (·, ·) denotes the Euclidean scalar product on Rn. We consider g̃ε as a
metric on Rn. We let

∆g̃ε = −g̃ijε
(
∂ij − Γkij(g̃ε)∂k

)
,

where g̃ijε := (g̃−1
ε )ij are the coordinates of the inverse of the tensor g̃ε and the

Γkij(g̃ε)’s are the Christoffel symbols of the metric g̃ε. With a change of variable
and the definition (35), equation (15) rewrites as

∆g̃εvε + k2
εaε ◦ ϕ(z̄ε + kεx)vε =

v2?−1−pε
ε∣∣∣π(ϕ(z̄ε+kεx))
kε

∣∣∣s in D′({x1 < 0}) (37)
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for all ε > 0. It follows from the definition (13) of ϕ and (33) that there exists
CR > 0 such that |π(ϕ(z̄ε + kεx))| ≥ CRkε|π(x)| for all x ∈ Rn− ∩ BR(0). With
(18) and (35), we get that 0 ≤ vε ≤ 1. With the method used in the Appendix,
we get that (vε)ε>0 converges in C1

loc(Rn−). Since vε ⇀ v weakly in H2
1,0(Rn−) when

k → +∞, we get that limε→0 vε = v in C1
loc(Rn−). With (36) and (32), we get that

v(−λ0, θ0, 0) = 1, and in particular, v 6≡ 0 and λ0 > 0. �

Step 3.4.3: We claim that ∆v = v2
?−1

|π(x)|s in D′(Rn−) and that∫
Rn−
|∇v|2 dx = µs,P(Ω)

2?

2?−2 = µs,P(Rn−)
2?

2?−2 .

Indeed, by passing to the weak limit ε→ 0 in (37), we get that

∆v =
v2?−1

|π(x)− (ρ0, 0, 0)|s
in D′(Rn−).

Testing this equality with v ∈ H2
1,0(Rn−) and using the optimal Hardy-Sobolev

inequality (6), we get that(∫
Rn−
|∇v|2 dx

) 2?−2
2?

=

∫
Rn−
|∇v|2 dx(∫

Rn−
v2?

|π(x)−(ρ0,0,0)|s dx
) 2

2?

≥

∫
Rn−
|∇v|2 dx(∫

Rn−
v2?

|π(x)|s dx
) 2

2?
≥ µs,P(Rn−). (38)

Here, we have used that |π(x)− (ρ0, 0, 0)| ≥ |π(x)| since ρ0 ≥ 0 and x1 < 0 for all
x ∈ Rn−. We then obtain that∫

Rn−
|∇v|2 dx ≥ µs,P(Rn−)

2?

2?−2 . (39)

Moreover, see for instance [12], we have that
∫
Rn−
|∇v|2 dx ≤ µs,P(Rn−)

2?

2?−2 . We

then get that ∫
Rn−
|∇v|2 dx = µs,P(Ω)

2?

2?−2 = µs,P(Rn−)
2?

2?−2 ,

and that
lim
ε→0

ρε = ρ0 = 0 and lim
ε→0

µpεε = 1. (40)

For this last assertion, we refer to [12]. �

Proposition 3.3 now follows from Steps 3.1 to 3.4. �

We shall also need the following two claims for the next section

Step 3.5: Under the hypothesis of Proposition 3.3, we have that

lim
R→+∞

lim
ε→0

∫
Ω\BRkε (ϕ(z̄ε))

u2?−pε
ε

|π(x)|s
dx = 0. (41)

We omit the proof which is quite similar to [12].

Step 3.6: We also claim that

lim
ε→0

uε = 0 in C1
loc(Ω \ {x0}). (42)
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Indeed, for δ > 0, it follows from (41) that

lim
ε→0

∫
Ω\Bδ(x0)

u2?−1−pε
ε (x)

|π(x)|s
dx = 0.

Using the techniques in the Appendix of [12, 13], we get that

lim
ε→0
‖uε‖Lp(Ω\Bδ(x0)) = 0

for all p ≥ 1, and the method developed in this paper’s Appendix, we get (42). �

4. Blow-up analysis, Part II

This section is devoted to the proof of the following strong pointwise estimate.

Proposition 4.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3 and let P be
a linear subspace of Rn such that 2 ≤ dimRP ≤ n − 1. Let s ∈ (0, 2) and assume
that (10) holds. For (pε)ε>0 in [0, 2? − 2) such that limε→0 pε = 0 and (aε)ε>0 as
in (14), we consider (uε)ε>0 ∈ H2

1,0(Ω)∩C2(Ω \ P⊥) such that (15), (16) and (17)
hold. We let x0, ϕ, (µε)ε>0 and (z̄ε)ε>0 as in Proposition 3.3. Then, there exists
C > 0 such that

uε(x) ≤ Cd(x, ∂Ω) + C
µ
n
2
ε d(x, ∂Ω)

(µ2
ε + |x− ϕ(z̄ε)|2)

n
2

(43)

and

|∇uε(x)| ≤ C + C
µ
n
2
ε

(µ2
ε + |x− ϕ(z̄ε)|2)

n
2

(44)

for all ε > 0 and all x ∈ Ω.

Proof: We take inspiration from [8]. We proceed in five steps.

Step 4.1: We claim that there exists C > 0 such that

|π(x)|
n−2
2 uε(x)1− pε

2?−2 ≤ C (45)

for all ε > 0 and all x ∈ Ω.

