CONCENTRATION ESTIMATES FOR EMDEN-FOWLER
EQUATIONS WITH BOUNDARY SINGULARITIES AND
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ABSTRACT. We establish —among other things— existence and multiplicity of

*

solutions for the Dirichlet problem Zl Oizu+ % = 0 on smooth bounded
domains Q of R™ (n > 3) involving the critical Hardy-Sobolev exponent 2* =
% where 0 < s < 2, and in the case where zero (the point of singularity) is
on the boundary 9. Just as in the Yamabe-type non-singular framework (i.e.,
when s = 0), there is no nontrivial solution under global convexity assumption
(e.g., when  is star-shaped around 0). However, in contrast to the non-
satisfactory situation of the non-singular case, we show the existence of an
infinite number of solutions under an assumption of local strict concavity of 92
at 0 in at least one direction. More precisely, we need the principal curvatures
of 90 at 0 to be non-positive but not all vanishing. We also show that the
best constant in the Hardy-Sobolev inequality is attained as long as the mean
curvature of 9 at 0 is negative, extending the results of [20] and completing
our result of [21] to include dimension 3. The key ingredients in our proof are
refined concentration estimates which yield compactness for certain Palais-
Smale sequences which do not hold in the non-singular case.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

We address the problem of existence and multiplicity of possibly sign-changing
solutions of the following Emden-Fowler boundary value problem on a smooth do-
main Q of R™, n > 3:

Ay = % in D'(Q) (1)

u=0 on 0N).
where here and throughout the paper, A = —3". 0;; is the Laplacian with minus
sign convention, and 2* := 2*(s) = % with s € [0,2]. The non-singular case,

i.e., when s = 0, is the Euclidean version of the celebrated Yamabe problem con-
sidered first by Brezis and Nirenberg [6] followed by a large number of authors.
Here again the situation is interesting since we are dealing with the correspond-
ing critical exponent in the Hardy-Sobolev embedding H? ;(Q) — LP(Q; |z ~*dx)
which is not compact when p = 2*(s). We recall that H7 ,(2) is the completion
of C°(Q), the set of smooth functions compactly supported in 2, for the norm

Date: December, 2nd 2005.

Both authors gratefully acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada and the hospitality of the University of British Columbia where this
work was initiated.



2 N. GHOUSSOUB AND F. ROBERT

lullzz ) = / [ [Vu|? dz, and that the above embedding follows from the Hardy-
Sobolev inequality ([9], [10], [23]) which states that the constant defined as

a |zf®

satisfies 0 < ps(€2) < +o00. This in turn allows for a variational approach for the
problem of finding solutions in Hf ((€2) N C°(Q) for the Dirichlet problem (1).

Now the story of the state of the art in the non-singular case is quite extensive
(see for instance Struwe [37]), but for our purpose we single out the following
highlights:

1) For any domain {2, the best constant po(£2) is the same as pg(R™) and it is
never attained unless Q is essentially R™ (i.e., cap(R™\ 2) = 0), in which case there
is an infinite number of sign-changing solutions for

{ Au=|u* 2u  inD'(Q)

o
s () := inf {/ [Vul?dz; u € Hf 4(Q2) and [ dz = 1} (2)
Q

u=20 on 0N. (3)

Moreover, there are no solution for (3) whenever Q is bounded convex or star-
shaped. On the other hand, there are solutions if € is not contractible (in dimension
3) and an infinite number of them [3], if the domain © has non-trivial homology
(i.e., Hq(Q,Zs) # 0 for some d > 0). Unfortunately, these topological conditions
are far from being optimal and no geometric condition that would guarantee the
existence of one or more solutions, have so far been isolated.

2) On the other hand, the addition of a linear term to the equation, such as

Au=|u* 2u+Iu inD(Q) )
u=20 on 0N).

improves the situation dramatically, especially when 0 < A < Ay, since there is then
a positive solution for any smooth bounded domain €2 in R™ as long as n > 4 (See
Brezis-Nirenberg [6]). The case n = 3 is more delicate and was dealt by Druet [13].
Most relevant to our work, are the recent results by Devillanova and Solimini who
managed in [11], to establish the existence of an infinite number of solutions for (4)
in dimension n > 7.

The situation for the Emden-Fowler equations (i.e., when s > 0) turned out to
be at least as interesting, and somewhat more satisfactory. Actually, the case when
0 belongs to the interior of the domain 2 is almost identical to the non-singular
case [23] as one can prove essentially the same results with a suitable adaptation of
the same techniques. However, the situation is much different when 0 € 9S.

1) Indeed, Egnell showed in [17] that for open cones of the form C = {z €
R™ 2 =7r0,0 € D and r > 0} where the base D is a connected domain of the unit
sphere S™~! of R™, the best constant u,(C) is attained for 0 < s < 2 even when
C # R™. The case where 99 is smooth at 0 was tackled in [20] and it turned out
to be also quite interesting since the curvature of the boundary at 0 gets to play
an important role. It was shown there that in dimension n > 4, the negativity
of all principal curvatures® at 0 —which is essentially a condition of “local strict
concavity” — leads to attainability of the best constant for problems with Dirichlet

n our context, we specify the orientation of 9 in such a way that the normal vectors of 9Q
are pointing outward from the domain .
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boundary conditions, while the Neumann problems required the positivity of the
mean curvature at 0.

More recently, we show in [21] that for dimension n > 4, the negativity of the
mean curvature of 9§ at 0 is sufficient to ensure the attainability of ps(€2). This
result is quite satisfactory, since standard Pohozaev type arguments show non-
attainability in the case where (2 is convex or star-shaped at 0. One of the results of
this paper is the extension of this attainability result to cover all dimensions (greater
than 3) including the more subtle context of dimension 3. We shall establish the
following

Theorem 1.1. Let © be a smooth bounded oriented domain of R™, n > 3, such
that 0 € 9 and assume s € (0,2). If the mean curvature of O at 0 is negative,
then ps(2) is achieved by a positive function which is —a positive multiple of- a
solution for

‘2*72

Ay = 1 FE L inD(Q)
u>0 mn Q) (5)
u=20 on 0f).

2) As to the question of multiplicity of solutions for (1), we note that Ghoussoub-
Kang had shown in [20] the existence of two solutions under the same negativity
condition on all of the principal curvatures at 0. More precisely, assuming that the
principal curvatures aq, ..., a, —1 of 92 at 0 are finite, the oriented boundary 0f2 near
the origin can then be represented (up to rotating the coordinates if necessary) by
z1 = po(a') = =3 30, o122 +0(|2'|?), where 2’ = (22, ..., ) € Bs(0)N{z1 = 0}
for some 6 > 0 where Bs(0) is the ball in R™ centered at 0 with radius 4. If the
principal curvatures at 0 are all negative, i.e., if

| Jnax <0, (6)
then the sectional curvature at 0 is negative and therefore 9§ —viewed as an (n—1)-
Riemannian submanifold of R"— is strictly convex at 0 (see for instance [18]). The
latter property means that there exists a neighborhood U of 0 in 92, such that
the whole of U lies on one side of a hyperplane H that is tangent to 92 at 0 and
U N H = {0}, and so does the complement R™ \ Q, at least locally. In other words,
the above curvature condition then amounts to a notion of strict local convexity of
R™\ Q at 0. In this paper, we complete and extend these results in many ways,
since we establish the existence of infinitely many solutions under the following
much weaker assumption:

max «a; <0 and min  «a; < 0. (7)
1<i<n—1 1<i<n—1

which is a condition of “local concavity at 0” that is “strict” in at least one direction.
Theorem 1.2. Let §) be a smooth bounded oriented domain of R", n > 3, such that
0 € 09Q. Let s € (0,2) and a € C*(Q) be such that the operator A + a is coercive

in 0. If the principal curvatures of 98 at 0 are non-positive, but not all vanishing,
then there exists an infinite number of solutions u € H1270(Q) NCHQ) for

[]*

Au+ au = [l 2w D'(Q)
u=20 on 0.
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Now we do not know if the negativity of the mean curvature at 0 is sufficient for
the above result, however it is a remarkably satisfactory once compared to what is
known in the nonsingular case and since —as mentioned above— we have no solution
when () is convex or star shaped at 0.

3) Now all these results rely on blow-up analysis techniques where the limiting
spaces (i.e., where the blown-up solutions of corresponding Euler-Lagrange equa-
tions eventually live) play an important role. In the non-singular case, the limiting
space is R™ while in our framework, the limiting cases occur on half-spaces of the
form R” = {z € R"/x; < 0}, where z; denotes the first coordinate of a generic
point x € R™ in the canonical basis of R™. The above theorem is a corollary of a
more powerful result established below about the asymptotic behaviour of a family
of solutions to elliptic pde’s, which are not necessarily minimizing sequences. We
actually study families of solutions to related subcritical problems, and we com-
pletely describe their asymptotic behaviour —potentially developing a singularity at
zero— as we approach the critical exponent.

More precisely, we say that a function is in C1(Q) if it can be extended to a
Cl—function in a open neighborhood of Q, and consider a family (a.)c~o € C*(9)
and a function a € C1(Q) such that there exists an open subset & C R™ such
that a.,a can be extended to I by C'—functions that we still denote by a.,a. We
assume that they satisfy

QccU and lim ac = a in cHu). (8)
€—
Here is the main result of this paper.

Theorem 1.3. Let Q) be a smooth bounded oriented domain of R™, n > 3, such
that 0 € 9. Assume s € (0,2) and consider (ac)eso € C1(Q) such that (8) hold.
We let (pe)eso such that p. € [0,2* —2) for all e > 0 and lim._,o p. = 0. We assume
that the principal curvatures of 0 at 0 are non-positive but do not all vanish. We
consider a family of functions (uc)eso € Hi o(Q) such that

Aue + acu, = ‘ufiue in D'(Q)
u. =10 on 0f).

1) If the family (ue)eso is uniformly bounded in HY (), then (uc)eso is pre-
compact in the C*—topology. In particular, there exists ug € HIQ,O(Q) such that, up
to a subsequence, we have that lim._,ou. = ug in C*(Q).

2) Moreover, if the ue’s are nonnegative for all € > 0, then the same conclusion
holds under the sole hypothesis that the mean curvature of 9 at 0 is negative and
that the family (uc)eso is uniformly bounded in H? ;(Q).

The proof of this theorem uses the machinery developed in Druet-Hebey-Robert
[15] and is in the spirit of Druet [14], where the concentration analysis is studied in
the intricate Riemannian setting. The study of the asymptotic for elliptic nonlinear
pde’s was initiated by Atkinson-Peletier [1], see also Brézis-Peletier [7]. In the
Riemannian context, the asymptotics have first been studied by Schoen [38] and
Hebey-Vaugon [31]. This tool has happened to be a very powerful tool for the
study of best constant problems in Sobolev inequalities, see for instance Druet [12],
Hebey-Vaugon [31], [32] and Robert [36]). Let us also mention the study of the
asymptotics for solutions to nonlinear pde’s (Han [26], Hebey [28], Druet-Robert
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[16] and Robert [35]). In the case of arbitrary large energies, the compactness issues
become quite intricate, especially in the Riemannian context, see for instance the
pioneer work of Schoen [38]. We also refer to the recent Druet [14] and Marques
[34]. Compactness results for fourth order equations are in Hebey-Robert [29] and
Hebey-Robert-Wen [30]. In a forthcoming paper [21], we tackle similar questions
for various critical equations involving a whole affine subspace of singularities on
the boundary.

The paper is organized as follows. In Section 2, we state general facts and two
lemmae that will be useful throughout the paper. In Section 3, we construct the
different scales of blow-up. In Sections 4 and 5, we prove strong pointwise estimates
for sequences of solutions to our problem. In Section 6, we use the Pohozaev identity
to describe precisely the asymptotics related to our problem and we prove theorem
1.3. Section 7 contains the proofs of Theorems 1.1 and 1.2. Finally, we give in the
Appendix a regularity result for solutions to a critical PDE, some useful properties
of the Green’s function and a symmetry property of solutions to some nonlinear
elliptic equations on the half-plane.

2. BASIC FACTS AND PRELIMINARY LEMMAE

From now on, we let Q be a smooth bounded domain of R™, n > 3, such that
0 € 90. We let s € (0,2). For any € > 0, we let p. € [0,2* — 2) such that

lim p. = 0. (9)

e—0

We let a € C1(Q2) and a family (a,)so0 € C1(2) such that (8) holds. For any € > 0,
we consider u. € H 1270(9) a solution to the system

Aue + acue = "L, in D(Q) (B)
ue =10 on 0N

for all € > 0. Note that it follows from Proposition 8.1 of the Appendix that
ue € CHY(Q)NCA(Q\ {0})
for all 6 € (0, min{1,2* — s}). In addition, we assume that there exists A > 0 such
that
[uellmz ) < A (10)
for all € > 0. It then follows from the weak compactness of the unit ball of Hf ;(2)
that there exists ug € Hf o(€2) such that

Ue — UQ (11)
weakly in H{ ((€2) when € — 0. Note that ug verifies

B |u0|2*72

AUO =+ auyg = W

ug in D'(Q).
It follows from the Appendix that
ug € CH(Q) N C%(Q\ {0})

for all € (0, min{1, 2* —s}). The following Proposition addresses the case when u,
is uniformly bounded in L*°. Note that here and in the sequel, all the convergence
results are up to the extraction of a subsequence.
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Proposition 2.1. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 00. Welet (u.), (ac) and (pe) such that (E¢), (8) and (9) hold. We assume that
there exists C > 0 such that |u(x)] < C for all x € Q. Then up to a subsequence,
lim, 0 ue = ug in C1(Q), where ug is as in (11).

Proof: Tt follows from the proof of Proposition 8.1 of the Appendix that for any
¢ € (0,min{1,2* — s}), there exists C' > 0 such that [Juc|[c1.0q) < C for all € > 0.
The conclusion of the Proposition then follows. We refer to the Appendix for the
details. O

From now on, we assume that

L [Juuel| Lo (@) = o0 (12)

Throughout the paper, we shall say that blow-up occurs whenever (12) holds. We
define

R’i:{xER”/xl <0}
where x; is the first coordinate of a generic point of R™. This space will be the limit
space after blow-up. In the sequel of this section, we give some useful tools for the
blow-up analysis. We let yo € 0f). Since 0f2 is smooth and yy € OS2, there exist U, V'
open subsets of R™, there exists I an open intervall of R, there exists U’ an open
subset of R"~! such that 0 € U = I x U’ and yo € V. There exist ¢ € C®(U,V)
and ¢o € C*°(U’) such that, up to rotating the coordinates if necessary,

i) ¢:U—Visa C>™ — diffeomorphism
1

(
(i ©(0) = yo
(

-

(13)

<

iv) eUN{z1 <0})=pU)NQand p(UN{z1 =0}) = pU)NN.
v)  (@1,y) = o+ (21 + @o(y),y) for all (z1,y) e I xU' =U
(vi)  0(0) =0 and V¢(0) = 0.

Here D, denotes the differential of ¢ at z. This chart will be useful throughout
all the paper.

~

We prove two useful blow-up lemmae:

Lemma 2.1. We let Q be a smooth bounded domain of R™, n > 3. We assume
that 0 € 9Q. We let (u.), (ae) and (pe) such that (E.), (8), (9) and (10) hold. We
let (ye)eso € Q. Let

__2_ s 2+4pe —2*
Ve 1= \ue(y€)| "2 and B = ‘ye|2 |ue(ye)| %
We assume that lim._,ov. = 0. In particular, lim._,o B8 = 0. We assume that
for any R > 0, there exists C(R) > 0 such that

ue(@)| < C(R)|uc(ye) (14)
for all x € Brp,(y.) N and all € > 0. Then we have that

1— 5P
Yye =0 (1/6 2 ’2)

when € — 0. In particular, lime_,oy. = 0.
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Proof of Lemma 2.1: We proceed by contradiction and assume that

lim Il = +o00. (15)

e—0 ée

where /. := Vel B for all € > 0. In particular, it follows from the definition of 3.
and (15) that

: o Be . Be

Case 1: We assume that there exists p > 0 such that
d(ye, 0
Be

for all e > 0. For « € By,(0) and € > 0, we define

3p

v (z) = Ue(Ye + Bex)
(o) ue(Ye) ’

Note that this is well defined since y. + Bz € €2 for all x € By, (0). It follows from
(14) that there exists C'(p) > 0 such that

lve(2)] < C(p) (17)
for all € > 0 and all x € By,(0). As easily checked, we have that

2 |U6|2*_2_p67}6
Ave + BZac(ye + Bex)ve = T

X
Tyl T Tue]

S

weakly in Bs,(0). Since (16) holds, we have that

Ave + Bac(ye + Ber)ve = (14 o(1))|ve|* ~> o, (18)
weakly in Bs,(0), where lim_,g 0(1) = 0 in C9 (B2,(0)). It follows from (17), (18)

loc

and standard elliptic theory that there exists v € C*(Bs,(0)) such that

Ve — U
in C}

loc

(B3,(0)) when € — 0. In particular,

v(0) = li_rggJ ve(0) =1 (19)
and v #Z 0. With a change of variables and the definition of 3., we get that

/ [ P (€79 74 / ol
- S
aNBys (v 1217 |ye[® B, (0) ‘ ve e

|ye‘ |ys‘x
lyel \ 77 o> 7
> 7 / < dx.
€ B,(0) ‘ Ye l[;elm

[Yel
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Using the equation (E.), (10), (15) and (16) and passing to the limit ¢ — 0, we get

that
/ [v]?" dz =0,
B,(0)

and then v = 0 in B,(0). A contradiction with (19). Then (15) does not hold in
Case 1.

