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0 - Introduction and statements of the results

Let (M, g) be a smooth compact Riemannian n-manifold, n ≥ 3, without

boundary. We denote by H2
1 (M) the standard Sobolev space, that is the

completion of C∞(M) for the norm

‖u‖H2
1

= ‖∇u‖2 + ‖u‖2

where ‖.‖p, as in the sequel, is the Lp-norm. It follows from the Sobolev

embedding theorem that H2
1 (M) ⊂ L2∗(M), where 2∗ = 2n

n−2 is the critical

exponent. This leads to the existence of two constants A and B such that

for any u ∈ H2
1 (M),

‖u‖22∗ ≤ A‖∇u‖22 +B‖u‖22 (I)

As usual, we define the best first constant α2 in (I) by

α2 = inf {A for which there exists B such that (I) is valid with A and B}
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where, by (I) is valid, we mean that (I) holds for any u ∈ H2
1 (M). It is

now well-known, see for instance [17] for an exposition in book form, that

α2 = Kn, where Kn is the best constant in the Euclidean Sobolev inequality.

Its value has been found independently by Aubin [2] and Talenti [27] :

Kn =
4

n(n− 2)
ω
− 2
n

n

where ωn denotes the volume of the unit sphere in IRn+1.

Since the work of Hebey and Vaugon [19], [20], we know that α2 is

attained in (I). In other words, there exists a constant B such that for any

u ∈ H2
1 (M),

‖u‖22∗ ≤ Kn‖∇u‖22 +B‖u‖22 (Iopt)

This inequality is optimal with respect to the first constant. One can then

lower B to its minimum in (Iopt), and thus define

B0(g) = inf {B s.t. (Iopt) is valid with B}

Clearly, for any u ∈ H2
1 (M),

‖u‖22∗ ≤ Kn‖∇u‖22 +B0(g)‖u‖22 (Ig,OPT )

and this inequality is optimal with respect to the first and second constants.

Lower and upper-bounds for B0(g) may be found in [17]. Following usual

terminology, we say that u0 ∈ H2
1 (M) is an extremal function for (Ig,OPT ) if

u0 6≡ 0 and

‖u0‖22∗ = Kn‖∇u0‖22 +B0(g)‖u0‖22

Results concerning the existence of extremal functions for (Ig,OPT ) on general

compact manifolds are in Djadli-Druet [8]. In particular, it is shown there

that (Ig,OPT ) possesses extremal functions if the scalar curvature of g is

either nonpositive or constant.

In this paper, we concentrate our attention on the case of the conformal

class of the standard unit sphere. We let (Sn, h) be the unit n-sphere of

IRn+1 with its standard metric h, and we let

[h] =
{
g = ϕ

4
n−2h, ϕ ∈ C∞(M), ϕ > 0

}
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be the conformal class of h. Given g ∈ [h] some conformal metric to h, the

existence of extremal functions for (Ig,OPT ) has been studied by Hebey [16].

His result, that we recall below, should be regarded as the starting point of

our paper. As in all the sequel, Sg denotes the scalar curvature of g.

Theorem 0.1 ([16]) - Let (Sn, h) be the unit n-sphere. If n ≥ 4, then for

any g ∈ [h],

B0(g) =
n− 2

4(n− 1)
Kn max

Sn
Sg ,

and there exist extremal functions for (Ig,OPT ) if and only if, up to a positive

constant scale factor, g and h are isometric. If n = 3, then for any g ∈ [h],

B0(g) ≤ 1

8
K3 max

S3
Sg ,

but there now exists g ∈ [h] for which this inequality is strict. In case of

equality, there exist extremal functions for (I2g,OPT ) if and only if, up to a

positive constant scale factor, g and h are isometric.

Note that, see [17] for an exposition in book form, the extremal functions

for (Ih,OPT ) are explicitly known. More precisely, if u is an extremal function

for (Ih,OPT ), and for instance
∫
Sn
u2
∗
(x) dvh(x) = 1, then

u(x) = ω
− 1

2∗
n

(
β2 − 1

)n−2
4 (β − (x0, x))

1−n2

where β > 1 is some real number, x0 ∈ Sn, and (x0, x) denotes the scalar

product in IRn+1.

In what follows we assume that n ≥ 4 and we let g = ϕ
4

n−2h be some

metric conformal to h. Given α < B0(g), we set

λα = inf
u∈H2

1 (S
n),u6≡0

‖∇u‖22 + αK−1n ‖u‖22
‖u‖22∗

It follows from the definition of B0(g) that λα < K−1n , while, according to

Theorem 0.1,

B0(g) = cnKn max
Sn

Sg
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where cn = n−2
4(n−1) . By standard variational technics, the strict inequality

λα < K−1n leads to the existence of zα ∈ C∞(Sn), zα > 0, such that{
∆gzα + αK−1n zα = λαz

2∗−1
α∫

Sn
z2
∗

α dvg = 1

where ∆g = −divg∇. We refer to the zα’s as sub-extremals for the sharp

Sobolev inequality (Ig,OPT ). If, up to a positive constant scale factor, g and

h are isometric, then, by a result of Gidas and Spruck [10] and Bidaut-Véron

and Véron [5], zα is constant, and hence explicitly known.

Theorem 0.2 ([10], [5]) - Let (Sn, h) be the unit n-sphere, let g = ϕ
4

n−2h be

some conformal metric to h such that, up to a positive constant scale factor,

g and h are isometric, and let (zα) be as above. Then zα =
(
αK−1n λ−1α

)n−2
4 .

Given g = ϕ
4

n−2h as above, and n ≥ 4, we assume now that, up to any

positive constant scale factor, g and h are not isometric. Then, according

to Theorem 0.1, (Ig,OPT ) does not possess extremal functions, and one gets

from standard elliptic theory that zα ⇀ 0 weakly in H2
1 (Sn) as α → B0(g).

It thus follows that there exists x0 ∈ Sn such that zα → 0 in C2
loc (Sn\{x0})

and z2
∗

α → δx0 in the sense of distributions. We study here the asymptotic

profile of the zα’s as α → B0(g), and answer a question that was asked

to us by Hebey. Such studies were initiated by Atkinson-Peletier [1] and

Brézis-Peletier [6] in the Euclidean context when considering the equation

∆u = n(n− 2)f(x)u2
∗−1 in B , u ≡ 0 on ∂B

where B is the unit ball of IRn, and u and f are radially symmetrical. With

arguments from ODE’s theory, assuming that f ≡ 1, Atkinson and Peletier

[1] got that

lim
ε→0

εuε(0)2 =
4Γ(n)

(n− 2)Γ(n2 )2
,

and that, for all x ∈ B\ {0},

lim
ε→0

ε−
1
2uε(x) =

√
n− 2Γ(n2 )

2
√

Γ(n)

(
1

|x|n−2
− 1

)
Brézis and Peletier [6] returned to this problem, but with arguments from

PDE’s theory, and they conjectured that a similar behaviour should occur in
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the non radial case. This was proved to be true independently by Han [12]

and Rey [25]. When f is nonconstant, the problem has been considered by

Hebey [15], [18], and also Robert [26] with the addition of a linear term a(x)u

in the equation. Similar studies have also been developed on the whole of

IRn. See for instance Pan-Wang [24]. Note that a key idea to get information

on blow-up rate and location is to use the Pohozaev identity, respectively

the Kazdan-Warner identity. This idea goes back to Brézis-Peletier [6] and

Schoen [27]. See also Han [12] and Hebey [13].

For P ∈ Sn, and t ∈ [1;∞), we let ΦP,t : Sn → Sn be the conformal

diffeomorphism defined by

ΦP,t(x) = π−1P (tπP (x))

where πP is the stereographic projection of north pole P . We then let

|det dΦP,t| be defined by

Φ∗P,th = |det dΦP,t|
2
nh

We also denote by G(x0, x) the Green’s function at x0 of ∆g + B0(g)K−1n .

More precisely, G(x0, x) is the only function such that

∆gG(x0, x) +B0(g)K−1n G(x0, x) = δx0

in the sense of distributions. See [3] for existence and basic properties of such

functions. We set

MaxSg =

{
x ∈ Sn, Sg(x) = max

y∈Sn
Sg(y)

}
Our first result is the following :

Theorem 0.3 - Let (Sn, h) be the unit n-sphere, n ≥ 4, let g = ϕ
4

n−2h be

some conformal metric to h with the property that, up to any positive constant

scale factor, g and h are not isometric, and let (zα) be as above. There exist

x0 ∈ MaxSg, a sequence (xα) ∈ Sn, with the property that xα → x0 as

α → B0(g), and a sequence (tα) ∈ IR, with the property that tα → +∞ as

α→ B0(g), such that

t
n
2−1
α zα(x) → ϕ(x0)ω

− 1
2∗

n 2n−2ωn−1(n− 2)G(x0, x) in C2
loc (Sn\ {x0})
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and

|det dΦxα,tα |
1
2∗ zα ◦ Φxα,tα → ω

− 1
2∗

n ϕ(x0)−1 in C2
loc (Sn\ {−x0})

as α→ B0(g). Moreover, (|det dΦxα,tα |
1
2∗ zα ◦Φxα,tα) is uniformly bounded

in L∞(Sn).

The first part of this theorem provides us with a rather standard descrip-

tion of asymptotic profiles. The second part is more specific to the sphere.

