BUBBLING PHENOMENA FOR FOURTH-ORDER
FOUR-DIMENSIONAL PDES
WITH EXPONENTIAL GROWTH

O. DRUET AND F. ROBERT

ABSTRACT. We are concerned in this short paper with the bubbling phenom-
enon for nonlinear fourth-order four-dimensional PDE’s. The operators in
the equations are perturbations of the bi-Laplacian. The nonlinearity is of
exponential growth. Such equations arise naturally in statistical physics and
geometry. As a consequence of our theorem we get a priori bounds for solutions
of our equations.

We are concerned in this paper with understanding the bubbling phenomenon for
fourth-order four-dimensional PDE’s of exponential growth. Such equations arise
naturally in statistical physics and in geometry (see [7] and [9]). In what follows,
we let (M, g) be a smooth compact Riemannian 4-manifold without boundary. We
let also (b:). and (f:).., be sequences of smooth functions on M, and (Ac),.-
be a sequence of smooth (2,0)-symetric tensor fields. We assume that (b.), (fe)
and (A.) converge as ¢ — 0 in the C*-topologies, k positive integer, to limiting
objects of the same nature, by, fo and Ag. Then we consider sequences (uc), - of
solutions of

Aluc + R (z,duc) = fe(x)e" (1)
where A, = —div, (V.) is the Laplace-Beltrami operator and
R. (z,du) = —divg (Acdu) + b, . (2)

Following standard terminology, we say that the wu.’s blow up if u. (z¢) — +00 as
e — 0 for a sequence (z.) of points in M. We let

Lo = AZu — divg (Aodu) (3)

be the limit operator in (1). At last, we let G be the Green function of Ly. The
Green function is unique up to a constant when the kernel of Ly consists only of
constants. We write G as

1 1
G(z,y) = @hlm + B (z,y)

for (z,y) € M x M\ D, with D = {(z,z), x € M} is the diagonal in M x M, where
B e CH(M x M). We let o be the function given by

o(z) = /M(;(x,y) bo(y) dvg(y) -

For u a function on M we let

_ 1 / d
U= ——/—"—">"7"7= u av
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2 O. DRUET AND F. ROBERT

be the mean value of u, where Voly(M) is the volume of M with respect to g. Our
theorem states as follows :

Theorem 1. Let (M, g) be a smooth compact Riemannian manifold of dimension
4 without boundary. Let (u.) be a blowing-up sequence of solutions of (1). Assume
that the kernel of Ly consists only of constants and that fy is a positive function
on M. Then

/ bo dv, = 647° N
M

for some N € N*. Moreover there exists a finite subset S C M, consisting of N
points x;’s, it =1,..., N, such that

N
Ue — Ue —>647r22G(xi, -y
i=1
in Ct

loc

(M\S). At last, we have that

647°V B (4, ;) + 64 Z V.G (zi,25) — Veo(z;) = _Vifolwi)
J#i fo (1)
foralli=1,...,N.

The proof of Theorem 1 comes with strong pointwise estimates on the wu.’s and
the observation that concentration points are isolated (we refer to section 1 for
details). This should be compared with the more intricate situation of Yamabe type
equations for which concentration points are not necessarily isolated (see [3, 4, 5, 6]).
Independently, as is easily checked, a priori C*-bounds on sequences of solutions
follow from the above theorem when |’ ybodvy & 6472N. This includes compactness
of the geometric Paneitz equation with arbitrary prescribed Q-curvature (we refer
to the nice surveys [1] and [2] for material on the Q-curvature). Such a priori C*-
bounds should be regarded as a first step towards a Morse theory for the equations
we consider in this paper. We refer to [11] where this question was handled in the
case of the Yamabe equation.

1. PROOF OF THEOREM 1

Let us assume that we have a sequence (u¢) of smooth solutions of

L.ue 4+ b (z) = fo(x)e"s . (4)
where L. = A2 — divy (Acd . ). Since we assumed that Ker Ly = {constants}, it is
clear that Ker L. = {constants} for all € > 0 small enough. Thus, if the sequence
(ue) is bounded from above, it follows from standard elliptic theory that (u.) is

uniformly bounded in C* (M) except if [, bodvy = 0. This clarifies the remarks
after the theorem. From now on, we assume that the u.’s blow-up, i.e. that

Max ug — +00 ase = 0. (5)

Before starting the proof of Theorem 1, we note that, integrating equation (4),

/ fee's dug :/ b. dvg :/ by dvg + o(1) . (6)
M M M

We divide the proof into several steps. The first step goes as follows :