Case 2: We assume that, up to a subsequence,

o d(ye, 09)
e " 2
In this case,

lim y. = yog € 0N2.
e—0

Since yo € 9N, we let p : U — V as in (13), where U,V are open neighborhoods of
0 and yo respectively. We let @, = u. o ¢, which is defined on U N {z; < 0}. For
any 4,7 =1, ...,n, we let g;; = (9, 0j¢), where (-,-) denotes the Euclidean scalar
product on R", and we consider g as a metric on R”. We let A, = —div,(V) the
Laplace-Beltrami operator with respect to the metric g. In our basis, we have that

Ay =—g" (0i; — T5;0k) ,
where g% = (g_l)ij are the coordinates of the inverse of the tensor g and the Ffj’s

are the Christoffel symbols of the metric g. As easily checked, we have that

~ 2*—2—175’“
Agﬂe +a6 ogo(x) '{l/e = u

lo(@)l°
weakly in U N {z; < 0}. We let z. € 90 such that
|ze = Ye| = d(ye, 0%). (21)
We let g, Z. € U such that
P(Ye) = ye and p(Ze) = z. (22)
It follows from the properties (13) of ¢ that
lgr})ye = 21_1}}) Ze =0, (g)1 <0 and (Z); =0. (23)
At last, we let
biw) o= Lot fet)
Ue(9e)
forallz € Uﬂ_fe N{x; < 0}. With (23), we get that ¥, is defined on Br(0)N{z; < 0}

for all R > 0, as soon as € is small enough. It follows from (14) that there exists
C’(R) > 0 such that

|9e(@)] < C'(R) (24)
for all € > 0 and all x € Bg(0) N {z1 < 0}. The function o, verifies

_ a2 . I A
Aéeve + Bcaco ©(Ze + Pex)ve = W

[Yel
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weakly in Br(0) N {z1 < 0}. In this expression, g. = g(Z. + fex) and Aj_ is the
Laplace-Beltrami operator with respect to the metric g.. With (20), (21) and (22),
we get that

(p(ée + Bex) = Ye + OR(l)Bev
for all x € Br(0) N {x; < 0} and all € > 0, where there exists Cr > 0 such that
|Or(1)| < Cg for all x € Br(0) N {z1 < 0}. With (16), we then get that
iy [P Ce £ Be)|
=0 [yl
in CY(Bgr(0) N {z1 <0}). It then follows that

=1

Ag. B + B2ac 0 p(Ze + Bea)be = (1 + 0(1))[5[* ~2 7P
weakly in Br(0)N{z1 < 0}, where lim._,00(1) = 0 in C°(Bg(0)N{x; < 0}). Since
¥ vanishes on Br(0) N {z; = 0} and (24) holds, it follows from standard elliptic
theory that there exists & € C'(Bg(0) N {z1 < 0}) such that

lim v, =0
e—0

in CO(B%(O) N{z; <0}). In particular,

0 =0on Bg(0)N{z; =0}. (25)
Moreover, it follows from (20), (21) and (22) that

b (222} = 1and lim &2 =0,
Be e—0 €

In particular, 0(0) = 1. A contradiction with (25). Then (15) does not hold in Case

2.

In both cases, we have contradicted (15). This proves that y. = O(¢.) when ¢ — 0,
which proves the Lemma. ([

Lemma 2.2. We let Q be a smooth bounded domain of R™, n > 3. We assume
that 0 € 9Q. We let (u.), (ac) and (pe) such that (E¢), (8), (9) and (10) hold. We
let (Ve)eso and (Le)eso such that ve,be > 0 for all e > 0 and

_ _Pe
1 2% -2

le = Ve and lim v, = 0.
e—0

Since 0 € 0Q, we let ¢ : U — V as in (13) with yo = 0, where U,V are open
neighborhoods of 0. We let

Ue(x) := Ve? o o(lex)
for all x € % N{x1 <0} and all e > 0. We assume that either

(L1) for all R > 0, there exists C(R) > 0 such that
|te(z)] < C(R)
for all x € BRr(0) N {z1 <0}, or
(L2) for all R > § > 0, there exists C(R,d) > 0 such that

|te(z)] < C(R,9)
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for all x € (Bg(0) \ Bs(0)) N {z1 < 0}.
Then there exists @ € Hf o(R™) N C*(R™) such that

A = il - Y in D'(R™)
Ed
and R
L CL.(R™) if (L1) holds
lim tie = @ in { CURT\{0}) if (L2) holds

Proof of Lemma 2.2: Let n € C*°(R™). As easily checked, we have that

e € Hi o(R2)
for all € > 0 small enough, and

n—-2
V(nic)(z) = wcVn + nleve D(&:I?)@[(vue)(@(éex))]’
for all € > 0 and all x € R™. In this expression, D,y is the differential of the
function ¢ at x. We get that

/ IV (i) 2 dir < 2 / V22 da
R™ R™

12022 /}R sy, P AT
N n

With Holder’s inequality and a change of variables, we get that

/ |V (niie)|? do < 2 / |Vn|™ dx . / |,
R™ R™ R™NSUpp Vvng
Ve

n—2
+407 ( ) / \Vu€|2(g0(£€$)) dx
Ce R™NSUpp 7

< 2| Vlafac]® 2

n—2

n
2
nILZ dx

3o

=2 (Supp vn)

Pe(n=2)
+Cre 72 /|Vu€|2dx (26)
Q

With another change of variables, we get that

(n—2)pe
/R IV de < Ov O el

pPe(n—2)
+Cv 772 /\Vu5|2dx (27)
Q

for all € > 0, where C is independant of e. With (10), Sobolev’s inequality and
since vP< < 1 for all € > 0 small enough, we get with (27) that

”naénleyo(]R’_L) =0(1)
when € — 0. It then follows that there exists @, € Hf(R™) such that, up to a
subsequence,
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Nue — Uy
weakly in Hf ((R") when € — 0. We let 71 € C2°(R™) such that 71 = 1 in By(0)
and 71 = 0 in R™ \ By(0). For any R € N*, we let ng(z) = ni(%) for all z € R™.
With a diagonal argument, we can assume that, up to a subsequence, for any R > 0,
there exists ir € Hi o(R™) such that

NRUe — UR
weakly in Hf o(R™) when e — 0. Letting e — 0 in (27), with (10), Sobolev’s
inequality and since vP< <1 for all € > 0 small enough, we get that there exists a
constant C' > 0 independant of R such that

/ Viigl? dz < C|[Vng|2 + C
R™

for all R > 0. Since ||[Vng||2 = |[|[Vni|? for all R > 0, we get that there exists
C > 0 independant of R such that

/ |Vig|?dx < C
R™

for all R > 0. It then follows that there exists & € Hf o(R™) such that 4r — @
weakly in Hf o(R™) when R — +00. As easily checked, we then obtain that @, = na
(we omit the proof of this fact. It is straightforward).

For any 4,j = 1,...,n, we let (§e)i; = (Oip(lex), 0j0(Lecx)), where (-,-) denotes the
Euclidean scalar product on R™. We consider g. as a metric on R™. We let

Az = =5 (9 = Ti5(G)k)
where g := (g_');; are the coordinates of the inverse of the tensor g. and the
Ffj (ge)’s are the Christoffel symbols of the metric ge. With a change of variable,
equation (F.) rewrites as

~ 2 ~ |77R716|2*_2_p677R'ae . /
Az, (NRte) +Lacop(Ler)nrie = et = nD(BrON{m <0}) (28)

Le

for all € > 0. Passing to the weak limit ¢ — 0 and then R — +o0 in this equation,
we get that

Since @ € Hf’O(R'_L), it follows from Proposition 8.1 of the Appendix that u €
CHY(R™) for all @ € (0, min{1,2* — s}).

We deal with case (L1). Since s € (0,2), (L1) and (28) hold and @ = 0 on {x; = 0},
it follows from arguments similar to the ones developed in the Appendix that for
any 6 € (0,min{1,2* — s}) and any R > 0, there exists C'(6, R) > 0 independant of
€ > 0 small such that

[tellcro(Br0)nfzi<op) < C(0, R)
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for all € > 0 small. It then follows from Ascoli’s theorem that for any 6 €
(0, min{1,2* — s}),

lim 4. =

e—0
in C’llo’ce (R™). The proof proceeds similarly in Case (L2). This ends the proof of the
Lemma. g

3. CONSTRUCTION AND EXHAUSTION OF THE BLOW-UP SCALES
This section is devoted to the proof of the following proposition:

Proposition 3.1. We let Q2 be a smooth bounded domain of R™, n > 3. We assume
that 0 € 9Q. We let (u.), (ae) and (pe) such that (E.), (8), (9) and (10) hold. We
assume that blow-up occurs, that is

lim fJuel| poe () = +o0.
Then there exists N € N*, there exists N families of points (piei)e>0 such that we
have that
(A1) limeoue = ug in CF(\ {0}) where ug is as in (11),
(A2) 0 < pre1 < ... < phen for alle >0,
(A3)

lim pe v = 0 and lim Beit1 _ 400 foralli=1..N—1
e—0 e—0 He i

(A4) For alli = 1...N, there exists ; € Hi o(R™) N CH(R™) \ {0} such that

A, = in D'(R™)
|z[®
and
lim u.; = u;
e—0
in CL (R™ \ {0}), where

ﬁe,i(x) = M‘jue(w(ke,ix))

1-5P5 . - -
for all x € kL N{x; < 0} and k.; = i =2 Moreover, lime_,olle,1 = U1 in
Clloc(RT—L)'
(A5)
lim lim  sup |2 |uc(z) — uo(z)|' "7 =0
R—+o00 6~>O|m|2Rk€)N €
(A6) For any 6 >0 and any i = 1...N — 1, we have that
1— Pe
. . n-2 —n-2 <p_1(m)) -2
lim lim sup |77 |ue(x) — W ;1% Us ( =0.
R_""OO€_>06k5,i+12\oc|ZRk5,i| | (@) Heirs it ke it

(AT) For any i€ {1,..., N}, there exists a; € (0, 1] such that



BORDERLINE COMPACTNESS 13

N Pe __ .
fi i = e

The proof of this proposition proceeds in seven steps.

Step 3.1: We let z.; € Q and p 1, ke,1 > 0 such that

n—2 _ _Pe
max | = Juc(w)l = oy 7 and key =g, ” (29)
We claim that
|Te1| = O(ke1) (30)

when € — 0, and in particular that lim._,o z. = 0. Indeed, we use Lemma 2.1 with
Ye = Te1, Ve = fe,1 and C(R) = 1. We then immediately get that |ze 1| = O(ke1)
when € — 0.

From now on, we let ¢ : U — V as in (13) with yo = 0 and U,V are open
neighborhoods of 0 in R™. We then let

Te,1 = 90(0167 b6)7 (31)
where a. € {z; <0}, b. € R"! and (ac,b.) € U. Note that lim._,q(ac, b.) = (0,0).

Step 3.2: We claim that

d(xe1,00) = (14 0(1))|ac] = O(ke1) (32)
where lim._,0 0(1) = 0.
Proof of the Claim: Indeed, since 0 € 952, we get with (30) that

d(ze1,00) <|zeq1 — 0] = O(ken) (33)
when € — 0. We first remark that

d(xe,lv 89) é d(xe,lv @(Ovbe)) = |a€|‘

We let . € R"~! such that (0,7.) € U N {z; = 0} and Y. = ¢(0,7.) € 99 such
that d(x1,00) = |z.1 — Ye|. Since d(z.,1,09Q) < |a.|, we get that

be — e = O(lacl),
when € — 0. Since Vo (0) = 0 (where g is as in (13)), we get that

©o(be) = wo(ve) + o([be — vel) = wo(7e) + o(|ac|)
when € — 0. Moreover,

d(xe,lyaQ) = |(Ee,1 - Yve|

- |(a€ + <)00(1)6) - @O(Ve),be - 76)|
= |(a€ +0(ae)7bs _'Ye)| < ‘ae|

when € — 0. It then follows that b. — v. = o(|ac|) and d(z.,1,99Q) = (1 + o(1))|ac|
when € — 0. This prove (32). O

The classical Hardy-Sobolev inequality asserts that there exists C' > 0 such that



14 N. GHOUSSOUB AND F. ROBERT

W N
dz <C |Vul|? de (34)
re |Z|° R™
for all u € Hf j(R™). We define
Jon |Vul? dzx
ps(R™) :=inf e = (35)

|u|>* 2
(fm EE dm)
where the infimum is taken over functions u € Hf o(R™)\ {0}. The existence of
ws(R™) > 0 is a consequence of (34).

Step 3.3: The construction of the (p.;)’s proceeds by induction. This step is the
initiation.
Lemma 3.1. We let L

U () := p ] te 0 p(ker)
foralle >0 and all x € %ﬂ{xl < 0}. Then, there exists Gy € Hi o(R™)NCH(R™)
such that o
(B]_) lime_m ’&,671 = ’17,1 m Clloc(er),
(B2)

~ 2*_2 ~

Agy = | " i D/(R),
€ S
(B3)

/ |Viiy|? do > uS(R’i)ﬁ.

R™

Moreover, there exists ay € (0,1] such that lim._,o ,ufjl = .

Proof of Lemma 3.1: Indeed, since |i1(z)] < 1 for all z € ;% N {z; < 0},

ke,1
hypothesis (L1) of Lemma 2.2 is satisfied and it follows from Lemma 2.2 that points

(B1) and (B2) hold. We let Ac = —z*= > 0 and 6. = klzel € R, where a,b.

are defined in (31). It follows from Steps 3.1 and 3.2 that there exists Ao > 0 and
0o € R"~! such that lim._,o(A,0:) = (Ao, 0p). It then follows from the definition
of 4.1 and (29) that

[te1(—Ae,be)| = 1.
Passing to the limit € — 0 and using point (B1), we get that |G1(—Xg,6p)] = 1. In
particular @; # 0 and Ay # 0. Multiplying (B2) by @; and integrating by parts

over R™, we get that
2*
Vi |? de = [ dzx.
|
R™ R |T]®

Using the Hardy-Sobolev inequality (35) and that @; # 0, we get (B3). At last,
with (10), (27) and Sobolev’s inequality, we get that for any n € C°(R™), there
exists C' > 0 such that

B 9 (":2>Pe
/ IV (iie)? d < O, 72
R™



BORDERLINE COMPACTNESS 15

for all € > 0. Letting ¢ — 0 and using that @; # 0, we get that lim._, Mfﬁ >0. O
Step 3.4: We claim that there exists C' > 0 such that

€

2] "= Jue ()] "= < C (36)
for all € > 0 and all z € €.
Proof of the Claim: We argue by contradiction and we let (ye)eso € Q such that

sup [2] 7 Jue(2)|' 77 = |y 7 Juc(yo) |77 - +oo (37)
z€EN
when € — 0. We let
__2_ 1— 5P
Ve :=|ue(ye)| "2 and £ :==ve 2 72
for all € > 0. It follows from (37) that
lim [vel = +o0 and lim v, = 0. (38)
e—0 f¢ e—0
We let
s 24pe—2*
ﬂe = |y6|2 ‘ue(ye” 2
It follows from (37) that
lim 25 — 0. (39)
=0 |yl

We let R > 0. We let x € Bgr(0) such that y. + Bz € Q. It follows from the
definition (37) of y. that

n—2 n—2
[Ye + Bex| 2 ue(ye + Bex)| < |ye| = Jue(ye)l,
and then

n—-2
<ue<ye+ﬂex>|>1‘2“< )
|ue(ye)| a 1—‘§:R

for all € > 0 and all x € Br(0) such that y. + Sz € Q. With (39), we get that
there exists e(R) > 0 such that

|te(Ye + Bex)| < 2fue(ye)l
for all z € Br(0) such that y. + Scxz € Q and all 0 < € < €(R). It then follows from
Lemma 2.1 that y. = O(¢.) when € — 0. A contradiction with (38). This proves
(36). O

As a remark, it follows from (E,), (11), (36) and standard elliptic theory that
liII(l) ue = up in CF (2 {0}). (40)
e—

We let p € N*. We consider the following assertions:
(C1) 0 < preg < oo < feyp
(C2)

lin(1),u€7p =0 and lim Mot = 4+oo foralli=1.p—1
€E—>

e—0 Mé,i
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C3) For all i = 1...p, there exists @; € HZ ,(R™) N CY(R™) \ {0} such that
0

~ 1252~ *
Ay = [T T e, Vi |2 do > pg(R™) =2
|| R
and

lim ﬂe,i == ’l]i
e—0

in CL _(R™ \ {0}), where

tei(z) = ujue(@(keﬁix))
for all z € kL N{z1 <0} and k. ; := ,u:m
(C4) For any i € {1, ...,p}, there exists «; € (0,1] such that

3 Pe __ .

We say that #, holds if there exists p families of points (g ;)e>0, ¢ = 1,...,p such
that (ie1)e>0 is as in (29) and points (C1), (C2) (C3) and (C4) hold. Note that it
follows from Step 3.4 that H; holds with the improvement that the convergence in

(C3) holds in C}

loc

(®).
Step 3.5: We prove the following proposition:

Proposition 3.2. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 00. We let (u), (ac) and (pe) such that (E¢), (8), (9) and (10) hold. Let

p > 1. We assume that H, holds. Then either

n—2 Pe
li li = _ =35 —
R 2R I ) ~ o)

or Hpt1 holds.
Proof of Proposition 3.2: We assume that

lim lim  sup |2]™% |uc(z) — uo(x)| "2 £ 0.
R*}+OOE~>O|I|ZRIC€YP

It then follows that there exists a family (y¢)eso € 2 such that

|ye|

€p

lim
e—0

= 400 and h_I)I(l) |y6|n772|u6(y6) —uo(y)|"FE =a > 0.
€

We claim that lim._,oy. = 0. Otherwise, it follows from (40) that lim. ¢ |u(ye) —

uo(ye)| = 0. A contradiction.
Since uy € C°(Q) and lim, gy, = 0, we get that

lim [y 7 [uc (o) = a > 0.
e—0
In particular, lime_,q |uc(ye)| = +00. We let

_ _Pe
1 2% -2

_ 2
Hepst 1= ()72 and ks = ey
As a consequence, lim¢_,g fte p+1 = 0. We define
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e py1(x) = Mﬁwe(w(k p+1T))

for all x € ¢ U - N {z1 < 0}. It follows from (36) that

|</7(ke p+1$)\%|u€( (k€7p+1z))|1_ﬁ <C

for all x € k N {z1 < 0}. With the definition of %, ,+1 and the properties (13)
of ¢, we get that there exists C' > 0 such that

2 T Jepa ()] < O
< 0}. It then follows that hypothesis (L2) of Lemma 2.2

is satisfied. It then follows from Lemma 2.2 that there exists G,41 € Hf o(R™) N
C(R™) such that

~ 2" -2~
Adipyq = [y Tipas D'(R™),
and

lim @ =1 43
50 e,p+1 e,p+1 ( )

in CL _(R™ \ {0}). It follows from (42) and the definition of k41 that

We let g € {x1 < 0} such that ye = ¢(ke p+17e). It then exists gy € R”™ such that
lime,0 §e = Go # 0. It then follows from (43) that

|ﬂp+1(y0)| = 611_I>% |ﬁ6,p+1(ge)| =1,

and then 4,41 # 0. With arguments similar to the ones developed in the proof of
Lemma 3.1, we then get that

[ 9l do = ()5
R™

and there exists a,41 € (0, 1] such that lim,_,q uijH = ap41. Moreover, it follows
from (42), (41) and the definition of e 11 that

. He,p+1 . o
lg% He,p = oo and lg% pept1 = 0.
As easily checked, the families (fte;)e>0, @ € {1,...,p + 1} satisfy Hpi1. O

Step 3.6: Next proposition is the equivalent of Proposition 3.2 at smaller scales.