Our next result, Theorem 0.4 below, gives informations on the sequences

(tα) and (xα) involved in Theorem 0.3. We let here Cn be the dimensional

constant defined by

C4 =
1

24
ω
− 1

2
4 , C5 =

3

10π
ω
− 3

5
5 ,

C6 =
2

15
ω
− 1

3
6 , Cn =

4

n(n− 1)(n− 6)
ω
− 2
n

n

if n ≥ 7. We then have the following :

Theorem 0.4 - Let (Sn, h) be the unit n-sphere, n ≥ 4, and g = ϕ
4

n−2h

be some conformal metric to h with the property that, up to any positive

constant scale factor, g and h are not isometric. We assume that for any

x ∈MaxSg, ∇2Sg(x) is nondegenerate. For tα as in Theorem 0.3, one then

has the following :

(1) If n = 4,

lim
α→B0(g)

(B0(g)− α) ln tα

= C4ϕ(x0)−1
∫
S4

(Sg(x0)− Sg(x))ϕ(x)−1
(

1− (x0, x)

2

)−1
G(x0, x)dvg

(2) If n = 5,

lim
α→B0(g)

(B0(g)− α) tα

= C5ϕ(x0)−
1
3

∫
S5

(Sg(x0)− Sg(x))ϕ(x)−1
(

1− (x0, x)

2

)− 3
2

G(x0, x)dvg

(3) If n = 6,

lim
α→B0(g)

(B0(g)− α)
t2α

ln tα
= C6ϕ(x0)∆gSg(x0)

(4) If n ≥ 7,

lim
α→B0(g)

(B0(g)− α) t2α = Cnϕ(x0)2
∗−2∆gSg(x0)

6



Moreover, at least when n ≥ 7, and for xα and x0 as in Theorem 0.3, one

may take xα = x0 for any α.

By a well-known result of Obata [23], if g ∈ [h] and Sg is constant, then,

up to a positive constant scale factor, g and h are isometric. Given g ∈ [h],

the limits involved in points (1) and (2) of Theorem 0.4 are then nonnegative,

and null if and only if, up to a positive constant scale factor, g and h are

isometric. Under the assumption that ∇2Sg(x) is definite negative for any

x ∈MaxSg, the limits involved in (3) and (4) are also positive.

In our last result we restrict ourselves to a particular case where we

can drop the assumption of nondegeneracy we made on Sg in Theorem 0.4,

and where we get a complete description of the asymptotic profile of the

sub-extremals, hence of the sequences (xα) and (tα) involved in Theorem

0.3. More precisely, we assume now that ϕ is radially symmetrical with

respect to some point x0 ∈ Sn and that Sg, which is therefore also radially

symmetrical with respect to x0, achieves its maximum at x0. Under such

assumptions, one easily checks that we can choose the sub-extremals zα to

be radially symmetrical with respect to x0, and to blow-up at x0 (see section

4 below for more details on such an assertion). We let p ∈ IN∗ be such that

∆i
gSg(x0) = 0 for any 1 ≤ i < p , and ∆p

gSg(x0) 6= 0

with the convention that p = +∞ if ∆i
gSg(x0) = 0 for any i ∈ IN∗, where

∆i
g = ∆g ◦ . . . ◦∆g (i times)

We let also

D1(n, p) =
(p+ 1)4p

n(n− 1)(2p)!
ω
− 2
n

n

(
Πk=0...p−1

2k + 1

n− 6− 2k

)

D2(n) =
2n−5(n− 2)ω

− 2
n

n

(n− 4)!n(n− 1)

n−6
2∏

k=0

2k + 1

n+ 2k

(∫ ∞
0

rn−1

(1 + r2)n−2
dr

)−1

D3(n) =
(n− 2)2

8n(n− 1)
ω
− 2
n

n ωn−1

(∫ ∞
0

rn−1

(1 + r2)n−2
dr

)−1
Our last result is then as follows :
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Theorem 0.5 - Let (Sn, h) be the unit n-sphere, n ≥ 4, and let g = ϕ
4

n−2h

be some conformal metric to h with the property that, up to any positive

constant scale factor, g and h are not isometric. We assume that ϕ is radially

symmetrical with respect to some x0 ∈ Sn, that Sg achieves its maximum at

x0, and we choose the sub-extremals zα to be radially symmetrical with respect

to x0, and to blow-up at x0. Then Theorem 0.3 holds for zα with xα = x0

for every α. Moreover, tα verifies :

(1) If n = 4,

lim
α→B0(g)

(B0(g)− α) ln tα =
1

24
ω
− 1

2
4 ϕ(x0)−1

×
∫
S4

(Sg(x0)− Sg(x))ϕ(x)−1
(

1− (x0, x)

2

)−1
G(x0, x)dvg

(2) If n = 5,

lim
α→B0(g)

(B0(g)− α) tα =
3

10π
ω
− 3

5
5 ϕ(x0)−

1
3

×
∫
S5

(Sg(x0)− Sg(x))ϕ(x)−1
(

1− (x0, x)

2

)− 3
2

G(x0, x)dvg

(3) If n ≥ 6, and

(3a) 2p < n− 4,

lim
α→B0(g)

(B0(g)− α) t2pα = −D1(n, p)ϕ(x0)p(2
∗−2) (−∆g)

p
Sg(x0)

(3b) 2p = n− 4,

lim
α→B0(g)

(B0(g)− α)
tn−4α

ln tα
= −D2(n)ϕ(x0)

2(n−4)
n−2 (−∆g)

n
2−2 Sg(x0)

(3c) 2p > n− 4,

lim
α→B0(g)

(B0(g)− α) tn−4α = D3(n)ϕ(x0)
n−6
n−2

×
∫
Sn

(Sg(x0)− Sg(x))ϕ(x)−1
(

1− (x0, x)

2

)1−n2
G(x0, x)dvg

where p, D1(n, p), D2(n), and D3(n) are as above.

As in Theorem 0.4, the limits in Theorem 0.5 are always positive (since

Sg is nonconstant by Obata’s theorem [23]). Clearly, in the radial case,

Theorem 0.5 provides us with a complete description of the asymptotic profile

of the sub-extremals.
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1 - Proof of Theorem 0.3

As a starting point, we list some useful formulae regarding the ΦP,t’s

introduced above. Let P ∈ Sn and t ≥ 1. As easily seen, see for instance

[17], p.130-131, one has that

|det dΦP,t|
2
n (x) = 4t2

[(
1 + t2

)
+
(
t2 − 1

)
(P, x)

]−2
(1.1)

where (P, x) denotes the scalar product in IRn+1, as in the rest of this paper.

As t→ +∞, ΦP,t(x)→ P for all x 6= −P . This is easily seen on the following:

for any x ∈ Sn,

(ΦP,t(x), P ) = 1− 2
1− (x, P )

t2 (1 + (x, P )) + 1− (x, P )
(1.2)

Given Q ∈ Sn, we let πQ be the stereographic projection of north pole Q.

Easy computations lead to the following : for any x ∈ IRn,

(
P, π−1−P (x)

)
=

1− |x|2

1 + |x|2
(1.3)

and

|det dΦP,t|
2
n

(
π−1−P (x)

)
= t2

(
1 + |x|2

)2 (
t2 + |x|2

)−2
(1.4)

At last, for any f ∈ C0 (Sn) and any x ∈ IRn, we have

f ◦ ΦP,t ◦ π−1−P (x) = f ◦ π−1−P
(x
t

)
(1.5)

Now, we go on with the proof of Theorem 0.3.

1.1 - The concentration phenomenon

We let zα be as in the introduction, α < B0(g). As already mentioned,

zα ⇀ 0 weakly in H2
1 (Sn). Another easy claim is that

lim
α→B0(g)

λα = K−1n

We list in this subsection results on the concentration phenomenon that the

zα’s develop. These results have already been proved in [8] (see also Druet

[9]). We therefore omit giving too many details.
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As a starting claim, there exists a unique point x0 in Sn such that, after

passing to a subsequence,

lim
α→B0(g)

∫
B(x0,δ)

z2
∗

α dvg = 1 for any δ > 0

and

lim
α→B0(g)

zα = 0 in C2
loc (Sn\ {x0}) (1.6)

The L2∗ -mass of (zα) therefore concentrates around x0. We set uα = zαϕ.

As easily checked, uα is such that

Lhuα +
(
αK−1n − cnSg

)
ϕ2∗−2uα = λαu

2∗−1
α (Eα)∫

Sn
u2
∗

α dvh = 1

where Lh = ∆h + n(n−2)
4 is the conformal Laplacian for the metric h. We let

also xα ∈ Sn be a point where uα is maximum. Clearly, uα(xα)→ +∞ and

xα → x0 as α→ B0(g). We let

tα = ω
1
n
n uα(xα)

2
n−2 (1.7)

and set

vα = uα ◦ Φα|det dΦα|
1
2∗

where Φα = Φxα,tα . As easily checked,

Lhvα +
(
αK−1n − cnSg ◦ Φα

)
(ϕ ◦ Φα)

2∗−2 |det dΦα|
2
n vα = λαv

2∗−1
α∫

Sn
v2
∗

α dvh = 1 (Fα)

For π−xα the stereographic projection of north pole −xα, we set

S̃α = Sg ◦ π−1−xα , ϕ̃α = ϕ ◦ π−1−xα , ṽα = vα ◦ π−1−xα

Since (
π−1−xα

)∗
h = ψ

4
n−2 ξ and ψ(x) =

(
2

1 + |x|2

)n
2−1

where ξ is the Euclidean metric, we get with (1.4) and (1.5) that

∆ξ (ṽαψ) = λα (ṽαψ)
2∗−1

+ 4

(
cnS̃α

(
x

tα

)
− αK−1n

)
ϕ̃α

(
x

tα

)2∗−2

t−2α

(
1 +
|x|2

t2α

)−2
ṽαψ
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Moreover, one easily checks with (1.7) and (1.4) that

‖ṽαψ‖∞ = ṽα(0)ψ(0) = 2
n
2−1ω

− 1
2∗

n

Independently, it is clear that (ṽαψ) is bounded in H2
1 (IRn) and in L∞ (IRn).

