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0 - Introduction and statements of the results

Let (M, g) be a smooth compact Riemannian n-manifold, n > 3, without
boundary. We denote by HZ(M) the standard Sobolev space, that is the
completion of C*°(M) for the norm

[ullzz = Va2 + [lull2

where |.|[,, as in the sequel, is the LP-norm. It follows from the Sobolev
embedding theorem that H (M) C L? (M), where 2* = 22 is the critical
exponent. This leads to the existence of two constants A and B such that
for any u € HZ (M),

3+ < AllVull3 + Bllul3 (1)

lu

As usual, we define the best first constant as in (I) by

as = inf { A for which there exists B such that (I) is valid with A and B}
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where, by (I) is valid, we mean that (I) holds for any u € HZ(M). It is
now well-known, see for instance [17] for an exposition in book form, that
ag = K,,, where K, is the best constant in the Euclidean Sobolev inequality.
Its value has been found independently by Aubin [2] and Talenti [27] :

4 _2

K, = n "
n(n — 2)w

where w,, denotes the volume of the unit sphere in IR" .

Since the work of Hebey and Vaugon [19], [20], we know that «s is
attained in (I). In other words, there exists a constant B such that for any
ue€ HZ (M),

3o < KulVul3 + Bllull3 (Zopt)

lu

This inequality is optimal with respect to the first constant. One can then

lower B to its minimum in (/o ), and thus define
By(g) = inf {B s.t. (I,p) is valid with B}

Clearly, for any v € HZ(M),

lull3- < Knl[Vull3 + Bo(g)ull3 (Ig,0pPT)

and this inequality is optimal with respect to the first and second constants.
Lower and upper-bounds for By(g) may be found in [17]. Following usual
terminology, we say that ug € HZ(M) is an extremal function for (I, opr) if
ug #Z 0 and

2. = Kol Vo2 + Bo()luo 2

o

Results concerning the existence of extremal functions for (I, o pr) on general
compact manifolds are in Djadli-Druet [8]. In particular, it is shown there
that (I;,0pr) possesses extremal functions if the scalar curvature of g is

either nonpositive or constant.

In this paper, we concentrate our attention on the case of the conformal
class of the standard unit sphere. We let (S™,h) be the unit n-sphere of
R™! with its standard metric h, and we let

[h] = {g = p7h,p € C°(M),p > 0}
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be the conformal class of h. Given g € [h] some conformal metric to h, the
existence of extremal functions for (I, opr) has been studied by Hebey [16].
His result, that we recall below, should be regarded as the starting point of
our paper. As in all the sequel, S, denotes the scalar curvature of g.

Theorem 0.1 ([16]) - Let (S™, h) be the unit n-sphere. If n > 4, then for

any g € [h],
n—2

By(g) = in=-1

K, max Sy,

and there exist extremal functions for (1, opr) if and only if, up to a positive

constant scale factor, g and h are isometric. If n =3, then for any g € [h],

1
By(g) < gKg I%%XSQ ,
but there now exists g € [h] for which this inequality is strict. In case of
equality, there exist extremal functions for (I;OPT) if and only if, up to a

positive constant scale factor, g and h are isometric.

Note that, see [17] for an exposition in book form, the extremal functions
for (I, opr) are explicitly known. More precisely, if u is an extremal function
for (In,opr), and for instance [, u? () dvp(z) = 1, then

n-2 n

u(@) =wn (82 = 1)T (8 (wo.x)'

where 5 > 1 is some real number, 2y € S™, and (xg,x) denotes the scalar
product in R,

In what follows we assume that n > 4 and we let g = goﬁh be some
metric conformal to h. Given o < By(g), we set

e IVl ekl
uweH2(S™),u0 llu

2
o

It follows from the definition of By(g) that A\, < K, !, while, according to
Theorem 0.1,

Bo(g) = en Ky, max Sy
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where ¢, = 4(7;‘1—*_21). By standard variational technics, the strict inequality

Ao < K71 leads to the existence of z, € C*°(S™), 2z, > 0, such that

{ Agzo + aK 1z, = /\azfx*_l

fSn zgjdvg =1

where A, = —divy,V. We refer to the z,’s as sub-extremals for the sharp
Sobolev inequality (I, 0pr). If, up to a positive constant scale factor, g and
h are isometric, then, by a result of Gidas and Spruck [10] and Bidaut-Véron
and Véron [5], z, is constant, and hence explicitly known.

Theorem 0.2 ([10], [5]) - Let (S™, h) be the unit n-sphere, let g = gpﬁh be
some conformal metric to h such that, up to a positive constant scale factor,

n

g and h are isometric, and let (zo) be as above. Then z, = (aK;lx\gl) .

Given g = goﬁh as above, and n > 4, we assume now that, up to any
positive constant scale factor, g and h are not isometric. Then, according
to Theorem 0.1, (I, opr) does not possess extremal functions, and one gets
from standard elliptic theory that z, — 0 weakly in HZ(S™) as a — By(g).
It thus follows that there exists g € S™ such that z, — 0 in C?_ (S™"\{zo})
and zg: — 04, in the sense of distributions. We study here the asymptotic
profile of the z,’s as a — By(g), and answer a question that was asked
to us by Hebey. Such studies were initiated by Atkinson-Peletier [1] and

Brézis-Peletier [6] in the Euclidean context when considering the equation
Au=n(n—2)f(z)u®> ' inB, u=0ondB

where B is the unit ball of IR", and u and f are radially symmetrical. With
arguments from ODE’s theory, assuming that f = 1, Atkinson and Peletier
[1] got that

lim cu. (0)* = ——~ s
lim eu-(0) (n—2)I(2)?2"

and that, for all x € B\ {0},

lim ™ (o) = %%) (rxrlﬂ B 1)

Brézis and Peletier [6] returned to this problem, but with arguments from

PDE’s theory, and they conjectured that a similar behaviour should occur in
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the non radial case. This was proved to be true independently by Han [12]
and Rey [25]. When f is nonconstant, the problem has been considered by
Hebey [15], [18], and also Robert [26] with the addition of a linear term a(z)u
in the equation. Similar studies have also been developed on the whole of
IR". See for instance Pan-Wang [24]. Note that a key idea to get information
on blow-up rate and location is to use the Pohozaev identity, respectively
the Kazdan-Warner identity. This idea goes back to Brézis-Peletier [6] and
Schoen [27]. See also Han [12] and Hebey [13].

For P € S™, and t € [1;00), we let ®p; : S™ — S™ be the conformal
diffeomorphism defined by

Cpy(r) =7p' (tnp(z))

where 7wp is the stereographic projection of north pole P. We then let
|det d®p;| be defined by

5oh = |det d®p|nh

We also denote by G(zg,z) the Green’s function at o of A, + By(9)K,, .
More precisely, G(xg, ) is the only function such that

AyG(zo,2) + Bo(9) K, ' G(z0,2) = 04

in the sense of distributions. See [3] for existence and basic properties of such
functions. We set

MaxS, = {:L‘ € S",S4(r) = max Sg(y)}

yesn

Our first result is the following :

Theorem 0.3 - Let (S™,h) be the unit n-sphere, n > 4, let g = gpﬁh be
some conformal metric to h with the property that, up to any positive constant
scale factor, g and h are not isometric, and let (z,) be as above. There exist
xg € MaxSy, a sequence (x,) € S™, with the property that xo, — z¢ as
a — Bo(g), and a sequence (t,) € IR, with the property that t, — +oo as
a — By(g), such that

n_1 L

t2 " za(x) = o(x0)wn 2 2" 2w, 1(n — 2)G(20,2) in CE.(S™\{z0})
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and
|d€t d@ma,ta]%za O(bmo“ta - W;F@(xO)_l n C1l200 (Sn\{_xo})

as o — By(g). Moreover, (|det d®,, ¢,
in L>°(S™).