Proposition 3.3. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 00. We let (ue), (ac) and (pe) such that (E.), (8), (9) and (10) hold. Let
p > 1. We assume that H,, holds. Then either for anyi € {1,...,p—1} and for any
6>0
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n—2
lim hr% sup || =
R — =
Theee IEB5’€5,i+1(0)\BRk€,i(U>

or Hpt1 holds.

_n=2 gpfl(x)
ue(x) — e ity Wit (

ke i+t

Proof of Proposition 3.3: We assume that there exist ¢ <p—1, § > 0 such that

n—2 _n2 o Hx) e
lim lim sup || 72 |ue(x) — p ;71 Tigr ( ) > 0.
fmoo 0 €Bsk, ;14 (0)\§Rk5,i(0) 7 k€7i+1
It then follows that there exists a family (ye)eso € © such that
lim Iyl = +o00, |ye| < ke i1 for all e >0 (44)
e—0 ke,i ’
1— —Pe
: n=2 —r2 o (o) | T
15% ‘ye| 2 ue(ye) - /~L5,i+21 Ui41 <k€7l+f =a>0. (45)

We let . € R™ such that y. = @(kei+17c). It follows from (44) that |g.| < 26 for
all e > 0. We claim that lim._,¢ §. = 0. Indeed, we rewrite (45) as

.o m=2 _ ~ 1 oPe

1 Gl “7 fi i1 (§e) = s (3] 777 = a > 0.
A contradiction with point (C3) of H,, in case g /4 0 when € — 0. Since @;41 €
CO(R™), we then get that

—nzz (o (ye)
He i uz‘+1< 3 _He
€,1

when € — 0. We rewrite (45) as

—2

1=t e e
:0< Ye ) = o(1)

ke,i+1

n—2

lye| 2~

; 2 l-gbey _
15}% |Yel lue(ye)| 72 =a>0. (46)
We let
Ve i= |u6(y€)|_% and £, := Veliﬁ.
We define

n—2
te(x) = ve * ue(p(ler))
for all z € % N {z1 < 0}. It follows from (36) that
()] T fue(pllca))[' "7 < ©
for all x € % N {z; < 0}. With the definition of @, and the properties (13) of ¢,
we get that there exists C' > 0 such that

2] % e (2) "= < ©

for all z € & N {2y < 0}. It then follows that hypothesis (L2) of Lemma 2.2 is

satisfied. It then follows from Lemma 2.2 that there exists @ € Hf o(R™) N C'(R™)
such that




BORDERLINE COMPACTNESS 19

At = il Y D'(R™),
|z]°
and
lim 4. =4 (47)
e—0

in CL _(R™ \ {0}). It follows from (46) and the definition of £ that

‘ys|
We let 3. € {x; < 0} such that y. = @(fcg.). It then exists 9o € R™ such that
lime_,0 e = go # 0. It follows from (47) and the definition of @, and g, that

lim =a>0.

e—0

[a(go)| = lim [ac(ge)| = 1,
e—0
and then @ # 0. With arguments similar to the ones developed in the proof of
Lemma 3.1, we then get that

/ Vil de > uy(R7) 72
R™

and there exists « € (0, 1] such that lim._,g vP< = a.. Moreover, it follows from (46),
(44) and the definition of v, that

Me,i+1

lim — = 400 and lim = +o00

e—0 He,i e—=0 Ve
As easily checked, the families (fte1),..., (fte;i); (Ve)s (He,it1)se-s (fe,N)e>0 satisfy
Hpt1. O

Step 3.7: This last Step is the proof of Proposition 3.1.

Proposition 3.4. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 0. We let (ue), (ac) and (p.) such that (E.), (8), (9) and (10) hold. We let
No = max{p/H, holds}. Then Ny < +oo and the conclusion of Proposition 3.1
holds with N = Ny.

Proof of Proposition 8.4: Indeed, assume that #, holds. Let J, R > 0. Since
He,i = O(fte,i41) for all ¢ € {1,..., N — 1}, we then get with a change of variable and
the definition of 4. ; (see (C3)) that

N
/ |Vu?de > / |Vu,|? dx
Q i=1 Y ¢(Brk, ; (O\Bsk, ;(0))
N n—2
“aox—2Pe ~ 12
Z /Jei / |vu€7i Eld/UEL
; ’ Br(0\Es (0) gor Y
N
> / _ |Vﬂ€,’i‘g2]‘7, dvge,i
i—1 Y Br(0)\B5(0)

where g.; is the metric such that (ge;)gr = (9g¢(ke i), Orp(keix)) for all ¢, r €
{1,...,p}. Passing to the limit e — 0 and using point (C3) of H,, we get that
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/ |Vu|? de > pus(RE)% +o(1)
Q
when ¢ — 0. With (10), we get that there exists C' > 0 such that
p< A (R") 72,
It then follows that Ny < +oo exists.
We let families (fte1)e>0,---, (He,Ng)e>0 such that Hn, holds. We argue by con-
tradiction and assume that the conclusion of Proposition 3.1 does not hold with
N = Ny. Assertions (A1), (A2), (A3) (A4) and (A7) hold. Assume that (A5) or

(A6) does not hold. It then follows from Propositions 3.2 and 3.3 that H 41 holds.
A contradiction with the choice of N = Ny, and the proposition is proved. O

4. STRONG POINTWISE ESTIMATES, PART 1

The objective of this section is the proof of the following strong pointwise esti-
mate:

Proposition 4.1. Let Q) be a smooth bounded domain of R", n > 3. We let
s € (0,2). We let (pe)eso such that p. € [0,2* —2) for all € > 0 and (9) holds.
We consider (uc)eso € H7 o(Q) such that (8), (Ec) and (10) hold. We assume that
blow-up occurs, that is

lim [[uc|| Lo () = +o0.

e—0

We let i1, ..., te,n as in Proposition 3.1. Then, there exists C > 0 such that

z
H’e,i|$|

lue()| <C )Y ——F—%
i=1 (ufz + |$|2) :

+ Oz (48)

for all e > 0 and all x € Q.

The proof of this estimate goes through seven steps. We let s € (0,2). Welet (pe)eso
such that p, € [0,2* —2) for all € > 0 and (9) holds. We consider (uc)eso0 € Hf o(€2)
that satisfies the hypothesis of Proposition 4.1. Welet p 1, ..., fte, N @s in Proposition
3.1.

Step 4.1: We claim that for any v € (0,1) and any R > 0, there exists C'(v, R) > 0
such that

5—v(n—1) 1-v
2 d(xz, 00
fuc(a)] < Cv, R) - | X @ 0%

1-v
P + d(z,09) (49)

for all z € Q\ Bgg, (0) and all € > 0.

Proof of the Claim: Since A is coercive on 2, we let G be the Green’s function for
A in Q with Dirichlet boundary condition. We let

H(z) = -0,G(«,0)
for all z € Q\ {0}. Here v denotes the outward normal vector at 9Q. It follows
from Theorem 9.2 of the Appendix that H € C?(Q2\ {0}), that

AH =0 (50)
in ©Q and that there exist d;,C7 > 0 such that
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d(x,00) . Cyd(z,00)

Cular = = g oy
and

|VH(z)| - 1 1 (52)

>
H(z) — Cid(z,00) — Ci|z]
for all x € QN Bag, (0).

Since A is coercive, we let Ay > 0 be the first eigenvalue of A on 2, and we let
1 € C?(Q) be the unique eigenfunction such that

AY =X\t  inQ

P >0 in Q
Yv=0 on 0f)
Jo?de =1

It follows from standard elliptic theory and Hopf’s maximum principle that there
exists C%, d2 > 0 such that

L i(2,00) < p(@) < Chd(z,09) and — < [Vi(a)| < C}

& &
for all € QN Bas, (0). Consequently, there exists Co > 0 such that
1 1 1
r(,00) < () < Cad(r,00) and Vo@) (53)
2

>
Y(x) — Cad(z,00) — Colz|
for all x € QN Bas,(0). We let the operator
2¥—2—p.
LE:A+(a€—|u6|g>,
||

Step 4.1.1: We claim that there exist dg > 0 and Ry > 0 such that for any v € (0, 1)
and any R > Ry, § € (0,dp), we have that

LHY >0, and L'™ >0 (54)
for all z € QN Bs(0) \ Br, »(0) and for all € > 0 sufficiently small. Indeed, with
(50), we get that

LH VHP, . Ju(a)* >
oi—v (z) = ae(z) +v(1 —v) e (z) - EE (55)
for all z € Q\ {0} and all € > 0. We let 0 < §p < min{dy, d2} such that
20 supg |ac| < %
(56)

* _ *_ 1—
227167 S||U0||2Loo(29) < 4-m;(<{clg,)c§}

for all € > 0. This choice is possible thanks to (8). It follows from point (A5) of
Proposition 3.1 that there exists Ry > 0 such that for any R > Ry, we have that

n—2 1—-Pe_ v(l— V) ¥ -2
2] 72 ue(w) —uo ()|~ 72 < (22*+1 max{C%,C%})
for all € O\ Bgg, ,(0) and all € > 0. We then get that



22 N. GHOUSSOUB AND F. ROBERT

e ()72 <28 PP g (a) — wo(x)
+22*717;10E I|275|UO($)|2*727P€

. v(l—v)

4 max{C2,C2}

+22*_1—p€ 62_3 HUO ||i*oc_(29—)175

|2*—2—pE

2‘1’

IA

for all z € Q\ Bpg, ,(0) and all € > 0. We get with the choice (56) of &y that for
any d € (0,dp) and all R > Ry

B o N
P e < ey T2 Il
v(l—v)

2 -max{C%?,C3}

for all # € (B5(0) \ Bk, (0)) N2 and all € > 0 small enough. With (55) and (56),
we get that

L.H™" v(l—v) v(l—v)
> N 7 B S
e e T
v(1 —v) = 207 |z|*|ac(2)|
= 222 >0

for all # € (B5(0) \ Brk. ,(0)) N Q and all € > 0 small enough. We deal with the
second inequality of (54). We have that

Ly~
1/}171/
for all z € Q. With (53) and (56) we get that
Lewi_” (2) > v(l—v)— 2022|a6(9c)|2(52 +2(1 —v)\|z|>C3 S
Pty 203 |=[?
for all z € (Bs(0) \ Bk, (0)) N and all € > 0. This proves the last inequality of
(54).

Step 4.1.2: Tt follows from point (A4) of Proposition 3.1 that there exists C1(R) > 0
such that

VO oy le@)l> =27

(x)=ac(x)+ (1 —-v)\ +v(l—v) 2 B

0

Juc(@)| < CL(R)u,_Ed(z,00) (57)

for all x € QN IBrk, ,(0) and all € > 0. It follows from point (A1) of Proposition
3.1 that there exists C2(d) > 0 such that

|uc(2)] < C(8)d(z, 59) (58)
for all x € 2N 0Bs(0) and all € > 0. We let

Ders = (B5(0) \ Brr. .~ (0)) N Q.
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We let
1— —(n—1 —nelp=be Z—v(n—1)
ae :=2C1(R)C;"R" (n )”aN o2 BN
and
Be := 2(5”6’2((5)021*”7
and

pe(z) = O‘EHI_V(CC) + ﬁeqpl_y(x)
for all z € D, g and all € > 0. Here, ay is as in point (A7) of Proposition 3.1.
We claim that
[ue(z)| < pe() (59)
for all € > 0 and all x € 0D, g s. Indeed, with inequalities (51) and (57), we get
that for any x € Q N IBgk,  (0),

vin—=1)—n V| |n—nv - *_ Pe
ue@)| ey " d(, 09 o] fon

<
1—v — _n=(n=1v —_ _n=(n=Hr —
aH () 2Rn_(n_1),,aN 2% 2 2% 2

when € — 0 with point (A7) of Proposition 3.1. Similarly, we have with (53) and
(58) that

uc@)]  _ d.00)"

Bepp()t=v = 20
for all z € QN 9B5(0) and all € > 0. On 9Q N (B;5(0) \ Bri. 5 (0)), we clearly have
we(x) > |ue(x)| = 0. As easily checked, these assertions prove (59).

<1

Step 4.1.3: We claim that L. verifies the following comparison maximum: if ¢ €
CQ(DS,R,ts) n CO(De,R,5)7 then

LEQO Z O in D€7R75
>0 on 0D, rs

} = ©>0in D ps.

Indeed, we let Uy be an open subset of R™ such that @ CC Uy. Since the operator
A is coercive in Uy (with boundary Dirichlet condition), we let G € C?(Uy x Uy \
{(z,z)/x € Up}) be the Green’s function for A with Dirichlet condition in Uy. In
other words, G satisfies

AG(z, ) = 6,
weakly in D(Up). For the existence, we refer to Theorem 9.1 of Appendix B.
Moreover, since 0 € Uy is in the interior of the domain, there exists 50 > 0 and

Co > 0 such that
Co

— |x‘n72

A

Q)
5
2

A

and ~

[VG(0,x)] - Co
G(0,z) ~ |z
for all € > 0 and all z € By (0) \ {0}. The proof of these estimates goes as in the
proof of points (G9) and (G10) of Theorem 9.2. We refer to [15] for the details.
With the same techniques as in Step 4.1.1, we get that for R > 0 large enough and
d > 0 small enough, then

GV >0and L.G'V >0
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in D g s for all € > 0. It then follows from [5] that L. verifies the above mentioned
comparison principle.

Step 4.1.4: Tt follows from (54) and (59) that

Le‘pe >0= Leue in De,R,é

Ye =0 =1, on aDe,R,é
Lepe >0=—Lu, in Dcps
Pe > 0= —Ue on aDe,R,é

It follows from the above comparison principle that

uc(@)] < pe(x)
for all z € D, ps. With (51), we then get that (49) holds on D, rs = (B5(0) \
B, (0)) N for R large and § small. It follows from this last assertion, (51) and

points (A1) and (A4) of Proposition 3.1 that (49) holds on Q\ By, (0) for all
R > 0. (]

Step 4.2: Let ¢ € {1,..., N—1}. We claim that for any v € (0,1) and any R, p > 0,
there exists C'(v, R, p) > 0 such that

/‘e%z’_y(n_l)d(xa o)~ v—3 1-v
‘ue($)| < C(V7 R, p) : : |$‘"(1_V) + ,ui-i-l,ed(xv 89) (60)

for all « € Bgg,,.,(0) \ Bpk.,(0) and all € > 0.