By standard elliptic theory (see [11], theorem 8.17), (ṽαψ) is then uniformly

continuous. It hence follows from Ascoli’s theorem that ṽαψ → ṽ in C0
loc (IRn)

as α→ B0(g), where

‖ṽ‖∞ = ṽ(0) = 2
n
2−1ω

− 1
2∗

n

and ṽ is such that

∆ξ ṽ = K−1n ṽ2
∗−1

By a well known result of Caffarelli, Gidas and Spruck [7],

ṽ = ω
− 1

2∗
n ψ(x)

Thus, up to standard elliptic theory,

lim
α→B0(g)

ṽα = ω
− 1

2∗
n in C2

loc (IRn) (1.8)

This convergence result gives informations on the speed of concentration of

the L2∗ -norm of (zα). Indeed, for any R > 0,∫
B(xα,Rt−1

α )
z2
∗

α dvg =

∫
B(xα,Rt−1

α )
u2
∗

α dvh

=

∫
B(xα,π−ε′(R))

v2
∗

α dvh (see (1.3))

→ 1− ε(R) as α→ B0(g) (by (1.8))

where ε(R), ε′(R) go to 0 as R→ +∞. In other words,

lim
R→+∞

lim
α→B0(g)

∫
B(xα,Rt−1

α )
z2
∗

α dvg = 1 (1.9)

As it was shown in [8], see also [9], this integral estimate leads to pointwise

estimates: there exists some positive constant C such that

dg(xα, x)
n
2−1zα(x) ≤ C for any α , and any x ∈ Sn (1.10)

11



and one also has that

lim
R→+∞

lim
α→B0(g)

sup
x∈Sn\B(xα,Rt−1

α )
dg(xα, x)

n
2−1zα(x) = 0 (1.11)

We refer the reader to [8] for details on these assertions. Moreover, it was

also proved there that in such a situation, if there are no extremal functions

for (Ig,OPT ) (which is the case here), then

B0(g) ≤ cnKnSg(x0)

where x0 is the point of concentration of (zα). Thus x0 ∈MaxSg. Together

with (1.8), this proves the second part of Theorem 0.3 :

lim
α→B0(g)

zα ◦ Φα|det dΦα|
1
2∗ = ϕ(x0)−1ω

− 1
2∗

n in C2
loc (Sn\ {−x0})

We provide in the next subsection a stronger pointwise estimate than (1.10)

and (1.11). This will allow us to conclude the proof of Theorem 0.3.

1.2 - A fundamental estimate

We prove here the following estimate : there exists C > 0 such that for

any α < B0(g), and any x ∈ Sn,

dg(x, xα)n−2 zα(xα) zα(x) ≤ C (1.12)

Similar estimates are in Han [12], Hebey-Vaugon [19], Li [22], Schoen-Zhang

[28]. We divide the proof of (1.12) into two steps. We first claim that for

any ε > 0, there exists C(ε) > 0 such that

t
n
2−1−ε
α dg(xα, x)n−2−εzα(x) ≤ C(ε) (1.13)

As a remark, note that (1.13) is true on any ball B(xα, Rt
−1
α ) with R > 0

(see (1.8)). We therefore just have to prove (1.13) on Sn\B(xα, Rt
−1
α ) for

some R > 0 (to be chosen later). We let Lα be the operator given by:

Lαu = ∆gu+
(
αK−1n − λαz2

∗−2
α

)
u

Since Lαzα = 0 and zα > 0, the maximum principle holds for Lα (see [4]).

Set

θα(x) =
Cα
ϕ(x)

(1− (xα, x))
ε+1−n2
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where g = ϕ
4

n−2h. We claim that for R sufficiently large,

Lαθα ≥ 0

and that choosing suitably Cα,

θα ≥ zα on ∂B(xα, Rt
−1
α )

We first prove that Lαθα ≥ 0 in Sn\B(xα, Rt
−1
α ). We have

Lgθα = ϕ1−2∗Lh(θαϕ)

and

∆h(θαϕ) = Cα∆h

(
(1− (xα, x))

ε+1−n2
)

Hence,

1

Cα
∆h(θαϕ) =

− 1

(1− (xα, x)2)
n−1
2

∂r

((
1− (xα, x)2

)n−1
2 ∂r (1− (xα, x))

ε+1−n2
)

Easy computations then lead to

(1− (xα, x))
Lαθα
θα

= (1− (xα, x))
(
αK−1n − cnSg

)
− λα (1− (xα, x)) z2

∗−2
α

+ εϕ2−2∗ (n− 1− ε− (1 + ε)(xα, x))

≥ (1− (xα, x))K−1n (α−B0(g))− Cλαdh(xα, x)2z
4

n−2
α

+ (n− 2− 2ε)εϕ2−2∗

By (1.11),

dh(xα, x)2z
4

n−2
α ≤ ε(R)

when dh(xα, x) ≥ Rt−1α , and ε(R)→ 0 as R→∞. Therefore,

(1− (xα, x))
Lαθα
θα

≥

(1− (xα, x))K−1n (α−B0(g))− Cε(R) + (n− 2− 2ε)εϕ2−2∗

13



and the RHS of this inequality is positive as α → B0(g) if we choose R

sufficiently large. This proves that Lαθα ≥ 0 for all x ∈ Sn\B(xα, Rt
−1
α ).

Let x ∈ Sn be such that dh(xα, x) = Rt−1α . We easily get that

θα(x) ≥ CCαt(n−2−2ε)α

and since zα ≤ Ct
n
2−1
α , it follows that

zα ≤ θα on ∂B(xα, Rt
−1
α )

if we take Cα = Ct
1+2ε−n2
α for some C > 0 independent of α. According to

the maximum principle, this leads to

zα ≤ θα on Sn\B(xα, Rt
−1
α )

and hence, (1.13) is proved.

We now prove (1.12). We follow here [26] and we refer the reader to this

reference for more details. Let Gα be the Green’s function for the operator

∆g + αK−1n , the only function Gα : Sn × Sn\ {(x, x)/x ∈ Sn} → IR which is

such that:

∆g,yGα(x, y) + αK−1n Gα(x, y) = δx

By standard elliptic theory and standard properties of the Green’s function,

there exists some C > 0, independent of α, such that for any x 6= y and any

α→ B0(g),

|Gα(x, y)| ≤ Cdg(x, y)2−n

We first prove (1.12) on any compact subset K of Sn\ {−x0}. Let (yα) be a

sequence of points in such a K. Up to a subsequence, we may assume that

yα → y0 as α→ B0(g). Of course, y0 6= −x0. Since

∆gzα + αK−1n zα = λαz
2∗−1
α

we write that

zα(yα) = λα

∫
Sn
Gα(yα, x)z2

∗−1
α dvg

≤ C
∫
Sn
Gα(yα, x)u2

∗−1
α dvh

14



for some C > 0 independent of α. Through the stereographic projection

π−xα of north pole −xα, this gives

zα(yα) ≤ C
∫
IRn

Gα(yα, π
−1
−xα(x))

(
uα ◦ π−1−xα

)2∗−1 (
1 + |x|2

)−n
dx

Since y0 6= −x0, and by standard properties of the Green’s function, one

easily checks that

Gα(yα, π
−1
−xα(x)) ≤ C(R)|ỹα − x|2−n for any x ∈ B(0, R)

Gα(yα, π
−1
−xα(x)) ≤ C(R) for any x ∈ IRn\B(0, R)

where ỹα = π−xα(yα), R is some positive real large enough and C(R) depends

only on R. Independently, by (1.7) and (1.13), one has that for any ε > 0,

there exists C(ε) > 0 such that

(
uα ◦ π−1−xα

)
(x) ≤ C(ε)t

n
2−1
α

(
1 + t2α|x|2

1 + |x|2

) ε+2−n
2

for any x ∈ IRn. The above inequality then becomes for R large enough

zα(yα) ≤ C(ε,R)t
n
2 +1
α

×
∫
B(0,R)

|ỹα − x|2−n
(
1 + t2α|x|2

) (n+2)
2(n−2)

ε−1−n2 (1 + |x|2
) 2−n

2 −
(n+2)
2(n−2)

ε
dx

+ C(ε,R)

∫
IRn\B(0,R)

(
1 + t2α|x|2

) (n+2)
2(n−2)

ε−1−n2 (1 + |x|2
) 2−n

2 −
(n+2)
2(n−2)

ε
dx

where C(ε,R) depends only on R and ε. We take ε = n−2
n+2 . Setting y = tαx,

we get

zα(yα) ≤ Ct
n
2−1
α

∫
IRn
|tαỹα − y|2−n

(
1 + |y|2

)−n+1
2
(
1 + t−2α |y|2

) 1−n
2 dy

+ o
(
t
1−n2
α

)
The proof splits now into the study of two cases. In the first one, we as-

sume that, after passing to a subsequence, limα→B0(g) tαỹα = ỹ. Then, by

Lebesgue’s theorem, we get that for ε small enough,

zα(yα) ≤ Ct
n
2−1
α

∫
IRn
|ỹ − y|2−n

(
1 + |y|2

)−n+1
2 dy

15



Since dg(xα, yα) ≤ C|ỹα| ≤ Ct−1α and zα(xα) ≤ Ct
n
2−1
α , it follows that

dg(xα, yα)n−2zα(xα)zα(yα) ≤ C

In the second case, we assume that tα|ỹα| → +∞ as α→ B0(g). Then

zα(yα) ≤ Ct1−
n
2

α |ỹα|2−n
∫
IRn\B

(
tαỹα,

tα|ỹα|
2

) (1 + |y|2
)−n+1

2 dy + o
(
t
1−n2
α

)
+ Ct

−2−n2
α |ỹα|−1−n

∫
B
(
tαỹα,

tα|ỹα|
2

) |y − tαỹα|2−ndy
≤ Ct1−

n
2

α |ỹα|2−n

This concludes the proof of (2.12) on any compact subset of Sn\ {−x0}.
Since t

n
2−1
α zα verifies

∆g

(
t
n
2−1
α zα

)
+ αK−1n

(
t
n
2−1
α zα

)
= λαt

−2
α

(
t
n
2−1
α zα

)2∗−1
standard Harnack’s inequalities conclude the proof of (2.12).