2L*za o®,_.) is uniformly bounded

The first part of this theorem provides us with a rather standard descrip-
tion of asymptotic profiles. The second part is more specific to the sphere.
Our next result, Theorem 0.4 below, gives informations on the sequences
(to) and (z,) involved in Theorem 0.3. We let here C,, be the dimensional

constant defined by

1 _1 3 _3
Oy =~ 3 3
PT g T s
2 _1 4 _2
Co = —wy? | Cy = o
6= 5% n(n — 1)(n—6)w

if n > 7. We then have the following :

Theorem 0.4 - Let (S™,h) be the unit n-sphere, n > 4, and g = gpﬁh
be some conformal metric to h with the property that, up to any positive
constant scale factor, g and h are not isometric. We assume that for any
x € MaxSy, VQSQ (x) is nondegenerate. For t, as in Theorem 0.3, one then
has the following :

(1) Ifn =14

lim (Bofg) — ) nte

= Ciptea) ™ [ (Sy(a0) = Sy o) (A5 Glan.ajas,
(2) Ifn =5

lim (Balg) — )t

— Cuplao) 3 [ (8ylan) = 8, o) (220D o,y
(3) Ifn =

im  (Bolg) = @) 2 = Cloplao) A, 5, a0)
W Ifn=1,

a_}g{)l(g) (Bo(g) — a)t2 = Crip(z0)* ~2AySy(20)



Moreover, at least when n > 7, and for x, and xq as in Theorem 0.3, one

may take xo = xo for any .

By a well-known result of Obata [23], if g € [h] and S, is constant, then,
up to a positive constant scale factor, g and h are isometric. Given g € [h],
the limits involved in points (1) and (2) of Theorem 0.4 are then nonnegative,
and null if and only if, up to a positive constant scale factor, g and h are
isometric. Under the assumption that V25, (z) is definite negative for any
x € MaxS,, the limits involved in (3) and (4) are also positive.

In our last result we restrict ourselves to a particular case where we
can drop the assumption of nondegeneracy we made on S, in Theorem 0.4,
and where we get a complete description of the asymptotic profile of the
sub-extremals, hence of the sequences (z,) and (t,) involved in Theorem
0.3. More precisely, we assume now that ¢ is radially symmetrical with
respect to some point xo € S™ and that S,, which is therefore also radially
symmetrical with respect to xg, achieves its maximum at zy. Under such
assumptions, one easily checks that we can choose the sub-extremals z, to
be radially symmetrical with respect to z(, and to blow-up at z( (see section
4 below for more details on such an assertion). We let p € IN™ be such that

A;Sg(wo) =0 forany 1 <i<p, and APS, (7o) # 0
with the convention that p = +o0 if A}S,(z¢) = 0 for any i € IN*, where

A;:Ago...oAg (7 times)

We let also
(p+1)4» _2 2% + 1
D = wp " | gy —————
1(n.p) n(n — 1)(2p)!w R=0-pl 6 — 2k
2775 (n, — Z)w_% 7 2k + 1 e rnl -t
Dy(n) = n 4
() = o i — 1) kljo n+ 2k (/0 (1+r2)n—2 T)

Dy(n) = 8(5(;—3);”” P </OOO %dr) i

Our last result is then as follows :



Theorem 0.5 - Let (S™, h) be the unit n-sphere, n > 4, and let g = goﬁh
be some conformal metric to h with the property that, up to any positive
constant scale factor, g and h are not isometric. We assume that ¢ is radially
symmetrical with respect to some xo € S™, that S, achieves its mazimum at
xg, and we choose the sub-extremals z,, to be radially symmetrical with respect
to xg, and to blow-up at xg. Then Theorem 0.3 holds for z, with x, = xg
for every a. Moreover, t, verifies :

(1) Ifn =4,

1 _1
li B —a)lnt, = —w, ? -
a_}g{)l(g)( 0(9) —a)ln 24W4 (o)

1

1 — (x,)

X /34 (Sy(w0) — Sy(2)) p(x) ™ (T)_l G(zo,z)dvg
(2) If n =5,

li B —a)ty, = —
a_}%gl(g)( 0(9) — @) 10#“5

4 (1= (xo,x)\
< [ (8fan) = 8,6 e (F52) T G
(3) If n > 6, and
(3a) 2p < n — 4,

3

(o)™

W=

wlw

Llim (Bofg) )12 = ~Daln.p)p(ao)® = (~A,)" Sy (o)
(3b) 2p = n — 4,
: tn—4 2(n—4) -
i (Bolg) — ) ¢ = ~Da(n)elao) T (~8g)F 2 8 (a0)
(5¢) 2p > n — 4,
lim  (Bo(g) — @) ta~* = Dy(n)p(wo) =
a—Bo(g)
—1 1—- (anm) 2
< [ Syton) = Sy@)el@) (F52) T Glansa)d

where p, D1(n,p), D2(n), and D3(n) are as above.

As in Theorem 0.4, the limits in Theorem 0.5 are always positive (since
Sy is nonconstant by Obata’s theorem [23]). Clearly, in the radial case,
Theorem 0.5 provides us with a complete description of the asymptotic profile
of the sub-extremals.



1 - Proof of Theorem 0.3

As a starting point, we list some useful formulae regarding the ®p;’s
introduced above. Let P € S™ and t > 1. As easily seen, see for instance
[17], p.130-131, one has that

det dp,|" (z) = 4% [(1+62) + (2 = 1) (Pz)] (1.1)

where (P, z) denotes the scalar product in IR" ™, as in the rest of this paper.
Ast — 400, ®p(x) — P forall z # —P. This is easily seen on the following:
for any x € S™,

1—(x,P)
21+ (z,P))+1—(x,P)

(®pi(z), P) =1~ (1.2)

Given Q € S™, we let mg be the stereographic projection of north pole Q.
Easy computations lead to the following : for any = € IR",

_ 1—|z|?
P} = 1.
( ’W—P(x)) 1+ |:E|2 ( 3)
and
det d®p, |+ (7 h(x)) =2 (14 [2?)* (&2 + |2[) (1.4)
At last, for any f € C°(S™) and any x € IR", we have
_ (T
fo®p;onplx)=forp <¥> (1.5)

Now, we go on with the proof of Theorem 0.3.
1.1 - The concentration phenomenon

We let z, be as in the introduction, a < By(g). As already mentioned,
2o — 0 weakly in HZ(S™). Another easy claim is that

lim A, =K, *
a—Bo(g)

We list in this subsection results on the concentration phenomenon that the
zq's develop. These results have already been proved in [8] (see also Druet
[9]). We therefore omit giving too many details.