Proof of the Claim: We let i € {1,..., N — 1}. We follow the lines of the proof of
Step 4.1. We let H and v as in Step 4.1. Recall that we then get that there exists
61 > 0 and Cq > 0 such that

d(z,00)

—_— —_— 61
AT oy
" V()
VH(x 1 1
> > 2
H(x) = Crd(z,09) ~ Cila| (62)
for all z € Bags, (0) \ {0}. Moreover there exists Co, d2 > 0 such that ) verifies
1 V()| 1
—d(x,00) < Y(x) < Cad(z,00) and > 63

for all x € QN Bas, (0). We let the operator

2% —2—pe

|z
Step 4.2.1: We claim that there exist pg > 0 and Ry > 0 such that for any v € (0, 1)
and any R > Rg, p € (0, p0), we have that

LHY >0and Lap'™ >0 (64)

for all z € QN (B, ,,,(0) \ Brk, ,(0)) and for all € > 0 sufficiently small. Indeed,
as in Step 4.1, we get that
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LH™Y [VH|? Jue(x) [ 2P
Hl-v (J?) - a‘G(x) + V(l - V) 2 (l‘) - ‘.’E|S (65)

for all x € 2\ {0} and all e > 0. We let 0 < py < 1 such that
* * 1— V)
92+ 28y 1122 < v(
Py "llu +1HLoo(Bg(o)mR_) maX{Cf,CQQ}

for all € > 0. It follows from point (A6) of Proposition 3.1 that there exists Ry > 0
such that for any R > Ry

(66)

n—2
|2

1— -Pe
n-2 (p_l(.’L‘) 2*—2 l/(l _ l/) 3% 3
oz o\ <
UG(-'L') He jrqWit1 < ks,i—‘,—l =\ 92" +1 max{C%, 022}

for all z € QN (By,,,,(0) \ Brk.,(0)) and all € > 0. We then get that

P Jue ()| 2

21 2 ny2 ¢~ (x) B
—1—pc|.[2—5 T
<2 x| ue(z) — He ip1Uit1 o
€,1+1
n—2 0% pe
2 1epe (. 2—s, ~ 2 (27=2)-(1-5F5) _ v _ap,
+2 Pela[* e i sup g1 ?

B2(0)NR™

2—s
71)6& 2*—1—p. |£E‘ - 2% —2-p,
=2 4 -max{C%,C3} +2 Fe.is1 Hu1+1||Loo(B2(0)mR1:)

for all z € QN (By, ,,,(0) \ Br, ,(0)) and all € > 0. We then get with the choice
(66) of pg that for any p € (0,pp) and all R > Ry

. .o v(l—v) X1 9—gi~ .
ol Jue(a) P < 4 max{C?,C3} 227105 il (i, 0y y +0(1)
v(l—v)

2 - max{C%, C3}

for all # € (B, ,.,(0)\ Brk. ,(0)) NQ and all € > 0 small enough. Since (8) holds,
we get with (65) that

L .HY™Y v(l—v) v(l—v)
> N 7 N Sl
e @2 o T odn) - Soe
1—v) 4 2[a|2C2a,
. W0+ 20t
2CF|z|

for all z € QN (Bpk, .4, (0) \ Bk, ,(0)) and all € > 0 small enough. The proof of
the second inequality of (64) goes similarly (see Step 4.1 for details). This proves
(64).

Step 4.2.2: Tt follows from point (A4) of Proposition 3.1 that there exists C1(R) > 0
and Ca(p) such that
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lue(z)| < C4 (R)u;igd(a?,aQ) for all z € QN 0Bgy, ,(0)

luc(2)] < Calp)u_fyd(w,8Q)  for all z € QN OBy, ., (0).

We let —
Der,p = (Bpke,i+1 (0)\ BRke,i(O)) ne.
We let
1-v pn—v(n—1) 771,—21/*(112_1) g—v(n—-1)

a.:=2C1(R)C;""R ( «, e

and v
—v v, T3F-3 —5tV
Be = 202(p)Cy ™" p T e i s

and

pe(z) = aéHl_V(x) + ﬁewl_”(ff)
for all z € D, g s and all € > 0. Here, the a;’s are as in Point (A7) of Proposition
3.1. Similarly to what was done in Step 4.1, we then get that

|uc(2)] < pe() (67)

for all € > 0 and all x € 0D, g ,. The operator L. verifies the comparison principle
on D, g, as in Step 4.1.3. It then follows that

ue(@)] < @e()
for all z € D, r ,. With (61), we then get that (60) holds on D, g , for R large and
p small. It follows from this last assertion and point (A4) of Proposition 3.1 that
(60) holds on (Byk, ,.,(0) \ Bg,,(0)) N for all R, p > 0. O

Step 4.3: As easily checked, it follows from (49), (60) and Proposition 3.1 that for
any v € (0,1), there exists C,, > 0 such that

(n 1)V| |1 v
DO

=1 Mez+| |

for all z €  and all € > 0. Note that we have used that d(x,00Q) < |x — 0] = |z|
for all z € Q. We let G be the Green’s function of A on € with Dirichlet boundary
condition. It follows from Green’s representation formula and (68) that

[ e (1 WF = 7rue(y) ~alu) ) )

1-v
e +Cy 2] (68)

ue(z)| =

yl®
2% —1—p.
< C/G(ﬂc,y) <u€(y)|+1> dy
Q |yl
2" —1-p.
—(n— 1 1—v
u” "Iyl
< o dy
z - R
+C”/ G(z.y) (|y|“—”)<2*‘1“°"‘8+1) dy (70)
Q

Step 4.4: We claim that there exists C' > 0 such that

/Qa(x,y) (Iyl 0= =107 1) dy < Claf (71)
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Proof of the Claim: Indeed, we let 1. € HY 5(2) (1 < p < 2) such that

Atp = |y|IE —1=pd=s L 1 in D'(Q).
Here, HY ((§2) denote the completion of C2°(Q2) for the norm || - || := ||V - ||,. Since

s € (0,2), it follows from standard elliptic theory that for v > 0 small, v € C*(Q)
and that there exists C' > 0 such that

[Pell @y < C-

Since ¢ (0) = 0, we get that
[¢e(2)| < Clz|

for all x € 2. Moreover, since s € (0, 2), we get with Green’s representation formula
that

velo) = [ Glay) (Wl 1000 1) ay
Q
for all z € Q and all € > 0. Inequation (71) then follows. O
Step 4.5: We let i € {1,..., N}. We claim that there exists C' > 0 such that

*_1—
U TR S

G E2i
/ (w,sy> pe Ig(H) dy
o W\ (u2+1yP)?

(Ng,i + [z[2)*
for all € Q such that || > pe .

Proof of the Claim: Indeed, with point (G6) of Theorem 9.1 on the Green’s function,
we get that

<C (72)

" 2*—1—pe
e T
/ Glayy) [ n2 "l dy
s E(l_V)
oyl (n2;+1yl?)?
" 2* —1—pc
2 —(n—1)v _
< C’ |y| Mez,i ‘yll v d
= o |l‘ _y‘n—1|y‘s ( 2 _|_| ‘2)%(1*1’) y
:ue,i Y
< Ie(x) + I ().
Here,
2% —1—p.
F—(n—Dv, 1_,
B, lyl
]i7€<x) = ‘x — y||:i|1|y|5 62)1 ) dy
where

(z) = Q0 {lz —y| > |x]/2} and Qa(z) = QAN {|z —y| < |z|/2}.

We compute these two integrals separately. We let R > 0 such that Q@ C Bgr(0).
We have that
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2% —1—pe
pl Ty
Il,e(x) S O|x|1in/ |y|17‘9 (1 u) dy
Br(0) (ue,i +lyf2)®
2" —1—p.
1-n, % 1—s |y|1—V
< Cla|'"pg; W'\ saas dy
B_n () (1+y[?)2
< e/l (73)

since s € (0,2) and up to taking v > 0 small enough. Note that we have used here
point (A7) of Proposition 3.1.

We deal with the second integral. Note that when |z — y| < |z|/2, we have that

7 <y <
2
Taking v > 0 small enough, we then get that

(v 2ot
C‘l‘|1_s 'uﬁ,l |$_y‘1—ndy
‘x|n(1 v)

3|\

[2,6(-77) S
{le—yl<|xl/2}
n n NE*(" Dy | |1 A
< 1—n 2, n+l—s T2 €,2
= C‘Jil Heq |J}| Hei < |x‘n(1 v) )
< C'la] "l (74)
since |z| > p.,;. Plugging together (73) and (74), we get that
2* —1—p.
F—(n—Lv 1y
G Ezi n
/ (QTSy) 'u2’ |z|(1,l,) dy < C‘mll_n/‘ji
@ y (/”Le,i + |y|2) ’
Since |x| > pe s, we get (72). O

Step 4.6: We let i € {1,..., N}. We claim that there exists C' > 0 such that

(n=Dv) 11y F-1-pe
/ Glayy) [ Iyl ay
o W\ (u2, 4 R0
- Cﬂili (75)
(Me,i + |£IZ| ) :

for all x € Q such that |z| < ;.
Proof of the Claim: Indeed, let p € (1,n/s). We let . ; € HY ((2) such that

1 u (TL 1)V| ‘1 . 2*—1—176
A‘ﬂe,i = T e =

- in D'(Q). (76)
o\ (2 + 1aP?) ®

(1-v)
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We let ¢ : U — V defined in (13) with yo = 0. We let

n—2
Pe,i() = Be; Pei © PfheiT)
for all z € ML NR™. We let R > 0 such that Q C Bg(0). It follows from Green’s
representation formula and the estimate (G5) on the Green’s function that for any
T € % N R”, we have that

He,i

(R NP e
s R e v dy
Y (u2;+1y1?)?
< Ok /szlso(ue,im)—y"‘Qlys (12, +[yl?) £ w
1 ly[t—v 2" —1—pc
= ¢ Bryy, ; (0) ’M—y‘niz lyl* ((1+yl2)5“”)> -

Since s € (0,2) and with the properties (13) of ¢, we get that there exists C' > 0
such that

|Pei(z)| < C (77)
for all x € B3(0) NR™ and all € > 0. We let the metric (§e)r = (Orp, O1) (the,i)
for k,l =1,...,n. Equation (76) rewrites as

Beala)1 0 12—
(1+ Bea(w)?) TOIC =70
where ¢; € R for all € > 0 and lim._,¢ ¢; ¢ = ¢; > 0.

Pe,il
Beal) o= | EUiT)
/~L6,i

for all z € B3(0) NR™. In particular, there exists C' > 0 such that

Aée 356,2' = Ci,e in D/(Bg(()) n RE),

for all z € B3(0) NR™. Since (77) holds, s € (0,2) and ¢.; = 0 on {x1 = 0}, it
follows from standard elliptic theory and the equation satisfies by ¢, ; that there
exists C' > 0 such that

16e.illor (Ba(oyrmmy < €
for all € > 0. Since @¢;(0) = 0, we get that
|2e(2)] < Cla|

for all x € B3(0) NR™ and all € > 0. Coming back to the definition of ¢, ;, we then
get that there exists C' > 0 such that

Ne%,i z|
(Ug,i + [z[2)?

for all z € QN B, _,(0). Inequality (75) then follows from Green’s representation
formula. g

|ei(z)| < C
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Step 4.7: Plugging together (71), (72) and (75) into (70), we get that

N
’LLE 7
|ue( Z -+ Clz|
it (Wi + o | )
for all x € Q and all € > 0. This proves (48). O

5. STRONG POINTWISE ESTIMATES, PART 2
This section is devoted to a refinement and a derivation of Proposition 4.1:

Proposition 5.1. Let Q2 be a smooth bounded domain of R™, n > 3. We let

€ (0,2). We let (pe)eso such that p. € [0,2* —2) for all € > 0 and (9) holds.
We consider (uc)eso € Hi () such that (8), (Ec) and (10) hold. We assume that
blow-up occurs, that is

L [Juel| poe () = o0

We let i1, ..., lte,n as in Proposition 3.1. Then, there exists C > 0 such that

N 3
u@ <y o (78)
o1 (2 +x)?)”
N M%‘
Vue(z)| <CY ————+C (79)

=1 (l‘zz + |z[2)®
for all e > 0 and all x € Q.

Inequality (78) was proved in Proposition 4.1. We prove inequality (79). We let G
be the Green’s function for the operator A on € with Dirichlet boundary condiction.
Derivating Green’s representation formula (69) that

Vue(z / V.G(z,y) ( tely )|2*|;/|25_p6u6(y) —ae(y)ue(y)) dy

for all x € Q and all € > 0. It then follows from (78) that

2* —1—pe
Vue(z)| < C / V.G, y) (““ﬂ'y' + 1) dy
v\
|y| (12, +1y?)*
+C/IVIG(x,y)I-(Iylz*‘l‘s"’”rl)dy (80)
Q

for all x € Q and all € > 0.
Step 5.1: We claim that there exists C' > 0 such that

[ Va6 (e an) ay<c (s1)
Q
for all z € Q and all € > 0.
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Proof of the Claim: Indeed, it follows from property (G7) of Theorem 9.1 that there
exists C' > 0 such that

VoG(z,y)| < Clz —y[' " (82)

for all z,y € Q such that « # y. Since s € (0,2), we then obtain that there exists
C > 0 such that

[ Va6l (o s 1) dy< € [ eyt e 1) dy <0
Q Q

for all x € Q and all € > 0. This proves (81). O
Step 5.2: We let i € {1,..., N}. We claim that there exists C' > 0 such that

z 2% —1—p. =
VaG(z,y)| peilyl < [l

Q ly|® (12, + |y\2)% T (g
for all € Q such that |z| < p.,; and all € > 0.
Proof of the Claim: We let 0, . Note that with our assumption, we have that

6] < 1. We let R > 0 such that Q c BR( ). With (82), and a change of variables,
we get that

(83)

2% —1—pe

/Vﬁﬂay)< péalyl > "
Q lyl* (,Um‘ + lyl?)

z 2* —1—p.
<C |z —y|" "yl (an) dy
Br(0) (u2;+y?)®
- C,u;-%/ |z|2*_1—s—p; B
*JB g (0) 0 — 2" (1 4 |2[2) E 1)

He,i

Since s € (0,2) and |0.] < 1, we get that there exists C' > 0 such that

o\ "
va x, lu’e K Yy %
/, |ﬁsw|< 3) = e
Q Yy (:ue,i + |y| )

Since |z| < e 4, inequality (83) follows. O
Step 5.3: We let i € {1,..., N}. We claim that there exists C > 0 such that

2% —1—p.

/mmG@w\ peivl dy <Oyt (84)
o W\ )] (s + )2

for all x € Q such that |z| > pe; and all € > 0.
Proof of the Claim: We split the integral in two parts:

2% —1—pe

o Wl \ (24 1w2)?
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where
|v G( )| z ‘ | 2% —1—p.
x €,y lu’ei Y
i) = | : ( ) dy
Q. () |y (12, +[yl?) 2
and
Qe,l(x)Qﬂ{xng'} and Q. 1(z) = {|xy|< |z|}

Step 5.3.1: We deal with I, 1(z). It follows from point (G8) of Theorem 9.1 that
there exists C' > 0 such that

Q
V.G, y) < 0202 o
|z —y|" |z —y|"

for all z,y € Q, x # y. We let R > 0 such that Q@ C Br(0). With a change of
variable, we get that

1y| 2" —1-p.
La(z) < C/ |y|n : nily ] "
anfle—viz!g } 17 =W\ (2, + i)
z 2" —1-p.

-n —s lu’e,iy

< Claf / ' = dy
s\ (s + )

< Clz|™"u2 |2|2 5P J
< Clz[™"ug, 5 0 (Lt [2) 3@ 100 z.

He,i

Since |x| > pe; and s € (0,2), we then get that

2 Mi‘
Iea(z) < Cla|"pl; < O —5———r. (86)
' ’ (u2; +|x)?)%
Step 5.3.2: We deal with I, o(x). As easily checked, we have that
] 3|
— < < — 87
2_Jm_ 5 (87)
for all y € Qc 2(x). With (82) and (87), we get that
2% —1— pe
:“e i —n
Ia(z) < g |z —y|'""dy
|‘T‘ ‘$| {l:v y|<| ‘}
n 2 —1— —Pe
W
< C 1—s €,1
()
n (2* 2 pé)
S C|:17|_n lué 7

M€Z| |n2* 1-pe)—(2*—1—pe)—n—1+4s"

Since |z| > pe; and s € (0,2), we then get that
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n
2

:ue,i

SR L — (88)
(n2; +[z]?)%

Lo(x) < Cla|"ul, < C'

Plugging (86) and (88) into (85), we get (84). O

Step 5.4: Plugging (81), (83) and (84) into (80), we get inequality (79).

6. POHOZAEV IDENTITY AND PROOF OF COMPACTNESS

This section is mainly devoted to the proof of the following proposition:

Proposition 6.1. Let Q be a smooth bounded domain of R™, n > 3, such that
0 € 09. We let (ue), (ac) and (pe) such that (E.), (8), (9) and (10) hold. We
assume that blow-up occurs, that is

i e oy = 0
Then we have that

(n—s)/ IIy(z, )| Vi |* de
OR"

lim Pe _

=0 [le N (n-Dm-2) N (n-2)?2
(n— 2)2aN 2z-2) E a, 279 / |V1~Li|2 dx
R"

i
i=1

when n > 3. In this expression, 11y is the second fondamental form at O of the
oriented boundary 02 and OR™ is the oriented tangent space of 02 at 0. The
sequences and families pe y > 0, a4, U, @ € {1,..., N} are as in Proposition 3.1.
In addition, if uc > 0 for all € > 0, we have that

(n—s)/ 2V dz
OR™
lim L& = - - H(0)
=0 fLe N (n=1)(n=2) N = (22
n(n—2)2aN2(2_5) Zai 2<2_5)/ |Vii;|? da
i=1 R™

when n > 3. In this expression, H(0) is the mean curvature at O of the oriented

boundary Of).

We prove the proposition in Steps 6.1 to 6.3. We prove Theorem 1.3 in Step 6.4.
Step 6.1: We provide a Pohozaev-type identity for u.. It follows from Proposition
8.1 that u € C'(Q) and that Au, € LP() for all p € (1,2). We let

We := QN (B, (0)), where 7. = \/fe N - (89)

In the sequel, we denote by v(z) the outward normal vector at x € W, of the
oriented hypersurface OW, (oriented as the boundary of W,). Integrating by parts,
we get that
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/ 2 Ouc A, dz
We

= —/ ' 0;ucOyue do +/ 0; (zi(?iue)@jue dx
oW, We

i 2 i |Vu6|2
=— 2'0;uc0pue do + |Vu|® dz + ' 0; dx
ow. W, W, 2

2
= (1 - E) / |Vu5\2 dx +/ <(x, 1/)M - xiﬁiueayue) do
27 Jw. oW, 2
= (1 — ﬁ) (/ w0 U do +/ U Al dx)
2 OW. W.

