ON THE LOCAL NIRENBERG PROBLEM FOR THE Q-CURVATURES

PH. DELANOË, F. ROBERT

Abstract

The local image of each conformal Q-curvature operator on the sphere admits no scalar constraint although identities of Kazdan-Warner type hold for its graph

1. Introduction

Let us call admissible any couple of positive integers (m, n) such that $n>1$, and $n \geq 2 m$ in case n is even. Given such a couple (m, n), we will work on the standard n-sphere $\left(\mathbb{S}^{n}, g_{0}\right)$ with pointwise conformal metrics ${ }^{1} g_{u}=e^{2 u} g_{0}$ and discuss the structure near $u=0$ of the image of the conformal $2 m$-th order Q curvature increment operator $u \mapsto \mathbf{Q}_{m, n}[u]=Q_{m, n}\left(g_{u}\right)-Q_{m, n}\left(g_{0}\right)$ (see section 2), thus considering a local Nirenberg-type problem (Nirenberg's one was for $m=1$, cf. e.g. $[19,14,15]$ or $[1, ~ p .122])$. At the infinitesimal level, the situation looks as follows (dropping henceforth the subscript (m, n)):

Lemma 1. Let $L=d \mathbf{Q}[0]$ stand for the linearization at $u=0$ of the conformal Q-curvature increment operator and Λ_{1}, for the $(n+1)$-space of first spherical harmonics on $\left(\mathbb{S}^{n}, g_{0}\right)$. Then L is self-adjoint and $\operatorname{Ker} L=\Lambda_{1}$.

Besides, the graph $\Gamma(\mathbf{Q}):=\left\{(u, \mathbf{Q}[u]), u \in C^{\infty}\left(\mathbb{S}^{n}\right)\right\}$ of \mathbf{Q} in $C^{\infty}\left(\mathbb{S}^{n}\right) \times C^{\infty}\left(\mathbb{S}^{n}\right)$ admits scalar constraints which are the analogue for \mathbf{Q} of the so-called KazdanWarner identities for the conformal scalar curvature (i.e. when $m=1$) $[14,15,5]$. Here, a scalar constraint means a real-valued submersion defined near $\Gamma(\mathbf{Q})$ in $C^{\infty}\left(\mathbb{S}^{n}\right) \times C^{\infty}\left(\mathbb{S}^{n}\right)$ and vanishing on $\Gamma(\mathbf{Q})$. Specifically, we have:

Theorem 1. For each $(u, q) \in C^{\infty}\left(\mathbb{S}^{n}\right) \times C^{\infty}\left(\mathbb{S}^{n}\right)$ and each conformal Killing vector field X on $\left(\mathbb{S}^{n}, g_{0}\right)$:

$$
(u, q) \in \Gamma(\mathbf{Q}) \Longrightarrow \int_{\mathbb{S}^{n}}(X \cdot q) d \mu_{u}=0
$$

where $d \mu_{u}=e^{n u} d \mu_{0}$ stands for the Lebesgue measure of the metric g_{u}. In particular, there is no solution $u \in C^{\infty}\left(\mathbb{S}^{n}\right)$ to the equation:

$$
Q\left(g_{u}\right)=z+\text { constant }
$$

with $z \in \Lambda_{1}$.

[^0]Due to the naturality of Q (cf. Remark 2) and the self-adjointness of $d \mathbf{Q}[u]$ in $L^{2}\left(M_{n}, d \mu_{u}\right)(c f$. Remarks 3 and 4$)$, this theorem holds as a particular case of a general result (Theorem 3 below).
Can one do better than Theorem 1, drop the u variable occuring in the constraints and find constraints bearing on the sole image of the operator \mathbf{Q} ? Since L is self-adjoint in $L^{2}\left(\mathbb{S}^{n}, g_{0}\right)$ [12], Lemma 1 shows that the map $u \mapsto \mathbf{Q}[u]$ misses infinitesimally at $u=0$ a vector space of dimension $(n+1)$. How does this translate at the local level? Calling now a real valued map K, a scalar constraint for the local image of \mathbf{Q} near 0 , if K is a submersion defined near 0 in $C^{\infty}\left(\mathbb{S}^{n}\right)$ such that $K \circ \mathbf{Q}=0$ near 0 in $C^{\infty}\left(\mathbb{S}^{n}\right)$, a spherical symmetry argument (as in [8, Corollary $5]$) shows that if the local image of \mathbf{Q} admits a scalar constraint near 0 , it must admit $(n+1)$ independent such ones, that is the maximal expectable number. In this context, our main result is quite in contrast with Theorem 1, namely:

