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Abstract

Given (M, g) a smooth compact Riemannian manifold of dimension n ≥ 5,
we study fourth order equations involving Paneitz-Branson type operators and
the critical Sobolev exponent.

1 Introduction and statement of the results

In 1983, Paneitz [14] introduced a conformally fourth order operator defined on
4-dimensional Riemannian manifolds. Branson [3] generalized the definition to n-
dimensional Riemannian manifolds. We let (M, g) be a smooth compact Riemannian
manifold of dimension n ≥ 5, and denote by Ricg and Sg the Ricci and scalar
curvature of g. For u ∈ C∞(M), the Paneitz-Branson operator is given by

P n
g u = ∆2

gu− divg
[
(anSgg + bnRicg)

#du
]

+
n− 4

2
Qn
gu,

where ∆gu = −divg(∇u) is the Laplace-Beltrami operator,

an =
(n− 2)2 + 4

2(n− 1)(n− 2)
, bn = − 4

n− 2
,

the symbol # stands for the musical isomorphism (index are raised with the metric),
and

Qn
g =

1

2(n− 1)
∆gSg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
S2
g −

2

(n− 2)2
|Ricg|2g.

1Esposito’s research is supported by M.U.R.S.T. under the national project Variational methods
and nonlinear differential equations.
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The Paneitz-Branson operator is conformally invariant in the following sense: if
g̃ = ϕ4/(n−4)g is a metric conformal to g, then for all u ∈ C∞(M),

P n
g (uϕ) = ϕ

n+4
n−4P n

g̃ (u).

Taking u ≡ 1, we then find that

P n
g ϕ =

n− 4

2
Qn
g̃ϕ

n+4
n−4 .

In particular, the Paneitz-Branson operator possesses conformal properties that are
very similar to the ones satisfied by the conformal laplacian. We are then naturally
led to study extensions to this operator of some classical problems.

The geometric Paneitz-Branson operator falls into two types of operators, de-
pending on the manifold we consider. Given A ∈ Λ∞(2,0)(M) a smooth symmetric

(2, 0)-tensor field, and a ∈ C∞(M), we refer to a Paneitz-Branson type operator
with general coefficients as an operator of the form

Pgu = ∆2
gu− divg

[
A#du

]
+ au. (1)

Given α, a ∈ R, we refer to a Paneitz-Branson type operator with constant coefficients
as an operator of the form

Pgu = ∆2
gu+ α∆gu+ au. (2)

With such a terminology, introduced by Hebey, it is easily seen that the Paneitz-
Branson type operator with constant coefficients given by (2) is the Paneitz-Branson
type operator with general coefficients (1) when A = αg, and α, a ∈ R. Moreover,
whatever (M, g) is, the geometric Paneitz-Branson operator P n

g is of the type (1),
and when (M, g) is Einstein, the geometric Paneitz-Branson operator P n

g is of the
type (2). We indeed do find that

P n
g u = ∆2

gu+
n2 − 2n− 4

2n(n− 1)
Sg∆gu+

(n− 4)(n2 − 4)

16n(n− 1)2
S2
gu (3)

when (M, g) is Einstein. In particular, when (M, g) = (Sn, h) is the unit n-sphere,

P n
h u = ∆2

gu+ cn∆gu+ dnu (4)

where cn = n2−2n−4
2

and dn = (n−4)n(n2−4)
16

. In what follows we refer to a Paneitz-
Branson type operator as an operator given either by (1), or (2).
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We let H2
2 (M) be the standard Sobolev space consisting of functions in L2(M)

whose derivatives up to the order 2 are in L2(M), and let 2] be the critical exponent
given by 2] = 2n

n−4
. The Sobolev embedding theorem asserts that H2

2 (M) is contin-

uously embedded in Lq(M) for 1 < q ≤ 2], with the property that this embedding
is compact when q < 2]. We now define K0 > 0 to be the sharp constant in the
Euclidean Sobolev inequality ‖u‖2

2]
≤ K‖∆u‖2

2. We know from the work of [12], [13]
and [9], that

1

K0

=
n(n2 − 4)(n− 4)ω

4
n
n

16
,

where for k ∈ N?, ωk denotes the volume of the unit k−sphere (Sk, h). Moreover,
the extremals for the sharp Euclidean Sobolev inequality are precisely the functions

u(x) =

(
λ

1 + λ2|x− x0|2

)n−4
2

(5)

where λ > 0 and x0 ∈ Rn.

Given (M, g) a smooth compact Riemannian manifold of dimension n ≥ 5, f , h
two continuous functions on M , and q ∈ (1, 2]−1), the goal in this paper is to study
equations like

Pgu = f |u|2]−2u+ h|u|q−1u (6)

where Pg is a Paneitz-Branson type operator, namely either with general coefficients
as in (1), or with constant coefficients as in (2). Solutions of (6) can be seen as
critical points of the functional

E(u) =
1

2

∫
M

(Pgu)u dvg −
1

2]

∫
M

f |u|2] dvg −
1

q + 1

∫
M

h|u|q+1 dvg. (7)

Because of the failure (in general) of the maximum principle, getting positive solu-
tions to (6) is still an open problem when Pg is with general coefficients. When Pg
is with constant coefficients, there are particular cases (see below) where a maxi-
mum principle is available and the positivity of the solutions can be obtained. This
includes the geometric Paneitz-Branson operator P n

g when (M, g) is Einstein of pos-
itive scalar curvature. Equation (6) when h ≡ 0, with a special emphasis on the case
of the unit sphere, was studied by Djadli-Hebey-Ledoux [6]. An equivalent problem
when the fourth order Paneitz-Branson type operator is replaced by a second order
Laplacian type operator was studied by Brézis-Nirenberg [4] in the Euclidean case,
and then by Djadli [5] in the Riemannian context.
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We assume in what follows that Pg is coercive in the sense that there exists c > 0
such that for all u ∈ H2

2 (M),∫
M

(Pgu)u dvg ≥ c

∫
M

u2 dvg

Necessary and sufficient conditions for Pg to be coercive are in Hebey-Robert [10]
when Pg is with constant coefficients. These necessary and sufficient conditions imply
sufficient conditions for Pg to be coercive when Pg is with general coefficients.

Our first result is the following. The main tool there is the Mountain-Pass Lemma
of Ambrosetti and Rabinowitz [1].

Theorem 1 Let (M, g) be a compact Riemannian n-manifold, n ≥ 5, f, h be two
functions in Cη(M), 0 < η < 1, q ∈ (1, 2] − 1), and Pg be a Paneitz-Branson type
operator. We assume that Pg is coercive, that f is positive and that there exists
v0 ∈ H2

2 (M) such that

sup
t≥0

E(tv0) <
2

nK
n
4

0 (supM f)
n−4
4

. (8)

where E is as in (7). Then the equation

Pgu = f |u|2]−2u+ h|u|q−1u

possesses a nontrivial solution u ∈ C4,η(M). Moreover, the solution can be assumed
to be positive if Pg has constant coefficents, h is nonnegative, α, a > 0, and a ≤ α2/4,
where α and a are as in (2).