2
—|—/ ((x,u)|vu€| —xi&»ueayu€> do.
W, 2

Using the equation (E.) in the RHS, we get that

. 2% —pe
/ ' Ojuc Aue do = (1 — E) (/ & dr — / aeu? dz)
W, 2/ \Jw, |zl W,

2
+/ ((1 — 2) uOyue + (z,v) [Vue| — xiaiuean) do. (90)
oW 2 2

On the other hand, using the equation (F.) satisfied by u., we get that

. . U .
/ 'O, u Aue de = / z'0;u,e - € dx — / ' 0;ucacue do
We We |z| We

i —s Juc|* P i
= 2|70 | ) dx — 2" 0iUc et dx
W 25 — e w.

= —/ 6-(xi|x|_s)w + 2l ducacu, | d
; K2 2*—p€ 1ee e

+/ (z,v) . Jue> do
d

W, 2* — pe ||

|u6|2*—2—e

- 2 p. 1 .
= _/ " . % dr + = / (na'e + mlaia’e)uf dx
w. |zl® 2 — p, 2 Jw

€

2% —pe
+/ (*I’V) el da—/ (:C’V)aeuf do. (91)
ow, 2* — De |z[® ow. 2

Plugging together (90) and (91), we get that

- 2 - € 2*7p€ 7V €
<n _7*1 s>/ || dx+/ <a6+(xa))ufdx
2 2% — pe We |CU|S We 2
n—2 |Vu|?
= ———uOue + (z,v)
f (5 :

. 2*_175
—2'0;u 0, U — (*x,y) . Jue| ) do —|—/ (2, ) acu? d
2 — Pe |I|S oW, 2
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for all € > 0. Since

OWe = [o(Br,(0)) N 0Q] U [2N p(0B:.(0))]
and since u. = 0 on 02, we get that

— 2 B e 2*_:06 , 6
7(71 - )P / L | —dz — / (ae + L Va )> u? da
2-(2* = pe) Jo, 0pna 2l o(By, (0)N0 2

1
_ 7/ (2, 1) Va2 do (92)
2 Jo(B., (0)no0
-9 Vue|? .
—/ (_n Uy ue + (1, 1/)& — 2" 0;u 0, Ue
QN¢(9B;, (0)) 2 2

2% — e || + 2

It follows from (78) and (79) that there exists C' > 0 such that

) el ), ) g

lue(x)] < Cre and |Vu(z)] < C
for all z € QN (0B, (0)) (recall that r. = /I v). We then get that
_ 2
/ <n 2u€avue+(xvy)|VUE|
QN (9B, (0)) 2 2

€T,V Ue 2*7p€ T,V n
om0 2] do = Ot = o) (99

when € — 0 since n > 3. With (78) and Proposition 3.1, we get that

/ <aE + (=, Va,) Va6)> u? da
(Br, (0)NQ 2

;u?i 2
<cC / _Mei _gyc 2| da
o(By. (opne (12 +]z|?)n1 @(By. (0))NQ

i=1

— 2'0;u 0y ue

<C u? dx
@(Br(0)N9

N
dx
<C 2/ —_dx+ O 2
= E?ana+mww

= 0(pe,n) (94)
when ¢ — 0 since n > 3. Plugging (93) and (94) in (92), we get that

_2 € 62*71)6 1
g [ e | (o, o+ ot )
2- (2" = pe) JoB oy 7I° 2 Jo(B., )00
(95)

when € — 0 and n > 3.
Step 6.2: We deal with the LHS of (95). We let ¢ as in (13). Since

Te

lim = 400

e—0 He,N
(see (89)), with a change of variables, we get for any R > « > 0 that
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o(B )N |2l (B, Onrr)  |2]°

2*_176
:/ %'Uac o(z)| dx
B, (0)NR™ ()]

2" —p.
:/ Juco p@ 77 e o) do
BRkEJ (0)NR™

lp(z)l®
N—-1
+

i=1

/ |’LLE O(p(.l)|2* Pe ( )
—_— z
(BRk, ;41 (0\Bak, 4, (0)NR" lp(z)|*

) e o pla)|2' 7
(Bak, ;11 (0\Brx, ,; (0))NR™ lo()
+ [ e © ()|
(Br. (O\Brx, 5 (0)NRT lp(z)|®
It follows from Proposition 3.1 that

lim lim , -[Jac p(z)|dr =«
R0 e=0 /gy (0)NR™ ()]s !

i 0 pl)* > gz [ n

and for any ¢ € {1,..., N — 1} that

2*_1)6
% |Jac (z)| dz

lim lim lim
R— 400 a—0e—0 (BRkeyH»l(0)\§ak’e,i+l(0))nRz |90(I)|

_(n—2)2 - 2*
=Y /]R" @i dz. (98)

It follows from the pointwise estimate (78) that there exists C' > 0 such that

Jue(@)] < Cplylal' =" + Cla|
for all z € Q. It then follows that there exists C' > 0 independant of R > 1 such
that

/ Jue 0 p(a)|* P
(Br. (0\Brx,  O)rrr  |o(@)]°

n 2" —pe
1 luez,N
— s ‘y| + n—1 dy
Br (0\Brk, y (0) ] ]

*—s— 52" —(n— *—pe)—s
<o pEmaprondy [ ey
B, (0) B (0\Brk, y (0)

- |Jac o(z)| dz

<C

C

n
= CTE + R(n—1)(2*—pe)—n+s "’

Since lim¢_,gr. = 0, we get that
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2% —p.
lim lim —‘ué ° ()]

- [Jac ¢(z)|dz = 0. (99)
o000 )5, (O\Bre, )Rz P2

We let i € {1,..., N — 1}. Using the pointwise estimate (78), we get that

n
lu’eg,i
|$‘"_1

Jue(z)] < © + Ol

for all z € 2 and all € > 0. With computations similar to the ones provided for the
proof of (99), we get that

i L T e o p(a)|* ~#
Rotooa=0e=0 Jip,  (O\Bai,(0pnrr  |P(@)]°

Plugging together (97), (98), (99) and (100) in (96), using point (A4) of Proposition
3.1, we get that

-|Jac p(z)|dz = 0. (100)

*_ N n—2)2 - *
lim/ Jud® 7 Zaf(mzi»/ [l® g,
=0 /o, (opna  |z[* ! no|z]s

=1
N _(n—2)?

— Zai "‘<H>/ |V |? da (101)
i=1 ja

Step 6.3: We deal with the RHS of (95). We have that

/ (x,u)\VuE|2da=/ (z,v)|Vue|? do
#(Br (0))NOQ @(Bru, ;(0))NN

N-2
>

/ (z,v)|Vu|* do
i=1 <P(BRke7i+1(0)\§Rke7i(0))maﬂ

/ (z,1)|Vue|? do
@(Bak, n (O\Brk, y_,(0)Nd0

+ (z,)|Vue|? do

+ (z,)|Vu|* do (102)

/(pBRk N 0)\Bak N(O))ﬂ&ﬂ
/.

(Bre (0) \BRk N (0))no2
Using the expression of ¢ (see (13)), we get that

vlo(z)) = (1, =020(x), ..., —Onpo(z))
o) \/1 + Z:‘l:2(8i§00(33))2

for all x € U N {x; = 0}. With the expression of ¢, we then get that

(v o p(x), () = (1 +O(1)|z]*) - (s@o(w) - le Wo(@) (103)
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for all z € UN{xzy = 0}. In this expression, there exists C' > 0 such that |O(1)| < C
for all z € U N {x; = 0}. Since ¢p(0) = 0 and V(0) = 0 (see (13)), we then get
that there exists C' > 0 such that

|(p(2), v 0 p(2))] < Claf? (104)
for all z € U N {z1 = 0}.

Step 6.3.1: We deal with the second term in the RHS of (102). Welet ¢ € {1,...,N—
2}. Tt follows from the pointwise estimate (79) that

Vue(@)] < Cuilal ™" + Cpg iy (105)
for all x € Q. With (104) and (105), we get that

/ (z, V)|Vu5\2 do
@(Brie, ;41 (0\Brr, ,;(0))NOQ

<c/ ) of? (bl + . 2y )
Bark, ;11 (O\Brk, ;/2(0)N{z1=0}
§ Cﬂe,i + Cﬂe,i+1 = O(ME,N) (106)

when ¢ — 0 when n > 3. Here, we have used that i + 1 < N and point (A3) of
Proposition 3.1. With the same type of arguments, we get that

/ (2, 0) Va2 do = o(jie ) (107)
o (Brx, , (0)N02

when € — 0 as soon as N > 2.

Step 6.3.2: We deal with the third term of the RHS of (102). It follows from the
pointwise estimate (79) that

[Vue(@)| < Onyslal ™ + Cuc (108)
for all z € Q. With (104) and (108), we get that

/ (z,v)|Vu|* do
@(Bak, n (O\Brk, y_,(0)Nd0

=C 5 j/? (MZN71|$|_2n + AL;;\L,) da:
B2°‘ke,N (0)\BRIC€7N_1/2(0)0{11:0}
< Clie,n—1+Ca™ M pe v

since n > 3 and where C' > 0 is independant of a and ¢ > 0. With point (A3) of
Proposition 3.1, we get that

(z,)|Vu|* do = 0. (109)

lim lim u_l /
a=0e=0" N @(Bak, n (0\Brk, y_(0)N0Q

Step 6.3.3: We deal with the fifth term of the RHS of (102). It follows from the
pointwise estimate (79) that

[Vue(@)| < Culylel™ +C (110)
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for all z € Q. With (104) and (110), we get that

/ (z,v)|Vuc|* do
¢(Br (0)\Brk, y (0))N02

<C |x\2 (M?,N|$|72n+0) dx
Bar (0)\Bri, y/2(0)n{z1=0}
< OR'"pug e + Cri )

since n > 3 and where C > 0 is independant of R and € > 0. With the definition
(89) of 7., we get that r" ™! = o(y, n) when € — 0. It then follows from point (A3)
of Proposition 3.1 that

lim lim p_ (z,0)|Vuc|? do = 0 (111)

1
R—tooe=0" 5 /@<BTE<0)\BMF,N(0>>089

when n > 3.

Step 6.3.4: We deal with the fourth term of the RHS of (102). Since ¢o(0) = 0 and
Vo(0) =0, it follows from the definition (13) of ¢ and (103) that

(p(kena), v o @(kent))

= (1+ O(k y|z|?)) <¢O(k€7Nx) — ke Z miaig@o(kewx))

=2

1 n o
= —51&2,N > Oijpo(0)z'a? + O p()k? v, (112)
i.j=2

for alle > 0 and all z € Br(0)N{z1 = 0} and where limc,0 SUp g, (0)n{z, =0} 10,7 =
0 for any R > 0. With a change of variable, (112) and the definition of @, (see
Proposition 3.1), we have that

wik | (2, )| Ve[ do
" Je(Bre, y (0\Bax, y (0)N09

k€N>n—1 1/ - i, ~ 2
_ , _ 22’ 0;500(2)|Viie N[5, dvg,
(Me,N 2 J(Br(0)\Ba(0)N{z1=0} iJZ:Q K e
+o(1)

when € — 0. In this expression, (G¢)i; = (i, 0;¢)(ke,nx) for all 4,7 = 2,...,n. It
follows from (110) and the definition of @, n that there exists C' > 0 such that

C

U <

(113)
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for all z € R™. With points (A4) and (A7) of Proposition 3.1 and inequality (113),
we get that

lim lim lim

-1 2
wik | (2,0) [V 2 do
RS fooa—0e—0" &N (Bt (O\Bak, y (0100

n—1
S n
= —aN2 / g 2’29 0;500(x)|Viy | do (114)
OR™

ig=2

when n > 3. Plugging (106), (107), (109), (111) and (114) in (102), we get that

271112 n
/ Z 2’29 0;500(x)|Vin | do
2 Jorn

i,j=2

lim,u_]lv/ (@, 1) |V 2 do = — 2N
#(Br. (0)N0Q

e—0 ©

(115)
We consider the second fondamental form associated to 02, namely

11y(w,y) = (dvp,y)
for all p € 0Q and all z,y € T,080 (recall that v is the outward normal vector at
the hypersurface 0€2). In the canonical basis of OR™ = T,0f2, the matrix of the
bilinear form 11y is —D3¢g, where D3¢y is the Hessian matrix of g at 0. With
this remark, plugging (101) and (115) into (95), we get that

IIy(z, )| Vi |* dx
De n—s B ) /6]R" ,

li = G 11
T O (n—2)2 (116)

N — e
ZOC,L' 2(2—>s) / |v,&2|2 dx
i=1 RZ

when n > 3. This proves the first part of Proposition 6.1.

We prove the second part of the Proposition and assume that u. > 0 for all e.
It follows that the limit function uy is nonnegative, and then positive on R”™.

Moreover, we have that
~o* 1
Un
|z]*
in R™. It follows from (78) that there exists C' > 0 such that

< ¢
= T4 [zt

Aty =

|an ()]

for all z € R™. It then follows from Proposition 10.1 of Appendix C that there
exists v € C?(R* xR) such that @y (21, 2") = v(z1, |2’]) for all (x1,2) € R* xR*~ L,
In particular, |Van|(0,2") is radially symmetrical wrt 2’ € OR™. Since we have
chosen a chart ¢ that is Euclidean at 0, we get that

n I i
/ IIy(z,z)|Vay > dz = M/ ||| Vin|? dx
OR™ n OR™

H
- 7(0)/ 2] Vi [? dz.
n Jorr



BORDERLINE COMPACTNESS 41

Note that we have used here that in the chart ¢ defined in (13), the matrix of the
first fundamental form at 0 is the identity. The second part of the Proposition then
follows.

Step 6.4: Proof of Theorem 1.3: We let (u.), (a.) and (pc) such that (E), (8),
(9) and (10) hold. Assume that

lim fJue o () = +o0. (117)

Then we can apply Proposition 6.1, and (116) holds. Since the principal curvatures
of 9Q at 0 are nonpositive, but do not all vanish, we have that Ily(x,2) < 0 for all
x € OR™, but Iy # 0. In particular, the RHS of (116) is negative. A contradiction
since p. > 0, and then the LHS of (116) is nonnegative. Then (117) does not hold,
and there exists C' > 0 such that |u.(z)| < C for all € > 0 and all x € Q. The first
part of Theorem 1.3 then follows from Proposition 2.1. In the case u, > 0 for all
€ > 0, we apply the second part of Proposition 6.1 to recover compactness as soon
as H(0) < 0, and the second part of Theorem 1.3 is proved.

7. PROOF OF EXISTENCE AND MULTIPLICITY

7.1. Proof of Theorem 1.1. For any subcritical p, i.e., 2 < p < 2*(s) we define
the corresponding best constant

P
s p(2) :=inf {/ |Vu|*de; u € H12,0(Q) and / [ul dr = 1} . (118)
Q

o lz]*

Because of the compactness of the embedding H7 () into LP(Q;|z| *dx), the
infimum g, ,(€2) is attained at a positive extremal v, satisfying

Au = IT;‘; in D'(Q)
u>0 in Q (119)
u=20 on 0.

Moreover, the family (vp) is uniformly bounded in H ;(2) when p — 2*. Part 2 of
the main compactness Theorem 1.3 for positive sequences now yields a nontrivial
limit v that is an extremal for p(2).

7.2. Proof of Theorem 1.2. For each 2 < p < 2*(s), consider the C2-functional

/\V 2 dz / ||“|| d (120)

on H7 ;(2) whose critical points are the weak solutions of

p—2
{ Au=DlP2e ong

(121)
u=20 on 0.

First note that for a fixed u € HfO(Q) we have since

p
/|V |2 _7/ ‘uls
||

that limit_, [ (Au) = —o0, which means that for each finite dimensional subspace
Ey C E := H7 4(Q2), there exists Ry, > 0 such that

sup{I,(u);u € Ey, ||ul| > Rx} <0 (122)
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when p — 2*. Let (E;)32, be an increasing sequence of subspaces of H7 (£2) such
that dim By = k and U2 | E), = E := H{ ((Q) and define the min-max values:
= inf I,(h ,
ek =, inf sup p(h(z))
where
H, ={h € C(E,E); hisodd and h(v) = v for ||v]| > Ry, for some Rj > 0}.

Proposition 7.1. With the above notation and assuming n > 3, we have:
(1) For each k € N, ¢, >0 and 111121 Cpk = Cor | i= Ck.
p—>2*

2) If2 < p < 2%, there exists for each k, functions u,, € H? () such that
D 1,0
I;/;(“p,k) =0, and Ip(up,k) = cp -
+1
3) For each 2 < p < 2*, we have ¢, satisfy ¢, > Dy, k-1
D, D, P
is such that lim,_,o« Dy, , = 0.