9



As a starting claim, there exists a unique point xg in S™ such that, after

passing to a subsequence,

lim 22 dvgy =1 for any 6 >0
a—=Bo(9) J B(z0,6)
and
lim z,=0 in C?,(S™\ {x0}) (1.6)

The L2 -mass of (zo) therefore concentrates around zo. We set u, = z4¢.
As easily checked, u,, is such that

Lyus + (aK;l — cnSg) 902*—2%[ = )\aui*_l (Eq)

/ u?;dvh =1

where L, = Ay, + n(n4_2)

also z, € S™ be a point where u,, is maximum. Clearly, uq(z4) — +00 and
To — To as a — By(g). We let

is the conformal Laplacian for the metric h. We let

1 2

to = Wi e (To)m2 (1.7)
and set
Vo = Uq © Dy ldet d<I>Oé|2L*
where &, = ®,_ ;.. As easily checked,
Liva + (0Kt — ¢S, 0 ®4) (p 0 ®y)” 2 |det dDy|7ve = Agv? ~!
/ vf;dvh =1 (Fo)

For m_,_ the stereographic projection of north pole —z,, we set

1

& —1 - 1 - -
Sa:Sgoﬂ-_ y Pa=POT_5 v Va=VaOT_g5.

T

Since

* _4 2 %_1
(W:ia) h=¢n»2¢ and ¢(x)= (W)

where ¢ is the Euclidean metric, we get with (1.4) and (1.5) that

A¢ (o)) = Ao (Tap)?

G x 1 z\* 7 2 || -
*4(%%(5)“”{")%(5) fa (”E) Do



Moreover, one easily checks with (1.7) and (1.4) that

1

[50lloc = 5a(0)(0) = 28 1wy

Independently, it is clear that (9,1) is bounded in H? (IR") and in L> (IR").
By standard elliptic theory (see [11], theorem 8.17), (04%) is then uniformly

continuous. It hence follows from Ascoli’s theorem that 9,1 — ©in CY  (IR")

as @ — By(g), where
15]loe = 8(0) = 2% 1wy *"

and ? is such that
Aeh = K192 71

By a well known result of Caffarelli, Gidas and Spruck [7],
_a
V= Wn, 2" w<$)
Thus, up to standard elliptic theory,

lim o, = w;%* in C3.(IR") (1.8)
(I‘)Bo(g)

This convergence result gives informations on the speed of concentration of
the L? -norm of (z,). Indeed, for any R > 0,

/ zi* dvg = / ugjdvh
B(za,Rt5") B(za,Rt5")
_ / o2 duy, (see (1.3)
B(zq,m—¢€’(R))

—1—¢e(R) asa— By(g) (by (1.8))

where ¢(R), ¢/(R) go to 0 as R — +o00. In other words,

lim  lim 22 dv, = 1 (1.9)
R—>+OO O¢~>B0(g) B(l‘a,Rt;l)

As it was shown in [8], see also [9], this integral estimate leads to pointwise
estimates: there exists some positive constant C' such that

dy(ze, )2 20(x) < C  for any o, and any x € S™ (1.10)
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and one also has that

3

lim  lim sup dy(Ta, )2 t20(7) =0 (1.11)

R—+00 a—Bg(g) weS"\B(ma,Rt;l)

We refer the reader to [8] for details on these assertions. Moreover, it was
also proved there that in such a situation, if there are no extremal functions
for (I5,0p7) (Which is the case here), then

Bo(g) < cnKnSy(x0)

where z is the point of concentration of (2,). Thus xg € MaxS,. Together
with (1.8), this proves the second part of Theorem 0.3 :

1 -1
lim 240 ®y|det d®,|2 = p(xg) twn®™  in CF.(S™\ {—z0})
a—Bo(g)

We provide in the next subsection a stronger pointwise estimate than (1.10)
and (1.11). This will allow us to conclude the proof of Theorem 0.3.

1.2 - A fundamental estimate

We prove here the following estimate : there exists C' > 0 such that for
any a < By(g), and any = € S™,

dg(7,74)" 2 24(T4) 2a(z) < C (1.12)

Similar estimates are in Han [12], Hebey-Vaugon [19], Li [22], Schoen-Zhang
[28]. We divide the proof of (1.12) into two steps. We first claim that for
any € > 0, there exists C(¢) > 0 such that

18 dy (20, @) P 20 (1) < C(e) (1.13)
As a remark, note that (1.13) is true on any ball B(z,, Rt;!) with R > 0
(see (1.8)). We therefore just have to prove (1.13) on S™\B(z,, Rt;!) for
some R > 0 (to be chosen later). We let L,, be the operator given by:

Lou=Agu+ (ongl - /\azi*_2> u

Since Lyzo = 0 and z, > 0, the maximum principle holds for L, (see [4]).

Set
Co

(1= (za,2)TT 2
o (1= ()

Oo(z) =

12



where g = gpﬁ h. We claim that for R sufficiently large,
Lo0, >0
and that choosing suitably Cy,
0o > 2o on OB(zq, Rt;Y)
We first prove that L,0, > 0 in S™\B(z4, Rt;'). We have

Lgea — 901_2*Lh(904§0)

An(Bap) = Caip (1= (2a,2)) %)

B — 0 [ (1= (20, 2)?) 7 0 (1 — (20,2)) ' 72
(1—(zq,2)?) 2 (( )

Easy computations then lead to

(1= (g ) 2o

=(1—(zq,x)) (OéKEl — cnSg) — Ao (1 = (20, 2)) zi*_2
+ep?> P (n—1—e—(1+4¢)(2a,))

4

> (1= (za,2)) K, ' (@ = Bo(g)) = CAadn(ta, )24 "
+(n—2—2)ep*> %

By (1.11),

4

dp(za,r)*24 2 < e(R)
when dj,(1,,7) > Rt and ¢(R) — 0 as R — oo. Therefore,

(1~ () 2% >

(1= (2a,2)) K; ' (a — Bo(g)) — Ce(R) + (n — 2 — 2e)ep® 2

*
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and the RHS of this inequality is positive as a — By(g) if we choose R
sufficiently large. This proves that L,0, > 0 for all x € S™\B(z4, Rt;1).
Let # € S™ be such that dj,(r,,r) = Rt,'. We easily get that

0q () > CCHtn—2722)
and since z, < ct2 _1, it follows that
2o <04 on 0B(z4,Rt;Y)

if we take C, = Ctéﬁaf

the maximum principle, this leads to

% for some C' > 0 independent of a. According to

2o <0y on S™\B(z,, Rt

and hence, (1.13) is proved.