With such a theorem we are left with finding conditions on A, a, f, h such that
(8) is satisfied. For this purpose, we compute the left-hand-side of (8) for some
suitable function v0 ∈ H2

2 (M), essentially given by (5). We denote by Maxf the set
consisting of the points in M where f is maximum. Our first application of Theorem
1 is the following:

Theorem 2 Let (M, g) be a compact Riemannian n-manifold, n ≥ 6, f, h be two
smooth functions on M , q ∈ ( n

n−4
, n+4
n−4

), and Pg be a Paneitz-Branson type operator.
We assume that Pg is coercive, that f is positive and that there exists x0 ∈ Maxf
such that h(x0) > 0. Then the equation

Pgu = f |u|2]−2u+ h|u|q−1u

possesses a nontrivial solution u ∈ C4,η(M), 0 < η < 1. Moreover, the solution can
be assumed to be positive if Pg has constant coefficents, h is nonnegative, α, a > 0,
and a ≤ α2/4, where α and a are as in (2).
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For A as in (1), we let trg(A) be the trace of A given in local coordinates by
trg(A) = Aijg

ij. For x in M we also let F be the function given by

F (x) = 8(n− 1)trg(A)(x)− 4(n2 − 2n− 4)Sg(x)

+(n+ 2)(n− 4)(n− 6)
∆gf

f
(x) (9)

The limit case of Theorem 1 where h(x0) = 0 is treated in the following theorem:

Theorem 3 Let (M, g) be a compact Riemannian n-manifold, n ≥ 6, f, h be two
smooth functions on M , q ∈ ( n

n−4
, n+4
n−4

), and Pg be a Paneitz-Branson type operator.
We assume that Pg is coercive, that f is positive, and that for some x0 ∈ Maxf ,
h(x0) = 0 and F (x0) < 0, where F is as in (9). Then the equation

Pgu = f |u|2]−2u+ h|u|q−1u

possesses a nontrivial solution u ∈ C4,η(M), 0 < η < 1. The same conclusion holds if
n ≥ 8 and for some x0 ∈Maxf , h(x0) = 0, F (x0) = 0, and ∆gh(x0) < 0. Moreover,
in both cases, the solution can be assumed to be positive if Pg has constant coefficents,
h is nonnegative, α, a > 0, and a ≤ α2/4, where α and a are as in (2).

For A as in (1), and x ∈M , we let G be the function given by

G(x) = F (x)− 8n(n− 1)(n+ 2)(n− 6)√
n(n− 4)(n2 − 4)

h√
f

(x) (10)

Theorems 2 and 3 deal with the case q ∈ ( n
n−4

, n+4
n−4

). When q = n
n−4

, we get that the
following theorem holds:

Theorem 4 Let (M, g) be a compact Riemannian n-manifold, n ≥ 6, f, h be two
smooth functions on M , q = n

n−4
, and Pg be a Paneitz-Branson type operator. We

assume that Pg is coercive, that f is positive, and that for some x0 ∈Maxf , G(x0) <
0, where G is as in (10). Then the equation

Pgu = f |u|2]−2u+ h|u|q−1u

possesses a nontrivial solution u ∈ C4,η(M), 0 < η < 1. Moreover, the solution can
be assumed to be positive if Pg has constant coefficents, h is nonnegative, α, a > 0,
and a ≤ α2/4, where α and a are as in (2).
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With Theorems 2, 3, 4 we are left with the case where q ∈ (1, n
n−4

). This is the
subject of the following theorem:

Theorem 5 Let (M, g) be a compact Riemannian n-manifold, n ≥ 8, f, h be two
smooth functions in M , q < n

n−4
, and Pg be a Paneitz-Branson type operator. We

assume that Pg is coercive, that f is positive, and that for some x0 ∈ Maxf , either
F (x0) < 0, or F (x0) = 0 and h(x0) > 0, where F is as in (9). Then the equation

Pgu = f |u|2]−2u+ h|u|q−1u

possesses a nontrivial solution u ∈ C4,η(M), 0 < η < 1. Moreover, the solution can
be assumed to be positive if Pg has constant coefficents, h is nonnegative, α, a > 0,
and a ≤ α2/4, where α and a are as in (2).

Our last theorem deals with the geometric case and the geometric Paneitz-
Branson operator P n

g . In such a case, h ≡ 0 and Pg = P n
g . Then,

A = anSgg + bnRicg

and it is easily seen that 8(n−1)trg(A)−4(n2−2n−4)Sg ≡ 0. In particular, Theorems
2-5 do not apply to such a case since if x0 ∈ Maxf , ∆gf(x0) ≥ 0. Independently,
when (M, g) is Einstein, then P n

g is with constant coefficients α and a where, thanks
to (3),

α =
n2 − 2n− 4

2n(n− 1)
Sg and a =

(n− 4)(n2 − 4)

16n(n− 1)2
S2
g

In particular, a + S2
g/(n

2(n − 1)2) = α2/4 so that a ≤ α2/4. If in addition Sg is
positive, P n

g is coercive (see [10]) and, as above, we can get the positivity of the
solutions of the equation we consider. For x ∈M we let

H(x) =
4(n2 − 4n− 4)

3(n+ 2)
|Weylg|2g(x) + (n− 6)(n− 8)

∆2
gf

f
(x)

+2(n− 6)(n− 8)
(∇2f,Ricg)g

f
(x) (11)

where (., .)g stands for the pointwise scalar product with respect to g, and Weylg
stands for the Weyl curvature tensor of g. In local coordinates,

(∇2f)ij = ∂2
ijf − Γkij∂kf

where the Γkij’s are the Christoffel symbols of the Levi-Civita connexion, and (∇2f,Ricg)g =

Rij(∇2f)ij where an index is raised with the metric. Our last theorem is as follows:
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Theorem 6 (The geometric case) Let (M, g) be a compact Riemannian n-manifold,
n ≥ 8, f be a smooth positive function on M , and P n

g be the geometric Paneitz-
Branson operator. We assume that P n

g is coercive, and that there exists x0 ∈Maxf
such that ∆gf(x0) = 0 and H(x0) > 0, where H is given by (11). Then the equation

P n
g u = f |u|2]−2u

possesses a nontrivial solution u ∈ C4,η(M), 0 < η < 1. When (M, g) is Einstein
with positive scalar curvature, this solution can be assumed to be smooth and positive.
Then there exists g̃ conformal to g such that n−4

2
Qn
g̃ = f .

The paper is divided as follows. In section 2, we apply the Mountain-Pass Lemma
to the functional E and study the associated Palais-Smale sequences. We deal with
the regularity of solutions to the type of fourth-order equations we consider in section
3. Section 4 to 6 are devoted to fairly general test-function computations. These
computations have their analogue in [2] when dealing with the conformal Laplacian.
We prove Theorems 2-6 in section 7.