Indeed if not, we let yε ∈ Ω such that

|π(yε)|
n−2
2 uε(yε)

1− pε
2?−2 = sup

x∈Ω
|π(x)|

n−2
2 uε(x)1− pε

2?−2 → +∞ (46)

as ε→ 0. We then let

νε := uε(yε)
− 2
n−2 and `ε := ν

1− pε
2?−2

ε (47)

for all ε > 0. It follows from (46) and (47) that

lim
ε→0

νε = 0 and lim
ε→0

|π(yε)|
`ε

= +∞, (48)

and from (18) and (40) that
lim
ε→0

νpεε = 1. (49)

We also let

γε := |π(yε)|
s
2 |uε(yε)|

2−2?+pε
2 , (50)

for all ε > 0. It follows from (48) that

lim
ε→0

γε
|π(yε)|

= 0. (51)
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Case 4.1.1: We assume first that, up to a subsequence, there exists ρ > 0 such that

d(yε, ∂Ω)

γε
≥ 3ρ (52)

for all ε > 0. For any x ∈ B2ρ(0) and any ε > 0, we let

wε(x) := ν
n−2
2

ε uε(yε + γεx). (53)

Note that wε is well defined thanks to (52). With (46) and (50), we get that∣∣∣∣ π(yε)

|π(yε)|
+

γε
|π(yε)|

π(x)

∣∣∣∣n−2
2

wε(x)1− pε
2?−2 ≤ 1.

In particular, with (51), there exists C0 > 0 such that

0 ≤ wε(x) ≤ C0 (54)

for all x ∈ B2ρ(0) and all ε > 0. With (15), we get that

∆wε + γ2
ε aε(yε + γεx)wε =

w2?−1−pε
ε∣∣∣ π(yε)

|π(yε)| + γε
|π(yε)|π(x)

∣∣∣s
for all x ∈ B2ρ(0) and all ε > 0. Since (48) and (54) hold, it follows from standard
elliptic theory that there exists w ∈ C1(B2ρ(0)) such that w(0) = 1 and

lim
ε→0

wε = w (55)

in C1
loc(B2ρ(0)). Mimicking what was done in Step 3.1, we get a contradiction.

Case 4.1.2: We assume that

lim
ε→0

d(yε, ∂Ω)

γε
= 0. (56)

As in Step 3.1, we get a contradiction. We refer to [12] for proof in a similar context.

In both cases, we have contradicted (46). This proves (45). �

Step 4.2: This step is a slight improvement of (45). We claim that

lim
R→+∞

lim
ε→0

sup
x∈Ω\BRkε (ϕ(z̄ε))

|π(x)|
n−2
2 uε(x)1− pε

2?−2 = 0. (57)

The proof is similar to Step 4.1 and uses the techniques developed in [12]. We refer
to Step 4.1 and [12] for the details.

Step 4.3: We claim that for any ν ∈ (0, 1) and any R > 0, there exists C(ν,R) > 0
such that

uε(x) ≤ C(ν,R) ·

(
µ
n
2−ν(n−1)
ε d(x, ∂Ω)1−ν

(µ2
ε + |x− ϕ(z̄ε)|2)

n(1−ν)
2

+ d(x, ∂Ω)1−ν

)
(58)

for all x ∈ Ω and all ε > 0.

Indeed, let G be the Green’s function for ∆ in Ω with Dirichlet boundary condition,
and set Hε(x) = −∂~nG(x, ϕ(z̄ε)) for all x ∈ Ω \ {ϕ(z̄ε)}, where here ~n denotes the
outward normal vector at ∂Ω. It follows from Theorem 9.2 of [13] that Hε ∈
C2(Ω \ {ϕ(z̄ε)}), that

∆Hε = 0 (59)

in Ω and that there exist δ1, C1 > 0 such that
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d(x, ∂Ω)

C1|x− ϕ(z̄ε)|n
≤ Hε(x) ≤ C1d(x, ∂Ω)

|x− ϕ(z̄ε)|n
(60)

and –using (34)– that

|∇Hε(x)|
Hε(x)

≥ 1

C ′1d(x, ∂Ω)
≥ 1

C1|π(x)|
(61)

for all x ∈ Ω ∩ B2δ1(0). Let λ1 > 0 be the first eigenvalue of ∆ on Ω, and let
ψ ∈ C2(Ω) be ”the first eigenfunction” in such a way that ∆ψ = λ1ψ in Ω

ψ > 0 in Ω
ψ = 0 on ∂Ω.

It follows from standard elliptic theory, Hopf’s maximum principle and again (34)
that there exists C2, δ2 > 0 such that

1

C2
d(x, ∂Ω) ≤ ψ(x) ≤ C2d(x, ∂Ω) and

|∇ψ(x)|
ψ(x)

≥ 1

C ′2d(x, ∂Ω)
≥ 1

C2|π(x)|
(62)

for all x ∈ Ω ∩B2δ2(ϕ(z̄ε)). We now consider the operator

Lε = ∆ +

(
aε −

u2?−2−pε
ε

|π(x)|s

)
.

Step 4.3.1: We claim that there exist δ0 > 0 and R0 > 0 such that for any ν ∈ (0, 1)
and any R > R0, δ ∈ (0, δ0), we have that

LεH
1−ν
ε > 0, and Lεψ

1−ν > 0 (63)

for all x ∈ Ω ∩Bδ(ϕ(z̄ε)) \BRkε(ϕ(z̄ε)) and for all ε > 0 sufficiently small.
Indeed, with (59), we get that

LεH
1−ν
ε

H1−ν
ε

(x) = aε(x) + ν(1− ν)
|∇Hε|2

H2
ε

(x)− uε(x)2?−2−pε

|π(x)|s
(64)

for all x ∈ Ω and all ε > 0. We let α > 0. It follows from (57) that there exists
R0 > 0 such that for any R > R0, we have that

|π(x)|2−s|uε(x)|2
?−2−pε < α

for all x ∈ (Bδ(ϕ(z̄ε)) \ BRkε(ϕ(z̄ε))) ∩ Ω and all ε > 0 small enough. With (14),
(64) and (61), we get that for α > 0 and δ > 0 small enough, we have that

LεH
1−ν
ε

H1−ν
ε

(x) >
ν(1− ν)− αC2

1 − C2
1 |π(x)|2|aε(x)|

C2
1 |π(x)|2

> 0

for all x ∈ (Bδ(ϕ(z̄ε)) \BRkε(ϕ(z̄ε))) ∩ Ω and all ε > 0 small enough. The proof of
the second inequality of (63) goes the same way.