We now prove (1.12). We follow here [26] and we refer the reader to this
reference for more details. Let G, be the Green’s function for the operator
A, +aK,; 1, the only function Gy, : S™ x 8™\ {(z,z)/x € S"} — IR which is
such that:

AgyGalz,y) + oK Galz,y) = 6,

By standard elliptic theory and standard properties of the Green’s function,
there exists some C' > 0, independent of «, such that for any x # y and any
o — Bo(g),

|Ga(z,y)| < Cdy(z,y)* "

We first prove (1.12) on any compact subset K of S™\ {—xz¢}. Let (y,) be a
sequence of points in such a K. Up to a subsequence, we may assume that
Yo — Yo as a — By(g). Of course, yo # —x(. Since

Agzo + OzK;lza = )\az2*_1

«

we write that
2o (te) = Ao / G (Y, )22 el
Sn
<c / G (Y Y2 =l
Sn
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for some C' > 0 independent of . Through the stereographic projection

T_g, Of north pole —x, this gives

za<ya>s;ci/“ Go(or 72 () (e 0 w2 ) T (1 + [af?) " da

Since yo # —xo, and by standard properties of the Green’s function, one
easily checks that

Ga(ya,ﬂiia (z)) < C(R)|fja — z|>™™ for any 2 € B(0, R)

Ga(Ya, 4 (2)) < C(R) for any x € IR™\B(0, R)
where o = T_4_ (Yo ), R is some positive real large enough and C(R) depends

only on R. Independently, by (1.7) and (1.13), one has that for any ¢ > 0,
there exists C'(¢) > 0 such that

1 +t2|x|2>

(uaom™)) (x )<C() < 1+ |22

for any x € IR". The above inequality then becomes for R large enough

2a(ya) < Cle, R)tET

9_ 2 +2) e—1—n 2 2—-n (n+2) e
X/ | | n(1+t |$‘ )2(n 2) 2 (1+|ZL” ) 2 2(n=2)"
B(0,R)
n+2) _n (n+42)
—I—C’(e,R)/ (1+t2|z|? )2(" D (1—1—]3:] ) 2 2= g
R"\B(0,R)
where C'(e, R) depends only on R and €. We take ¢ = 2==. Setting y = t,,

we get
n_q 5 ntl —
2alya) < Ct2 L/ tado — y2 " (11 92) "% (1 62207) ™ dy

+o0 (ti_%)

The proof splits now into the study of two cases. In the first one, we as-
sume that, after passing to a subsequence, lim,_, g, (y) ta¥o = y- Then, by
Lebesgue’s theorem, we get that for € small enough,

n+1

n_q 5 n _ntl
za(Ya) < Ctd / 9—y> " (L4 yl*) * dy
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Since dy(za,Ya) < Clia| < Cty! and z4(z,) < C’tc%_l, it follows that

dg(Ta, ya)n72za (Ta)za(ya) < C

In the second case, we assume that t4|J,| — +00 as @ — By(g). Then

-2 . 2 4, P -3
2a(ya) < Cta |7l (L+[y2) 7 dy+o(ta ¥)

R\ B (taja, ool

—2-2 . | _1— ~ _
+ Cta ? |ya| ! n/ _ |y _taya|2 ndy
B(taga,tO‘leal)

< Cta 2 |gal>"

This concludes the proof of (2.12) on any compact subset of S™\ {—z}.

Since t3 _1za verifies
-1 -1 (431 o (,z-1 2
JANS (ta za) +aK, (ta za) = Aaty, (ta za)

standard Harnack’s inequalities conclude the proof of (2.12).
1.3 - Proof of Theorem 0.3 (continued)

As one easily checks, (1.12), together with (1.1), (1.2) and (1.7), gives
that

= (2ta) 2 (@al(@)) [(1+12) + (82 — V)(@,20)]

241\27" 2 -1 L
~(55) T a@ale) [1- 5 (o)
< CtE 20 (@a(@) [1 = (20, Pa(2))]F " + Cta 22, (Balz))
<C

This proves the last part of Theorem 0.3. Moreover, it easily follows from

standard elliptic theory that

lim  t2 'z4 = AG(zo,2) in C2_(S™\ {zo})
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To compute A, we just pick a point x # xy € S™ and write by the Green’s
formula that

t%_lza(a:)
W e Z-1g
n_q
= A\atd ; Gal(2,y)ua(y)® ~to(y)don(y)
= Aot s G, ®a(y)va(y)? Lo @4 (y)|det dd,|7 dop(y)
n tn—2
=231\, —
(2 +1)=1
2 -3

. 2
X [ Galz, ®a(y))valy)” “'polaly) |1+ 5
Sn o +1

Since (v4) is bounded (see section 1.1) and converges pointwise to wy, 2~ , and
Ao — K1, we obtain by Lebesgue’s theorem that

lim ta%
OZ*>BO (g)

" _ 1 _n
= 251K, Glwo, @)plao)won / [+ (2, 20)] 2 duy

Za(T)

n g— -1+ -1-2z
= 2"K 'G(zg, 2)p(x0)wn 2 / (1 + |y|2) 2 dy
BTL

1

= p(x0)wn 2" 2" 2wy _1(n — 2)G (g, 2)
This ends the proof of the theorem.

2 - Proof of Theorem 0.4

We begin by setting up some notations we use in the sequel. For (z,)
and (t,) given by Theorem 0.3, we let

(I)oz - (I)wa,t&

Then, for m_,_ the stereographic projection of north pole —x,, we let

& —1 ~ -1 o~ —1
Sa =840T 4 , Pa=@O0T_, , Vg =VUaOT_,_

17



and, for m_,, the stereographic projection of north pole —z¢, we let

S _S om_ 0, gp poTm_ ;0, G(ZL‘Q,.):G(ZL‘(),W_l ())

—xg

A main tool in the proof of Theorem 0.4 is the Kazdan-Warner identity [21]:
if f and uw in C°°(S™) verify

Lyu= fu* !

then for any first eigenfunction v of Aj, associated to the first nonzero eigen-

value Ay = n of Ay,

/ (V£, V), u? dvy, =0

We apply this identity to equation (F,) with ¢, (z) = (24, ). Integrating
by parts, this leads to

/ (V [(cnSg 0®, —aK; ') (po CI)Q)Q*_Q] ,V(xa,x))h |det d@a\%vidvh
—I—/ (V [ldet d@a\%] ,V(xa,x)>h (cnSgo®a —aK, ') (po @a)Q*fg v duy,

= 2/ (cnSgo0 @ —aK, ) (po q)a)Q*_Q (Ta,z)|det dPo|™v2doy (2.1)

With the help of relations (1.3), (1.4), (1.5), and thanks to the fact that
(ﬂ:ia)* h=4(1+ ]x|2)_2 ¢, (2.1) may be written as

I+ 11, =III, (2.2)

where

L (V[(cngaaKn12 7% | (m) z) .

2o S (62 + |f2)” (1 + |af2)"

Xz

. 22
(oS (&) —okit) b (i) 7
L — t?x/ ta ta d

3 -2
(t2 + |2?)” (1 + |2)"

dx

111, :/ (CnS (%) —ongl) Ba <%>2*_2 2252
e @

+ |22)* (1 + Jf2)"

18



We now derive useful relations for 0,. Let o € MaxS, and G(zo,x) be the
Green’s function of A, + Bo(g) K, ' at 9. We set

n

H(zo,2) 1 (1 - (.ro,:c))l

T 2720, (n — 2)p(x)p(x0) 2

n[3

so that
LyH(x0,z) = 6g,

where the conformal Laplacian L, is given by L, = A, + ¢,S,. We write
then

1 1—(:160,:10))1_%
G(xg,z) = + o(x 2.3
@0:2) = Gz~ Dole)eleo) [( 2 )] 29)
Hence, o satisfies in the sense of distributions
1 — (xp, ) 3
Lyo = (¢nSy — Bo(9) K ') 9% 2 [(—20’ ) +o(z) (2.4)

By standard elliptic theory, since
enSy — Bo(@)Ky ' = calSy(@) — Sy(ao)] < Cdy (w0, 2)?

we find that ¢ € CY(S™) for n = 4 and 0 € C°(S™) for n = 5. We set

1

0 =ocom_, ,and come back to the study of the v,’s. We already know by
Theorem 0.3 that v,, is bounded uniformly in a. We claim now that