2 Mountain-Pass lemma and Palais-Smale sequences

As already mentioned, the main tool in this section is the Mountain-Pass lemma of
Ambrosetti-Rabinowitz [1]. We use the following statement of the lemma:

Proposition 1 Let F ∈ C1(V,R) where (V, ||.||) is a Banach space. We assume that:
(i) F (0) = 0,
(ii) ∃λ,R > 0 such that F (u) ≥ λ for all u ∈ V such that ||u|| = R,
(iii) ∃v0 ∈ V such that lim supt→+∞ F (tv0) < 0.

We let t0 > 0 large be such that ||t0v0|| > R and F (t0v0) < 0, and β = infγ∈Γ sup F (γ(t)),
where Γ = {γ : [0, 1] → V s.t. γ(0) = 0, γ(1) = t0v0}. Then there exists a sequence
(un) in V such that

F (un)→ β , F ′(un)→ 0 strongly in V ′.

Moreover, we have that β ≤ supt≥0 F (tv0).

We say that a sequence (un) in H2
2 (M) is a Palais-Smale (P-S) sequence for E if

there exists β ∈ R such that E(un) → β and E ′(un) → 0 strongly in H2
2 (M)′. Let

β ∈ R. We say that E satisfies the (P-S) condition at the level β if for any (un) a
(P-S) sequence for E in H2

2 (M) such that E(un)→ β, there exists a subsequence (un)
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of (un) such that (un) converges strongly in H2
2 (M). As easily checked, this limit is

then a critical point for E. The lack of compactness for Palais-Smale sequence in the
case where h ≡ 0 was described in Hebey-Robert [10]. We prove here the following
result:

Proposition 2 Let (M, g) be a compact Riemannian n-manifold, n ≥ 5, f, h be two
functions in Cη(M), 0 < η < 1, q ∈ (1, 2] − 1), and Pg be a Paneitz-Branson type
operator. We assume that Pg is coercive, and that f is positive. For any

β <
2

nK
n
4

0 (max f)
n−4
4

,

the functional E satisfies the (P-S) condition at the level β.

Proof: From the coercivity of Pg, there exists c > 0 such that

c||u||2H2
2 (M) ≤

∫
M

(∆gu)2dvg +

∫
M

A#(du, du)dvg +

∫
M

au2dvg (12)

We take any sequence {un}n∈N ⊆ H2
2 (M) such that E(un) → β for some β <

2
n
K
−n

4
0 (max f)−

n−4
4 and E ′(un) → 0. We prove that this sequence is relatively com-

pact in H2
2 (M). A first claim is that (un) is bounded in H2

2 (M). Standard compu-
tations lead to

O(1) + o(||un||) = 2E(un)− 〈E ′(un), un)〉

=
4

n

∫
M

f |un|2
]

dvg +
q − 1

q + 1

∫
M

h|un|q+1dvg.

With (12), it comes that

c||un||2H2
2 (M) ≤ 2E(un) +

2

2]

∫
M

f |un|2
]

dvg +
2

q + 1

∫
M

h|un|q+1dvg

= O(1) + o(||un||)

As easily checked, for all ε > 0, there exists Kε > 0 such that tq+1 ≤ εt2
]
+Kε for all

t ≥ 0. As a consequence,∣∣∣∣∫
M

h|u|q+1dvg

∣∣∣∣ ≤ Kε||h||∞V olg(M) + ε
||h||∞

minM f

∫
M

f |u|2]dvg

where V olg(M) is the volume of M with respect to g. Then ||un||H2
2 (M) is bounded,

and this proves the claim. In particular, up to the extraction of a subsequence, we
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can assume that un ⇀ u weakly in H2
2 (M). With the compactness of the embedding

H2
2 (M) ↪→ Lp(M) for all 1 ≤ p < 2] we can also assume that un → u for all

1 ≤ p < 2]. By standard variational arguments, we infer that u is a distributional
solution in H2

2 (M) of our equation. For all ϕ ∈ H2
2 (M), we get that∫

M

∆gu∆gϕdvg +

∫
M

A#(du, dϕ)dvg +

∫
M

auϕdvg

=

∫
M

f |u|2]−2uϕ dvg +

∫
M

h|u|q−1uϕ dvg

Taking ϕ = u yields the following expression for E(u):

E(u) =
q − 1

2(q + 1)

[∫
M

(∆gu)2dvg +

∫
M

A#(du, du)dvg +

∫
M

au2dvg

]
+

(
1

q + 1
− 1

2]

)∫
M

f |u|2]dvg ≥ 0

We compare the energy of un and u. Taking into account the weak convergence of
un to u, we obtain

E(un)− E(u) =
1

2

∫
M

(∆g(un − u))2 dvg

− 1

2]

∫
M

f
(
|un|2

] − |u|2]
)
dvg + o(1). (13)

By standard integration theory∫
M

f
(
|un|2

] − |un − u|2
]
)
dvg =

∫
M

f |u|2]dvg + o(1). (14)

Testing E ′(un) on un − u ⇀ 0 in H2
2 (M) and using (14), we get

o(1) = 〈un − u,E ′(un)〉
= 〈un − u,E ′(un)− E ′(u)〉

=

∫
M

(∆g(un − u))2 dvg −
∫
M

f |un − u|2
]

dvg + o(1) (15)

From (13) and (15), we get

1

2

∫
M

(∆g(un − u))2 dvg −
1

2]

∫
M

f |un − u|2
]

dvg

=
2

n

∫
M

(∆g(un − u))2 dvg + o(1)

= E(un)− E(u) + o(1) ≤ E(un) + o(1)→ β (16)
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with the coercivity of Pg. As stated in [6], for all ε > 0, there exists Bε > 0 such
that for all u ∈ H2

2 (M),(∫
M

|u|2]dvg
) 2

2]

≤ (1 + ε)K0

∫
M

[
(∆gu)2 + |∇u|2g

]
dvg +Bε

∫
M

u2dvg

Testing on un − u, we obtain that

∫
M

f |un − u|2
]

dvg ≤ (max
M

f)K
2]

2
0 (1 + ε)

2]

2

[∫
M

(∆g(un − u))2 dvg

] 2]

2

+ o(1).