Step 4.3.2: It follows from (19) in Proposition 3.3 that there exists C1(R) > 0 such
that

uε(x) ≤ C1(R)µ
−n2
ε d(x, ∂Ω)

for all x ∈ Ω ∩ ∂BRkε(ϕ(z̄ε)) and all ε > 0. In particular, there exists C(R) > 0
such that

uε(x) ≤ C(R)µ
n
2−ν(n−1)
ε H1−ν

ε (x) (65)

for all x ∈ Ω ∩ ∂BRkε(ϕ(z̄ε)) and all ε > 0.
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It follows from (42) there exists C1(δ) > 0 such that

uε(x) ≤ C1(δ)d(x, ∂Ω) (66)

for all x ∈ Ω ∩ ∂Bδ(ϕ(z̄ε)) and all ε > 0. In particular, there exists C(δ) > 0 such
that uε(x) ≤ C(δ)ψ(x)1−ν for all x ∈ Ω ∩ ∂Bδ(ϕ(z̄ε)) and all ε > 0. We let

Dε,R,δ := (Bδ(ϕ(z̄ε)) \BRkε(ϕ(z̄ε))) ∩ Ω.

It follows from (65) and (66) that

uε(x) ≤ C(R)µ
n
2−ν(n−1)
ε H1−ν

ε (x) + C(δ)ψ(x)1−ν (67)

for all ε > 0 and all x ∈ ∂Dε,R,δ.

Step 4.3.3: We claim that Lε is coercive and therefore verifies the comparison prin-
ciple on Dε,R,δ.

Indeed, with (41), we get that for any α > 0, there exists R̃0 > 0 such that for

any R > R̃0, we have that∫
Ω\BRkε (ϕ(z̄ε))

u2?−pε
ε (x)

|π(x)|s
dx ≤ α.

Since ∆ + aε is uniformly coercive, we get that Lε is coercive on Ω \ BRkε(ϕ(z̄ε))
for R large enough. We refer to Lemma 3.4 of [21] for details on this assertion.

Step 4.3.4: Since

Lε(C(R)µ
n
2−ν(n−1)
ε H1−ν

ε (x) + C(δ)ψ(x)1−ν) > 0 = Lεuε

in Dε,R,δ and (67) holds, we get from Step 4.3.3 that

uε(x) ≤ C(R)µ
n
2−ν(n−1)
ε H1−ν

ε (x) + C(δ)ψ(x)1−ν

for all x ∈ Dε,R,δ. With (60) and (62), we then get that (58) holds on Dε,R,δ =

(Bδ(ϕ(z̄ε)) \ BRkε(ϕ(z̄ε))) ∩ Ω for R large and δ small. It follows from this last
assertion, (19) in Proposition 3.3 and (42) that (58) holds on Ω. �

Step 4.4: We claim that there exists C > 0 such that

uε(x) ≤ Cd(x, ∂Ω) + C
µ
n
2
ε d(x, ∂Ω)

(µ2
ε + |x− ϕ(z̄ε)|2)

n
2

(68)

for all x ∈ Ω and all ε > 0.

Indeed, it follows from (19) in Proposition 3.3 and (42) that for any δ,R > 0,
inequality (68) holds for all x ∈ (Ω \ Bδ(ϕ(z̄ε))) ∪ (Ω ∩ BRµε(ϕ(z̄ε))) for all ε > 0.
What is left is to prove (68) for any sequence (yε)ε>0 ∈ Ω such that

lim
ε→0

yε = x0 and lim
ε→0

|yε − ϕ(z̄ε)|
kε

= +∞. (69)

We show that (68) holds for x = yε. With Green’s representation formula, we get
that

uε(yε) =

∫
Ω

Gε(yε, y)
uε(y)2?−1−pε

|π(y)|s
dy,
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where Gε is the Green’s function for the uniformly coercive operator ∆ + aε. For
ν ∈ (0, 1), we use (58) and (34) to get that

uε(yε) ≤ C

∫
Ω

Gε(yε, y)
d(y, ∂Ω)(1−ν)(2?−1−pε)

|π(y)|s
dy

+C

∫
Ω

Gε(yε, y)

|π(y)|s

(
µ
n
2−(n−1)ν
ε d(y, ∂Ω)1−ν

(µ2
ε + |y − ϕ(z̄ε)|2)

n(1−ν)
2

)2?−1−pε

dy

≤ Iε,1 + Iε,2 + Iε,3 (70)

where

Iε,1 :=

∫
Ω

Gε(yε, y)|π(y)|(1−ν)(2?−1−pε)−s dy,

Iε,2 :=

∫
Dε,2

Gε(yε, y)

|π(y)|s

(
µ
n
2−(n−1)ν
ε d(y, ∂Ω)1−ν

(µ2
ε + |y − ϕ(z̄ε)|2)

n(1−ν)
2

)2?−1−pε

dy,

and

Iε,3 :=

∫
Dε,3

Gε(yε, y)

|π(y)|s

(
µ
n
2−(n−1)ν
ε d(y, ∂Ω)1−ν

(µ2
ε + |y − ϕ(z̄ε)|2)

n(1−ν)
2

)2?−1−pε

dy

for all ε > 0, where

Dε,2 :=

{
|yε − y| >

1

2
|yε − ϕ(z̄ε)|

}
and Dε,3 :=

{
|yε − y| <

1

2
|yε − ϕ(z̄ε)|

}
We first deal with Iε,1. The Green’s function verifies

Gε(yε, y) ≤ C d(yε, ∂Ω)

|yε − y|n−1

for all y ∈ Ω \ {yε} and all ε > 0. We refer to [13] for the proof of this assertion.
Since s ∈ (0, 2) and ϕ(z̄ε) ∈ ∂Ω, we then get that

Iε,1 ≤ Cd(yε, ∂Ω)

∫
Ω

|π(y)|(1−ν)(2?−1−pε)−s

|yε − y|n−1
≤ Cd(yε, ∂Ω) (71)

for all ε > 0.