Baltar) = wn ™ [1+ 272 (L4 [22) " F 6(2)] i Ch (R™\{0}) (25)
This follows from Theorem 0.3. Indeed, using in particular (1.4) and (1.5),

Va(tar) = v 0 q)gl o 7'(':;& (z)

=g o} (2)|det dDo|(m_y (tax))?

x

n_q

= tc%_lua o 71':3;& () (t;2 + |m|2) 2 (1 + |$|2)1_%

™ [ a2 (14 o) 6(0)] in Ch (R {0])

by Theorem 0.3. We derive now an estimate of 9, (t,x) near the origin. More
precisely, we claim that

1
lim lim sup Vo(ta) —wn 27| =0 2.6
R—+o00 a—Bo(g) z€B(0,R-1) | ( ) | ( )

19



Let yo € B (O, R_l) be such that

1 _ 1
|0 (taya) —wn 2" | = sup |0 (taz) — wp 2

z€B(0,R~1)

We want to prove that

lim |04 (ta¥a) —wn ¥ | < e(R)

a—Bo(g)

where €(R) — 0 as R — +o0. The proof here splits into three cases. In the
first one we assume that |y,| # 0 as &« — By(g). Up to the extraction of a
subsequence, Yo, — Y, y # 0, so that by (2.5), as a — By(g),

~ 7% n— F-1 ~
Baltaya) = wn ™ [1+1y1" 2 (1+1y12) T 5 (y)]

— w, ™ +e(R)

according to standard properties of the Green’s function. In the second case

we assume that ¢,y, — y after passing to a subsequence. By (1.8), we have

1

Ua(tala) = wn =

as o — By(g). In the third case we assume that |y.| — 0 and t|y| — +00
as o — By(g). The Green’s formula on IR" gives that

1—n

. n_q
Uoz(taya) = (1 + |tozya|2) ’

wp—1(n —2)
X / | — tayal® " Ag (2%_1 (1+ \x!z)l_% ﬁa(m)) dx
where A¢ is the Laplacian with respect to the Euclidean metric. Recall that
(r) h=4 (1 [a?)

Equation (F,,) together with (1.4) and (1.5) then gives that

2
1 -~ [z C(z\P 9 N2 /.9 =2 -
— | aK, " —cnSa . Do . tZ (1 + || ) (ta + |x| ) Vo ()

20
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Coming back to the above Green’s formula, we obtain
4

Wn—1 (n — 2)

o 4

wp—1(n —2)

Vo (taye) = Ao (1F ltaval?) F 7" Aq

n_q
(1 + ‘tozya‘z) ? B,
where
A, = / 2 — tayal® ™" (1 + |x\2)_1_% ﬁa(x)Q*_ldw

B, = / i |lx — taya|2_”0a (;) ( i + |x|2)72 (1 + |x|2)17% Vo (x)dx

and
Co(x) = (aK;l — cnga(:c)) Golx)? 72

Regarding the first term in the RHS of the above relation, we have that

_ T _ —1-2 _ *_
|taya|n 2Aa = / | - y_a|2 " (1 + |l‘|2) ’ va(m)2 Yo
R talYal Yo
_ 1 _1—n _ 1
— Wn B / (1 + ‘x‘Z) s dx = wn_lwn 1+21*
n n

by Lebesgue’s theorem. Regarding the second term, we get by Theorem 0.3,

and performing the change of variables © = t,|ya|y, that

t2yal""?Ba

go@/ P (o 0 I A T o
R talVal Yol

Yo (2—m [,— _ 1-z —2
<Clul [ = 2P Rl ) (1 Plo)
R" Yal

< Clyal?

Since |yo| — 0 and N\, — K1, we get that

_1
Vo (taya) = wn %

as @ — By(g). Thus, (2.6) is proved.

Going on with the proof of Theorem 0.4, we divide it into two parts. On
the one hand, we deal with dimensions n > 6. On the other hand, we deal

with dimensions n = 4, 5.
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2.1 - The case n > 6

We need here one more ingredient to estimate the speed of convergence
of x4 to zy as a — By(g). By the standard Sobolev inequality on (S™,h),

2
. 2% -2
1= (/ v dvh) <K, [/ Vv lhdon + %/ vidvh}
n Sn n

Together with equation (F,), this gives
K= < / (cnSy0 @ — Ky b) (po®y)* 2|det dD,|=vido, (2.7)
Independently, by the definition of A,, we have that for any a < By(g)

_ L
L1V (e et @] (@220, ) 7F) g

_ 2
+ozK;1 g0_2]det APy, 1., | (<I>_1ta (:U)) > dv,

Zo,
Sn

_9* - -1
> >\a (/ 2 2 ‘det dq)ﬂco,ta| (q)mol,ta (x)) va)

2
PE

where t, is given by Theorem 0.3. By conformal change of the metric, this

inequality becomes

1 — 5
/ | det d®q s, | (D50, ()7 Ly (Idet APy 1. | (P54 (2)) 2*)dvh

_ 2
o%

> / (cnSg — aK,;t) 0¥ “2|det d®,, . | (@;O{ta (2)) dvp,

2
T ( / (et dDy, . | (O3], () dvh>

As easily checked,

1

Ly (ldet d@s, .| (03 (2)) ) =

- 92 _ 1
" =2 et do,, .| (051, ()T

x(]:toc

and
/ |det d®y, ¢, | (@;01’% (ac))i1 dvy, = wy,
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Therefore,

2

UJ';2_* / (CnSg - OCKrjl) 902*_2|d6t dq)3307toc| (@;01’ta (CE’))
Sn

SK;l—)\a

2
— 5%

d’Uh

and

_ 2

wn - / (CnSg © ®$0,ta - OKK;]-) (SD © ®x03t(1)2*72 |det CZ¢ZBO toa‘ dvh

SKJI_)\Q

Combining this inequality with (2.7), we obtain

2

Wn 2 / (cnSg oDyt — Oan_l) (po @xo,tQ)Q*_Q |det d@xmt&\%dvh
< / (cnSgo®a —aK, ') (po (I)a)2*_2 |det d@a\%vidvh (2.8)

We now prove the theorem when n > 7, and leave details to the reader when
n = 6 (see the end of this subsection). First, we compute the LHS term
n (2.8). Through the stereographic projection 7_,,, we get using (1.4) and
(1.5), and performing the change of variables = = t,y, that

LHS of (2.8)

- 1\ -~ 2% -2
[ (8 (@) o) e (s)
= 2nwn 2" ti/

(82 + |2[2)* (1 + |22)"

(y)> 2

%
_ n—2
r (14 |y[2)* (t 2+ y[?)
)"

+ 2w T o2 / (5 ) - $0) s

L+ [yl2)? (ta2 + [yl2)"~

2
= 2"wn 157" (Bo(g) — @) K

dy

7 dy
On the one hand,
| o™ )T (1 )y
B0 P [ () dy o i)
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On the other hand, writing that

1 ~ L.
=0i;54(0)y"y’ + O (|y]?)