At last, from (15), for ε > 0 small enough

o(1) =

∫
M

(∆g(un − u))2 dvg −
∫
M

f |un − u|2
]

dvg

≥
[∫

M

(∆g(un − u))2 dvg

]

×

1− (max
M

f)K
2]

2
0 (1 + ε)

2]

2

[∫
M

(∆g(un − u))2 dvg

] 2]−2
2

 .

With (16), it comes that∫
M

(∆g(un − u))2 dvg ≤
n

2
β + o(1).

Using that β < 2

nK
n
4
0 (maxM f)

n−4
4

, it comes that there exists C > 0 such that

o(1) ≥ C

∫
M

(∆g(un − u))2 dvg + o(1).

Hence un → u in H2
2 (M). This ends the proof of the proposition. �

Up to the regularity of the solution, that we prove in the following section, it is
clear that the first part of Theorem 1 follows from Propositions 1 and 2. Concerning
the second part, when Pg has constant coefficients, we can proceed as follows. We
apply the mountain pass lemma to the functional

E+(u) =
1

2

∫
M

(Pgu)udvg −
1

2]

∫
M

fu2]

+dvg −
1

q + 1

∫
M

huq+1
+ dvg,

10



where u+ = max(0, u). Critical points of E+ are weak solutions of

∆2
gu+ α∆gu+ au =

(
fu2]−2

+ + huq−1
+

)
u

Similar arguments to the ones we used to prove the first part of Theorem 1 give that
E+ has a critical point u. It is then easily seen, mimicking what we do in Proposition
3 below, that u ∈ C4,η(M), η ∈ (0, 1). We let

β1 =
α +
√
α2 − 4a

2
, β2 =

α−
√
α2 − 4a

2
.

Then, β1, β2 > 0 and

(∆g + β1) ◦ (∆g + β2)u = ∆2
gu+ α∆gu+ au ≥ 0.

Applying the maximum principle twice, it comes that u > 0. Hence u is a C4-positive
solution of

∆2
gu+ α∆gu+ au = fu2]−1 + huq+1.

Standard regularity results then give that u is smooth, and the second part of The-
orem 1 is proved.

3 Regularity results

We are here concerned with the regularity of critical points for E. We claim that
the following regularity result holds:

Proposition 3 Let (M, g) be a compact Riemannian n-manifold, n ≥ 5, f, h be two
functions in Cη(M), 0 < η < 1, q ∈ (1, 2] − 1), and Pg be a Paneitz-Branson type
operator. If u ∈ H2

2 (M) is a weak solution of

Pgu = f |u|2]−2u+ h|u|q−1u (17)

then u ∈ C4,η(M) and u is a strong solution of the equation. Moreover, if f and h
are smooth, and u is positive, then u is also smooth.

Proof: Let u ∈ H2
2 (M) be a weak solution of (17). From the work of [17] and

[6], u satisfies

(∆g + 1)2u = divg
(
A#du

)
+ (1− a)u+ 2∆gu+ f |u|2]−2u+ h|u|q−1u

= b+ qεu+ fε (18)

11



where b = divg
(
A#du

)
+ (1− a)u+ 2∆gu ∈ L2(M), qε ∈ L

n
4 (M) satisfies ||qε||n

4
≤ ε,

and fε ∈ L∞(M). We now follow [6]. For s > 1, we can define the operator

Hε : v ∈ Ls(M)→ (∆g + 1)−2(qεv) ∈ Ls(M)

with

||Hεv||Ls = O(||(∆g + 1)−2(qεv)||
H

ns
n+4s
4

) = O(||qεv||L ns
n+4s

)

= O(||qε||Ln4 ||v||Ls) ≤ Cε||v||Ls .

It follows from the Sobolev theorem and classical regularity results that for any f ∈
Lp(M) with p > 1, there exists a unique function u ∈ Hp

2 (M) such that (∆g+1)u = f
with ||u||Hp

2
≤ C||f ||Lp . Hence, for ε > 0 small enough,

||Hε||Ls→Ls ≤ Cε <
1

2
.

We rewrite (18) in the form

(Id−Hε)u = (∆g + 1)−2(b+ fε)

where for s > 1, Id−Hε : Ls → Ls is an invertible operator. We have b+fε ∈ L2(M)
and then (∆g + 1)−2(b + fε) ∈ H2

4 (M). By the Sobolev theorem, we obtain that, if

n ≤ 8, u ∈ Lp(M) for all p > 1 and, if n > 8, u ∈ L
2n
n−8 (M). Since for n > 8 there

holds 2n(n−4)
(n+4)(n−8)

> 2, we get that

(∆g + 1)2u ∈ L2(M)

We now use a bootstrap argument. We construct a non-decreasing sequence sk ∈
R ∪ {+∞} such that u ∈ Hsk

4 (M) for all k ∈ N. We define sk by induction. We let
s0 = 2. For all k ≥ 0 such that u ∈ Hsk

4 (M), the Sobolev theorem asserts that

divg
(
A#du

)
+ (1− a)u+ 2∆gu ∈ L

nsk
n−2sk (M),

with the convention that nsk
n−2sk

= +∞ if sk ≥ n
2
, and

f |u|2]−2u+ h|u|q−1u ∈ L
(nsk)(n−4)

(n−4sk)(n+4) (M),

with the convention that nsk
n−4sk

= +∞ if sk ≥ n
4
. Then (∆g+1)2u ∈ Lsk+1(M), where

sk+1 = min

{
nsk

n− 2sk
,

(nsk)(n− 4)

(n− 4sk)(n+ 4)

}
≥ sk.

12



By standard elliptic arguments, u ∈ H
sk+1

4 (M). The sequence (sk) is then well-
defined. We assume now that (sk) is bounded. Then it goes to a limit L ≥ 2 such
that

L = min

{
nL

n− 2L
,

nL(n− 4)

(n+ 4)(n− 4L)

}
if L < n

4
. A contradiction. If L ≥ n

4
, the same kind of arguments lead also to a

contradiction. Hence sk → +∞, and u ∈ Hs
4(M) for all s > 1. From the Sobolev

theorem, it comes that u ∈ C3,ν(M) for all 0 < ν < 1. Plugging this result in (18),
it comes that u ∈ C4,η(M). This proves the first part of the proposition. Now if
a, f, h, α are smooth and u > 0, we note that fu2]−1 + huq ∈ C4(M) and standard
bootstrap arguments show that u ∈ C∞(M). This ends the proof of the proposition.
�

For the sake of completeness, we mention that the same method leads to the
following bounds:

Proposition 4 Assume that α and a are smooth. Let u ∈ Hs
2(M) and Φ ∈ Ls(M),

s > 1, such that Pgu = Φ in the weak sense. Then u ∈ Hs
4(M) and there exists

C(s) > 0 depending only on (M, g), s and a, α such that

||u||Hs
4(M) ≤ C(s)

(
||Φ||s + ||u||Ls(M)

)
.