For Iε,2, we note that the Green’s function verifies

Gε(yε, y) ≤ C d(yε, ∂Ω)d(y, ∂Ω)

|yε − y|n
(72)

for all y ∈ Ω \ {yε} and all ε > 0. We again refer to [13] for the proof of this
assertion. We then get with (34) and a change of variables that

Iε,2

≤ C
∫
Dε,2

d(yε, ∂Ω)

|yε − y|n
µ

(n2−(n−1)ν)(2?−1−pε)
ε d(y, ∂Ω)(1−ν)(2?−1−pε)+1−s

(µ2
ε + |x− ϕ(z̄ε)|2)

n(1−ν)
2 (2?−1−pε)

dy

≤ C d(yε, ∂Ω)µ
(n2−(n−1)ν)(2?−1−pε)
ε

|yε − ϕ(z̄ε)|n

∫
Ω

|y − ϕ(z̄ε)|(1−ν)(2?−1−pε)+1−s

(µ2
ε + |x− ϕ(z̄ε)|2)

n(1−ν)
2 (2?−1−pε)

dy

≤ C d(yε, ∂Ω)µ
n
2
ε

|yε − ϕ(z̄ε)|n

∫
Rn

|z|(1−ν)(2?−1−pε)+1−s

(1 + |z|2)
n(1−ν)

2 (2?−1−pε)
dy ≤ C d(yε, ∂Ω)µ

n
2
ε

|yε − ϕ(z̄ε)|n
. (73)
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To deal with Iε,3, we first note that for any y ∈ Dε,3, we have that

1

2
|yε − ϕ(z̄ε)| ≤ |y − ϕ(z̄ε)| ≤

3

2
|yε − ϕ(z̄ε)|. (74)

With inequality (101) (with θ = 1) on the Green’s function, we then get that

Iε,3

≤ C d(yε, ∂Ω)µ
(n2−(n−1)ν)(2?−1−pε)
ε

|yε − ϕ(z̄ε)|n(1−ν)(2?−1−pε)

∫
Dε,3

dy

|yε − y|n−1|π(y)|s−(1−ν)(2?−1−pε)
.

We let

θε =
yε − ϕ(z̄ε)

|yε − ϕ(z̄ε)|
+

(ϕ0(0, z̄ε), 0, 0)

|yε − ϕ(z̄ε)|
.

With (31), (40) and (69), we get that there exists θ0 ∈ Rn such that |θ0| = 1 and
limε→0 θε = θ0. With the change of variables y = yε + |yε − ϕ(z̄ε)|z and using (69),
we get that

Iε,3 ≤ (75)

C
d(yε, ∂Ω)µ

(n2−(n−1)ν)(2?−1−pε)
ε

|yε − ϕ(z̄ε)|(n−1)(1−ν)(2?−1−pε)+s−1

∫
|z|< 1

2

dz

|z|n−1|π(θε + z)|s−(1−ν)(2?−1−pε)

≤ C d(yε, ∂Ω)µ
(n2−(n−1)ν)(2?−1−pε)
ε

|yε − ϕ(z̄ε)|(n−1)(1−ν)(2?−1−pε)+s−1

= o

(
d(yε, ∂Ω)µ

n
2
ε

|yε − ϕ(z̄ε)|n

)
(76)

when ε→ 0. Plugging (71), (73) and (76) in (70) and using again (69), we get that

uε(yε) ≤ Cd(yε, ∂Ω) + C
µ
n
2
ε d(yε, ∂Ω)

(µ2
ε + |yε − ϕ(z̄ε)|2)

n
2

when ε→ 0. This ends the proof of (68).

Step 4.5: We claim that there exists C > 0 such that

|∇uε(x)| ≤ C + C
µ
n
2
ε

(µ2
ε + |x− ϕ(z̄ε)|2)

n
2

(77)

for all x ∈ Ω.

To prove the claim, as in Step 4.4, we just need to consider (yε)ε>0 ∈ Ω as in (69).
We use Green’s representation formula to write

∇uε(yε) =

∫
Ω

∇xGε(yε, y)
uε(y)2?−1−pε

|π(y)|s
dy.

With (68), we get that

|∇uε(yε)| ≤ Jε,1 + Jε,2 + Jε,3, (78)

where

Jε,1 := C

∫
Ω

|∇xGε(yε, y)|d(y, ∂Ω)2?−1−pε

|π(y)|s
dy,

Jε,2 := C

∫
|yε−y|> 1

2 |yε−ϕ(z̄ε)|
|∇xGε(yε, y)| µ

n
2 (2?−1−pε)
ε d(y, ∂Ω)2?−1−pε

|π(y)|s (µ2
ε + |y − ϕ(z̄ε)|2)

n
2 (2?−1−pε)

dy
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and

Jε,3 := C

∫
|yε−y|< 1

2 |yε−ϕ(z̄ε)|
|∇xGε(yε, y)| µ

n
2 (2?−1−pε)
ε d(y, ∂Ω)2?−1−pε

|π(y)|s (µ2
ε + |y − ϕ(z̄ε)|2)

n
2 (2?−1−pε)

dy.