1.3 - Proof of Theorem 0.3 (continued)

As one easily checks, (1.12), together with (1.1), (1.2) and (1.7), gives

that

zα (Φα(x)) |det dΦα|(x)
1
2∗

= (2tα)
n
2−1zα (Φα(x))

[
(1 + t2α) + (t2α − 1)(x, xα)

]1−n2
=

(
t2α + 1

2tα

)n
2−1

zα (Φα(x))

[
1− t2α − 1

t2α + 1
(xα,Φα(x))

]n
2−1

≤ Ct
n
2−1
α zα (Φα(x)) [1− (xα,Φα(x))]

n
2−1 + Ct

1−n2
α zα (Φα(x))

≤ C

This proves the last part of Theorem 0.3. Moreover, it easily follows from

standard elliptic theory that

lim
α→B0(g)

t
n
2−1
α zα = λG(x0, x) in C2

loc (Sn\ {x0})
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To compute λ, we just pick a point x 6= x0 ∈ Sn and write by the Green’s

formula that

t
n
2−1
α zα(x)

= λαt
n
2−1
α

∫
Sn
Gα(x, y)zα(y)2

∗−1dvg(y)

= λαt
n
2−1
α

∫
Sn
Gα(x, y)uα(y)2

∗−1ϕ(y)dvh(y)

= λαt
n
2−1
α

∫
Sn
Gα(x,Φα(y))vα(y)2

∗−1ϕ ◦ Φα(y)|det dΦα|
1
2∗ dvh(y)

= 2
n
2−1λα

tn−2α

(t2α + 1)
n
2−1

×
∫
Sn
Gα(x,Φα(y))vα(y)2

∗−1ϕ ◦ Φα(y)

[
1 +

t2α − 1

t2α + 1
(x, xα)

]1−n2
dvh(y)

Since (vα) is bounded (see section 1.1) and converges pointwise to ω
− 1

2∗
n , and

λα → K−1n , we obtain by Lebesgue’s theorem that

lim
α→B0(g)

t
n
2−1
α zα(x)

= 2
n
2−1K−1n G(x0, x)ϕ(x0)ω

−1+ 1
2∗

n

∫
Sn

[1 + (x, x0)]
1−n2 dvh

= 2nK−1n G(x0, x)ϕ(x0)ω
−1+ 1

2∗
n

∫
IRn

(
1 + |y|2

)−1−n2 dy
= ϕ(x0)ω

− 1
2∗

n 2n−2ωn−1(n− 2)G(x0, x)

This ends the proof of the theorem.

2 - Proof of Theorem 0.4

We begin by setting up some notations we use in the sequel. For (xα)

and (tα) given by Theorem 0.3, we let

Φα = Φxα,tα

Then, for π−xα the stereographic projection of north pole −xα, we let

S̃α = Sg ◦ π−1−xα , ϕ̃α = ϕ ◦ π−1−xα , ṽα = vα ◦ π−1−xα
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and, for π−x0 the stereographic projection of north pole −x0, we let

S̃g = Sg ◦ π−1−x0
, ϕ̃ = ϕ ◦ π−1−x0

, G̃(x0, .) = G
(
x0, π

−1
−x0

(.)
)

A main tool in the proof of Theorem 0.4 is the Kazdan-Warner identity [21]:

if f and u in C∞(Sn) verify

Lhu = fu2
∗−1

then for any first eigenfunction ψ of ∆h associated to the first nonzero eigen-

value λ1 = n of ∆h, ∫
Sn

(∇f,∇ψ)h u
2∗dvh = 0

We apply this identity to equation (Fα) with ψα(x) = (xα, x). Integrating

by parts, this leads to∫
Sn

(
∇
[(
cnSg ◦ Φα − αK−1n

)
(ϕ ◦ Φα)

2∗−2
]
,∇(xα, x)

)
h
|det dΦα|

2
n v2αdvh

+

∫
Sn

(
∇
[
|det dΦα|

2
n

]
,∇(xα, x)

)
h

(
cnSg ◦ Φα − αK−1n

)
(ϕ ◦ Φα)

2∗−2
v2αdvh

= 2

∫
Sn

(
cnSg ◦ Φα − αK−1n

)
(ϕ ◦ Φα)

2∗−2
(xα, x)|det dΦα|

2
n v2αdvh (2.1)

With the help of relations (1.3), (1.4), (1.5), and thanks to the fact that(
π−1−xα

)∗
h = 4

(
1 + |x|2

)−2
ξ, (2.1) may be written as

Iα + IIα = IIIα (2.2)

where

Iα =
1

2tα

∫
IRn

(
∇
[(
cnS̃α − αK−1n

)
ϕ̃2∗−2
α

] (
x
tα

)
, x
)
ṽ2α

(t2α + |x|2)
2

(1 + |x|2)
n−2 dx

IIα = t2α

∫
IRn

(
cnS̃α

(
x
tα

)
− αK−1n

)
ϕ̃α

(
x
tα

)2∗−2
ṽ2α

(t2α + |x|2)
3

(1 + |x|2)
n−2 dx

IIIα =

∫
IRn

(
cnS̃α

(
x
tα

)
− αK−1n

)
ϕ̃α

(
x
tα

)2∗−2
|x|2ṽ2α

(t2α + |x|2)
3

(1 + |x|2)
n−2 dx
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We now derive useful relations for ṽα. Let x0 ∈MaxSg and G(x0, x) be the

Green’s function of ∆g +B0(g)K−1n at x0. We set

H(x0, x) =
1

2n−2ωn−1(n− 2)ϕ(x)ϕ(x0)

(
1− (x0, x)

2

)1−n2

so that

LgH(x0, x) = δx0

where the conformal Laplacian Lg is given by Lg = ∆g + cnSg. We write

then

G(x0, x) =
1

2n−2ωn−1(n− 2)ϕ(x)ϕ(x0)

[(
1− (x0, x)

2

)1−n2
+ σ(x)

]
(2.3)

Hence, σ satisfies in the sense of distributions

Lhσ =
(
cnSg −B0(g)K−1n

)
ϕ2∗−2

[(
1− (x0, x)

2

)1−n2
+ σ(x)

]
(2.4)

By standard elliptic theory, since

|cnSg −B0(g)K−1n | = cn|Sg(x)− Sg(x0)| ≤ Cdh(x0, x)2

we find that σ ∈ C1(Sn) for n = 4 and σ ∈ C0(Sn) for n = 5. We set

σ̃ = σ ◦ π−1−x0
, and come back to the study of the ṽα’s. We already know by

Theorem 0.3 that ṽα is bounded uniformly in α. We claim now that

ṽα(tαx)→ ω
− 1

2∗
n

[
1 + |x|n−2

(
1 + |x|2

)1−n2 σ̃(x)
]

in C0
loc (IRn\ {0}) (2.5)

This follows from Theorem 0.3. Indeed, using in particular (1.4) and (1.5),

ṽα(tαx) = vα ◦ Φ−1α ◦ π−1−xα(x)

= uα ◦ π−1−xα(x)|det dΦα| (π−xα(tαx))
1
2∗

= t
n
2−1
α uα ◦ π−1−xα(x)

(
t−2α + |x|2

)n
2−1 (1 + |x|2

)1−n2
→ ω

− 1
2∗

n

[
1 + |x|n−2

(
1 + |x|2

)1−n2 σ̃(x)
]

in C0
loc (IRn\ {0})

by Theorem 0.3. We derive now an estimate of ṽα(tαx) near the origin. More

precisely, we claim that

lim
R→+∞

lim
α→B0(g)

sup
x∈B(0,R−1)

|ṽα(tαx)− ω−
1
2∗

n | = 0 (2.6)
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Let yα ∈ B
(
0, R−1

)
be such that

|ṽα(tαyα)− ω−
1
2∗

n | = sup
x∈B(0,R−1)

|ṽα(tαx)− ω−
1
2∗

n |

We want to prove that

lim
α→B0(g)

|ṽα(tαyα)− ω−
1
2∗

n | ≤ ε(R)

where ε(R)→ 0 as R → +∞. The proof here splits into three cases. In the

first one we assume that |yα| 6→ 0 as α → B0(g). Up to the extraction of a

subsequence, yα → y, y 6= 0, so that by (2.5), as α→ B0(g),

ṽα(tαyα)→ ω
− 1

2∗
n

[
1 + |y|n−2

(
1 + |y|2

)n
2−1 σ̃(y)

]
= ω

− 1
2∗

n + ε(R)

according to standard properties of the Green’s function. In the second case

we assume that tαyα → y after passing to a subsequence. By (1.8), we have

ṽα(tαyα)→ ω
− 1

2∗
n

as α→ B0(g). In the third case we assume that |yα| → 0 and tα|yα| → +∞
as α→ B0(g). The Green’s formula on IRn gives that