Moreover, if Φ ∈ Hs
k(M) with k ∈ N, then u ∈ Hs

k+4(M) and there exists C(s, k) > 0
depending only on (M, g), s, k, a and α such that

||u||Hs
k+4(M) ≤ C(s)

(
||Φ||Hs

k(M) + ||u||Ls(M)

)
.

We are now left with finding conditions for (8) to be true. This is the purpose of
the following sections.

4 First order estimates for Paneitz-Branson type

operators

We let δ ∈ (0, ig(M)

2
), where ig(M) is the injectivity radius, and x0 ∈ M . We let

also η ∈ C∞(M) be such that η(x) = 1 for all x ∈ Bg(x0, δ) and η(x) = 0 for all
x ∈M −Bg(x0, 2δ). For ε > 0, we define the function uε ∈ C∞(M) by

uε(x) =
η(x)

(ε2 + dg(x, x0)2)
n−4
2

.

13



Given Pg a Paneitz-Branson type operator, q ∈ (1, 2]−1), and f, h smooth functions
on M , the aim of this section is to compute expansions of∫

M

Pguεuε dvg ,

∫
M

fu2]

ε dvg ,

∫
M

huq+1
ε dvg.

We compute the different terms separately. We start with the leading term
∫
M

(∆guε)
2 dvg.

The function uε is radially symmetrical. Computing in the exponential chart, it
comes that

∆guε = − 1

rn−1
√
|g|
∂r

(
rn−1

√
|g|∂ruε

)
= ∆ξuε − ∂r

(
ln
√
|g|
)
∂ruε,

where r = dg(x, x0), and |g| is the determinant of the components of g in the chart.
We let

θε =
1

εn−8
if n ≥ 9 , θε = | ln ε| if n = 8 , θε = 1 if n = 6, 7

We first assume that n ≥ 7. Then,∫
M

(∆guε)
2 dvg =

∫
Bξ(0,δ)

(∆ξuε)
2 dvg

−2

∫
Bξ(0,δ)

∆ξuε∂ruε∂r

(
ln
√
|g|
)
dvg +O(θε).

We write now, thanks to the Cartan expansion of the metric, that√
|g|(x) = 1− 1

6
Rijx

ixj − 1

12
∇kRijx

ixjxk +O(|x|4), (19)

where the Rij’s are the components of the Ricci tensor in the exponential chart.
With (19), it comes that∫

M

(∆guε)
2 dvg =

∫
Bξ(0,δ)

(∆ξuε)
2 dx− 1

6
Rij

∫
Bξ(0,δ)

xixj (∆ξuε)
2 dx

−2

∫
Bξ(0,δ)

∆ξuε∂ruε∂r

(
ln
√
|g|
)
dx+O(θε).

It is easily seen that,∫
Bξ(0,δ)

(∆ξuε)
2 dx =

n(n− 4)(n2 − 4)ωn
2nεn−4

+O(1)
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and that

Rij

∫
Bξ(0,δ)

xixj (∆ξuε)
2 dx =

(n− 4)2ωn−1Sg(x0)

nεn−6

∫ δ
ε

0

sn+1(n+ 2s2)2 ds

(1 + s2)n
.

In the same order of ideas, thanks to (19), we get that∫
Bξ(0,δ)

∆ξuε∂ruε∂r

(
ln
√
|g|
)
dx

=
(n− 4)2ωn−1Sg(x0)

3nεn−6

∫ δ
ε

0

(n+ 2s2)sn+1 ds

(1 + s2)n−1
+O(θε).

Then, when n ≥ 7,∫
M

(∆guε)
2 dvg =

n(n− 4)(n2 − 4)ωn
2nεn−4

−n(n2 + 4n− 20)(n− 4)ωn
6(n− 6)2n

Sg(x0)
1

εn−6
+O(θε).

Similarly, when n = 6, we find that∫
M

(∆guε)
2 dvg =

n(n− 4)(n2 − 4)ωn
2nεn−4

−2(n− 4)2ωn−1

n
Sg(x0)| ln ε|+O(1).

We let A ∈ Λ∞(2,0)(M) be a smooth symmetric (2, 0)-tensor field, and we let a ∈
C∞(M). Then, with similar computations to the ones we just developed, we get
that ∫

M

au2
ε dvg = O(θε)

when n ≥ 6, and that∫
M

A#(duε, duε) dvg =
4(n− 1)(n− 4)ωn

2n(n− 6)

TrgA(x0)

εn−6
+O(θε) if n ≥ 7,∫

M

A#(duε, duε) dvg =
(n− 4)2ωn−1

n
TrgA(x0)| ln ε|+O(1) if n = 6.
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Hence, ∫
M

Pguεuε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4

+
(n− 4)ωn
(n− 6)2n

(
4(n− 1)TrgA(x0)− n(n2 + 4n− 20)

6
Sg(x0)

)
1

εn−6

+O(θε),

when n ≥ 7, and ∫
M

Pguεuε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4

+
(n− 4)2ωn−1

n
(TrgA(x0)− 2Sg(x0)) | ln ε|+O(1)

when n = 6. We now compute
∫
M
fu2]

ε dvg. Clearly∫
M

fu2]

ε dvg =

∫
Bg(x0,δ)

f(x)

(ε2 + dg(x, x0)2)n
dvg +O(1)

=

∫
B(0,δ)

f̃(x)
√
|g|(x)

(ε2 + |x|2)n
dx+O(1),

where f̃ = f ◦ expx0g. Thanks to (19), it follows that for n ≥ 5,∫
M

fu2]

ε dvg =
f(x0)ωn

2nεn

− ωn
6(n− 2)2n

(Sg(x0)f(x0) + 3∆gf(x0))
1

εn−2
+O

(
1

εn−4

)
.

At last we compute an expansion of
∫
M
huq+1

ε dvg. It easily comes that∫
M

huq+1
ε dvg =

ωn−1h(x0)

ε(q+1)(n−4)−n

∫ +∞

0

sn−1 ds

(1 + s2)(q+1)n−4
2

+ o

(
1

ε(q+1)(n−4)−n

)
if q + 1 > n

n−4
, that ∫

M

huq+1
ε dvg = ωn−1h(x0)| ln ε|+ o (| ln ε|)

16



if q + 1 = n
n−4

, and that ∫
M

huq+1
ε dvg = O(1)

if q + 1 < n
n−4

. Moreover, when h(x0) = 0, then we can write that∫
M

huq+1
ε dvg = −Λωn−1

2n
∆gh(x0)ε2+n−(n−4)(q+1) + o

(
ε2+n−(n−4)(q+1)

)
where Λ =

∫ +∞
0

sn+1 ds

(1+s2)
n−4
2 (q+1)

and q + 1 > n+2
n−4

.