Theorem 2. The local image of \mathbf{Q} near 0 admits no scalar constraint.
Finally, the picture about the local image of the Q-curvature increment operator on $\left(\mathbb{S}^{n}, g_{0}\right)$ may be completed with a remark:

Remark 1. The local Nirenberg problem for \mathbf{Q} near 0 is governed by the nonlinear Fredholm formula (9) (cf. infra). In particular, as in [8, Corollary 5], a local result of Moser type [19] holds. Specifically, if $f \in C^{\infty}\left(\mathbb{S}^{n}\right)$ is close enough to zero and invariant under a nontrivial group of isometries of $\left(\mathbb{S}^{n}, g_{0}\right)$ acting without fixed points ${ }^{2}$, then $\mathcal{D}(f)=0$ in (9), hence f lies in the local image of \mathbf{Q}.

The outline of the paper is as follows. We first present (section 2) an independent account on general Kazdan-Warner type identities, implying Theorem 1. Then we focus on Theorem 2: we recall basic facts for the Q-curvature operators on spheres (section 3), then sketch the proof of Theorem 2 (section 4) relying on [8], reducing it to Lemma 1 and another key-lemma; we then carry out the proofs of the lemmas (sections 4 and 5), defering to Appendice A some eigenvalues calculations.

2. General identities of Kazdan-Warner type

The following statement is essentially due to Jean-Pierre Bourguignon [4]:
Theorem 3. Let M_{n} be a compact n-manifold and $g \mapsto D(g) \in C^{\infty}(M)$ be a scalar natural ${ }^{3}$ differential operator defined on the open cone of Riemannian metrics on M_{n}. Given a conformal class \boldsymbol{c} and a Riemannian metric $g_{0} \in \boldsymbol{c}$, sticking to the notation $g_{u}=e^{2 u} g_{0}$ for $u \in C^{\infty}(M)$, consider the operator $u \mapsto \mathbf{D}[u]:=D\left(g_{u}\right)$ and its linearization $L_{u}=d \mathbf{D}[u]$ at u. Assume that, for each $u \in C^{\infty}(M)$, the linear differential operator L_{u} is formally self-adjoint in $L^{2}\left(M, d \mu_{u}\right)$, where $d \mu_{u}=e^{n u} d \mu_{0}$ stands for the Lebesgue measure of g_{u}. Then, for any conformal Killing vector field X on $\left(M_{n}, \boldsymbol{c}\right)$ and any $u \in C^{\infty}(M)$, the following identity holds:

$$
\int_{M} X \cdot \mathbf{D}[u] d \mu_{u}=0
$$

[^1]In particular, if $\left(M_{n}, \boldsymbol{c}\right)$ is equal to \mathbb{S}^{n} equipped with its standard conformal class, there is no solution $u \in C^{\infty}\left(\mathbb{S}^{n}\right)$ to the equation:

$$
\mathbf{D}[u]=z+\text { constant }
$$

with $z \in \Lambda_{1}$ (a first spherical harmonic).
Proof. We rely on Bourguignon's functional integral invariants approach and follow the proof of [4, Proposition 3] (using freely notations from [4, p.101]), presenting its functional geometric framework with some care. We consider the affine Fréchet manifold Γ whose generic point is the volume form (possibly of odd type in case M is not orientable [9]) of a Riemannian metric $g \in \mathbf{c}$; we denote by ω_{g} the volume form of a metric g (recall the tensor ω_{g} is natural [21, Definition 2.1]). The metric $g_{0} \in \mathbf{c}$ yields a global chart of Γ defined by:

$$
\omega_{g} \in \Gamma \rightarrow u:=\frac{1}{n} \log \left(\frac{d \omega_{g}}{d \omega_{g_{0}}}\right) \in C^{\infty}\left(M_{n}\right)
$$