STEP 1 - Assume that (5) holds. Then there exist N € N* and N sequences (z;¢)
of converging points in M such that, after passing to a subsequence, the following
assertions hold :

a)w—)—i—oo ase—0 foralli,j=1,...,N, i # j where

Hi,e
Fo (@) ™51 =1



FOURTH ORDER FOUR-DIMENSIONAL PDE 3
b) We have that
|x2)
Vi () = ue (exp,, ieX)) —Uue () = Vo) = —4ln | 1+ —=
@) = (e, (i) = e ) = Volo) = —amn (14 2
inCl‘loc(R‘l) ase —0 foralli=1,...,N.
¢) For alli=1,...,N, we have that

lim lim fee"s dvg = 64m2 .
R—+oc0e—0 Ba. (Rui.c)

d) At last, there exists C' > 0 such that
: 4\ u(x
( mf’ng (e, ) )e @) <o

i=1,...
foralle >0 and all x € M.

PROOF OF STEP 1 - We briefly sketch the proof below and we refer to [10] for the
details. We let 2. € M be such that u. (z.) = maxys ue. By (5), ue (ze) = +00 as
e — 0. We let pu. > 0 be defined by

fo (o) ptes) =1 (7)
so that u. — 0 as ¢ — 0. We let for x € By ((S,u;l), the Euclidean ball of center 0
and radius duzt, 6 > 0 small fixed,

ve (@) = ue (exp,, (o)) — ue (22)
9:(z) = (exp}, g) (new) , A(w) = (exp}, Ac) (pez) | (8)
bo(x) = b. (exp, (1ew)) and fo(2) = f. (exp,. (4et)) -

We then have that

2 2 i i fe
Aj ve — pedivg, (Asdvs) + pcbe = 7 (xa)e

in By (duzt). We write with the Green representation formula that

we() — e = /M G- (2,y) Leue (y) dvy (y)

for all x € M where G, is the Green function of L.. Using equation (4) and
differentiating the above with respect to z, we obtain for £k = 1, 2, 3 that

() /M |v§G5(x’y)|g ff(y)eua(y) —b:(y) d’”g(y)

/M [VEGe(a,9)], few)e™= ¥ dug(y) + O(1)

since b — by in C° (M) as e — 0. Let y. € By, (Ru.), R > 0 fixed. We write that

[ 1956, e oy (0
M

=0 <Nsk/ et d%) +0 <eus(%)/ dy (yan)ik dvg(y)>
M\ By, (pe) By, (pe)

=0 (u:")
thanks to the fact that u. < u. (x.), to (7) and to standard estimates on the Green
function (which are uniform in €). Together with the definition (8) of v, this gives
that (v.) is uniformly bounded in C® (K) for all compact subset K of R*. Standard
elliptic theory gives then thanks to equation (9) that

lim v, = Vp in Ch. (RY) (10)

V4|
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4 O. DRUET AND F. ROBERT

where V) is a solution of
AZVy =€ (11)
in R* satisfying Vy(z) < V5(0) = 0 for all z € R*. Moreover, since

lim fee'sdvg = / eVodx |
=708, (Rue) Bo(R)

equation (6) implies that €' € L' (R*). From the classification of the solutions of
equation (11) by Lin [8], we get that either

Vo(z) = —4In (1 + é@;) (12)

or there exists a > 0 such that

AVo > a (13)
in R*. Let us prove that we are in the first situation. For that purpose, we write
with the Green representation formula and equation (4) that

/ |Agav5|g5 dvg, = Me_2/ |Ag“a|g dvg
BO(R) st(Rlis)

<on? | [ 185Gl (440 +1) duy(y) doy(a)
TE€By, (Rue) JyeM

<cu [ (e ([ dy, )~ dvy (@) | dov,(y)
yeM IEBIE(RILE)
< CR?

thanks to standard estimates on the Green function and to (6) where C' > 0 denotes
some constant independent of R and € > 0. Letting ¢ — 0, we get that

/ |A¢Vol, de < CR?
Bo(R)

for all R > 0. This clearly eliminates the possibility (13). Then (12) must hold. It
is then easily checked that

R—+oc0e—0

lim lim fee¥sdvg = / eV dr = 6472 . (14)
Bl‘e (R”’E) R4

For k > 1, we say that H holds if there exist (z;c),_;
of points in M and (pic),_, , k sequences of positive real numbers going to 0

 k converging sequences

as ¢ — 0 such that f. (xi,g),u?’se“f(””ivf) = 1 and such that, after passing to a
subsequence, the following assertions hold :
(4}) 7%(95;';;”5) —+ooase —0forali,j=1,...,N,i#j.
(A%) We have that
|z
Ve (T) = ue (eXpwi’E (,ui)gx)) — U (250) = Vo(z) = —4In (1 + 8\/6)
in CfloC (IR4) ase —»0foralli=1,...,N.
(A3) For all i = 1,..., N, we have that

lim 1irr(1) foe¥e dv, = 647 .
R— —
tooe Bziyg (RIJ'LE)

Clearly, with what we said above, H; holds. We let now k£ > 1 and assume that
Hy holds. We also assume that

sup Ry, o (z)%"(®) — 400 ase — 0 (15)
M
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where

Ry (z) = izr{ﬂn dg (Tie,x) .