5 Second order estimates for the geometric

Paneitz-Branson operator

Let x0 ∈M . Up to changing conformally the metric, see [11], we may assume that

Ricg(x0) = 0, Sg(x0) = 0, ∇Sg(x0) = 0,

∆gSg(x0) =
1

6
|Weylg(x0)|2g, and (20)

dvg = dvξ(1 +O(rN))

where N is arbitrarily large. We let 0 < δ < ig(M)

2
and η ∈ C∞(M) be a radially

symmetrical function such that η ≡ 1 in Bg(x0, δ) and η ≡ 0 in M − Bg(x0, 2δ),
where Bg(x, r) denotes the geodesic ball of center x ∈ M and radius r > 0. We let
also uε ∈ C∞(M) be the function given by

uε(x) =
η(x)

(ε2 + dg(x, x0)2)
n−4
2

.

Our aim in this section is to estimate∫
M

Pguεuε dvg and

∫
M

fu2]

ε dvg

We compute the different terms separately. We start with

I1 =

∫
M

(∆guε)
2 dvg

We have that ∫
M

(∆guε)
2 dvg =

∫
Bg(x0,δ)

(∆guε)
2 dvg +O(1).
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Since uε is radially symmetrical on Bg(x0, δ), we have that

∆guε = − 1

rn−1
√
|g|
∂r

(
rn−1

√
|g|∂r

(
1

ε2 + |x|2

)n−4
2

)
,

where
√
|g| =

√
det(gij) and the gij’s are the components of g in the exponential

chart at x0. We have
√
|g| = 1 +O(rN). Then, with N large enough,

(∆guε)
2 =

(
∆ξ

1

(ε2 + r2)
n−4
2

)2

+O(1),

where r = dg(x, x0) < δ, and∫
M

(∆guε)
2 dvg =

∫
Bξ(0,δ)

(
∆ξ

1

(ε2 + r2)
n−4
2

)2

dvξ +O(1)

=
1

εn−4

∫
Rn

(∆ξu0)2 dvξ +O(1)

Considering that u0 is an extremal function for the sharp Euclidean Sobolev inequal-
ity, we obtain that ∫

M

(∆guε)
2 dvg =

n(n− 4)(n2 − 4)ωn
2nεn−4

+O(1).

We now compute

I2 =

∫
M

Qn
gu

2
ε dvg

We write that Qn
g (x) = Qn

g (x0) +O(dg(x, x0)). Then,∫
M

Qn
gu

2
ε dvg = Qn

g (x0)

∫
Bξ(0,δ)

dx

(ε2 + |x|2)n−4

+O

(∫
Bξ(0,δ)

|x|dx
(ε2 + |x|2)n−4

)

=
Qn
g (x0)ωn−1

εn−8

∫ δ
ε

0

sn−1 ds

(1 + s2)n−4

+O

(
ε

εn−8

∫ δ
ε

0

sn ds

(1 + s2)n−4

)
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Here, we have used a polar change of coordinates and the change of variable r = εs.
Since

Qn
g (x0) =

1

2(n− 1)
∆gSg(x0) =

1

12(n− 1)
|Weylg(x0)|2g,

it follows that

I2 =
(n− 3)ωn

2n−23(n− 6)(n− 8)
|Weylg(x0)|2g

1

εn−8
+ o

(
1

εn−8

)
if n ≥ 9 ,

=
ωn−1

12(n− 1)
|Weylg(x0)|2g| ln ε|+ o (ln ε) if n = 8 , and

= O(1) if 5 ≤ n ≤ 7 .

Going on with these estimates, we compute

I3 =

∫
M

Sg|∇uε|2g dvg

We have that ∫
M

Sg|∇uε|2g dvg =

∫
Bg(x0,δ)

Sg|∇uε|2g dvg +O(1),

Moreover, uε is radially symmetrical and

|∇uε|2g(x) = (n− 4)2 r2

(ε2 + r2)n−2
,

where r = dg(x, x0). Since Sg(x0) = 0, we obtain that∫
M

Sg|∇uε|2g dvg =
1

2
∂ijSg(x0)

∫
Bξ(0,δ)

(n− 4)2 xixjr2 dx

(ε2 + r2)n−2

+O

(∫
Bξ(0,δ)

|x|5 dx
(ε2 + |x|2)n−2

)
.

A polar change of coordinates and the change of variable r = εs, gives that∫
Bξ(0,δ)

xixjr2 dx

(ε2 + r2)n−2
=

∫
Sn−1

xixj dσ

∫ δ

0

rn+3 dr

(ε2 + r2)n−2

=
δijωn−1

n

1

εn−8

∫ δ
ε

0

sn+3 ds

(1 + s2)n−2
.
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where dσ denotes the surface element of the standard unit sphere Sn−1. Noting that
in geodesic coordinates, ∆gSg(x0) = −∂iiSg(x0), (20) gives that

I3

= −ωn(n+ 2)(n− 1)(n− 4)

2n3(n− 6)(n− 8)
|Weylg(x0)|2g

1

εn−8
+ o

(
1

εn−8

)
if n ≥ 9 ,

= −(n− 4)2ωn−1

12n
|Weylg(x0)|2g| ln ε|+ o (| ln ε|) if n = 8 , and

= O(1) if 5 ≤ n ≤ 7 .

At last, we compute

I4 =

∫
M

Ric#
g (duε, duε) dvg

We have that

I4 =

∫
Bg(x0,δ)

Ric#
g (duε, duε) dvg +O(1)

=

∫
Bξ(0,δ)

Rij∂iuε∂juε dx+O(1)

= (n− 4)2

∫
Bξ(0,δ)

ψ(x)

(ε2 + r2)n−2
dx+O(1).

where ψ(x) = Rij(x)xixj. We write that

ψ(x) =
1

2
D2ψ0(x2) +

1

3!
D3ψ0(x3) +

1

4!
D4ψ0(x4) +O(|x|5).

For parity reasons, it follows that

I4 =
(n− 4)2

2

∫
Sn−1

D2ψ0(x2) dσ

∫ δ

0

rn+1 dr

(ε2 + r2)n−2

+
(n− 4)2

4!

∫
Sn−1

D4ψ0(x4) dσ

∫ δ

0

rn+3 dr

(ε2 + r2)n−2

+O

(∫ δ

0

rn+4 dr

(ε2 + r2)n−2

)
We have here, see [7], that

1

2

∫
Sn−1

D2ψ0(x2) dσ = −ωn−1

2n
∆ξψ(0) , and

1

4!