S () = 54(0) = 5

we get for the second term that
[ (30)=3,00) 20" 7 (2 + 10" (L4 1of?) " dy
= 5055,0) [ o) T (R P) T (1 )y
2O ([P 2+ ) 1 ) )

== ARO[l (L) dy o (127°)

Therefore,
LHS of (2.8)
n _ _l* * 2—"’L —
= 2K tw, P p(x)? T2 </ (1 + !y!2) dy) (Bo(g) — ) >
2n—1 2

coin plen)® 88,0 ([ (1 W) ) 1
+o ((Bo(g) —a) t;2) +o0 (t;4)

We now deal with the RHS term in (2.8). Through the stereographic pro-
jection m_,_, we get using (1.4) and (1.5), and performing the change of
variables x = t,y, that

RHS of (2.8)
= / (cnSg 0@ —aK, ') (po (I)a)2*_2 |det d@a\%vidvh

- 2" -2 -
— g2 (enKnSy(xa) — @) K! / Pa (y)2 _;’a(tay)2n_2
(L+[y?)” (ta” +[yl?)

o (500 = 5.0) 2 07 P Ealtar)?
+ 2%cpt, /n )2 (t

dy
-2
(1+ |y|? 2+ y2)"

For any R > 0,
| a2 P () Gty

24



2

= - *_ _ 2—n —2
= wy, 2 / Go () 22+ A+ YA T dy
B(0,R—1)
- *_ _ 2—n —2 /. -2
+/ Ga () 22+ W) (1L ) (va(tay)2 — wp ) dy
B(0,R1)
~ 2% _9 _ 2—n -2 .
+ [ P ()77 (02 ) (1 1) ata)dy
R"\B(0,R-1)
Together with (2.6), and letting R go to +o00, this gives
- *_ _ 2—n —2
/ Go (1) 72 (122 + 1012) 7" (1 [yf?) " Ba(tay)?dy
Bn
= 3(0)> 2w, Tt / (1+ |y|2)2_” dy + o (t7%)

Independently, since 7, is bounded (see Theorem 0.3), we get that
= = ~ *_ _ 2—n -2 .
[ (3 0) = 50l0)) g ) 72 (12 + )" (L4 10?) ™ Gty
G i~ 2% =2/, 2 2\2-n 2\ 2 -~ 2
=0.50(0) [ 500 7 7 (7 + )T (1 )ty

1 ~ i i~ *_ _ 2—n -2 .
+§aij8a<0)/ Y da () 22+ 1P) T (L4 Y1) Ga(tey)?dy

+0 </JR y? (622 + )" (14 Jy?) dy)

As above, using (2.6), one easily gets that

[ (300 = 50)) 20 07 7 (22 +15)" " (L4 101?) " b0t dy

2

1 ¥ ~ * G 2—n n—
= g 07 2,0 ([ W () ) e
n R™
+ 0 (IVSy(za)[th™®) + o (t27°)
It then follows that

RHS of (2.8)
- 2”@(:00)2*_21(;1@0;2% </

2n—1

(14 P)*" dy) (e KnSy () — ) 12

n

con ™ plan)® 286,00 ([P (1 1P)* " )
+o ((CnKnSg(xa) — ) t;2) +o (t;4) +o (‘ng(xa)‘tgg)
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Writing that LHS of (2.8) < RHS of (2.8), this is just inequality (2.8), we
get that

5y(20) — Sy() < 0 (t7) 7S, ()| + 0 (Bolg) — ) + o0 (1?)
By the assumption made in Theorem 0.4, V2S5, (z9) < 0, so that

dp (20, 70)? < O (Sy(w0) — Sy(wa))
<o (t3") dn(zo,a) +0(Bo(g) — ) + o (t,?)

and

dn(z0,20)* < 0(Bo(g) — @) + 0 (t;?)

Summarizing, one gets with (2.8) that

Sg(xo) — Sg(xa) < 0(Bo(g) —a) +o (t;Q) (2.9)
VSy(wa)] < 0 (Bolg) = )* ) + o0 (t") (2.10)

We now compute an expansion of the different terms in (2.2). Set x = t,v.
Since v, is bounded, we get that

-3
nf = _ L vor_a- 1+ [yf?
III, =t (cnSa(O) —ak, 1) / Ga(Y)? "20a(tay)?lyl? (_2 ) =z dy
™ (toz + ’ylz)

_n — 2—n -3
FO(E") [ W (2 + WP (1 o) " dy
Rn
which gives, since ¢,5,(0) — aK; ' — 0 as o — By(g),

II1, =o(t;°)

Similarly,
2~a toz 2
Iy = K (enKnSy(za) — ) ;" / (tat)
R 1+|y| (ta” + [y1?)"
( ) Pa tay)
+cnt;"/ dy
" 1+ 1y12)° (ta® + |y| )"
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With (2.6), one sees with the same kind of arguments than those used above
that

/ Ba(y)” P atay)® (t2% + W) (1 [yl?) " dy
_ gp(.ﬁbo)z*_%«);% (/ (1+ ny)?‘” dy) tnt o (tn )

On the other hand, we write with (2.10)

Sa(y) —Sa(0) =0 ((Bo(g) — a)%> lyl+o (t2") lyl+ %@j%(@yiyj +0 (lyP)

This gives, after some computations similar to the ones we developed above,
that

L/‘n(5;<y>—-Sa«n)4zxy>f-aaa<aﬂn2(t;2+wyF)2"(1—+|yF)de
= —%w(xo)Q*‘an%Aggg(O) </]Rn [yl (1+ )" dy) to °
+0(t57®) + o ((Bolg) — a)* t27°)

Noting that
o ((Bolg) ~ ) 127°) = 0 ((Bolg) — a) ta™) + o (t2~°)

we therefore get with (2.9) that

* . -2 2—n _
I1, = p(z0)* ?K, 'wn? (/ (1+ Jy?) dy) (Bolg) — ) t*

C

n *_ -2 & 2—n _
- el 2 T A, 0 ([P () ) 12
n R™
+0(t;%) +0((Bolg) — ) t,*)
At last, we deal with I,. We have here

I, = ﬂ/ (V [(cnga(y) - aK{l) sba(y)z*‘ﬂ ,y> B (tay)?

_ n—2 2
2 (ta®+1y2)" " (1 +]y2)

dy
2.10), we deduce that

(V [(cnga(y) - aK»,Zl) %(y)?‘z] ,y)
=%¢<V*%S<ww+oa o(g) = @)*) [yl + o (t2") Iyl

+0((Bolg) = )?) [y + 0 (t2") [yl2 + O (Iy*)

From (
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This gives :

cn . 72% = 2—n —
I =~ 2ol 2 T AS,0) ([ WP 0+ 0P ) 120
n R™

+0(t5°) + 0 ((Bolg) — @) 15")
By letting o go to By(g) in (2.2), we obtain

lim (BO(Q) . Oé) ti — C AgSQ(O) fﬂ% ’y| ( |y|2>_n Yy
a—Bo(g) n fJR" (1+ |y]?) dy

Easy computations lead then to

AeS(0) = dip(wo)® Ay Sy (o)

and ,
enE [y W2 (L4 912" " dy Wy, ™
no g L[y dy i =1)(n—6)
Hence,
_2
lim  (Bo(g) — a) 2 = ——(wg)? 2N, S, (w0)
a—Bo(g) * n(n—-1)(n—6)

and the first part of Theorem 0.4 is proved when n > 7. To prove the second
part, just note that by (2.9),

dn(zo,Ta) =0 (t;l)

As easily seen, this allows us to replace =, by g in the proof of Theorem
0.3.