To estimate Jε,1, use that the Green’s function satisfies

|∇xG(yε, y)| ≤ C

|yε − y|n−1
(79)

for all y ∈ Ω \ {yε} and all ε > 0. We refer to [13] for the proof of this inequality.
With (34), we then get that

Jε,1 ≤ C
∫

Ω

dy

|yε − y|n−1|π(y)|s−(2?−1−pε)
≤ C (80)

For Jε,2, we use that (see [13])

|∇xG(yε, y)| ≤ Cd(y, ∂Ω)

|yε − y|n

for all y ∈ Ω \ {yε} and all ε > 0. Plugging this inequality in Jε,2 and performing
computations similar to what was done in the proof of (73), we get that

Jε,2 ≤ C
µ
n
2
ε

(µ2
ε + |x− ϕ(z̄ε)|2)

n
2

(81)

To deal finally with Jε,3, we again use estimate (79) on the Green’s function com-
bined with the same techniques as in the proof of (76), to obtain

Jε,3 ≤ C
µ
n
2
ε

(µ2
ε + |x− ϕ(z̄ε)|2)

n
2

(82)

Plugging (80), (81) and (82) in (78), we get (77) and Proposition 4.1. �

5. Pohozaev identity and proof of Theorem 1.1

We first prove the following

Proposition 5.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3 and let P be a
linear vector subspace of Rn such that 2 ≤ dimRP ≤ n− 1. Assume that s ∈ (0, 2)
and that (10) holds. For (pε)ε>0 ∈ [0, 2? − 2) and (aε)ε>0 as in (14), we consider
(uε)ε>0 ∈ H2

1,0(Ω) ∩ C2(Ω \ P⊥) such that (15), (16) and (17) hold. Then there

exist x0 ∈ ∂Ω∩P⊥, γ0 ≥ 0 and a family (µε)ε>0 ∈ R+ such that limε→0 µε = 0 and

lim
ε→0

pε
µε

=
2(n− s)
(n− 2)2

µs,P(Rn−)−
n−s
2−s

∫
∂Rn−

(
1

2
IIx0

(x, x)− γ0

)
|∇v|2 dx, (83)

where IIx0
is the second fundamental form of ∂Ω at x0.

Sections 5.1 to 5.3 below are devoted to the proof of Proposition 5.1, while
Theorem 1.1 and Corollary 1.1 are proved in Step 5.4.

Step 5.1: We establish a Pohozaev-type identity for uε. In the sequel, we let
(z̄ε)ε>0, (µε)ε>0, (kε)ε>0 and x0 ∈ P⊥ ∩ ∂Ω as in Proposition 4.1. We also consider
the chart ϕ defined in (13). We let

Vε = Ω ∩ ϕ(B√µε(z̄ε)) = ϕ(Rn− ∩B√µε(z̄ε)).
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In particular,

∂Vε = ϕ(Rn− ∩ ∂B√µε(z̄ε)) ∪ ϕ(B√µε(z̄ε) ∩ ∂Rn−) = V 1
ε ∪ V 2

ε .

In the sequel, we denote by ν(x) the outward normal vector at x ∈ ∂Vε of the
oriented hypersurface ∂Vε (this is defined outside a null measure set). Let x̃0 ∈ Rn.
After integrations by parts (for instance, we refer to [12, 13]), we get that(

n− 2

2
− n− s

2? − pε

)∫
Vε

u2?−pε
ε

|π(x)|s
dx− s

∫
Vε

(x̃0, π(x))

|π(x)|s+2
· u

2?−pε
ε

2? − pε
dx

+

∫
Vε

(
aε +

(x− x̃0)i∂iaε
2

)
u2
ε dx

=

∫
∂Vε

(
−n− 2

2
uε∂νuε + (x− x̃0, ν)

|∇uε|2

2
− (x− x̃0)i∂iuε∂νuε

− (x− x̃0, ν)

2? − pε
· u

2?−pε
ε

|π(x)|s
+
aε(x− x̃0, ν)

2
u2
ε

)
dσ (84)

for all ε > 0. Since uε ≡ 0 on ∂Ω, taking x̃0 = ϕ(z̄ε) in (84), we get that(
n− 2

2
− n− s

2? − pε

)∫
Vε

u2?−pε
ε

|π(x)|s
dx− s

∫
Vε

(ϕ(z̄ε), π(x))

|π(x)|s+2
· u

2?−pε
ε

2? − pε
dx

+

∫
Vε

(
aε +

(x− ϕ(z̄ε))
i∂iaε

2

)
u2
ε dx

=

∫
V 1
ε

(
−n− 2

2
uε∂νuε + (x− ϕ(z̄ε), ν)

|∇uε|2

2

−(x− ϕ(z̄ε))
i∂iuε∂νuε −

(x− ϕ(z̄ε), ν)

2? − pε
· u

2?−pε
ε

|π(x)|s
+
aε(x− ϕ(z̄ε), ν)

2
u2
ε

)
dσ

−1

2

∫
V 2
ε

(x− ϕ(z̄ε), ν)|∇uε|2 dσ. (85)

With (16), (41), (43), (44) and Proposition 3.3, we get that(
(n− 2)2

4(n− s)
µs,P(Rn−)

2?

2?−2 + o(1)

)
pε + s

∫
Vε

(ϕ(z̄ε), π(x))

|π(x)|s+2
· u

2?−pε
ε

2? − pε
dx

=
1

2

∫
V 2
ε

(x− ϕ(z̄ε), ν)|∇uε|2 dσ + o(µε). (86)

Step 5.2: We deal with the RHS of (86). With a change of variable, we get that∫
ϕ(B√µε (z̄ε)∩∂Rn−)

(x− ϕ(z̄ε), ν)|∇uε|2 dσ = (87)

(1 + o(1))µε

∫
Dε

(
ϕ(z̄ε + kεx)− ϕ(z̄ε)

k2
ε

, ν ◦ ϕ(z̄ε + kεx)

)
|∇vε|2g̃ε

√
|g̃ε| dx

where the metric g̃ε is such that (g̃ε)ij = (∂iϕ, ∂jϕ)(z̄ε + kεx) for all i, j = 2, ..., n,
vε is as in Proposition 3.3 and

Dε = B√µε
kε

(0) ∩ {x1 = 0}.