ṽα(tαyα) =
21−

n
2

ωn−1(n− 2)

(
1 + |tαyα|2

)n
2−1

×
∫
IRn
|x− tαyα|2−n∆ξ

(
2
n
2−1

(
1 + |x|2

)1−n2 ṽα(x)
)
dx

where ∆ξ is the Laplacian with respect to the Euclidean metric. Recall that(
π−1−xα

)∗
h = 4

(
1 + |x|2

)−2
ξ

Equation (Fα) together with (1.4) and (1.5) then gives that(
1 + |x|2

2

)n
2 +1

∆ξ

(
2
n
2−1

(
1 + |x|2

)1−n2 ṽα(x)
)

= λαṽα(x)2
∗−1

−
(
αK−1n − cnS̃α

(
x

tα

))
ϕ̃α

(
x

tα

)2∗−2

t2α
(
1 + |x|2

)2 (
t2α + |x|2

)−2
ṽα(x)
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Coming back to the above Green’s formula, we obtain

ṽα(tαyα) =
4

ωn−1(n− 2)
λα
(
1 + |tαyα|2

)n
2−1Aα

− 4t2α
ωn−1(n− 2)

(
1 + |tαyα|2

)n
2−1Bα

where

Aα =

∫
IRn
|x− tαyα|2−n

(
1 + |x|2

)−1−n2 ṽα(x)2
∗−1dx

Bα =

∫
IRn
|x− tαyα|2−nCα

(
x

tα

)(
t2α + |x|2

)−2 (
1 + |x|2

)1−n2 ṽα(x)dx

and

Cα(x) =
(
αK−1n − cnS̃α(x)

)
ϕ̃α(x)2

∗−2

Regarding the first term in the RHS of the above relation, we have that

|tαyα|n−2Aα =

∫
IRn
| x

tα|yα|
− yα
|yα|
|2−n

(
1 + |x|2

)−1−n2 ṽα(x)2
∗−1dx

→ ω
−1+ 1

2∗
n

∫
IRn

(
1 + |x|2

)−1−n2 dx =
ωn−1
n

ω
−1+ 1

2∗
n

by Lebesgue’s theorem. Regarding the second term, we get by Theorem 0.3,

and performing the change of variables x = tα|yα|y, that

tnα|yα|n−2Bα

≤ Ct2α
∫
IRn
| x

tα|yα|
− yα
|yα|
|2−n

(
t2α + |x|2

)−2 (
1 + |x|2

)1−n2 dx
≤ C|yα|2

∫
IRn
|y − yα

|yα|
|2−n

(
t−2α |yα|−2 + |y|2

)1−n2 (1 + |yα|2|y|2
)−2

dy

≤ C|yα|2

Since |yα| → 0 and λα → K−1n , we get that

ṽα(tαyα)→ ω
− 1

2∗
n

as α→ B0(g). Thus, (2.6) is proved.

Going on with the proof of Theorem 0.4, we divide it into two parts. On

the one hand, we deal with dimensions n ≥ 6. On the other hand, we deal

with dimensions n = 4, 5.
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2.1 - The case n ≥ 6

We need here one more ingredient to estimate the speed of convergence

of xα to x0 as α→ B0(g). By the standard Sobolev inequality on (Sn, h),

1 =

(∫
Sn
v2
∗

α dvh

) 2
2∗

≤ Kn

[∫
Sn
|∇vα|2hdvh +

n(n− 2)

4

∫
Sn
v2αdvh

]
Together with equation (Fα), this gives

K−1n − λα ≤
∫
Sn

(
cnSg ◦ Φα − αK−1n

)
(ϕ ◦ Φα)

2∗−2 |det dΦα|
2
n v2αdvh (2.7)

Independently, by the definition of λα, we have that for any α < B0(g)∫
Sn
|∇
(
ϕ−1|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 1
2∗
)
|2gdvg

+ αK−1n

∫
Sn
ϕ−2|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 2
2∗ dvg

≥ λα
(∫

Sn
ϕ−2

∗
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)−1
dvg

) 2
2∗

where tα is given by Theorem 0.3. By conformal change of the metric, this

inequality becomes∫
Sn
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 1
2∗ Lh

(
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 1
2∗
)
dvh

≥
∫
Sn

(
cnSg − αK−1n

)
ϕ2∗−2|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 2
2∗ dvh

+ λα

(∫
Sn
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)−1
dvh

) 2
2∗

As easily checked,

Lh

(
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 1
2∗
)

=

n(n− 2)

4
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)−1+ 1
2∗

and ∫
Sn
|det dΦx0,tα |

(
Φ−1x0,tα(x)

)−1
dvh = ωn
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Therefore,

ω
− 2

2∗
n

∫
Sn

(
cnSg − αK−1n

)
ϕ2∗−2|det dΦx0,tα |

(
Φ−1x0,tα(x)

)− 2
2∗ dvh

≤ K−1n − λα

and

ω
− 2

2∗
n

∫
Sn

(
cnSg ◦ Φx0,tα − αK−1n

)
(ϕ ◦ Φx0,tα)

2∗−2 |det dΦx0,tα |
2
n dvh

≤ K−1n − λα

Combining this inequality with (2.7), we obtain

ω
− 2

2∗
n

∫
Sn

(
cnSg ◦ Φx0,tα − αK−1n

)
(ϕ ◦ Φx0,tα)

2∗−2 |det dΦx0,tα |
2
n dvh

≤
∫
Sn

(
cnSg ◦ Φα − αK−1n

)
(ϕ ◦ Φα)

2∗−2 |det dΦα|
2
n v2αdvh (2.8)

We now prove the theorem when n ≥ 7, and leave details to the reader when

n = 6 (see the end of this subsection). First, we compute the LHS term

in (2.8). Through the stereographic projection π−x0
, we get using (1.4) and

(1.5), and performing the change of variables x = tαy, that

LHS of (2.8)

= 2nω
− 2

2∗
n t2α

∫
IRn

(
cnS̃g

(
x
tα

)
− αK−1n

)
ϕ̃
(
x
tα

)2∗−2
(t2α + |x|2)

2
(1 + |x|2)

n−2 dx

= 2nω
− 2

2∗
n t2−nα (B0(g)− α)K−1n

∫
IRn

ϕ̃ (y)
2∗−2

(1 + |y|2)
2 (
t−2α + |y|2

)n−2 dy
+ 2nω

− 2
2∗

n cnt
2−n
α

∫
IRn

(
S̃g (y)− S̃g(0)

)
ϕ̃ (y)

2∗−2

(1 + |y|2)
2 (
t−2α + |y|2

)n−2 dy
On the one hand,∫

IRn
ϕ̃ (y)

2∗−2 (
t−2α + |y|2

)2−n (
1 + |y|2

)−2
dy

= ϕ̃(0)2
∗−2tn−4α

∫
IRn

(
1 + |y|2

)2−n
dy + o

(
tn−4α

)
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On the other hand, writing that

S̃g (y)− S̃g(0) =
1

2
∂ijS̃g(0)yiyj +O

(
|y|3
)

we get for the second term that∫
IRn

(
S̃g (y)− S̃g(0)

)
ϕ̃ (y)

2∗−2 (
t−2α + |y|2

)2−n (
1 + |y|2

)−2
dy

=
1

2
∂ijS̃g(0)

∫
IRn

yiyjϕ̃ (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

dy

+O

(∫
IRn
|y|3

(
t−2α + |y|2

)2−n (
1 + |y|2

)−2
dy

)
= − 1

2n
∆ξS̃g(0)ϕ̃(0)2

∗−2tn−6α

∫
IRn
|y|2

(
1 + |y|2

)2−n
dy + o

(
tn−6α

)
Therefore,

LHS of (2.8)

= 2nK−1n ω
− 2

2∗
n ϕ(x0)2

∗−2
(∫

IRn

(
1 + |y|2

)2−n
dy

)
(B0(g)− α) t−2α

− 2n−1

n
cnω

− 2
2∗

n ϕ(x0)2
∗−2∆ξS̃g(0)

(∫
IRn
|y|2

(
1 + |y|2

)2−n
dy

)
t−4α

+ o
(
(B0(g)− α) t−2α

)
+ o

(
t−4α
)

We now deal with the RHS term in (2.8). Through the stereographic pro-

jection π−xα , we get using (1.4) and (1.5), and performing the change of

variables x = tαy, that

RHS of (2.8)

=

∫
Sn

(
cnSg ◦ Φα − αK−1n

)
(ϕ ◦ Φα)

2∗−2 |det dΦα|
2
n v2αdvh

= 2nt2−nα (cnKnSg(xα)− α)K−1n

∫
IRn

ϕ̃α (y)
2∗−2

ṽα(tαy)2

(1 + |y|2)
2 (
t−2α + |y|2

)n−2 dy
+ 2ncnt

2−n
α

∫
IRn

(
S̃α (y)− S̃α(0)

)
ϕ̃α (y)

2∗−2
ṽα(tαy)2

(1 + |y|2)
2 (
t−2α + |y|2

)n−2 dy

For any R > 0,∫
IRn

ϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

ṽα(tαy)2dy
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= ω
− 2

2∗
n

∫
B(0,R−1)

ϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

dy

+

∫
B(0,R−1)

ϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2 (

ṽα(tαy)2 − ω−
2
2∗

n

)
dy

+

∫
IRn\B(0,R−1)

ϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

ṽα(tαy)2dy

Together with (2.6), and letting R go to +∞, this gives∫
IRn

ϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

ṽα(tαy)2dy

= ϕ̃(0)2
∗−2ω

− 2
2∗

n tn−4α

∫
IRn

(
1 + |y|2

)2−n
dy + o

(
tn−4α

)
Independently, since ṽα is bounded (see Theorem 0.3), we get that∫
IRn

(
S̃α (y)− S̃α(0)

)
ϕ̃α (y)

2∗−2 (
t−2α + |y|2

)2−n (
1 + |y|2

)−2
ṽα(tαy)2dy

= ∂iS̃α(0)

∫
IRn

yiϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

ṽα(tαy)2dy

+
1

2
∂ijS̃α(0)

∫
IRn

yiyjϕ̃α (y)
2∗−2 (

t−2α + |y|2
)2−n (

1 + |y|2
)−2

ṽα(tαy)2dy

+O

(∫
IRn
|y|3

(
t−2α + |y|2

)2−n (
1 + |y|2

)−2
dy

)
As above, using (2.6), one easily gets that∫

IRn

(
S̃α (y)− S̃α(0)

)
ϕ̃α (y)

2∗−2 (
t−2α + |y|2

)2−n (
1 + |y|2

)−2
ṽα(tαy)2dy

= − 1

2n
ω
− 2

2∗
n ϕ̃(0)2

∗−2∆ξS̃g(0)

(∫
IRn
|y|2

(
1 + |y|2

)2−n
dy

)
tn−6α

+ o
(
|∇Sg(xα)|tn−5α

)
+ o

(
tn−6α

)
It then follows that

RHS of (2.8)

= 2nϕ(x0)2
∗−2K−1n ω

− 2
2∗

n

(∫
IRn

(
1 + |y|2

)2−n
dy

)
(cnKnSg(xα)− α) t−2α

− 2n−1

n
cnω

− 2
2∗

n ϕ(x0)2
∗−2∆ξS̃g(0)

(∫
IRn
|y|2

(
1 + |y|2

)2−n
dy

)
t−4α

+ o
(
(cnKnSg(xα)− α) t−2α

)
+ o

(
t−4α
)

+ o
(
|∇Sg(xα)|t−3α

)
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Writing that LHS of (2.8) ≤ RHS of (2.8), this is just inequality (2.8), we

get that

Sg(x0)− Sg(xα) ≤ o
(
t−1α
)
|∇Sg(xα)|+ o (B0(g)− α) + o

(
t−2α
)

By the assumption made in Theorem 0.4, ∇2Sg(x0) < 0, so that

dh(x0, xα)2 ≤ O (Sg(x0)− Sg(xα))

≤ o
(
t−1α
)
dh(x0, xα) + o (B0(g)− α) + o

(
t−2α
)

and

dh(x0, xα)2 ≤ o (B0(g)− α) + o
(
t−2α
)

Summarizing, one gets with (2.8) that

Sg(x0)− Sg(xα) ≤ o (B0(g)− α) + o
(
t−2α
)

(2.9)

|∇Sg(xα)| ≤ o
(

(B0(g)− α)
1
2

)
+ o

(
t−1α
)

(2.10)

We now compute an expansion of the different terms in (2.2). Set x = tαy.

Since ṽα is bounded, we get that

IIIα = t−nα

(
cnS̃α(0)− αK−1n

)∫
IRn

ϕ̃α(y)2
∗−2ṽα(tαy)2|y|2

(
1 + |y|2

)−3(
t−2α + |y|2

)n−2 dy
+O

(
t−nα
) ∫

IRn
|y|3

(
t−2α + |y|2

)2−n (
1 + |y|2

)−3
dy

which gives, since cnS̃α(0)− αK−1n → 0 as α→ B0(g),

IIIα = o
(
t−6α
)

Similarly,

IIα = K−1n (cnKnSg(xα)− α) t−nα

∫
IRn

ϕ̃α(y)2
∗−2ṽα(tαy)2

(1 + |y|2)
3 (
t−2α + |y|2

)n−2 dy
+ cnt

−n
α

∫
IRn

(
S̃α(y)− S̃α(0)

)
ϕ̃α(y)2

∗−2ṽα(tαy)2

(1 + |y|2)
3 (
t−2α + |y|2

)n−2 dy
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With (2.6), one sees with the same kind of arguments than those used above

that ∫
IRn

ϕ̃α(y)2
∗−2ṽα(tαy)2

(
t−2α + |y|2

)2−n (
1 + |y|2

)−3
dy

= ϕ(x0)2
∗−2ω

− 2
2∗

n

(∫
IRn

(
1 + |y|2

)2−n
dy

)
tn−4α + o

(
tn−4α

)
On the other hand, we write with (2.10)

S̃α(y)− S̃α(0) = o
(

(B0(g)− α)
1
2

)
|y|+o

(
t−1α
)
|y|+ 1

2
∂ijS̃α(0)yiyj +O

(
|y|3
)

This gives, after some computations similar to the ones we developed above,

that∫
IRn

(
S̃α(y)− S̃α(0)

)
ϕ̃α(y)2

∗−2ṽα(tαy)2
(
t−2α + |y|2

)2−n (
1 + |y|2

)−3
dy

= − 1

2n
ϕ(x0)2

∗−2ω
− 2

2∗
n ∆ξS̃g(0)

(∫
IRn
|y|2

(
1 + |y|2

)2−n
dy

)
tn−6α

+ o
(
tn−6α

)
+ o

(
(B0(g)− α)

1
2 tn−5α

)
Noting that

o
(

(B0(g)− α)
1
2 tn−5α

)
= o

(
(B0(g)− α) tn−4α

)
+ o

(
tn−6α

)
we therefore get with (2.9) that

IIα = ϕ(x0)2
∗−2K−1n ω

− 2
2∗

n

(∫
IRn

(
1 + |y|2

)2−n
dy

)
(B0(g)− α) t−4α

− cn
2n
ϕ(x0)2

∗−2ω
− 2

2∗
n ∆ξS̃g(0)

(∫
IRn
|y|2

(
1 + |y|2

)2−n
dy

)
t−6α

+ o
(
t−6α
)

+ o
(
(B0(g)− α) t−4α

)
At last, we deal with Iα. We have here

Iα =
t−nα
2

∫
IRn

(
∇
[(
cnS̃α(y)− αK−1n

)
ϕ̃α(y)2

∗−2
]
, y
)
ṽα(tαy)2(

t−2α + |y|2
)n−2

(1 + |y|2)
2

dy

From (2.10), we deduce that(
∇
[(
cnS̃α(y)− αK−1n

)
ϕ̃α(y)2

∗−2
]
, y
)

= cnϕ̃α(0)2
∗−2∂ijS̃α(0)yiyj + o

(
(B0(g)− α)

1
2

)
|y|+ o

(
t−1α
)
|y|

+ o
(

(B0(g)− α)
1
2

)
|y|2 + o

(
t−1α
)
|y|2 +O

(
|y|3
)
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This gives :

Iα = − cn
2n
ϕ(x0)2

∗−2ω
− 2

2∗
n ∆ξS̃g(0)

(∫
IRn
|y|2

(
1 + |y|2

)2−n
dy

)
t−6α

+ o
(
t−6α
)

+ o
(
(B0(g)− α) t−4α

)
By letting α go to B0(g) in (2.2), we obtain

lim
α→B0(g)

(B0(g)− α) t2α =
cnKn

n
∆ξS̃g(0)

∫
IRn
|y|2

(
1 + |y|2

)2−n
dy∫

IRn
(1 + |y|2)

2−n
dy

Easy computations lead then to

∆ξS̃g(0) = 4ϕ(x0)2
∗−2∆gSg(x0)

and

cnKn

n

∫
IRn
|y|2

(
1 + |y|2

)2−n
dy∫

IRn
(1 + |y|2)

2−n
dy

=
ω
− 2
n

n

n(n− 1)(n− 6)

Hence,

lim
α→B0(g)

(B0(g)− α) t2α =
4ω
− 2
n

n

n(n− 1)(n− 6)
ϕ(x0)2

∗−2∆gSg(x0)

and the first part of Theorem 0.4 is proved when n ≥ 7. To prove the second

part, just note that by (2.9),

dh(x0, xα) = o
(
t−1α
)

As easily seen, this allows us to replace xα by x0 in the proof of Theorem

0.3.

In order to end this subsection, we list the different results we obtain in

dimension n = 6 when computing the LHS and RHS terms of (2.8), and the

different terms of (2.2). The details are left to the reader. Only few changes

are needed with respect to the case n ≥ 7. We obtain

LHS of (2.8)

= 26K−16 ω
− 2

3
6 ϕ(x0)

(∫
IR6

(
1 + |y|2

)−4
dy

)
(B0(g)− α) t−2α

− 24

3
c6ω
− 2

3
6 ω5ϕ(x0)∆ξS̃g(0)t−4α ln tα

+ o
(
t−4α ln tα

)
+ o

(
(B0(g)− α) t−2α

)
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and

RHS of (2.8)

= 26K−16 ω
− 2

3
6 ϕ(x0)

(∫
IR6

(
1 + |y|2

)−4
dy

)
(c6K6Sg(xα)− α) t−2α

+ o
(
(c6K6Sg(xα)− α) t−2α

)
− 24

3
c6ω
− 2

3
6 ω5ϕ(x0)∆ξS̃g(0)t−4α ln tα

+ o
(
t−4α ln tα

)
+ o

(
|∇Sg(xα)|t−3α

)
Together with (2.8), this gives

Sg(x0)− Sg(xα) ≤ o (B0(g)− α) + o
(
t−2α ln tα

)
|∇Sg(xα)| ≤ o

(
(B0(g)− α)

1
2

)
+ o

(
t−1α (ln tα)

1
2

)
As for (2.2), using these estimates, we get

Iα = − c6
12
ϕ(x0)ω

− 2
3

6 ω5∆ξS̃g(0)t−6α ln tα+o
(
t−6α ln tα

)
+o
(
(B0(g)− α) t−4α

)
,

IIα = ϕ(x0)K−16 ω
− 2

3
6

(∫
IR6

(
1 + |y|2

)−4
dy

)
(B0(g)− α) t−4α

− c6
12
ϕ(x0)ω

− 2
3

6 ω5∆ξS̃g(0)t−6α ln tα

+ o
(
t−6α ln tα

)
+ o

(
(B0(g)− α) t−4α

)
and

IIIα = o
(
t−6α ln tα

)
,

Letting α go to B0(g) in (2.2), we therefore get that

lim
α→B0(g)

(B0(g)− α) t2α (ln tα)
−1

=
2

15
ω
− 1

3
6 ϕ(x0)∆gSg(x0)

This proves Theorem 0.4 when n = 6.