In order to end this subsection, we list the different results we obtain in
dimension n = 6 when computing the LHS and RHS terms of (2.8), and the
different terms of (2.2). The details are left to the reader. Only few changes

are needed with respect to the case n > 7. We obtain
LHS of (2.8)

— o0yt otan) ([ (4 1) ) (Boto) - )2

4 2

- §06W6_§W590(x0)A£S’g(0)t;4 Int,

+o(t; nta) + o0 ((Bolg) — ) t52)
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and

RHS of (2.8)
=20y o) ([ 10 ) caasy o) - )1
RS
gy 20 s & —4
+ 0 ((c6KsSg(z0) — @) %) — 3 6w Pwsp(x0)AeSy(0)t, " Int,

+o(ty Ints) +o (|VSy(za)ty?)
Together with (2.8), this gives
Sy(xo) — Sg(za) < 0(Bo(g) — @) + o (t,°Int,)
1 . 1
VSy(2a)l < 0 ((Bolg) — @)* ) +o (15" (Inta)*)
As for (2.2), using these estimates, we get

I, = —f—gga(aco)wg%w5A§§g(O)t;6 Int,+o (t;G In ta) +o0 ((Bo(g) —a) t;4) ,

11, = plen) g tes ([ ) ) (Bote) - !

C _2 - _
— (a0l wsAeS,y (0)t;

o (65 nta) + 0 ((Bog) — ) 15*)

SInt,

and
I, =o0(t;°Int,) ,

Letting a go to By(g) in (2.2), we therefore get that

_1
3

. _ 2
lim (Bo(g) — a) t?x (Inty) b= T=%s QO(xO)AgSg(xO)
a—Bo(g) 15

This proves Theorem 0.4 when n = 6.
2.2 - The case n =4,5

We prove now Theorem 0.4 when n = 4,5. As a starting point, we need
a substitute for (2.8) in order to get informations on the speed of convergence

of z, to zg. We note here that

Aé(ﬁaw):
. - 1+ 122)* . (2\T 72 , ], e
)\a S el . K 1 t2 ( o el 2—2 o
+(C R (t) i ) (2 + 2P (t) P | (Ba¥)
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2\ 1—-%
where ¢ = (%) ° Integrations by parts then give that

Vo (tox)? . N -
/an (ta2 + |22)" TEEE (enSale) = ak;Y) Gal0)” 72| da

B (cnga(x) — aK;1> Boe ()2 25 (o)
_4/ n (ta? + \x]?)”_2(1+ |2[2)°

x dz (2.11)

We assume now that n = 4, and refer to the end of this subsection for the
case where n = 5. Together with Lebesgue’s theorem, with the fact that (7,,)
is bounded and with (2.5), (2.11) gives that

. ) 1 22 (14 [22) 7 ()]
Cawy /JR4V [(Sg(a:) ) ] ].r|4 ) dx

+V[<C4Sa(x)—a[(4_ / 1—|—|.:C| ax)z |m|2)2daz—|—0(1)

AT [1+\xy2 1—Hx|) 5(x)]
= 4dcyw, /1R4 <Sg(:t) - ) 2 (L1 o xdx

Together with (2.6), we get that

_ _ _1
/ o (tax)® (t° + |2[?) 2 (1+ |z]?) 2 do = wy 2wslnt, +o(Int,)
R4
Therefore,

v [(C4§a(1’) - aK4_1> @a(x)ﬂ ) =0 ((lnta)_1> (2.12)

We now compute the different terms in (2.2). Setting x = t,y, and by
Lebesgue’s theorem, we get that

~ 25 2
11, =t.* / (c48av) - oK) Galy)*—, y Zagt“y) =
e (ta” +1y1?)" 1+ |y[?)

ol e ) T )]
= cqw, *t, /1R4 (Sg(y) - 59(0)) Py 2 (1+ |y|2)3 dy
+o(t;")
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Performing the same change of variables in I1,, we get that

_ ~a 2,1704 ta 2
11, = t;4K4 ! (caSg(za)Kas — O‘)/ z (y)3 (2 4 2
R (1+[y)° (ta° + |yl?)

i /]R | (8a(w) — 5a(0)) Ga(w)?00 |

(1+y[2)® (t22 + y[?)°

Since

1S (y) — 54(0)] < Clyl

the integral in the second term of the RHS of this relation converges. For
the first term in the RHS of this relation, (2.6), together with the same trick

than we used in subsection 2.1, gives that

_ N _ —2 -3
[ BaPintan (62 + )7 (1 o)y
= go(xo)zw;%wg Int, +o(lnt,)
Therefore,

11, = Kglgo(xo)2w;%w3 (caSy(z0) Ky — @)t * Int,
+ 0 ((caSg(za)Ka — )t  Inty) + o (t5%)
1 . 2
LI (0 y2) 7 )]
lyl* (1 + |yl?)’

e 2t [ (5,00 - 5,0)) ) dy

Similar computations give that

=Gt [ (9](50 - 5,0) 607] )
)

Coming back to (2.2), and passing to the limit @ — By(g) in this relation,

we obtain

lim  (csSq(xa)Ks — a)lnt,
a—Bo(g)

o(x0) 2

T od, M

1
2
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’ [2/13 (30) - 3,0) (=D W0 WP Foll]

(L+[y)2)°
5 5 00 o] o) 72 P) + o))
_/1134 (V [(Sg(y) - 59(0)> #(y) } ,y> ly <21++?|Jy|3)j y)] ay

We use (2.12) to conclude. By (2.12),
V5(0)| = O (nta) ™)

so that, together with the assumption V2S,(zo) < 0 we made in Theorem
0.4,

dy (20, 20) = O ((mta)—l)

53(a0) — Sy(ra) = o (1012) )

_ so(ﬁl‘z 4 (2.13)
. [264 [, (5o = 850 a2 E DOy 2L,
- o\ el N TR+ ) +ew)]
—cy /JR4 (V [(Sg(y) - 59(0)> ¢(y) } ,y) Lt y2)] dy

In order to simplify this expression, we let

v(y) =2 (1+1y1?) "
so that (ﬂ':io)* h = ?¢. By (2.4), we have :

B¢ (¥5) = ex (Sy(y) = 5,(0)) #*u? [2lyl ™2 + 5]

Regarding the first integral in the RHS term of (2.13), we write that

S g 5(0r)2 (|y|2 — 1) —2 2 - 2
2cy /IR (Sg(y) —Sg(O)) ?(y) TEARDE [yl =2 (1+ [y[?) + ()] dy
=27" ” Ae (V5) (y) [2ly1 72 + 5 ()] v(y) (JyI> — 1) dy
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As for the second one, integrations by parts give that

T /11{4 <V [(gg(y) - Sg@)) 95(9)2} ’y> Uy’iQ (1 - ’y|2) - &(y)}Qdy

(L+[y»)*

27 [ Acwa) () 201 + 5] dy

+270 [ A (06) ()v(y) (VY ([2W 2 + 5w )] v() ,y) dy

R4

Some more integrations by parts then lead to

o)™ -3 5 2
RS of (213) = 21—t [ Acwa) Iyl ay

Since
Ag (|y|_2) = 2&)350

it follows that

1

1 —1
lim  (Bo(g) — a@)Inty, = —~w, 2p(x) 2o(x0)
a—Bo(g) 4

Note here that o(zg) makes sense, since for n = 4, 0 € C°(S*). By the
Green’s formula on (S™, h), together with (2.4) and (2.3),

o(zy) = —— /S Lyo(z) <#)1 dvy

B 8&)3

1 1 — (zo, )

= 5o [ | (5,(0) = 5 a0) pla) (T) G (o, 2)dv,

This proves Theorem 0.4 when n = 4.