(4) lim ¢ = lim cor = +00.
k—o0 k—o0 ’

2
n

where Dy, , > 0

Proof: (1) First note that in view of the Hardy-Sobolev inequality, we have

1 1 L
1(w) 2 3IVul — CIulg = [Vul} (5 - CIVulg?) >0
provided [lul gz () = p for some p > 0 small enough. A standard intersection

lemma gives that the sphere S, = {u € Ej|lul[gz o) = p} must intersect every
image h(E}) by an odd continuous function h. It follows that

cp ke > Inf{I,(u);u e S,} > a>0.
In view of (122), it follows that for each h € Hy, we have that
sup Iy, (h(z)) = sup I(h(z))
x€EFEy x€ Dy

where Dy, denotes the ball in Ej, of radius Rj. Consider now a sequence p; — 2* and
note first that for each u € E, we have that I, (u) — Iz (u). Since h(Dy) is compact

and the family of functionals (I,,), is equicontinuous, it follows that sup I,(h(z)) —
zeE)

sup Io«(h(z)), from which follows that limsupec,, x < sup Io«(h(z)). Since this
©E By, ieN ©€Ey,
holds for any h € Hy, it follows that
limsup ¢y, 1 < cax ) = C.
ieN
On the other hand, the function f(r) = %7‘”— L% attains its maximum on [0, +00)

at r = 1 and therefore h(r) < % — o for all 7 > 0. It follows

() = 10+ [ o (S - golu@P ) do < s [ o (S5 )

from which follows that ¢, < lim Ii\lnf Cp; iy and claim (1) is proved.
1€

If now p < 2*, we are in the subcritical case, that is we have compactness in
the Sobolev embedding H? ((Q) — L?(Q;|x| *dx) and therefore I, has the Palais-
Smale condition. It is then standard to find critical points w, j for I, at each level
cp.k (see for example [19]). Now there are many ways to establish growth estimates
for cp 1 as k — 400, and we shall use here the one based on the Morse indices of
these variationally obtained solutions, a method first used by by Bahri-Lions [4]
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and independently by Tanaka [40]. We need the following key estimate of Li-Yau
33).

Lemma 7.1. Let V € L™?(Q) and denote by m* (V) the number of non-positive
etgenvalues of the following eigenvalue problem:

Au—Vu=u on{?
u=~0 on 0N).

If n > 3, then there is a constant Cp, > 0 such that m* (V') < C’nHVH:g

To prove the growth estimates on the critical values ¢, j, one can follow [40] (see
also [19]) and identify a cohomotopic family of sets Fy of dimension k in such a way
that if Dy, denotes the ball in Ej of radius Ry and if v € Hy, then v(Dy) € Fx. It
then follows that there exists v, € H{ ((Q) such that I, (vpx) < ¢y, I'(vpk) =0
and m*(vp ) > k, where m*(vp ) is the augmented Morse index of I, at vy ;. In
other words, since

I(v)(h, h) :£|Vh|2dx—(p—1)f‘ o 212 gy

|[*

:<(A_( _1) |‘| )hh>

in H=1(Q), this means that the operator (A — (p — 1)L22£" ) possesses at least

[a]*
k non-positive eigenvalues. Applying the above lemma, we get that the number of

these non-positive eigenvalues is bounded above by C, [[(p — 1) ‘%I - ‘l ] dz).
Q
Since p < %, we have q := % > 1, as well as its conjugate ¢’. Moreover, since
p < 2(77_725), we have that 273_25% < n. It then follows from Holder’s inequality
that:
2 (¥ k| p=2)3
E < C’/|p—1 ”| 3 dx (123)
L n(p—2)
1 A ol
< Culp—1]2 /de Lokl gy
ez |z|®
Q Q
n(g—2)
P
|vp,k|?
S C’n,p /W dx
Q
%
where C,,, = Cp|p — 1|2 <f — da:)
Q ‘I|2p np+2n

Since (I'(vpk), vpx) = 0, it follows that f\vadem = f IUP " da, which finally
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implies that

1 1 [ |vpilf
epk > I(vpr) = §/|va}k|2 dw—}; | 1;|s| dzx
Q Q

1 1 p
_ <>/|vp»kv| dx
2 p |z|*
Q

2p
> Dn,pk"(pfz) ’

—_2p __
where Dy, = (5 — £)Cnip” "

To prove 4) we proceed by contradiction and assume that (cg)x is bounded so
that a subsequence of which converges to some real number c. Using the first claim
of the proposition, there exists for each k € N, 2 < py, < 2* such that |c,, r—ci| < %
in such a way that limg_, 4o, pr = 2* and

k:EI-lr-loo Cpp,k = kEI-il:loo ¢ =c. (124)
As above, there exists v, r € H7 () such that I, (vp, k) < pyks I (Upe ) =0
and m*(vp, ) > k, where m*(v,, 1) is the augmented Morse index of I, at vp, k.

But (124) gives that the energies of (vp, x)r are uniformly bounded and therefore
(Upy.k )k is bounded in HF (). It follows from Proposition 8.1 and the compactness
Theorem 1.3 that they converge to a solution v of (121) with energy below level c.
In particular, there exists C' > 0 such that

[vpe k(@) < C (125)

for all z € Q and all k € N. With (123) applied to v, ,, we get that

n (r-2)%
k< Cn/‘pk - 1|5|Upk’k|7a2d$~
x|%2
Q

With (125), we get that there exists a constant C' > 0 independant of k such that

kgc/dii.
Q|CE2

In particular, since s € (0,2), the integral is finite and there existe C' > 0 such that
k < C for all k € N. A contradiction, and we are done with the proposition.

To complete the proof of Theorem 1.3, notice that since for each k, we have
lim I, (up, k) = lm ¢,, 1 = ck, it follows that the sequence (uy, x); is uniformly
pi—2* pi—>2*

bounded in Hf (). Moreover, since I}, (up, 1) = 0, it follows from Proposition 8.1

and the compactness Theorem 1.3 that by letting p; — 2*, we get a solution wuy of

(121) in such a way that Is(ug) = lirr21 Iy(up i) = lin21 Cp. = Ck. Since the latter
p—2* p—2*

sequence goes to infinity, it follows that (121) has an infinite number of critical
levels. The result for the equation Au + au = ‘uﬁ;“

the same way, and Theorem 1.2 is proved.

when A + a is coercive goes
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8. APPENDIX A: REGULARITY OF WEAK SOLUTIONS

In this appendix, we prove the following regularity result. Note that such a
Cl—regularity was first proved out by Egnell [17]. We include the proof for com-
pleteness.

Proposition 8.1. Let 2 be a smooth domain of R", n > 3. We assume that either
Q is bounded, or @ =R". We let s € (0,2) and a € C°(Q). We let € € [0,2* — 2)
and consider u € HY ((Q) a weak solution of

|u\2*_2_5u

|[*
Thenu € CY9(Q) for all§ € (0, min{1,2*—e—s}) if Q is bounded, andu € Cllo’f(@)
for all € (0,min{1,2* — e —s}) if Q =R™. In addition, in all the cases, we have
that w € C*(Q\ {0}) if a € C**(Q) for some o € (0,1).

Au+au = in D'(Q).

Proof. We prove the result when € is bounded. The arguments and the results are
basically local, and the proof goes the same way when 2 = R™.

Step 8.1: We follow the strategy developed by Trudinger ([41], and [27] for an
exposition in book form). Let 8 > 1, and L > 0. We let

|t]5—1¢ if [t| <L
Gr(t)=1{ BLP7Y(t—L)+LP ift>1L
BLA=Yt+ L)—LFP ift<-L
and
It| ="t if |t| < L
Hi(t)={ % (t— L)+ L% ift>1L
LS 4+ L) - L% ift <L
As easily checked,
0 1GL(0) < L7 and G (1) = oL (A0

forallt € Rand all L > 0. Let n € C°(R"). As easily checked, n?G (u), nHz,(u) €
H? (). With the equation verified by u, we get that

2% —2—¢
VuV(n*Gr(u)) de = |u| P uGr(u) de — / an*uGr(u)dr.  (126)
Q Q Q
We let Jp( fo Gp(1)dr for all t € R. Integrating by parts, we get that

/VUV(UzGL(u))dI:/UQG/L(U)|VU|2d$+/VT]2VJL(’LL)dI
Q Q Q

_ wj_ﬁl)z/772|VHL(u)|2dx+/(An2)JL(u)dx
43

N (6+1 /'V (nHL(w)I* do - (/8+1)2/5277An‘HL(U)‘2d$
+ [ (@) de (127)
Q
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On the other hand, with Holder’s inequality and the definition of ugs(R™), we get

that
WY > :
A W—a ‘n*uGr(u) dx < A \a|+T - (nHp(u))? dz
9% _g_ 2% —¢ 1_ﬁ
<[ e eprgFE,
QnSupp n ||®
2 __2e
o 1 T =0
" < [nH L (u)] dx) y / dz
Q |z|® onSupp » 17*
<a [ IVHLw)P ds (128)
Q
where

1——2

2
s D 7
o (] (ol Iol* + ol 2755
QnSupp n ||

2e
« 1 (R7) 1 / do \ T
) anSupp » 17*

Plugging (127) and (128) into (126), we get that

4B
A [ V)R e < = [ sl 0P de + [ 180T 0] da

(129)
where
1

__2
P N U A
(B+1) QnSupp 7 ||

2e
d ¥ (2% —¢)
XMS(RH)_l / is
QnSupp 7 ||

Step 8.2: We let

po =sup{p > 1/u € LP(Q)}.
It follows from Sobolev’s embedding theorem that py > % We claim that

Po = +00.

We proceed by contradiction and assume that

Po < Q.

Let p € (2,p9). It follows from the definition of py that u € LP(Q2). Let S =p—1 >
1. For any z € Q, we let 6, > 0 such that
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1—

2
*_o_ 2% —e 2% —¢
[ R o s
S
QNBas, () lyl*

2e
d TF(2* o) 9
x / = < 752 (130)
QNBas, (z) |y (B+1)

Since € is compact, we get that there exists z1,...,zx € Q such that

N
Qc | B, (x:).

i=1
We fix i € {1,..., N} and let n € C°°(Bas,, (z;)) such that n(z) = 1 for all x €
Bs, (xi). We then get with (129) and (130) that

<5+1 5 [ V@) ds
< G [ mdal P de+ [Pl lde (3)

Recall that it follows from Sobolev’s inequality that there exists K(n,2) > 0 that
depends only on n such that

(/ |f|f"2dx) ' gK(na)/ VI de (132)
R~ R

for all f € Hf o(R™). It follows from (131) and (132) that

2 o =
(3 +61 (/ L () 2dx>

<G /mAnHHL( P dat [ 1877 |10 da

for all L > 0. As easily checked, there exists Cy > 0 such that |Jp(t)] < Colt|***
for all t € R and all L > 0. Since u € LAT1(Q), we get that there exists a constant
C = C(n,u,p,Q) independant of L such that

/ Hy ()75 do < / inHy (u))
QﬂBtS.—ni (:EL) Q

for all L > 0. Letting L — 400, we get that

/ u| 72 A+ dg < 400,
QOB{;wi (ml)

for all i = 1..N. We then get that v € L7 2P*)(Q) = L72P(Q). And then,
—sp < po for all p € (2,po). Letting p — po, we get a contradiction. Then
po = +oo and u € LP(Q) for all p > 1. This ends Step 8.2.

Step 8.3: We claim that

2n
w2 dyx < C

u e 0% (Q)
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for all « € (0,1). Indeed, it follows from Step 8.2 and the assumption 0 < s < 2
that there exists p > % such that

—au € LP(Q).
It follows from standard elliptic theory that, in this case, u € C%*(Q) for all
a € (0,min{2 — s,1}). We let

oo =sup{a € (0,1)/u € C¥*(Q)}.
Note that it follows from the preceding remark that ap > 0. We let a € (0, ).
Then u € C%*(Q). Since u(0) = 0, we then get that

()] < Ju(z) —u(0)] < Clz|*. (133)
We then get with (133) that
@) e C
| fe(@)] = T*CLU < WJFC

for all x € Q. We distinguish 2 cases:

Case 8.3.1: s— (2 —1—€)ap < 0. In this case, for any p > 1, up to taking « close
enough to aq, we get that

fe € LP(Q).
Since Au = f. and u € H7 (), it follows from standard elliptic theory that for

any 0 € (0,1), we have that u € C1?(Q). It follows that ap = 1. This proves the
claim in Case 8.3.1.

Case 8.8.2: s — (2 — 1 — €)ayg > 0. In this case, for any p <
taking «a close enough to ag, we get that

up to

—___n
s—(2*—1—€)ap’

fe € LP(2).
We distinguish 3 subcases.

Case 8.3.2.1: s — (2* — 1 — €)ap < 1. In this case, up to taking « close enough to
g, there exists p > n such that

fe € LP(Q).
Since Au = f. and u € H 12’0((2), it follows from standard elliptic theory that there

exist exists 6 € (0,1) such that u € C*?(Q). It follows that ap = 1. This proves
the claim in Case 8.3.2.1.

Case 8.8.2.2: s — (2* — 1 — €)ag = 1. In this case, for any p < n, up to taking «
close enough to ag, we get that

fe e LP(Q).
Since Au = f. and u € H7(Q), it follows from standard elliptic theory that
u € C%%(Q) for all & € (0,1). It follows that ag = 1. This proves the claim in Case
8.3.2.2.
Case 8.3.2.3: s — (2* — 1 — €)ap > 1. In this case, it follows from standard elliptic
theory that u € C%%(Q) for all
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a<2—(s—(2"=1-¢€)).
It follows from the definition of «q that

ag>2—(s— (2" =1-e)ag),

and then

0>2-—54+(2"—2—¢€)ap >0,

a contradiction since s < 2 and € < 2* — 2. This proves that Case 8.3.2.3 does not
occur, and we are back to the other cases.

Clearly, theses cases end Step 8.3.

Step 8.4: We claim that

ue CH(Q)

for all & € (0,min{1,2* — e — s}). We proceed as in Step 8.3. We let a € (0,1)
(note that ag = 1). We then get that

2% —1—¢ C
FACO] o T N

|£L"S - ‘xls—(Q*—l—e)a
for all x € 2. We distinguish 2 cases:

Case 8.4.1: s — (2 — 1 —¢€) < 0. In this case, for any p > 1, up to taking « close
enough to ag, we get that

f. € LP(Q).

Since Au = f. and u € H7(Q), it follows from standard elliptic theory that

u € CH9(Q) for all 6 € (0,1). It follows that oy = 1. This proves the claim in Case
8.4.1.

Case 8.4.2: s — (2" —1—¢) > 0. In this case, for any p < %, up to taking
« close enough to 1, we get that

fe € LP(Q).
As easily checked,

1—(s—(2"—1—€)=2-s4+(2"—1—€)—1>2"—2—¢>0

We then get that there exists p > n such that fo € LP(2). Since Au = f. and
u € H{y(Q), it follows from standard elliptic theory that v € C?(Q) for all
6 € (0,min{1,2* — ¢ — s}). This proves the claim in Case 8.4.2.

Combining Case 8.4.1 and Case 8.4.2, we obtain Step 8.4. Proposition 8.1 follows
from Step 8.4. (]
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9. APPENDIX B: PROPERTIES OF THE GREEN’S FUNCTION

This section is devoted to the proof of some useful properties of the Green’s
function for a coercive operator. Concerning notations, for any function F' : X X
Y > R and any x € X, we let F, : Y — R such that F,(y) = F(z,y) forally € Y.
We prove the following:

Theorem 9.1. Let Q be a bounded domain of R", n > 3. Let K,\ > 0. Lel
6 € (0,1) and a € C%%(Q) such that

la(@)| < K and |a(x) - a(y)| < K|z —y|’ (134)
for all z,y € Q and

/(|w|2 + ap?)dx > )\/ ©* dx (135)
Q Q

for all o € C°(Q). Then there exists G : Q x Q\ {(x,7)/x € Q} — R such that
(G1) For any x € Q, G, € L*(Q) and G, € C*%(Q\ {z}).

(G2) For anyx € Q, Gy > 0 in Q\ {z} and G5 =0 on 0.

(G3) For any ¢ € C*(Q) such that ¢ =0 on 9L, we have that

o(z) = / G, y)(Ap + ap)(y) dy

for all x € Q.
(G4) G(z,y) = G(y,z) for allz,y € Q, z #y.
(G5) There exists C = C(2, K, \) > 0 such that

|],' - y|n_2|G(J," y)| < C(Q’ K7 A)
forallz,y € Q, x #y.
(G8) There exists C = C(Q, K, A) > 0 such that

|(E - y‘n_1|G({,C7y)‘ < C(Qv K7 )‘)d(yvaﬂ)
forallz,y € Q, x #y.
(G7) There exists C = C(Q, K, \) > 0 such that

|z —y" T VGa(y)] < C(2, K, )
forallz,y € Q, x #vy.
(G8) There exists C = C(Q, K, \) > 0 such that

forallz,y € Q, x #y.

Some similar properties are available for the normal derivative of G at the boundary.
Namely,
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Theorem 9.2. Let Q2 be a bounded domain of R™, n > 3. We assume 0 € 0S).
Let K.\ > 0. Let 0 € (0,1) and a € C%%(Q) such that (134) and (135) hold. We
let G as in Theorem 9.1. We let H(z) = —0,G(0) for all x € Q\ {x}. Then the
following assertions hold:

(G9) H € C?(Q\ {0}), H >0 in Q and H =0 on 00\ {0},
(G10) AH +aH =0 in 9,
(G11) There exists C = C(Q2, K, \) > 0 such that

d(x,00) Cd(z,00)
2 < H(x) < /2
Clar =@ = "
for all x € Q.
(G12) There exists C = C(Q, K,\) >0 and § = 0(Q, K, \) > 0 such that
1 C
<|VH —
Clal <|VH(z)| < PR

for all x € Bs(0) N Q.

The proof of Theorem 9.1 is very close to the proof of the existence of the Green’s
function on a compact manifold without boundary provided in [15]. We just give
the main steps of the proof and outline the difference with [15] when necessary. We
prove Theorem 9.2 in details.