BEST HARDY-SOBOLEV CONSTANT 21

Using the expression of ϕ (see (13)), we get (see [12, 13] for details) that(
ϕ(z̄ε + kεx)− ϕ(z̄ε)

k2
ε

, ν ◦ ϕ(z̄ε + kεx)

)
=

1 + o(1)

k2
ε

(
ϕ0(z̄ε + kεx)− ϕ0(z̄ε)− kε

n∑
i=2

xi∂iϕ(z̄ε + kεx)

)

= −1

2

n∑
i,j=2

∂ijϕ(z̄ε)x
ixj + oε(1)|x|2 (88)

for ε > 0 and x ∈ Dε. In this expression, limε→0 oε(1) = 0 uniformly in Dε.
Plugging (88) into (87), using the estimate (44), Lebesgue’s convergence theorem
and (19), we get that

lim
ε→0

1

µε

∫
ϕ(B√µε (z̄ε)∩∂Rn−)

(x− ϕ(z̄ε), ν)|∇uε|2 dσ = −1

2

∫
∂Rn−

∂ijϕ0(0)xixj |∇v|2 dx.

(89)

Step 5.3: We deal with the second term of the LHS of (86). With the pointwise
estimate (43) and a change of variables, we get that∫

Vε

(ϕ(z̄ε), π(x))

|π(x)|s+2
· u

2?−pε
ε

2? − pε
dx

=
1 + o(1)

µ2
ε

∫
D′ε

(π ◦ ϕ(z̄ε), π ◦ ϕ(z̄ε + kεx))∣∣∣π◦ϕ(z̄ε+kεx)
kε

∣∣∣s+2 · v
2?−pε
ε

2? − pε
dx

when ε→ 0, where

D′ε := B
R
√
µε
kε

(0) ∩ {x1 < 0}.

With the explicit expression of ϕ (see (13)) and noting x = (x1, y, z) as in (13), we
get that ∫

Vε

(ϕ(z̄ε), π(x))

|π(x)|s+2
· u

2?−pε
ε

2? − pε
dx

= (1 + o(1))
ϕ0(0, zε)

kε

∫
D′ε

x1 + ϕ0(kεy,zε+kεz))
kε∣∣∣π (x1 + ϕ0(kεy,zε+kεz)

kε
, y, z

)∣∣∣s+2

v2?−pε
ε

2? − pε
dx

when ε→ 0. With point (iii) of (13), the estimate (43) and Lebesgue’s convergence
theorem, we get that ∫

Vε

(ϕ(z̄ε), π(x))

|π(x)|s+2

u2?−pε
ε

2? − pε
dx

=
ϕ0(0, zε)

µε

(∫
Rn−

x1v
2?

2?|π(x)|s+2
dx+ o(1)

)
(90)
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where limε→0 o(1) = 0. Plugging (89) and (90) into (86) and noting that ϕ0(0, zε) ≤
0 (see (33)), we get that(

(n− 2)2

4(n− s)
µs,P(Rn−)

n−s
2−s + o(1)

)
pε +

(∫
Rn−

s|x1|v2?

2?|π(x)|s+2
dx+ o(1)

)
|ϕ0(0, zε)|

µε

=

(
−1

4

∫
∂Rn−

∂ijϕ0(0)xixj |∇v|2 dx+ o(1)

)
· µε (91)

where limε→0 o(1) = 0. In particular, we get that |ϕ0(0, zε)| = O(µ2
ε) when ε → 0.

We let

γ0 := − lim
ε→0

ϕ0(0, zε)

µ2
ε

≥ 0.

With (91), we get that

lim
ε→0

(n− 2)2

4(n− s)
µs,P(Rn−)

n−s
2−s

pε
µε

= −1

4

∫
∂Rn−

∂ijϕ0(0)xixj |∇v|2 dx− γ0
s

2?

∫
Rn−

|x1| · v2?

|π(x)|s+2
dx.

Taking x̃0 = ~e1 in (84), using a change of variable and the arguments used to prove
(90), we get that

s

2?

∫
Rn−

|x1|v2?

|π(x)|s+2
dx =

1

2

∫
∂Rn−
|∇v|2 dx. (92)

We consider the second fondamental form associated to ∂Ω, namely

IIp(x, y) = (dνpx, y)

for all p ∈ ∂Ω and all x, y ∈ Tx0∂Ω (recall that ν is the outward normal vector at
the hypersurface ∂Ω). In the basis (~e1, ..., ~en), the matrix of the bilinear form IIx0

is −D2
0ϕ0, where D2

0ϕ0 is the Hessian matrix of ϕ0 at 0. With this remark, (91)
and (92), we get that

lim
ε→0

pε
µε

=
2(n− s)
(n− 2)2

µs,P(Rn−)−
n−s
2−s

∫
∂Rn−

(
1

2
IIx0(x, x)− γ0

)
|∇v|2 dx,

where γ0 ≥ 0. This ends the proof of Proposition 5.1.

Step 5.4: We are now in position to prove Theorem 1.1. Points (A) and (B) of
Theorem 1.1 are direct consequences of Propositions 2.1 and 2.2. To establish Part
(C) of Theorem 1.1, assume that (10) holds and let us suppose that there are no
extremals for (6). It follows from Proposition 3.2 that there exists (uε)ε>0 ∈ H2

1,0(Ω)
such that (15) and (16) hold with pε = ε and aε ≡ 0. Since there are no extremals,
it follows from Proposition 3.2 that (17) holds. We apply Proposition 5.1 and we
get that

lim
ε→0

ε

µε
=

2(n− s)
(n− 2)2

µs,P(Rn−)−
n−s
2−s

∫
∂Rn−

(
1

2
IIx0(x, x)− γ0

)
|∇v|2 dx

where x0 ∈ P⊥ ∩ ∂Ω and γ0 ≥ 0. We then get that∫
∂Rn−

IIx0
(x, x)|∇v|2 dx ≥ 0 (93)
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Assume that we are in the first case of point (C) of Theorem 1.1. We then get that
IIx0

(x, x) ≤ 0 for all x ∈ ∂Rn−, but IIx0
(x, x) 6≡ 0, contradicting (93).