We prove in the following that, in this situation, H1 holds. For that purpose, we
let x;41, € M be such that

Ryo.c ($k+1,5)4 ete(Tht1,e) — SAu/Ip Rk’g(as)‘leuf(x) (16)

and we set

1 i
Hite = (fe (l‘k-‘rLE) euE(ka’E)) '
Since M is compact, (15) implies that pr11. — 0 as e — 0 and that

dg (xi,ea 'rk-i-l,a)
HE41,e
for all i = 1,...,k. Thanks to (A7), it is also easily checked that M —

400 as e — 0 for all i = 1,...,k so that (Aj,,) holds. It follows from’(lﬁ) and
(17) that

— 400 ase =0 (17)

lim sup (ue(2) — ue (Try1,)) =0
7028, (Ruksa )

Mimicking what we did above thanks to the Green representation formula, one
proves then that, after passing to a subsequence,

Ue (expwm,s (Mk+1,s$)) = Ue (Tpt1,6) = Vo(z)

1n Cl400

(R4) as ¢ — 0. And, as a consequence,

lim lim feetsdvg = 6472 .
R—+400e—0 Bka,E(RHHl,a)

Recollecting the informations above, one gets that Hy41 holds. Since (Ai) and
(A3) of Hj, imply that

/M feets dvg > 6472k + o(1),

we easily get thanks to (6) that there exists a maximal k, 1 <k < 5 417r2 / 7 bo dvg,

such that Hj holds. Arriving to this maximal k, we get that (15) can not hold.
Writing £ = N, we have finished the proof of Step 1. &

STEP 2 - For k=1, 2, 3, there exists C > 0 such that
R.(x)* }Vku€|g (z) < Ck
for allx € M and all € > 0. Here,
R.(z) = i_%nf ng (i, )

where the x; . ’s are as in Step 1.

PROOF OF STEP 2 - We use again the Green representation for u. that we differ-
entiate. We let . € M be such that z. # x;. for all ¢ = 1,...,N. Note that,
for . = z;., the estimates of the proposition are obvious. We write thanks to
standard estimates on the Green function that

Fug| (we) = _ e dy .

Fori=1,...,N, we let
Qi,s = {y € M, Rs(y) = dg (miﬁvy)}
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and we write that

1
/ et<lv) dvg(y)
Q

k
i€ dg (.’135, y)

1

=0 7/ e’ dv
dy (ve,7i)" Jou.n,,  (algmad) - 7
1 1
+0 / o 1 dvg(y)
Qi,e\Ba, . (M) dg (.1'57 y)k dg (ya Ii,s)

dg (5557 xi,a)

thanks to assertion d) of Step 1, to (6) and to some straightforward computations.
Step 2 clearly follows. O

STEP 3 - For any 1 < v < 2, there exists §, > 0 and C, > 0 such that
,L"?,(El_y)dg (Ii7s’ 1,)41/ eua(z) < Cy
foralli=1,...,N, alle > 0 and all x € B, (0,) where ;. and p;. are as in
Step 1. In particular, we have that
dg ($i7€a xj,a) > do
foralli, je{l,...,N}, i # j, where 69 > 0 is independent of € and i, j. At last,
this implies that u. — —oco as € — 0.

PrROOF OF STEP 3 - Fix 1 <v <2 Wesetfori=1,..., N
Ri o =mindy (Tie, ¥j.c) (18)
J#i

and we take some i € {1,..., N} such that there exists § > 0 such that
Ri,s S eRj,s (19)
forall j € {1,...,N}. We set

@ie(r) =r"exp ((Volg (83”5(7“)))_1/ Ue dag> (20)
9B., _(r)
for 0 < r <inj, (M). A simple consequence of assertion b) of Step 1 is that
¢i e (Ruie) <0 (21)
for € > 0 small and all R > R, where R?, = % We define r; . by