∫
Sn−1

D4ψ0(x4) dσ =
ωn−1

8n(n+ 2)
∆2
ξψ(0)
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Noting that we use a normal chart at x0 and that Ricg(x0) = 0, we get that

∆ξψ(0) = 0 , and

∆2
ξψ(0) = 4(∂iiRjj + 2∂ijRij).

The Bianchi identity and Ricg(x0) = 0 lead to∑
i,j

2∂ijRij(x0) =
∑
i,j

∂iiRjj(x0) = −∆gSg(x0).

Then, with (20) and the change of variable r = εs, it comes that

I4 = −(n− 4)2ωn−1

6n(n+ 2)

∫ δ
ε

0

sn+3 ds

(1 + s2)n−2

|Weylg(x0)|2g
εn−8

+O

(
ε

εn−8

∫ δ
ε

0

sn+4 ds

(1 + s2)n−2

)
.

Consequently,

I4 = − 3ωn(n− 1)(n− 4)

2n−1(n− 6)(n− 8)
|Weylg(x0)|2g

1

εn−8
+ o

(
1

εn−8

)
if n ≥ 9 ,

= −(n− 4)2ωn−1

6n(n+ 2)
|Weylg(x0)|2g| ln ε|+ o (| ln ε|) if n = 8 , and

= O(1) if 5 ≤ n ≤ 7 .

In particluar, thanks to the previous estimates, we get that∫
M

Pguεuε dvg

=
n(n− 4)(n2 − 4)ωn

2nεn−4

−(n− 4)(n2 − 4n− 4)ωn
2n+13(n− 6)(n− 8)

|Weylg(x0)|2g
εn−8

+ o

(
1

εn−8

)
if n ≥ 9 ,

=
15ω8

2ε4
− ω7

30
|Weylg(x0)|2g| ln ε|+ o (| ln ε|) if n = 8 , and

=
n(n− 4)(n2 − 4)ωn

2nεn−4
+O(1) if 5 ≤ n ≤ 7 . (21)

Similarly we now compute

I5 =

∫
M

fu2]

ε dvg

21



Since dvg = dvξ(1 +O(rN)) with N large enough, we can write that

I5 =

∫
Bξ(0,δ)

f ◦ expx0
(ε2 + |x|2)n

dx+O(1).

With the same techniques as before, we easily find that, for n ≥ 5,

I5 = ωn−1

∫ +∞

0

sn−1 ds

(1 + s2)n
f(x0)

εn
−
ωn−1

∫ +∞
0

sn+1 ds
(1+s2)n

2n

∆ξf(x0)

εn−2
+

+
ωn−1

∫ +∞
0

sn+3 ds
(1+s2)n

8n(n+ 2)

∆2
ξf(x0)

εn−4
+ o

(
1

εn−4

)
.

Since we are in a normal coordinate chart, and since Ricg(x0) = 0 and ∇Sg(x0) = 0,
we obtain that ∆gf(x0) = ∆ξf(x0) and ∆2

gf(x0) = ∆2
ξf(x0). As a consequence,∫

M

fu2]

ε dvg =
ωnf(x0)

2nεn
− ωn

2n+1(n− 2)

∆gf(x0)

εn−2

+
ωn

2n+3(n− 2)(n− 4)

∆2
gf(x0)

εn−4
+ o

(
1

εn−4

)
(22)

when n ≥ 5.

6 General estimates for Paneitz-Branson type op-

erators

We let x0 ∈ M and N ∈ N?. Then, see [11], there exists g̃ = ϕ
4

n−4 g, ϕ > 0 is a
smooth function on M , such that

Ricg̃(x0) = 0 , ∇Sg̃(x0) = 0,

∆g̃Sg̃(x0) =
1

6
|Weylg(x0)|2g, and

dvg̃ = dvξ(1 +O(rN))

We let δ ∈ (0,
ig̃(M)

2
), where ig̃(M) is the injectivity radius of g̃, and η ∈ C∞(M) be

such that η(x) = 1 for all x ∈ Bg̃(x0, δ) and η(x) = 0 for all x ∈M −Bg̃(x0, 2δ). For
ε > 0, we define the function ũε ∈ C∞(M) by

ũε(x) =
η(x)ϕ(x)

(ε2 + dg̃(x, x0)2)
n−4
2

.
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We let also Pg be a Paneitz-Branson type operator, and f be a smooth function on
M . For the sake of completeness, we quote in this section results concerning the
expansions of

I =

∫
M

Pgũεũε dvg and J =

∫
M

fũ2]

ε dvg.

Such expansions are not required to prove our theorems. Nevertheless, they can be
useful in another context. Details on these expansions can be found in Esposito-
Robert [8]. Writing that

Pg = ∆2
gu− divg

[
A#du

]
+ au,

we set

Ã = A− anSgg − bnRicg , and

ã = a− n− 4

2
Qn
g .

We define Φ

Φ = − n2 − 4n− 4

96(n− 1)(n− 3)
|Weylg|2g

+
gijgkl(∇2Ã)ijkl + 2gikgjl(∇2Ã)ijkl

8(n− 3)
− (n− 4)(Ricg, Ã)g

4(n− 2)(n− 3)

− nSgtrg(Ã)

8(n− 1)(n− 2)(n− 3)
+

1

n− 4

(
a− n− 4

2
Qn
g

)
,

where (·, ·)g is the scalar product with respect to g. We let also

Θ = ∆2
gf +

2Sg
n− 1

∆gf + 2
(
∇2f,Ricg

)
g

+
n− 2

2(n− 1)
(∇f,∇Sg)g

We then find that the following holds. Concerning I, we find that∫
M

Pgũεũε dvg

=
n(n− 4)(n2 − 4)ωn

2nεn−4
+
ωn(n− 1)(n− 4)trg(Ã)(x0)

2n−2(n− 6)εn−6

+
ωn(n− 1)(n− 3)(n− 4)Φ(x0)

2n−4(n− 6)(n− 8)εn−8
+ o

(
1

εn−8

)
if n ≥ 9 , and

=
n(n− 4)(n2 − 4)ωn

2nεn−4
+
ωn(n− 1)(n− 4)trg(Ã)(x0)

2n−2(n− 6)εn−6

+(n− 4)ωn−1Φ(x0)| ln ε|+ o (ln ε) if n = 8.
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Similarly,∫
M

Pgũεũε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4
+

4ωn(n− 1)(n− 4)trg(Ã)(x0)

2n(n− 6)εn−6

+o

(
1

εn−6

)
if n = 7 , and

=
n(n− 4)(n2 − 4)ωn

2nεn−4
+

(n− 4)2ωn−1trg(Ã)(x0)

n
| ln ε|

+o (| ln ε|) if n = 6.