When n = 5, similar computations lead to

= gese =20 [ (V[(500 - 5,00) 6)* 2] )

(1 (1 4+ 112) ¥ +5(0)

dy

+o(t,°) +o((Bolg) —a)ty?)



I1, = K3 'wy * plag)> 2 (/]Rs (1+1y?)~" dy) (Bo(g) — o) t"

+o0 ((Bo(g) —a) t;4) +o (t;5)

[yl (1 + Iy )26+ 5(y)| "
(1+y?)

_z - ~ T
seswy T [ (3,00 - 5,0) p0)
IR
and
I11, = sy * 5

i ~ ey o | (14 [y12)* +5(y) :
X/R5 (Sg(y)—Sg(O)) e(y)” "yl [ DL }

+0(t,°)

dy

Coming back to (2.2), and letting a go to By(g), we get that

3 -3 B
ws * (o)

|-

lim  (Bo(g) — a)ta = —
i (Bolg) - a) T

< [ (8utan) = 8,60 et (F50) T Glan i

This ends the proof of Theorem 0.4.

[N

3 - The radial case : proof of Theorem 0.5

Let zop € S™, and g = gpﬁh, where ¢ is radially symmetrical with
respect to xg. Clearly, S, is also radially symmetrical with respect to zo. We
assume in what follows that for any A > 0, g and Ah are not isometric. We
then define

Bo(g)r = inf {B > 0 s.t. (Iopt) is valid with B for any v € C2°(S™)}

where C2°(S™) is the set of functions in C°°(S™) which are radially symmet-
rical with respect to xp. We have By(g), < Bo(g) = ¢ K, maxgn Sy, while,
using test functions as in Hebey [16],

By(g)r > ¢, K, max Sy

{5507—550}

Assume now that

{;;I}z_uwco} Sy = max Sg = Sg(xo)
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Then
Bo(9)r = Bo(g) = cn Ky max Sg

As easily seen, it follows that we can choose the sub-extremals (z,) to be
radially symmetrical with respect to xg. If z; is the concentration point of
(za), we know (see for instance Hebey [14]) that z1 € {x¢, —z¢}. Moreover,
see section 1, z1 has to be a point where S, is maximum. Without loss of

generality, we may then assume that x; = xg.

We let now z, be as in section 1, and claim that

dn(z0,70) = 0 (t;1) (3.1)

To prove this claim, let m_,, be the stereographic projection of north pole
—xg. Since uy = 24 is radially symmetrical with respect to xg, we get that
for any k € IN and any i = 1,...,n

/ T g (@)ukdu, =0
St

where S = B (xo, %) Hence,

—x0

/ T (Bo(@))oF |det d |~ dup = 0

+

We let

Vo = Vq OT_,

so that, by (1.4) and (1.5),

k
' 144222 —n(l-3%)
R C I (et )@a(w)’“( + b o) dz =0
o T
m2a (5%)

t kn
@ (1+[z[?)*

Performing the change of variables © = t,y, we obtain

i - ~ - —-52 —n(l—#
[ oy oo R (67 + ) () =0
mra (87

—Tq

We have that for any y € m_,_ (Si),

T gy (M2, (1) = 7y (2a) + C(@)iy’ + O (y1?)
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where the C'(a);;’s are bounded. This leads to
. __n n L*
o (Ta) / Ba(tay)® (t2% 4+ [02) ™% (1+101?) " dy
—2a (S7)
i~ k (1—2 2\~ 5% 1-3%)
—Cla)y [ el (7 ) () ay
—aa (ST
2~ ko(4—2 2\~ 5% n(l-5%)
+0 s )\y\ Ta(tay)® (627 + [y7) > (L+1yl?) dy
T 2q i

When 2* > k > nt2

n—2"

/ Baltay)* (622 + [02) " (14 y2) "0 ay
(s7)

— Ctl;(n—Z)—n +o (tg(n—Q)—n)

/ Y a (ta)® (152 + [9[2) "% (14 [w?) "7 dy
—aa (ST
— ) (tg(n72)7n71>
,_n _k
/ o Pt (122 + WP) T (L) dy

=0 (tlofé(n—Z)—n—2>

so that
Wi_xo(a:a) =0 (t;l)

This proves (3.1). As in subsection 2.1, we may then take z, = x( in Theorem

0.3.

We now compute t,. For length reasons, we give details in the case
n > 6, 2p < n — 4, and leave the proof of Theorem 0.5 to the reader for the
other cases. The necessary material will be found in subsections 2.1 and 2.2,
and in Robert [26]. Performing once more the change of variables = = t¢,y,

and since one may take z, = ¢, the different terms in (2.2) are :

oot [ o) vy,

n _ —2 2
214 (=2 +1912)" " (1 + |yf?)
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(enSy() — @ t) B()* 2altan)?
[T, =t;" / — .
" (ta + ly2)" " (1 + y12)®
(enSy() — ok 1) PP )’
111, = t;”/ — d
" (ta + 1y2)" " (1 + y12)°
We first deal with I,. We write that

dy

Y

&(2p)
- N o T « 5 Sg7(0)
(V |:<CnSg - aKn 1) 902 2] (5) ,aj) = CnQO(Jfo)Q ? (2‘;]9 — 1)!7,213
+0 (r) + 0(Bo(g) — @)
so that, with (2.6) and using the assumption 2p < n — 4,

Cnwn 2 o 5 (0) 2-n
1, = tn 2 —29—t—2p—4/ 1 2 2
5 (o) T Rn( +1yl?)” " ly[*Pdy

+o (t; %) + o ((Bolg) — ) t;")
For I1, and I11,, we write that

(enSs(w) — @) Bly)* 2

x N S’(Zp) (O)
=K, (Bo(g) — @) p(x0)* %+ cagp(wo)? > =217

+0(By(g) — ) +o (7“2”)
This leads to

* * _ 2—7’1
II, = K-'wn ™ (Bo(g) — ) (ao)? 2to/‘/ (1+y*)" "dy
Rn

&(2p)
T nn ® p(g)> 222 (,())ta42p/ Wl (14 [y?)" " dy
(2p)! R"

+0((Bolg) —a)t*) +o(t,*77P)

and
I11, = o ((Bolg) — a)t3*) + o (t;47%)

Coming back to (2.2), and passing to the limit o — By(g), we get that

lim (By(g) — a)t??

a—Bo(g)
2—n
cnBn(p+1) [ WP (L4 [yP?)” " dy (_g(zp)(o)> (3.2)
(2p)! S (L 912> ™ dy !
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We now compute 552’))(0). For that purpose, let f € C*° (IR") be radially

symmetrical with respect to x¢ and such that
F®0)=0 forall 0 <k <2p and f®P(0)#0
As one easily checks,

(—Ag)k f(0)=0 forany 0<k<p

Moreover, thanks to the formula that relates the scalar curvatures of two

conformal metrics,
(—A¢)" S4(0) = 4P ()P =) (= Ag)" S (x0)

Hence,

géZp)(o) — 92p @(xo)p(z*_Q) (—Ag)p Sg(l’O)

Together with (3.2), this proves the theorem when n > 6 and 2p < n—4. As
already mentioned, the proof for the other cases goes in a similar way.
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