To relate our main result to conditions on the mean curvature, we now assume that
P ∩ Tx∂Ω and P⊥ are orthogonal with respect to the bilinear form IIx0

, we get in
the coordinates (12) and the chart (13) that (IIx0

)ij = 0 when i ∈ {2, ..., k} and
j ∈ {k + 1, n}. In particular, we have with (93) that k∑

i,j=2

(IIx0
)ij

∫
∂Rn−

xixj |∇v|2 dx

+

 n∑
i,j=k+1

(IIx0
)ij

∫
∂Rn−

xixj |∇v|2 dx

 ≥ 0.

(94)
The matrix of the second fundamental form of ∂Ω ∩ (P⊥ + (Tx0∂Ω)⊥) at x0 with

respect to a given vector ~X is
(

(IIx0( ~X))ij

)
i,j≥k+1

= −
(
∂ijϕ0(0)X1

)
i,j≥k+1

. Since

∇ϕ0(0) = 0 and ϕ0(0, z) ≤ 0 for z close to 0, we get that for any direction ~X, the
principal curvatures of ∂Ω∩ (x0 + (P⊥+ (Tx0

∂Ω)⊥)) at x0 have a sign. If the mean
curvature vector of ∂Ω ∩ (x0 + (P⊥ + (Tx0

∂Ω)⊥)) at x0 is assumed to be null, it
then follows that the second fundamental form of ∂Ω ∩ (P⊥ + (Tx0∂Ω)⊥) at x0 is
null, and we then get from (94) that

k∑
i,j=2

(IIx0
)ij

∫
∂Rn−

xixj |∇v|2 dx ≥ 0. (95)

Here, v ∈ H2
1,0(Rn−) is positive, verifies ∆v = v2

?−1

|π(x)|s weakly, and v(x) ≤ C(1 +

|x|2)−n for all x ∈ Rn− (this last statement is a consequence of (19) and (43)). It
follows from Proposition 1.1 that there exists ṽ such that v(x1, y, z) = ṽ(x1, |y|, z).
With this symmetry property, with (95) we get that

∑k
i=1(IIx0)ii ≥ 0, and then

the mean curvature at x0 of ∂Ω is nonnegative. This contradicts assumption (2) of
case (C) of Theorem 1.1. This ends the proof of the Theorem.

Concerning Corollary 1.1, the subcritical problem yields families of positive solu-
tions to (15) and (16) with aε ≡ a and pε = ε. The proof of Corollary 1.1 then goes
as in the Proof of Theorem 1.1.

6. Proof of Proposition 1.2

We let Ω and P be as in Proposition 1.2. In particular dimR P = 1. The proof of
case (B) of Proposition 1.2 goes exactly as the proof of Proposition 2.2. Concerning
case (C), we claim that µs,P(Ω) = 0 when s ∈ [1, 2). Indeed, taking u ∈ C∞c (Ω) such

that u(x0) = 1, where x0 ∈ P⊥ ∩ Ω, it is easily checked that
∫

Ω
u2?

|π(x)|s dx = +∞,

and then µs,P(Ω) = 0 is not achieved. When s ∈ (0, 1) in case (A), the proof of
non-achievement goes as the proof of Proposition 2.1.

We are left with case (C) of Proposition 1.2, that is P⊥ ∩Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅.
Up to a change of coordinates, we assume that P⊥ = {x1 = 0}, Ω ⊂ Rn− and

0 ∈ P⊥∩∂Ω and |π(x)| = |x1|. In particular, it follows from the Sobolev inequality
and the Hardy inequality that

µs,P(Rn−) := inf


∫
Rn−
|∇u|2 dx(∫

Rn−
|u|2?
|x1|s dx

) 2
2?

∣∣∣∣∣∣∣ u ∈ H2
1,0(Rn−) \ {0}

 > 0.
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Since Ω ⊂ Rn−, we get that µs,P(Ω) ≥ µs,P(Rn−). With arguments similar to the
proof of Proposition 3.1, we also get the reverse inequality, and then µs,P(Ω) =
µs,P(Rn−). In particular, an extremal for µs,P(Ω) is an extremal for µs,P(Rn−) and
vice-versa. As in the proof of Proposition 2.1, the maximum principle yields a
contradiction.

7. Appendix: Regularity of weak solutions

In this appendix, we prove the following regularity result:

Proposition 7.1. Let Ω be a smooth bounded domain of Rn, n ≥ 3. Let P ⊂ Rn
be a k−dimensional linear subspace of Rn, where 2 ≤ k ≤ n− 1. We assume that

P⊥ ∩ Ω = ∅ and P⊥ ∩ ∂Ω 6= ∅.

We let s ∈ (0, 2) and a ∈ C0,α(Ω), where α ∈ (0, 1). We let ε ∈ [0, 2? − 2) and
consider u ∈ H2

1,0(Ω) a weak solution of

∆u+ au =
|u|2?−2−εu

|π(x)|s
in D′(Ω). (96)

Then u ∈ C1(Ω) ∩ C2,α(Ω \ P⊥).

Proof of Proposition 7.1: Note that since 2? < 2n
n−2 , it follows from standard elliptic

theory that u ∈ C2,α(Ω \ P⊥). In particular, u ∈ C2,α(Ω).

Step 7.1: We claim that

u ∈ Lp(Ω) (97)

for all p ≥ 1. Indeed, the proof is similar to the case P = Rn provided in [12, 13].
We omit the proof and refer to [12, 13] for the details.

In particular, we get that |u|
2?−2−εu
|π(x)|s ∈ Lp(Ω) for all 1 ≤ p < k

s . In the case k = n,

we take p > n
2 , and then u ∈ L∞(Ω). A bootstrap argument (see also [10]) then

yields that u ∈ C1(Ω). However, in the general case 2 ≤ k ≤ n − 1, such an
argument using standard elliptic theory does not hold, and we have to use the
Green’s function to prove the proposition.

Step 7.2: We let θ ∈ (0,min{2 − s, 1}). We claim that there exists C > 0 such
that

|u(x)| ≤ Cd(x, ∂Ω)θ (98)

for a.e. x ∈ Ω.