When n = 5, we just find that∫
M

Pgũεũε dvg =
n(n− 4)(n2 − 4)ωn

2nεn−4
+O(1).

Concerning J , we find that for n ≥ 5,∫
M

fũ2]

ε dvg =
ωnf(x0)

2nεn
− ωn

2n+1(n− 2)

∆gf(x0)

εn−2

+
ωnΘ(x0)

2n+3(n− 2)(n− 4)εn−4
+ o

(
1

εn−4

)
.

7 Proof of the theorems 2-6

We prove Theorems 2-6 using Theorem 1 and the expansions we got in sections 4
and 5. We let x0 ∈M and consider the paths γε’s given by

γε(t) = t
uε
||uε||2]

.

Thanks to Theorem 1, it suffices to prove Theorems 2-6 to show that there exists
ε > 0 such that

sup
t≥0

E(γε(t)) <
2

nK
n
4

0 (maxM f)
n−4
4

(23)
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where, in its general form,

E(γε(t)) =
t2

2||uε||22]

∫
M

Pguεuε dvg −
t2
]

2]||uε||2
]

2]

∫
M

fu2]

ε dvg

− tq+1

(q + 1)||uε||q+1
2]

∫
M

huq+1
ε dvg

=
t2

2
Aε −

t2
]

2]
Bε −

tq+1

q + 1
Cε

Thanks to the results of section 4, ||ũε||2] ∼
(
ωn
2n

)n−4
2n ε−

n−4
2 , and

Aε →
1

K0

, Bε → f(x0) , Cε → 0

Then, it is easily checked that

sup
t≥0

E(γε(t)) =
2

n
· A

n
4
ε

B
n−4
4

ε

− T q+1
0

q + 1
Cε + o(Cε) (24)

where T0 = (K0f(x0))−
n−4
8 . We let

K =

2
n(q+1)

2]
∫ +∞

0
sn−1 ds

(1+s2)
(n−4)(q+1)

2

(q + 1)(K0f(x0))
(n−4)(q+1)

8 ω
q+1

2]
n

Using the estimates we got in section 4, and (24), the following expansions hold. We
assume first that q > n

n−4
. Then we get that

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

−Kωn−1h(x0)ε
n−4
2

(2]−1−q) + o
(
ε
n−4
2

(2]−1−q)
)

when n ≥ 6, and if h(x0) = 0, we get that

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

+
2n(n− 4)ωn−1(TrgA− 2Sg)(x0)

2n2(n2 − 4)ωnK
n
4

0 f(x0)
n−4
4

ε2| ln ε|

+o
(
ε2| ln ε|

)
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when n = 6, and when n ≥ 7,

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

+
F (x0)

4n(n2 − 4)(n− 6)K
n
4

0 f(x0)
n−4
4

ε2 + o(ε2)

where F is as in the introduction. Theorem 2 and the first part of Theorem 3 easily
follow from these expansions and Theorem 1, since, under the assumptions we made
in these theorems, (23) holds true. Moreover, still when q > n

n−4
, we find with the

estimates of section 4 that if h(x0) = F (x0) = 0, and n ≥ 8, then

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

+
Kωn−1

2 ((q + 1)(n− 4)− (n+ 2))
(∆gh(x0)) εn+2−(q+1)n−4

2

+o
(
εn+2−(q+1)n−4

2

)
.

Thanks to Theorem 1, this implies the second part of Theorem 3. We assume now
that q = n

n−4
. Then, when n = 6, we get that

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n/4
0 f(x0)

n−4
4

(
1 +

2n(n− 4)ωn−1(TrgA− 2Sg)(x0)

4n(n2 − 4)ωn
ε2| ln ε|

)
+o(ε2| ln ε|)

and when n ≥ 7, we get that

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

+
G(x0)

4n(n2 − 4)(n− 6)K
n
4

0 f(x0)
n−4
4

ε2 + o(ε2)

where G is as in the introduction. Theorem 4 easily follows from these expansions
and Theorem 1, since, under the assumptions we made in this theorem, (23) holds
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true. At last we assume that q < n
n−4

. Then, when n ≥ 8, we get that

sup
t≥0

E

(
t
uε
||uε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

+
F (x0)

4n(n2 − 4)(n− 6)K
n
4

0 f(x0)
n−4
4

ε2

−Kωn−1h(x0)ε
n−4
2 (2]−1−q)

+o
(
ε
n−4
2 (2]−1−q)

)
.

and Theorems 5 easily follows from this expansion and Theorem 1, since, under
the assumptions we made in this theorem, (23) holds true. We are now left with
the proof of Theorem 6. We use here the estimates we got in section 5. We let g̃
be a conformal metric to g which satisfies (20), and denote by ũε the functions we
introduced in section 5 which we consider now with respect to g̃. Assuming that
∆gf(x0) = 0, we also have that ∆g̃f(x0) = 0. Then, thanks to the estimates of
section 5, we get that when n ≥ 9,

sup
t≥0

E

(
t
ũε
||ũε||2]

)
=

2

nK
n
4

0 f(x0)
n−4
4

(
1− H̃(x0)

C(n)
ε4 + o(ε4)

)
where E is with respect to g̃, C(n) = 32(n− 2)(n− 6)(n− 8), and

H̃(x0) =
4(n2 − 4n− 4)

3(n+ 2)
|Weylg̃(x0)|2g̃ + (n− 6)(n− 8)

∆2
g̃f

f
(x0).

Writing that g̃ = ϕ4/(n−2)g, see [11], we do have that ϕ(x0) = 1, ∇ϕ(x0) = 0, and

∇2ϕ(x0) =
n− 4

2(n− 2)

(
Ricg −

Sg
2(n− 1)

g

)
(x0)

Then, since x0 ∈Maxf and ∆gf(x0) = 0, we get that

∆2
g̃f(x0) = ∆2

gf(x0) + 2
(
∇2f,Ricg

)
g

(x0)

Hence, thanks to the conformal invariance of the Weyl tensor, H̃(x0) > 0 if and only
if H(x0) > 0, where H is as in the introduction. Similarly, when n = 8,

sup
t≥0

E

(
t
ũε
||ũε||2]

)
=

1

4K2
0f(x0)

(
1−

2ω7|Weylg̃(x0)|2g̃
225ω8

ε4| ln ε|+ o(ε4| ln ε|)
)
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Thanks to Theorem 1, and the conformal invariance of the geometric Paneitz-Branson
operator, Theorem 6 follows from the above estimates. Under the assumptions we
made in this theorem, we indeed do have that (23) with respect to g̃ holds true.
Hence, our equation with respect to g̃ has a solution u. Writing that g̃ = ϕ4/(n−4)g,
the conformal invariance then gives that uϕ is a solution of our equation with respect
to g. This proves Theorem 6.
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