Step 9.1: This Step is devoted to the proof of points (G1)-(G5) of Theorem 9.1.
We only sketch the proof. Details are available in [15]. We define

1
(n—2)wp_1|z —y|"2

H(x’y) =

for all =,y € R™ such that x # y. In this expression, w,_1 denotes the volume of
the standard (n — 1)—sphere. The function H is the standard Green kernel of the
Laplacian in R™. We define the functions I';’s by induction. Given z,y € €, x # vy,
we let

Iy(z,y) = (y)”H(I y)
Diy1(z,y) = JoLi(x,2)l1(2,y)dz  forall i > 1.

As easily checked, T; € C°(Q2 x Q\ {(x,z)/x € Q}) for all i > 1. Standard
computations yield that there exists C'(Q,n, K) > 0 such that

I (z,y)| < C(Q,n, K)|lz —y[*—" if 26 <n
ITi(z, )| < C(Q,n, K) if 26 >n, i <n.

for all z,y € Q, x # y. In addition, T'; can be extended to a continuous function in
Q x Q for all i >n/2. We let x € Q. We let U, € Hf 4(€2) such that

AU, + aU, =Tyy1(z,-) in D'(Q).
Since I';, 41 is uniformly bounded in L*°, it follows from standard elliptic theory

that U, € HY(Q) for all p > 1 and that there exists C'(2, K, ) > 0 such that

1Usllor @y < C(2, K, A)
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for all z € Q. We let V,, € HZ(£2) such that

AV, +aV, =0 in D'(Q)

Valy) = —H(z,y) — > iy JoTilz, 2)H(z,y)dz  for all y € HQ.
It follows from standard elliptic theory that for any z € Q, V,, € C1(2). Moreover, it
follows from the explicit expression of H and the I';’s that there exists C(2, K, \)’ >
0 such that V;(y) < C(2, K, ) forall z € Q and all y € 99Q. Since A+a is coercive,
it follows from the comparison principle that there exists C(£2, K, A) > 0 such that

Va(y) < C(Q, K, )

for all x € Q2 and all y € Q. We let

Galy) == Hw,) + 3 /Q Ti(e, ) H(zy) dz + Un(y) + Vo)

for all y € Q. Tt follows from the construction of G that there exists C(Q, K, \) > 0
such that

G(z,y) < C(Q K N) - |z —y[*™"
for all z,y € Q, x # y and that G, vanishes on 02 for all x € Q. This prove point
(G5). We let ¢ € C?(Q) such that ¢ =0 on 9Q. Noting that

©(2) :/QH(%y)Acp(y) dy+/m7%(fc,y)8y<ﬂ(y) do(y)

for all z € €2, we get with some integrations by parts that

o(z) = / Gz, y)(Ap + ap)(y) dy.

This proves point (G3). It then follows that
AG, +aG, =01in D'(Q\ {z}).
Since G, = 0 on 99, we get that G, € CEY(Q\ {z}). It the follows from the

loc
construction and the maximum principle that G, > 0 in ©Q \ {z}. This proves

points (G2) and (G1). Point (G4) is standard, we refer to [2] or [15].

Step 9.2: We prove points (G6) and (G7) of Theorem 9.1. We proceed by contra-
diction and assume that there exists a sequence (ag)reny € C*?(Q) and sequences
(k) ken, (Yr)ken € Q such that (134) and (135) hold and

. _ xr — Yk Ga, (Yk)
lim ||zr — yu|" VG + | k
Jm ek = yal "V Gy ()] .99
where G, is the Green’s function for A 4 ay at x;. We let 2o = limy_,4 o ) and
Yoo = limg s 100 Y (these limits exist up to a subsequence).

Case 1: Too # Yoo Welet 0 < 0 < [Too — Yoo|/4. Tt follows from point (G5) that
there exists C' > 0 independant of k such that |G,, (y)| < C for all y € QN B,__(26).
Since AG,, +a,G5, = 0and G, = 0 on 912, it follows from standard elliptic theory
that

= 400 (136)

G, ||Cl(§ﬁBy,x> (6)) — O(1)
when k — +oo. Since G,, vanishes on 09, we get that there exists C' > 0 such
that
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|Ga,. ()] < Cd(y,09) and VG, (y)| < C
for all y € QN B, () and all € > 0. A contradiction with (136).
Case 2: Too = Yoo-
Case 2.1: We assume that

d(xg, 00) > 2|yr — x| (137)

up to a subsequence. We let

Gi(2) = lye — 2| 2 Glan, op + [yp — 2al2)
for all z € Bs/5(0). With our assumption, this is well defined. It follows from (G5)
that there exists C' > 0 such that

Gr(z)| < C
for all z € B3/5(0) \ B1/4(0). Moreover, G}, verifies the equation

AG + |y — ik [ar(wr + [yr — 21]2)Gr(2) = 0
in B3 /2(0) \ B1/4(0). It follows from standard elliptic theory that

1Gkll et (B, u00\B, 2 (0)) = O1)

when k — 4o00. Taking z = gz:;’;l and coming back to G, , we get that

|z =yl TV G, ()| = O(1) (138)

when k — 4o00. Moreover, it follows from point (G5) of Theorem 9.1 and (137)
that there exists C' > 0 such that

|xk - yk|n71sz (yk) S Cd(yk, aQ) (139)

when k — +o00. Inequations (138) and (139) contradict (136).
Case 2.2: We assume that

d(zg, 0Q) < 2|y — i (140)
up to a subsequence. In particular, x., € 9. We let a chart ¢ : U — V as in (13)
with yg = xo and where U,V are open neighborhoods of 0 and x, respectively.
We let Zg, gr € U N {1 < 0} such that zx = (&) and yr = @(Jr). As a remark,
limp_y 400 T = liMg 400 Y = 0. We let 251 < 0 be the first coordinate of Zj. As
in Step 3.2, we have that d(xy,9Q) = (1+ 0(1))|Zx,1| when k — +o0o. We then get
with (140) that 21 = O(|gr — Tx|) when k — +oco. We let

_ Th,1
|9k — T
(this limit exists up to a subsequence). We let R > 0 and we let

Pk and po, = klim Pk

—+oo

Gu(2) = |G — &u|"72Gan, ¢ (T + 1 — Tul (2 — pr€1)))
for all k and all z € Bg(0) N {21 < 0}. Here €| denotes the first vector of the

canonical basis of R”. Note that Gy, vanishes on Br(0)N{z; = 0}. It follows of the
pointwise estimate (G5) that for any R,d > 0, there exists C'(R,d) > 0 such that
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|Gi(2)| < C(R,0)
for all z € [Br(0) \ Bs((poo;0,...,0))] N {z1 < 0}. The function G} verifies the
equation

Ny, Gr + |Gk — Exlan (@ (Fr + |k — Tk (2 = (pk,0,.,0)))Gr = 0
in [Bgr(0) \E(i((poo,o, ., 0))] N {z < 0}. It then follows from standard elliptic

theory that [[Grllcr (s, ,00\Bas(pee,..0infzi<0y) = O(1) when k — +oo. As in
Case 2.1, we get that

|2k — il " TV Ga, ()| = O(1) (141)
when k — +o00. Moreover, since Gy, vanishes on dR™ , there exists C' > 0 such that
|Gi(2)] < Ol
for all z € [Br/2(0) \ B2s(poo, ---,0)] N {21 < 0}. Taking z = (pg, ..., 0) + é::g:‘, we

get that
|2k — il Gay (yn) < Cd(yx, 00) (142)

for all k large enough. A contradiction with (136).
In all the cases, we have contradicted (136). This proves points (G6) and (G7) of
Theorem 9.1.

Step 9.3: We prove point (G8) of Theorem 9.1. More precisely, we claim that
there exists C' = C(€, K, \) > 0 such that

|z —y|"G(z,y) < Cd(y,0Q)d(x,00) (143)
and
lz —y|"|VyG(z,y)| < Cd(z,00)
for all z,y € Q, = # Q. Indeed we proceed as in the proof of points (G6) and (G7).

We proceed by contradiction and assume that there exist a sequence (ax)ken €
C%9(Q) and sequences (zx)ren, (Yk)ren € Q such that (134) and (135) hold and

lm o — il |G (@k, yr)| VG, (yr)|
koo F I (e, 09)d(yr, 09) d(xy,, 09)

where G, is the Green’s function for A +ay at x. We let 2o = limy_, 4 o 2 and
Yoo = limg s 400 Yk (these limits exist up to a subsequence).

Case 1: Too # Yoo Welet 0 < § < |Zoo — Yoo|/4. We let

+ |lzk — yrl" =400 (144)

= _ Grlag, 2)
Celz) = Jnon)
for all z € Q. As in Case 1 of the proof of (G6)-(GT), using (G6), we get that

”ékncl(ﬁﬁByw @) =0(1)
when k£ — +oo. It then follows that

ék(yk) < C’d(yk,aQ) and |V@k(yk)| < C
when k — 400. A contradiction with (144).
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Case 2: Too = Yoo-
Case 2.1: We assume that

d(xg, 0Q) > 2|y, — x|

up to a subsequence. We then obtain that |z — yx| < d(yk, d). This inequality
and (G6)-(G7) yield to a contradiction with (144).

Case 2.2: We assume that

d(wy, 02) < 2lyy — x|

up to a subsequence. In particular, zo, € Q. We let a chart ¢ : U — V as in (13)
with yo = 2o and where U,V are open neighborhoods of 0 and x, respectively.
We let Tk, g € U N{xz1 < 0} such that z = p(Z) and yr = (gx). We let

G [mk,w (ffk + |9 — Tk (z - (Igfiﬁ’o’”’o)))}
d(xg, 00Q)

for all z € [Br(0) \ Bs(poo,0,...,0)] N {21 < 0}. As in Case 2.2 of the proof of
(G6)-(GT), we get with (G6) that for any R > 46 > 0, we have that

Gr(2) = | — ax|" "

1G ko2 (15201 Bas (e 0.... )0 (21 0p) = O(1)
when k& — 400, where po = limg_s 1o ﬁ Since Gy, vanishes on {z; = 0},
it then follows that there exists C' > 0 such that |Gy(z)] < C|z| for all z €
[Br/2(0) \ B2s(poc: 0, ...,0)] N {z1 < 0}. Coming back to the definition of G and

noting that d(yx, 0Q) = (1+0(1))|gk,1| when k — 400, we get a contradiction with
(144) as in Case 2.2 of Step 9.2.

In all the cases, we have contradicted (144). This proves the claim and ends Step
9.3.

The proof of Theorem 9.1 is complete. We prove Theorem 9.2.

Step 9.4: We let H(z) = —0,G.(0) for any z € Q\ {0}. It follows from (143) that
there exists C' = C(Q, K, \) > 0 such that

Cd(z,00) < C
O
for all x € Q. Since AG, + aG, =0 in Q\ {z}, using the symetry (G4) of G and

(145), we get that H € C?(Q2\ {0}) and that AH +aH = 0 in Q and H(z) = 0 for
all z € 90\ {0}. Derivating (G3), we get that

0<H(x) < (145)

Byp(0) = - / H(z)(Ap + ap)(z) da (146)
Q
for all ¢ € C?(Q) such that ¢ = 0 on 9.

Step 9.5: Assume that there exists a sequence (ag)p>o € C%?(Q) such that
(135) and (134) hold, that there exists a sequence (rx)r>0 € R such that r, > 0,
limg 4 00 7x = 0 and
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Hi(o)]x"

lim sup =0,

k_)+oo|97|:7"k d(z,@ﬂ)
where Hj comes from the Green’s function of A + ar. We claim that in this
situation, we have that

Hi(z)[z]"

lim sup <d(m 29)

k=00 Lry <Jw| <34

+ x|”|VHk(x)|) =0. (147)

Indeed, we let ¢ : U — V as in (13) where U,V are open neighborhoods of 0. We
let

Hi(z) = r,” Hi( (i)
for all z € % N{z1 < 0}. It follows from (145) that for any R > ¢ > 0, there exists
C(R,0) > 0 such that |Hy(z)| < C(R,6) for all x € [Br(0) \ Bs(0)] N {z1 < 0}. In
addition Hy vanishes when x; = 0. Moreover, we have that

Agkﬁk + r2ag((rpz))Hy, = 0,
where (gx)i; = (0@, 0;¢)(rkx) for i,5 € {1,...,n}. It then follows from standard

elliptic theory that there exists H € C2(R™ \ {0}) such that AH = 0 in R” \ {0}
and

lim I:Ik = I:I
k——+oco
in C2 _(R™ \ {0}). As easily checked, we have that
, Hi(z)[x]"
lim sup ( + |z|"|VH(z)|
k—4o00 %Tk§\$|§37“k d(x,@Q)
= s (HOEE v @) (148)
1<|z(<3 |1
and
B Al
0= 1 —— Y = — . 149
oo e d(@,00) i\ o (149)

Assume that H # 0. Then, since H > 0 vanishes on R™, we have that H > 0 in
R” and &, H < 0 on 9R™ \ {0}. Tt then follows that the RHS of (149) is positive.
A contradiction, since the LHS is 0. Then H = 0, and (147) follows from (148).
This ends Step 9.5.

Step 9.6: We claim that there exists €(€2, K, A) > 0 such that

o H(x)|xl|"

llgrl_%lf |il|1:pr A(2.00) = e(2, K, N) (150)
Indeed, we argue by contradiction and assume that there exists a sequence (ax)k>0 €
C%9(Q) such that (135) and (134) hold, that there exists a sequence (r3)r>0 € R

such that rg > 0, limg_ 400 7% = 0 and
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H@"
d(z,00) ’

where Hj, comes from the Green’s function of A + ag. It then follows from Step
9.5. that

lim sup

k—4o00 |z| =7

lim m; =0. (151)
k——+oo
where
Hy,()|=|"
mp = sup — o + 2" [VHk ()] ) .
%rkg\z|§37‘k < d(x’aﬂ)

We let 7 € C*(R") such 7 = 0 in B1(0) and 77 = 1 in R" \ By(0). We let
ne(x) = fj(x/ry) for all x € R™ and all k£ > 0. We let ¢ € C?(Q2) such that

Ay + arpr =11in Q and ¢ = 0 on 99.

It follows from standard elliptic theory that limg_, 0o ox = ¢ # 0 in C%(Q). It
then follows from Hopf’s maximum principle that

dy(0) < 0. (152)
Integrating by parts and using that AHy, + ax Hy = 0, we obtain that

/ Hi(@) (Mg + apgi) (2) de - = / (i) (@) (Do + apn)(@) di + o(1)
Q Q

/Q(A(Uka) + aniHy)pr dz + o(1)

/Q((Ank)Hk — QVT]kVHk)QDk dx + 0(1)

QﬂBvak (0)\B,,.,c (0)

+o(1)

where limy_, 1 o 0(1) = 0. Since ¢ (0) = 0 and limy_, 1« pr = @ in C1(Q), using
the definition of my we get that

/QHk(as)(Agak +arpr)(x)dr = O (rZ(mkr,ZQr,i_”rk)) +0(1) = O(my) + o(1).

With (151), letting k — 400, and using (146) we get that

8y9(0) = Dyipi(0) + o(1) = _/ Hi(2)(Dx + axgr)(x) do + o(1) = 0.
Q
A contradiction with (152), and the claim is proved.

Step 9.7: We claim that there exists €(€2, K, \) > 0 such that

e H()|a]”
—_— > .
llggfli?jr A(0.00) = e(, K, \) (153)
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Indeeg, we argue by contradiction and assume that there exists a sequence (ax)x~o €
C%9(Q) such that (135) and (134) hold, that there exists a sequence (rj)r>o € R
such that rp > 0, limy_, 1o 7 = 0 and

@)l
1 f —————=0

k—1>I—&I-100 |a:1|1lrk d((E, 89) ’
where Hj, comes from the Green’s function of A + aj. Mimicking the proof of Step
9.5, we obtain that Hy(z) := ' Hy(p(rgx)) converges to H in CL (R™ \ {0}).

We get that

CH@
inf —>—— = lim inf
lz]=1  |a1] k—+oo |x|=r, d(z,00)

H@la" _

Since H > 0 is harmonic and vanishes on IR™ \ {0}, it follows from Hopf’s maximum
principle that H = 0. We then get that

H@lel” Al
= sup
d(z7aQ) |z|=1 “rl‘
A contradiction with Step 9.6. This proves the claim.
Step 9.8: We claim that there exists C = C(£2, K, ) > 0 such that

lim sup

k—+o00 |z| =7

d(z,00) Cd(z,00)
AR g 2 Y
Clafr = H@
for all z € 2\ {0}. Indeed, this claim is a consequence of (145), Step 9.7 and
standard elliptic theory. This proves point (G11).

Step 9.9: We claim that there exists C (€, K, A) > 0 such that

|z["|VH ()] < C(Q, K, A) (154)
for all z € 2\ {0}. We proceed by contradiction and assume that that there exists
a sequence (ag)r>o € C%?(Q) such that (135) and (134) hold, that there exists a
sequence (z)g>o0 € Q such that

lim |||V Hy ()] = +oo, (155)
k— 400

where Hj comes from the Green’s function of A + ay.

Case 1: limg_, 1 oo xx # 0. In this case, since AHy +apHy = 0, it follows from (145)
and standard elliptic theory that |V Hy(zx)| = O(1) when k — +oo.