R
;e = inf {Ryui,g <r< % s.t. <p;»75(7") <0 in [Ruuija,r)} ) (22)
Note that, by (21), we have that
By oo ase 0. (23)
Hie
Let us assume that
rie >0 ase—=0. (24)
We set for 2 € By (6r; ), § > 0 small fixed,
Ve (T) = ue (eXpwi’E (riﬁgac)) —Cic (25)
where
-1
Cie= (Volg ((‘33%5 (rm))) / Ue dog . (26)
aB:ci.’E(ri,s)
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We also set, for j € S; = {j # i s.t. dg (zic,25:) =0 (1i2)},

Tje=r; 81 exp;ie (zje) and Z; = gl_I)I(l) Zje (27)

after passing to a subsequence, if necessary. Note that, thanks to (18), to (22) and

to the choice of i we made (see (19)), we have that |Z;| > 2 for all j € S; and that
|Z; — @] > 2 for all j, k € S;, j # k. By equation (4), we have that

A? v e~ T?;Q,Ediv!]i,s (Ai,avviﬁ) + Tﬁabi,e = fiePie (Ti,a) Té(lil’)evi’s (28)

Gie b i€

in By (57“2_51) where

gie(x) = (exp;m g) (riex) , Aje(z) = (exp;iys A5> (riex) ,

bie(x) = b (expwm (Ti,gsc)) and f; .(z) = f. (expwiyg (riysx)) .

Thanks to Step 2, we know that (v;.) is uniformly bounded in C?(K) for all
compact subsets K of R*\ {0, Z; }jesf,' Thanks to the definition (22) of r; . and to
(23), we have that

(29)

Pi,e (Ti,a) < Pie (R,ui,s)
for all R > R,. Thanks to assertion b) of Step 1 and to (23), it is now rather easily
checked that )
. . 4(1-v) _
RH i @ie (Rpie) e =0

since 1 < v < 2. Thus standard elliptic theory leads thanks to (28) and (29) that,
after passing to a subsequence,

vie — H; in Cf, (R4\ {O,QEj}jeSi) ase — 0 (30)

where H; satisfies

AZH; =0 in RN\ {0,7;}, 6 - (31)
Moreover, thanks to Step 2, we have that, for [ =1, 2, 3,
R(2)' |V Hi(z)]e < G in RN\{0, 25}, (32)
where
R(z) = min{|z]; [z — Z;[},c5, -
Equation (32) easily permits to prove that
1 1
Hi(z) = aln— + ajln —+p (33)
ERP ey

where o, § and the a;’s are real numbers. Integrating equation (28) over By (1)
and passing to the limit as & — 0 thanks to (29), (30) and (33), we obtain that

lim ;¢ (rie) r?(;*”)/ fiee" e dvg, . = —/ O, A¢H; dog = 8ar? .
€0 ' Bo(1) dBo(1)
With a change of variable, we get that
4(1—v Vi, e — Ue
Pie (Tie) Tz‘,(sl : / fiee” e dug, . = / fee"e dvg
Bo(1) Ba; (Ti,e)

so that
lim fee"s dv, = 8ar? . (34)

e—0 BTI 5(7’7"75)

Step 2 with k = 1 together with the definitions of R;. and r; . gives the existence
of some C' > 0 such that for any 0 <r < 3/2,

ue (exp,,_ (rew)) — e (exp,,_(riew))| < ©
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for all 2,y € R* such that |z| = |y| = r. With point b) of Step 1, (22) and (23),
we then get that for any n > 0, there exists R, > 0 such that for any R > R,, we

have that
dg(z, xi’s)zlueug(m) < 77/“;17(5”_1) (35)

for all x € By, . (ric) \ Ba, . (Rpie). With point b) of Step 1 and (35), we get that

lim foe's dv, = 6472 .
e—0 g
qu‘,yg(riys)

With (34), we obtain that o = 8. Integrating on Bz, (§) for § > 0 small instead of
By(1), one proves in the same way that a; > 8 for all j € S;. We let
_ 1
Hi(r) = ——— Hy(z)do .
)= g [ @) do

A simple computation gives that

d 4v  H;(r) @ 2 dv—1_H;(r)
%(T c ):4 vo2- ZSL@“Z L e
JES:

for r € (O, %) Since v < 2, we get in particular that

% (7”4V6Hi(r)) (1)<o0.