Proof of the claim: We let (ηk)k∈N ∈ C∞c (Ω) such that 0 ≤ ηk ≤ 1 for all k and
ηk(x) = 1 for d(x, ∂Ω) ≥ 2k−1. We let (uk)k∈N ∈ H2

1,0(Ω) such that

∆uk = ηk

(
|u|2?−2−εu

|π(x)|s
− au

)
. (99)

Since u ∈ C2(Ω) and Ω ∩ P⊥ = ∅, we get that uk ∈ C2(Ω) for all k ∈ N. We let G
be the Green’s function for ∆ with Dirichlet boundary condition. It follows from
Green’s representation formula that

uk(x) =

∫
Ω

G(x, y)ηk(y)

(
|u|2?−1−ε(y)

|π(y)|s
− au

)
dy (100)
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for a.e. x ∈ Ω. It follows from Theorem 9.1 of [13] that there exists C > 0 such
that

0 < G(x, y) ≤ C d(x, ∂Ω)θ

|x− y|n−2+θ
(101)

for all x, y ∈ Ω, x 6= y. Plugging this inequality in (100) and using Hölder’s
inequality, we get that

|uk(x)| ≤ Cd(x, ∂Ω)θ
∫

Ω

1

|x− y|n−2+θ

(
|u(y)|2?−1−ε

|π(y)|s
+ |u(y)|

)
dy

≤ Cd(x, ∂Ω)θ‖|u|2
?−1−ε‖q

(∫
Ω

dy

|x− y|p(n−2+θ)|π(y)|sp

) 1
p

+Cd(x, ∂Ω)θ‖u‖q′
(∫

Ω

dy

|x− y|p′(n−2+θ)

) 1
p′

(102)

where p, q, p′, q′ > 1 are such that 1
p + 1

q = 1
p′ + 1

q′ = 1. Since θ ∈ (0, 1) and (97)

holds, we get that there exists C > 0 such that for p, p′ > 1 sufficiently close to 1,
we have that

|u(x)| ≤ Cd(x, ∂Ω)θ
(∫

Ω

dy

|x− y|p(n−2+θ)|π(y)|sp

) 1
p

+ Cd(x, ∂Ω)θ

for all x ∈ Ω. For simplicity, up to a change of coordinates, we write any y ∈ Rn as
y = (y′, y′′), where y′ = π(y) ∈ Rk = P and y′′ ∈ Rn−k = P⊥. We let R > 0 such

that Ω ⊂ BkR(0)×Bn−kR (0) (the product of the ball of radius R in Rk and the ball
of radius R in Rn−k). We then get with a change of variable that∫

Ω

dy

|x− y|p(n−2+θ)|π(y)|sp

≤ C
∫
BkR(0)

1

|y′|ps

∫
BR(0)n−k

(
dy′′

|x′ − y′|p(n−2+θ) + |x′′ − y′′|p(n−2+θ)

)
dy′

≤ C
∫
BkR(0)

1

|y′|ps|x′ − y′|p(n−2+θ)+k−n

∫
B 2R
|x′−y′|

(0)n−k

(
dz′′

1 + |z′′|p(n−2+θ)

)
dy′

≤ C
∫
BkR(0)

dy′

|y′|ps|x′ − y′|p(n−2+θ)+k−n ≤ C

for all (x′, x′′) ∈ Ω. Here, we have taken p > 1 close to 1 and we have used that
s ∈ (0, 2). Plugging this inequality in (102), we get that there exists C > 0 such
that

|uk(x)| ≤ Cd(x, ∂Ω)θ (103)

for all x ∈ Ω and all k ∈ N. Multiplying (99) by uk, integrating over Ω, using that
u ∈ H2

1,0(Ω), the inequality (1) and (103), we get that there exists C > 0 such that

‖uk‖H2
1,0(Ω) ≤ C for all k ∈ N. It then follows that there exists ũ ∈ H2

1,0(Ω) such

that uk ⇀ ũ weakly in H2
1,0(Ω) when k → +∞ and limk→+∞ uk(x) = ũ(x) for a.e.

x ∈ Ω. The function ũ verifies ∆ũ = |u|2
?−2−ε

|π(x)|s − au in D′(Ω). Since ∆ is coercive,

it then follows from (96) that ũ = u. With (103), we then get (98). �

Step 7.3: We claim that there exists C > 0 such that

|u(x)| ≤ Cd(x, ∂Ω) (104)
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for a.e. x ∈ Ω.

Proof of the claim: Indeed, we let θ0 ∈ (0, 1) such that there exists C > 0 such
that |u(x)| ≤ Cd(x, ∂Ω)θ0 . With (34), we get that there exists C > 0 such that
|u(x)| ≤ C|π(x)|θ0 for all x ∈ Ω. We let θ ∈ (0, 1). It follows from Green’s
representation formula and (101) that there exists C > 0 such that

|uk(x)| =

∣∣∣∣∫
Ω

G(x, y)ηk(y)

(
|u|2?−1−ε(y)

|π(y)|s
− au

)
dy

∣∣∣∣
≤ Cd(x, ∂Ω)θ + C

∫
Ω

d(x, ∂Ω)θ

|x− y|n−2+θ|π(y)|s−θ0(2?−1−ε) dy.

We proceed as in Step 7.3 and get that |u(x)| ≤ Cd(x, ∂Ω)θ for some θ > θ0. The
claim follows by induction. �

Step 7.4: We claim that u ∈ C1(Ω).

Proof of the claim: With inequality (104), and the method used in Step 7.2, we get
that

lim
k→+∞

uk(x) =

∫
Ω

G(x, y)

(
|u|2?−2−εu(y)

|π(y)|s
− au

)
dy

and

lim
k→+∞

∇uk(x) =

∫
Ω

∇xG(x, y)

(
|u|2?−2−εu(y)

|π(y)|s
− au

)
dy

uniformly for x ∈ Ω. Since uk ⇀ u in H2
1,0(Ω) when k → +∞, we get that

u ∈ C1(Ω). �
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