Case 2: limg_, 4o xx = 0. We consider ¢ : U — V as in (13) with yo =0 and U,V
are open neighborhoods of 0. We let x, = ¢(Zx). We let

Hy(x) = |2|" " Hi(p(|Zx]2))
for all xz € % N{x; <0}. Asin Step 9.5, we get that there exists C' > 0 such that

[1Hkllcr ({21 <03nB2 (00\ By 5(0)) < C-
Estimating the gradient at Zj/|Zx|, we get that

|z [" |V Hi (z)] = O(1)

when k — +o0.
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In both cases, we have contradicted (155). This proves (154).
Step 9.10: We claim that there exists 6(Q2, K, A), C(Q, K, \) > 0 such that

|z|"|VH(x)| > C(Q, K, \) (156)
for all z € Q\ {0} such that |z| < 6(Q, K, ). We proceed by contradiction and
assume that that there exists a sequence (ax)r>0 € C%%(Q) such that (135) and

(134) hold, that there exists a sequence (zx)r>o € € such that limg 4oz = 0
and

k—+oco

where Hj, comes from the Green’s function of A + ax. We let xp = ¢(Zx) and
yr = ©(Jk). We let

Hy,(x) = [&[" " Hi (o (|75 7))
for all z € % N {z; < 0}. Mimicking the proof of Steps 9.5 and 9.9, we get that
there exists H € C?(R™ \ {0}) such that

Jim A= i (158)
in C2_(R™ \ {0}). In particular, we have that H is harmonic. It follows from Step
9.8 and (158) that there exists C' > 0 such that

[zl _ 5 Clai|
< H(z) <
Clal ||

for all x € R™ \ {0}. It then follows from the rigidity Property 9.1 below that
VH(z) # 0 for all z € R™ \ {0}. It follows from (157) and (158) that there exists
& e R™ \ {0} such that VH (&) = 0. A contradiction. This proves (156).

Clearly Theorem 9.2 is a consequence of Steps 9.4 to 9.10.
Step 9.11: Our last step is the proof of the following rigidity result:

Proposition 9.1. Let h € C%(R" \ {0}). We assume that h is nonnegative in a
neighborhood of 0, harmonic and vanishes on OR™ \ {0}. We assume that there
exists C > 0 such that |h(z)| < C|z|'=" for all z € R™ \ {0}. Then there exists
o > 0 such that

for all x € R™ \ {0}.
Proof. Up to rescaling, we assume that A > 0 in B2(0) \ {0}. We let

= max{)\ >0/ h(z) > )\@ for all x € R" ﬂBl(O)}.

|z["

We let h(z) = h(zx) — a‘li‘ﬂl for all z € R”. The new function & satisfies the

hypothesis of Proposition 9.1. In addition, it follows from the definition of a and
Hopf’s maximum principle that
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iL n
lmint nf 2@
r—0 |x‘=7‘ —X1

Mimicking what was done in Steps 9.5 and 9.7, we get that

liminf  sup M =0.
r—0 |z|=r,zcR?  —L1
We let R
5 . h(z1,2) if ;1 <0and (x1,%) #0
I, 7) = { —h(~a1,%)  ifz; > 0.

As easily checked, we have that h € C2(R™ \ {0}) and Ak = 0 in R™ \ {0}. With
the definition of &, we immediately get that

h@)! - Jal"

ha) -l

liminf sup ————— =
=0 g)=r |1‘1|

We let (71)k>0 such that limy_, oo 7 = 0 and

liminf sup

k——+oo \w\:rk

We let 77 € C*°(R™) such that 7 = 0 in B1(0) and 77 = 1 in R™ \ By(0). We let
N (z) := 7(x/rr). Mimicking what was done in Step 9.6, we let ¢ € C°(R") and
get that

/ﬁAcpdx = /nkﬁAgodx—&-o(l)

5 A(nih) - (o = ©(0)) dz + ©(0) . A(nph) dz + o(1)

= o) +¢(0) [ Alh)da
Rn
We let R > 3, and choose kg such that 0 < 7, < 1 for k > ky. We then get that

Alpeh) dz| = / A(neh) da| = / 0, (neh) do
R™ BR(O) E?BR(O)
= / d,hdo| < CR"'R™™ < ¢
9BR(0) R

Letting R — 400, we get that [, A(nkﬁ) dz = 0. We finally get that

hApdz =0
R"
for all ¢ € C°(R™). As a consequence, Ah = 0 in D'(R™), and h € C2(R"). Since
there exists C' > 0 such that |h(z)| < Clz|'~™, we then get that A is uniformly
bounded on R”. Since Ah = 0, we get that h=0.In particular,
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_ .l
]

for all x € R™ \ {0}. O

h(x)

10. APPENDIX C: SYMMETRY OF THE POSITIVE SOLUTIONS TO THE LIMIT
EQUATION

This section is devoted to the proof of a symmetry property for the positive
solutions to the limit equations involved in Proposition 3.1.

Proposition 10.1. Let n > 3 and s € (0,2). We let u € C?>(R") N CH(R™) such
that

*

Au = % m R™
u >0 in R™ (159)
u=0 on OR™,

2(7?_725)‘ We assume that there exists C > 0 such that u(z) < C(1 +

|z|)1=" for all x € R™. Then we have that uwo o = u for all isometry of R™ such
that o(R™) = R™. In particular, there exists v € C2(R* x R)NCY(R_ x R) such
that for all x1 < 0 and all 2’ € R"™1, we have that u(z1,2') = v(z1,|2|).

where 2% =

We prove the Proposition in the sequel. We let u € C?(R") N C1(R™) that
verifies the system (159) and such that there exists C' > 0 such that

C
wz) < ——— 160
= Ty e
for all x € R™. We &} be the first vector of the canonical basis of R™. We let the
open ball
1,
D= Bl/2 <261) .
We define

o(@) = |22 (51 + waIQ) (161)
for all z € D\ {0}. We prolongate v by 0 at 0. Clearly, this is well-defined.
Step 10.1: We claim that

ve C*D)nCHD) and % <0ondD (162)
where 0/0v denotes the outward normal derivative.

Proof. Tt follows from the assumptions on u that v € C?(D) N C*(D \ {0}). More-
over, v(z) > 0 for all € D and v(z) =0 for all x € 9D \ {0}. It follows from the
estimate (160) that there exists C' > 0 such that

v(z) < Clz| (163)

for all x € D\ {0}. Since v(0) = 0, we have that v € C°(D). The function v verifies
the equation

* *
’U2 —1 ’U2 —1

Av = - = =
|z + [z?&]s |z)* |z +

(164)
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in D. Since —€; € 9D\ {0} and v € C*(D \ {0}) N C°(D), there exists C' > 0 such
that

v(r) < Clz + & (165)
for all z € D. Tt then follows from (163), (164), (165) and standard elliptic theory
that v € C1(D). Since v > 0 in D, it follows from Hopf’s Lemma that % < 0 on
oD. ([

We prove the symmetry of u by proving a symmetry property of v, which is
defined on a ball. Our proof uses the moving plane method. We take largely
inspiration in [24] and [8]. Classically, for any u > 0 and any « = (2/,x,) € R”
(' € R*! and z,, € R), we let

z, = (2',2p—x,) and D, = {x € D/ z, € D}.
It follows from Hopf’s Lemma (see (162)) that there exists ¢g > 0 such that for any

1 € (3 — €0, 3), we have that D, # 0 and v(z) > v(z,) for all z € D, such that
zp, < p. We let g > 0. We say that (P,) holds if D,, # 0 and

v(z) > v(z,)
for all x € D,, such that x,, < p. We let

1
A := min {u >0/ (P,) holds for all v € (,u, 2) } . (166)

Step 10.2: We claim that A = 0.

Proof. We proceed by contradiction and assume that A > 0. We then get that
D) # () and that (Py) holds. We let
w(x) :=v(x) —v(zy)
for all z € Dy N{x, < A}. Since (Py) holds, we have that w(xz) > 0 for all
x € Dy N{x, < A}. With the equation (164) of v and (Py), we get that
U(x)2*—1

Aw = -
[z + |zPer]s  [an + |zalPen]®

. 1 1
> w(zy)* ! <|x+ Z[281]F  |za + |IC>\|251|5)
for all x € Dy N {z, < A}. With straightforward computations, we have that
|zl = Ja* = AA(A — @)
[+ [2aPE 2 = [o + [o2E 2 = (222 = al?) (1 + 222 + [al? + 221)

for all x € R™. It follows that Aw(z) > 0 for all z € Dy N {z, < A}. Note
that we have used that A > 0. It then follows from Hopf’s Lemma and the strong
comparison principle that

U(.T,\)?_l

ow
v
By definition, there exists a sequence ()\;);en € R and a sequence (z%);eny € D such
that A\; < A, 2° € Dy, (2")n < Ajy lim; 400 Ay = A and

(') <wo((a')x,) (168)
for all i € N. Up to extraction a subsequence, we assume that there exists x €
(Dx N {z, < A}) such that lim; , . 2° = z with 2, < \. Passing to the limit

w > 0in Dy N{x, < A} and < 0on DyN{z, =A}. (167)
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i — 400 in (168), we get that v(z) < v(xy). It follows from this last inequality and
(167) that v(x) —v(zy) = w(x) =0, and then x € (D N {x, < A}).

Case 1: We assume that © € dD. Then v(z)) = 0 and ) € dD. Since D is a
ball and A > 0, we get that x = x, € 0D. Since v is C!, we get that there exists
7 € ((2")n, 2N; — (2%),,) such that

v(a') —v((@')x,) = Onv((@”)', 1) % 2((2")n = A)
Letting i — +o00, using that (z¢),, < A\; and (168), we get that d,v(z) > 0. On the
other hand, we have that

0,0(a) = 5oa) - (0IE) = g7 @) <O

A contradiction.

Case 2: We assume that @ € D. Since v(z)) = v(x), we then get that z) € D.
Since x € I(Dx N {x, < A}), we then get that € D N {z, = A}. With the same
argument as in the preceding step, we get that d,v(xz) > 0. On the other hand,

Opw

since x, = A, we get with (167) that 9,v(z) = 2(x) < 0. A contradiction.

In all the cases, we have obtained a contradiction. This proves that A = 0. O

Step 10.3: Here goes the final argument. Since A = 0, it follows from the definition
(166) of X that v(z',z,) > v(2’, —x,) for all € D such that z, < 0. With the
same technique, we get the reverse inequality, and then, we get that

(@', x,) = v, —x,)

for all x = (2/,2,) € D. In other words, v is symmetric with respect to the
hyperplane {z, = 0}. The same analysis holds for any hyperplane containing €j.
Coming back to the initial function u, this proves the Theorem.

REFERENCES

[1] Atkinson, F.V.; Peletier, L.A. Elliptic equations with nearly critical growth. J. Diff. Equ.,
70, 349-365, 1987.

[2] Aubin, T. Nonlinear analysis on manifolds, Monge-Ampere equations. Grundlehren der Math-
ematischen Wissenschaften, 252, Springer, New-York, 1982.

[3] Bahri A.; Coron J.M. On a nonlinear elliptic equation involving the critical Sobolev exponent:
the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.

[4] Bahri, A.; Lions P. L. Morse index of some min-max critical points I. Application to multi-
plicity results. Commun. Pure € App. Math. 41 (1988), 1027-1037.

[5] Berestycki, H.; Nirenberg, L.; Varadhan, S.R.S. The principal eigenvalue and maximum prin-
ciple for second order elliptic operators in general domains. Comm. Pure Appl. Math., 47,
47-92, 1994.

[6] Brezis, H.; Nirenberg, L. Positive solutions of nonlinear elliptic equations involving critical
exponents, Comm. Pure Appl. Math 36 (1983), 437-477.

[7] Brézis, H.; Peletier, L.A. Asymptotics for elliptic equations involving critical Sobolev ex-
ponent. In Partial Differential equations and the calculus of variations, eds. F.Colombini,
A Marino, L.Modica, and S.Spagnolo, Birkhaiiser, Basel, 1989.

[8] Caffarelli, L.; Gidas, B.; Spruck, J. Asymptotic symmetry and local behavior of semilinear
elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42, (1989), 271-297.

[9] Caffarelli, L.; Kohn R. ; Nirenberg, L. First order interpolation inequality with weights,
Compositio. Math. 53 (1984), 259-275

[10] Catrina, F.; Wang, Z. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, exis-
tence (and non existence) and symmetry of extremal functions, Comm. Pure Appl. Math 2
(2001) 229-258



64

(11]
(12]
(13]
[14]

[15]

(16]
(17)

(18]
(19]

20]
21]
22]
23]
24]
[25]
[26]
27]
(28]
29]

(30]

(31]

(32]
(33]

[34]
(35]

(36]
(37)
(38]

39]

N. GHOUSSOUB AND F. ROBERT

Devillanova, G.; Solimini, S. Concentration estimates and multiple solutions to elliptic prob-
lems at critical growth. Adv. Differential Equations, 7, (2002), 1257-1280.

Druet, O. The best constants problem in Sobolev inequalities. Math. Ann., 314, 1999, 327-
346.

Druet, O. Elliptic equations with critical Sobolev exponent in dimension 3. Ann. I.H.P.,
Analyse non-linaire, 19, 2, 2002, 125-142.

Druet, O. From one bubble to several bubbles : the low-dimensional case. Journal of Differ-
ential Geometry, 63, 2003, 399-473.

Druet, O.; Hebey, E.; Robert, F. Blow up theory for elliptic PDE’s in Riemannian geometry.
Mathematical Notes, Princeton University Press, 45. Announcement in A Cp-theory for the
blow up of second order elliptic equations of critical Sobolev growth. E.R.A./A.M.S., 9, 2003.
Druet, O.; Robert, F. Asymptotic profile for the sub-extremals of the sharp Sobolev inequality
on the sphere. Communications in Partial Differential Equations, 26, (2001), 743-778.
Egnell, H., Positive solutions of semilinear equations in cones, Tran. Amer. Math. Soc 11
(1992), 191-201.

Gallot, S.; Hulin D.; and Lafontaine, J. Riemannian geometry, Springer-Verlag, 1987
Ghoussoub N. Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts
in Mathematics, Cambridge University Press (1993).

Ghoussoub, N.; Kang X.S. Hardy-Sobolev Critical Elliptic Equations with Boundary Singu-
larities, ATHP-Analyse non linéaire, Vol 21 (2004) p. 767-793

Ghoussoub, N.; Robert, F. Concentration estimates for borderline equations with large sets
of boundary singularities, 2005, submitted.

Ghoussoub, N.; Robert, F. The effect of curvature on the best constant in the Hardy-Sobolev
inequality, Geometric And Nonlinear Analysis, to appear.

Ghoussoub, N.; Yuan, C. Multiple solutions for quasi-linear PDEs involving the critical
Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 12 (2000), 5703-5743.

Gidas, B.; Ni, W.M.; Nirenberg, L. Symmetry and related properties via the maximum
principle. Comm. Math. Phys., 68, (1979), 209-243.

Gilbarg, G.; Trudinger, N.,S. Elliptic partial differential equations of second order. Second
edition. Grundlehren der mathematischen nWissenschaften, 224, Springer, Berlin, 1983.
Han, Z.C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving
critical Sobolev exponent. Ann. Inst. H.Poincaré. Anal. Non Linéaire, 8, 159-174, 1991.
Hebey, E. Introduction a l’analyse non-linéaire sur les variétés. Diderot Editeur, Arts et
Sciences, 1997.

Hebey, E. Asymptotics for some quasilinear elliptic equations. Differential Integral Equations,
9, (1996), no. 1, 71-88.

Hebey, E.; Robert, F. Compactness and global estimates for the geometric Paneitz equation
in high dimensions. Electron. Res. Announc. Amer. Math. Soc., 10, (2004), 135-141.
Hebey, E.; Robert, F; Wen, Y. Compactness and global estimates for a fourth order equation
of critical Sobolev growth arising from conformal geometry. Communications in Contempo-
rary Mathematics, to appear.

Hebey, E.; Vaugon, M. The best constant problem in the Sobolev embedding theorem for
complete Riemannian manifolds. Duke Math. J., 79, 235-279, 1995.

Hebey, E.; Vaugon, M. From best constants to critical functions. Math. Z., 237, 737-767.

Li P.; Yau S.-T. , On the parabolic kernel of the Schrodinger operator, Acta. Math. 156,
(1986) 153-201.

Marques, F. PhD Thesis, (2003).

Robert, F. Asymptotic behaviour of a nonlinear elliptic equation with critical Sobolev expo-
nent. The radial case. Advances in Differential Equations, 6, (2001), 821-846.

Robert, F. Critical functions and optimal Sobolev inequalities. Mathematische Zeischrift,
249, (2005), 485-492.

Struwe, M. Variational methods, Springer-Verlag, Berlin-Heidelberg-New York, 1990.
Schoen, R. Variational theory for the total scalar curvature functional for Riemannian metrics
and related topics, in Topics in calculus of variations (Montecatini Terme, 1987). Lecture
Notes in Mathematics, 1365, Springer, Berlin, 1989, 120-154.

Schoen, R.; Zhang, D. Prescribed scalar curvature on the n-sphere. Calc. Var. Partial Dif-
ferential Equations, 4, (1996), 1-25.



BORDERLINE COMPACTNESS 65

[40] Tanaka, K. Morse indices at critical points related to the symmetric mountain pass theorem
and applications, Comm. in part. diff. equations, 14 (1), (1989), 99-128.

[41] Trudinger, N.S. Remarks concerning the conformal deformation of Riemannian structures on
compact manifolds. Ann. Scuola Norm. Sup. Pisa, 22, (1968), 265-274.

NAssIF GHOUSSOUB, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VAN-
COUVER, CANADA
E-mail address: nassif@math.ubc.ca

FREDERIC ROBERT, LABORATOIRE J.A.DIEUDONNE, UNIVERSITE DE NICE SOPHIA-ANTIPOLIS,
PARC VALROSE, 06108 NICE CEDEX 2, FRANCE
E-mail address: frobert@math.unice.fr