This clearly proves that

R;
Tie = 2’8 (36)

for all ¢ such that (19) holds. Thanks to (24), this in turn implies that R; . — 0
and that S; # (). Note that, for the moment, we have proved, with the help of Step
2 (see (35)), that the estimate of Step 3 holds if for any i € {1, ..., N}, we have that
R # 0 as ¢ = 0. Indeed, if this is the case, there exists some § > 0 such that
Rj.>dforall je{l,...,N} and one can easily repeat the above arguments with
any of the j’s in {1,..., N}. Thus, in order to end the proof of the step, it remains
to prove that R; . /~ 0ase — 0 for all i € {1,...,N}. We let igp € {1,...,N} be
such that, up to a subsequence,

Rige = zzllnlnN Ric .

We assume by contradiction that

lim Ry, . =0.

e—0

Clearly (19) holds for i = i, and (36) holds. It then follows from the definition of
Si, that for any i € S;, there exists C'(i) > 0 such that

Ri,s < C(i)Rj,s

forall j € {1,..., N}. It follows that (19) holds for all i € S;,, and that the preceding
analysis can be carried out. We pick up ¢ € S;, such that

dg(Tie; Tige) > dg(Tje, Tig )

for all j € S;, and all e > 0. With (27), we get that |Z;,| > |Z; — &;,| for all j € S,
Since S; = (Si, \ {i}) U {io}, we have that

|Zio| = |25 — T, |
for all j € S;. A consequence of this inequality is that
(Ziy, T5) > 0 (37)
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for all j € &;, where (-,-) denotes the Euclidean scalar product. This amounts
to assuming that all the Z;’s, j € S; lie in the same half-space which boundary
contains 0. Let 0 < § < 1. We write thanks to equation (28) that

/ V’Ui,EAii Evi75dvgi,s - 7“1»2’5/ vviﬁdivgi.s (Aiﬁvvi,&) dvgi,a
Bo(6) " Bo(9) '

=i (rie) ri(gl_y) / fieVevie dvg, . — rf’e/ bi e Ve dug, , .
By (9) Bo(9)

Integrating by parts, using the estimates of Step 2, (6) and (30), one can easily
estimate the different terms involved in this equation to arrive to

/ Vvi7EA3i Viedvg,, —0ase—0. (38)
Bo(9) ' '

Using the Cartan expansion of the metric in the exponential chart and the estimates
on the derivatives of v; ., some integrations by parts then lead with (30) to

/ Vi A2 vicdug, . - - / O H; (VAe¢H;,v), dog
Bo(5) ’ : B0 (5)

Jr/ alkHiVlAgHi dO’g
0Bo(9)

1
+*/ (Ain)2 Vi dO’g
2 JoB,(s)

as € — 0. We let

1
H;(x) = SIHH + Gi(z) .

Simple computations then give that

9i,

/ Vi e A2 ;- dve — 6412V G,(0)
By (8)

as € — 0. Coming back to (38), we obtain that VG;(0) = 0, a contradiction with
the choice of i we made in (37). This ends the proof of Step 3. Note that the fact
that . — —oo is a direct consequence of the estimate we just proved and of Step

2. &

We are now in position to conclude the proof of Theorem 1. Using the estimates
of Step 3, it is easily checked that

/ fee's dvg — 6472N ase — 0,
M

which gives the first assertion of the theorem thanks to (6). Since we already proved
that u. — —o0 as € — 0, it remains to prove the convergence of u. — @, outside the
concentration points and to prove the last property of the theorem concerning the
location of concentration points. We let S = {xi}izl 7777 N Where z; = lim._,0 ;.
We let zp € M \ S and we write with the Green representation formula that

e (@) = = [ Getan) (£ = b)) duyfo)

where G, is the Green function of L.. It is then easy to compute an asymptotic
expansion of the different terms involved to get that

N
%%%%%MﬁZG%m%AFQWMMWM) (39)

=1
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as € = 0 where G is the Green function of the limit operator Ly. The convergence
result in the theorem easily follows. The last part of the theorem is a consequence of
a Pohozaev-type identity. More precisely, we write in the exponential chart around
xz; € S and for § > 0 small enough that

/ (Lette + be) Vue dug = / fe€"*Vu. dvg
Ba; (9) Ba; (8)

thanks to equation (4). Integration by parts together with dominated convergence
theorem then lead to

V fo (i)

lim 1i “eVu, dug = —641% ————=
5230 230 Bm(é)fEe e " o (@)

thanks to Steps 1 to 3 and to (39). On the other hand, after integration by parts,
using (39), rather long but easy computations lead to

lim lim (Leue + be) Vue dvy = 6472V G, ()
§—0e—0 Ba, (5)

where

N
Gi(x) = 6473 (1, 2) + 6dr ;Gu,m - /MG<m,y> bo(y) dvg (1)

with 3 is the regular part of G. The last assertion of the theorem follows.
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