2.2 - The case n = 4, 5

We prove now Theorem 0.4 when n = 4, 5. As a starting point, we need

a substitute for (2.8) in order to get informations on the speed of convergence

of xα to x0. We note here that

∆ξ (ṽαψ) =[
λα +

(
cnS̃α

(
x

tα

)
− αK−1n

)
t2α

(
1 + |x|2

)2
(t2α + |x|2)

2 ϕ̃α

(
x

tα

)2∗−2

ṽ2−2
∗

α

]
(ṽαψ)

2∗−1
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where ψ =
(

1+|x|2
2

)1−n2
. Integrations by parts then give that

∫
IRn

ṽα(tαx)2(
t−2α + |x|2

)n−2
(1 + |x|2)

2
∇
[(
cnS̃α(x)− αK−1n

)
ϕ̃α(x)2

∗−2
]
dx

= 4

∫
IRn

(
cnS̃α(x)− αK−1n

)
ϕ̃α(x)2

∗−2ṽα(tαx)2(
t−2α + |x|2

)n−2
(1 + |x|2)

3
x dx (2.11)

We assume now that n = 4, and refer to the end of this subsection for the

case where n = 5. Together with Lebesgue’s theorem, with the fact that (ṽα)

is bounded and with (2.5), (2.11) gives that

c4ω
− 1

2
4

∫
IR4

∇
[(
S̃g(x)− S̃g(0)

)
ϕ̃(x)2

] [1 + |x|2
(
1 + |x|2

)−1
σ̃(x)

]
|x|4 (1 + |x|2)

2 dx

+∇
[(
c4S̃α(x)− αK−14

)
ϕ̃α(x)2

]
(0)

∫
IR4

ṽα(tαx)2

(1 + |x|2)
2 (
t−2α + |x|2

)2 dx+ o(1)

= 4c4ω
− 1

2
4

∫
IR4

(
S̃g(x)− S̃g(0)

)
ϕ̃(x)2

[
1 + |x|2

(
1 + |x|2

)−1
σ̃(x)

]
|x|4 (1 + |x|2)

3 xdx

Together with (2.6), we get that∫
IR4

ṽα(tαx)2
(
t−2α + |x|2

)−2 (
1 + |x|2

)−2
dx = ω

− 1
2

4 ω3 ln tα + o (ln tα)

Therefore,

|∇
[(
c4S̃α(x)− αK−14

)
ϕ̃α(x)2

]
(0)| = O

(
(ln tα)

−1
)

(2.12)

We now compute the different terms in (2.2). Setting x = tαy, and by

Lebesgue’s theorem, we get that

IIIα = t−4α

∫
IR4

(
c4S̃α(y)− αK−14

)
ϕ̃α(y)2

|y|2ṽα(tαy)2(
t−2α + |y|2

)2
(1 + |y|2)

3
dy

= c4ω
− 1

2
4 t−4α

∫
IR4

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

[
1 + |y|2

(
1 + |y|2

)−1
σ̃(y)

]2
|y|2 (1 + |y|2)

3 dy

+ o
(
t−4α
)
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Performing the same change of variables in IIα, we get that

IIα = t−4α K−14 (c4Sg(xα)K4 − α)

∫
IR4

ϕ̃α(y)2ṽα(tαy)2

(1 + |y|2)
3 (
t−2α + |y|2

)2 dy
+ c4t

−4
α

∫
IR4

(
S̃α(y)− S̃α(0)

)
ϕ̃α(y)2ṽα(tαy)2

(1 + |y|2)
3 (
t−2α + |y|2

)2 dy

Since

|S̃α(y)− S̃α(0)| ≤ C|y|

the integral in the second term of the RHS of this relation converges. For

the first term in the RHS of this relation, (2.6), together with the same trick

than we used in subsection 2.1, gives that∫
IR4

ϕ̃α(y)2ṽα(tαy)2
(
t−2α + |y|2

)−2 (
1 + |y|2

)−3
dy

= ϕ(x0)2ω
− 1

2
4 ω3 ln tα + o (ln tα)

Therefore,

IIα = K−14 ϕ(x0)2ω
− 1

2
4 ω3 (c4Sg(xα)K4 − α) t−4α ln tα

+ o
(
(c4Sg(xα)K4 − α) t−4α ln tα

)
+ o

(
t−4α
)

+ c4ω
− 1

2
4 t−4α

∫
IR4

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

[
1 + |y|2

(
1 + |y|2

)−1
σ̃(y)

]2
|y|4 (1 + |y|2)

3 dy

Similar computations give that

Iα =
c4
2
ω
− 1

2
4 t−4α

∫
IR4

(
∇
[(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

]
, y
)

×

[
1 + |y|2

(
1 + |y|2

)−1
σ̃(y)

]2
(1 + |y|2)

2 |y|4
dy + o

(
t−4α
)

Coming back to (2.2), and passing to the limit α → B0(g) in this relation,

we obtain

lim
α→B0(g)

(c4Sg(xα)K4 − α) ln tα

=
ϕ(x0)−2

24ω3
ω
− 1

2
4
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×

[
2

∫
IR4

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

(
|y|2 − 1

) [
|y|−2

(
1 + |y|2

)
+ σ̃(y)

]2
(1 + |y|2)

5 dy

−
∫
IR4

(
∇
[(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

]
, y
) [|y|−2 (1 + |y|2

)
+ σ̃(y)

]2
(1 + |y|2)

4 dy

]

We use (2.12) to conclude. By (2.12),

|∇S̃α(0)| = O
(

(ln tα)
−1
)

so that, together with the assumption ∇2Sg(x0) < 0 we made in Theorem

0.4,

dh(x0, xα) = O
(

(ln tα)
−1
)

and

Sg(x0)− Sg(xα) = o
(
(ln tα)−1

)
Hence,

lim
α→B0(g)

(B0(g)− α) ln tα

=
ϕ(x0)−2

4ω3
ω
− 1

2
4 (2.13)

×

[
2c4

∫
IR4

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

(
|y|2 − 1

) [
|y|−2

(
1 + |y|2

)
+ σ̃(y)

]2
(1 + |y|2)

5 dy

−c4
∫
IR4

(
∇
[(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

]
, y
) [|y|−2 (1 + |y|2

)
+ σ̃(y)

]2
(1 + |y|2)

4 dy

]
In order to simplify this expression, we let

ψ(y) = 2
(
1 + |y|2

)−1
so that

(
π−1−x0

)∗
h = ψ2ξ. By (2.4), we have :

∆ξ (ψσ̃) = c4

(
S̃g(y)− S̃g(0)

)
ϕ̃2ψ2

[
2|y|−2 + σ̃ψ

]
Regarding the first integral in the RHS term of (2.13), we write that

2c4

∫
IR4

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

(
|y|2 − 1

)
(1 + |y|2)

5

[
|y|−2

(
1 + |y|2

)
+ σ̃(y)

]2
dy

= 2−4
∫
IR4

∆ξ (ψσ̃) (y)
[
2|y|−2 + σ̃(y)ψ(y)

]
ψ(y)

(
|y|2 − 1

)
dy
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As for the second one, integrations by parts give that

− c4
∫
IR4

(
∇
[(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

]
, y
) [|y|−2 (1 + |y|2

)
+ σ̃(y)

]2
(1 + |y|2)

4 dy

= 2−4 × 4

∫
IR4

∆ξ (ψσ̃) (y)
[
2|y|−2 + σ̃(y)ψ(y)

]
dy

+ 2−3
∫
IR4

∆ξ (ψσ̃) (y)ψ(y)−1
(
∇
([

2|y|−2 + σ̃(y)ψ(y)
]
ψ(y)

)
, y
)
dy

Some more integrations by parts then lead to

RHS of (2.13) = −ϕ(x0)−2

16ω3
ω
− 1

2
4

∫
IR4

∆ξ (ψσ̃) (y)|y|−2dy

Since

∆ξ

(
|y|−2

)
= 2ω3δ0

it follows that

lim
α→B0(g)

(B0(g)− α) ln tα = −1

4
ω
− 1

2
4 ϕ(x0)−2σ(x0)

Note here that σ(x0) makes sense, since for n = 4, σ ∈ C0(S4). By the

Green’s formula on (Sn, h), together with (2.4) and (2.3),

σ(x0) =
1

8ω3

∫
S4

Lhσ(x)

(
1− (x0, x)

2

)−1
dvh

=
1

6
ϕ(x0)

∫
S4

(Sg(x)− Sg(x0))ϕ(x)−1
(

1− (x0, x)

2

)−1
G(x0, x)dvg

This proves Theorem 0.4 when n = 4.

When n = 5, similar computations lead to

Iα =
1

2
c5ω
− 2

2∗
5 t−5α

∫
IR5

(
∇
[(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

∗−2
]
, y
)

×

(
|y|−3

(
1 + |y|2

) 3
2 + σ̃(y)

)2
(1 + |y|2)

5 dy

+ o
(
t−5α
)

+ o
(
(B0(g)− α) t−4α

)
,
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IIα = K−15 ω
− 2

2∗
5 ϕ(x0)2

∗−2
(∫

IR5

(
1 + |y|2

)−3
dy

)
(B0(g)− α) t−4α

+ o
(
(B0(g)− α) t−4α

)
+ o

(
t−5α
)

+ c5ω
− 2

2∗
5 t−5α

∫
IR5

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

∗−2

[
|y|−3

(
1 + |y|2

) 3
2 + σ̃(y)

]2
(1 + |y|2)

6 dy

and

IIIα = c5ω
− 2

2∗
5 t−5α

×
∫
IR5

(
S̃g(y)− S̃g(0)

)
ϕ̃(y)2

∗−2|y|2

[
|y|−3

(
1 + |y|2

) 3
2 + σ̃(y)

]2
(1 + |y|2)

6 dy

+ o
(
t−5α
)

Coming back to (2.2), and letting α go to B0(g), we get that

lim
α→B0(g)

(B0(g)− α) tα =
3

10π
ω
− 3

5
5 ϕ(x0)−

1
3

×
∫
S5

(Sg(x0)− Sg(x))ϕ(x)−1
(

1− (x0, x)

2

)− 3
2

G(x0, x)dvg

This ends the proof of Theorem 0.4.

3 - The radial case : proof of Theorem 0.5

Let x0 ∈ Sn, and g = ϕ
4

n−2h, where ϕ is radially symmetrical with

respect to x0. Clearly, Sg is also radially symmetrical with respect to x0. We

assume in what follows that for any λ > 0, g and λh are not isometric. We

then define

B0(g)r = inf {B > 0 s.t. (Iopt) is valid with B for any u ∈ C∞r (Sn)}

where C∞r (Sn) is the set of functions in C∞(Sn) which are radially symmet-

rical with respect to x0. We have B0(g)r ≤ B0(g) = cnKn maxSn Sg, while,

using test functions as in Hebey [16],

B0(g)r ≥ cnKn max
{x0,−x0}

Sg

Assume now that

max
{x0,−x0}

Sg = max
Sn

Sg = Sg(x0)
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Then

B0(g)r = B0(g) = cnKn max
Sn

Sg

As easily seen, it follows that we can choose the sub-extremals (zα) to be

radially symmetrical with respect to x0. If x1 is the concentration point of

(zα), we know (see for instance Hebey [14]) that x1 ∈ {x0,−x0}. Moreover,

see section 1, x1 has to be a point where Sg is maximum. Without loss of

generality, we may then assume that x1 = x0.

We let now xα be as in section 1, and claim that

dh(x0, xα) = o
(
t−1α
)

(3.1)

To prove this claim, let π−x0 be the stereographic projection of north pole

−x0. Since uα = zαϕ is radially symmetrical with respect to x0, we get that

for any k ∈ IN and any i = 1, . . . , n∫
Sn
+

πi−x0
(x)ukαdvh = 0

where Sn+ = B
(
x0,

π
2

)
. Hence,∫

Sn
+

πi−x0
(Φα(x))vkα|det dΦα|1−

k
2∗ dvh = 0

We let

ṽα = vα ◦ π−1−xα

so that, by (1.4) and (1.5),

∫
π−xα(Sn+)

πi−x0
(π−1−xα

(
x

tα

)
)ṽα(x)k

(
1 + t−2α |x|2

)−n(1− k
2∗ )

(1 + |x|2)
kn
2∗

dx = 0

Performing the change of variables x = tαy, we obtain∫
π−xα(Sn+)

πi−x0
(π−1−xα(y))ṽα(tαy)k

(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy = 0

We have that for any y ∈ π−xα
(
Sn+
)
,

πi−x0

(
π−1−xα(y)

)
= πi−x0

(xα) + C(α)ijy
j +O

(
|y|2
)
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where the C(α)ij ’s are bounded. This leads to

πi−x0
(xα)

∫
π−xα(Sn+)

ṽα(tαy)k
(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy

= −C(α)ij

∫
π−xα(Sn+)

yj ṽα(tαy)k
(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy

+O

(∫
π−xα(Sn+)

|y|2ṽα(tαy)k
(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy

)

When 2∗ > k > n+2
n−2 ,

∫
π−xα(Sn+)

ṽα(tαy)k
(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy

= Ctk(n−2)−nα + o
(
tk(n−2)−nα

)
∫
π−xα(Sn+)

yj ṽα(tαy)k
(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy

= o
(
tk(n−2)−n−1α

)
∫
π−xα(Sn+)

|y|2ṽα(tαy)k
(
t−2α + |y|2

)− kn
2∗
(
1 + |y|2

)−n(1− k
2∗ ) dy

= O
(
tk(n−2)−n−2α

)
so that

πi−x0
(xα) = o

(
t−1α
)

This proves (3.1). As in subsection 2.1, we may then take xα = x0 in Theorem

0.3.

We now compute tα. For length reasons, we give details in the case

n ≥ 6, 2p < n− 4, and leave the proof of Theorem 0.5 to the reader for the

other cases. The necessary material will be found in subsections 2.1 and 2.2,

and in Robert [26]. Performing once more the change of variables x = tαy,

and since one may take xα = x0, the different terms in (2.2) are :

Iα =
1

2tnα

∫
IRn

(
∇
[(
cnS̃g − αK−1n

)
ϕ̃2∗−2

]
(y), y

)
ṽα(tαy)2(

t−2α + |y|2
)n−2

(1 + |y|2)
2

dy
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IIα = t−nα

∫
IRn

(
cnS̃g(y)− αK−1n

)
ϕ̃(y)2

∗−2ṽα(tαy)2(
t−2α + |y|2

)n−2
(1 + |y|2)

3
dy

IIIα = t−nα

∫
IRn

(
cnS̃g(y)− αK−1n

)
ϕ̃(y)2

∗−2|y|2ṽα(tαy)2(
t−2α + |y|2

)n−2
(1 + |y|2)

3
dy

We first deal with Iα. We write that(
∇
[(
cnS̃g − αK−1n

)
ϕ̃2∗−2

]( x

tα

)
, x

)
= cnϕ(x0)2

∗−2 S̃
(2p)
g (0)

(2p− 1)!
r2p

+ o
(
r2p
)

+ o (B0(g)− α)

so that, with (2.6) and using the assumption 2p < n− 4,

Iα =
cnω

− 2
2∗

n

2
ϕ(x0)2

∗−2 S̃
(2p)
g (0)

(2p− 1)!
t−2p−4α

∫
IRn

(
1 + |y|2

)2−n |y|2pdy
+ o

(
t−2p−4α

)
+ o

(
(B0(g)− α) t−4α

)
For IIα and IIIα, we write that(

cnS̃g(y)− αK−1n
)
ϕ̃(y)2

∗−2

= K−1n (B0(g)− α)ϕ(x0)2
∗−2 + cnϕ(x0)2

∗−2 S̃
(2p)
g (0)

(2p)!
r2p

+ o (B0(g)− α) + o
(
r2p
)

This leads to

IIα = K−1n ω
− 2

2∗
n (B0(g)− α)ϕ(x0)2

∗−2t−4α

∫
IRn

(
1 + |y|2

)2−n
dy

+ cnω
− 2

2∗
n ϕ(x0)2

∗−2 S̃
(2p)
g (0)

(2p)!
t−4−2pα

∫
IRn
|y|2p

(
1 + |y|2

)2−n
dy

+ o
(
(B0(g)− α) t−4α

)
+ o

(
t−4−2pα

)
and

IIIα = o
(
(B0(g)− α) t−4α

)
+ o

(
t−4−2pα

)
Coming back to (2.2), and passing to the limit α→ B0(g), we get that

lim
α→B0(g)

(B0(g)− α) t2pα

=
cnKn(p+ 1)

(2p)!

∫
IRn
|y|2p

(
1 + |y|2

)2−n
dy∫

IRn
(1 + |y|2)

2−n
dy

(
−S̃(2p)

g (0)
)

(3.2)
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We now compute S̃
(2p)
g (0). For that purpose, let f ∈ C∞ (IRn) be radially

symmetrical with respect to x0 and such that

f (k)(0) = 0 for all 0 ≤ k < 2p and f (2p)(0) 6= 0

As one easily checks,

(−∆ξ)
k
f(0) = 0 for any 0 ≤ k < p

(−∆ξ)
p
f(0) =

n(n+ 2).......(n− 2 + 2p)

3× 5× .......× (2p− 1)
f (2p)(0)

Moreover, thanks to the formula that relates the scalar curvatures of two

conformal metrics,

(−∆ξ)
p
S̃g(0) = 4pϕ(x0)p(2

∗−2) (−∆g)
p
Sg(x0)

Hence,

S̃(2p)
g (0) = 22p

3× 5× .......× (2p− 1)

n(n+ 2).......(n− 2 + 2p)
ϕ(x0)p(2

∗−2) (−∆g)
p
Sg(x0)

Together with (3.2), this proves the theorem when n ≥ 6 and 2p < n− 4. As

already mentioned, the proof for the other cases goes in a similar way.
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