(viewing volume-forms like measures and using the Radon-Nikodym derivative) in other words, such that $\omega_{g}=e^{n u} \omega_{g_{0}}$; changes of such charts are indeed affine (and pure translations). It will be easier, though, to avoid the use of charts on Γ, except for proving that a 1-form is closed (cf. infra). The tangent bundle to Γ is trivial, equal to $T \Gamma=\Gamma \times \Omega^{n}\left(M_{n}\right)$ (setting $\Omega^{k}(A)$ for the k-forms on a manifold A), and there is a canonical Riemannian metric on Γ (of Fischer type [10]) given at $\omega_{g} \in \Gamma$ by:

$$
\forall(v, w) \in T_{\omega_{g}} \Gamma,\langle v, w\rangle:=\int_{M} \frac{d v}{d \omega_{g}} \frac{d w}{d \omega_{g}} \omega_{g} .
$$

From Riesz theorem, a tangent covector $a \in T_{\omega_{g}}^{*} \Gamma$ may thus be identified with a tangent vector $a^{\sharp} \in \Omega^{n}\left(M_{n}\right)$ or else with the function $\frac{d a^{\sharp}}{d \omega_{g}}=$: $\rho_{g}(a) \in C^{\infty}\left(M_{n}\right)$ such that:

$$
\begin{equation*}
\forall \varpi \in T_{\omega_{g}} \Gamma, a(\varpi)=\int_{M} \rho_{g}(a) \varpi \tag{1}
\end{equation*}
$$

We also consider the Lie group G of conformal maps on (M_{n}, \mathbf{c}), acting on the manifold Γ by:

$$
\left(\varphi, \omega_{g}\right) \in G \times \Gamma \rightarrow \varphi^{*} \omega_{g} \in \Gamma
$$

(indeed, we have $\varphi^{*} \omega_{g}=\omega_{\varphi^{*} g}$ by naturality and $\varphi \in G \Rightarrow \varphi^{*} g \in \mathbf{c}$). For each conformal Killing field X on $\left(M_{n}, \mathbf{c}\right)$, the flow of X as a map $t \in \mathbb{R} \rightarrow \varphi_{t} \in G$ yields a vector field \bar{X} on Γ defined by:

$$
\omega_{g} \mapsto \bar{X}\left(\omega_{g}\right):=\frac{d}{d t}\left(\varphi_{t}^{*} \omega_{g}\right)_{t=0} \equiv L_{X} \omega_{g}
$$

(L_{X} standing here for the Lie derivative on M_{n}). In this context, regardless of any Banach completion, one may define the (global) flow $t \in \mathbb{R} \rightarrow \overline{\varphi_{t}} \in \operatorname{Diff}(\Gamma)$ of \bar{X} on the Fréchet manifold Γ by setting:

$$
\forall \omega_{g} \in \Gamma, \overline{\varphi_{t}}\left(\omega_{g}\right):=\varphi_{t}^{*} \omega_{g}
$$

indeed, the latter satisfies (see e.g. [16, p.33]):

$$
\frac{d}{d t}\left(\varphi_{t}^{*} \omega_{g}\right)=\varphi_{t}^{*}\left(L_{X} \omega_{g}\right) \equiv L_{X}\left(\varphi_{t}^{*} \omega_{g}\right)=\bar{X}\left[\bar{\varphi}_{t}\left(\omega_{g}\right)\right]
$$

With the flow $\left(\bar{\varphi}_{t}\right)_{t \in \mathbb{R}}$ at hand, we can define the Lie derivative $L_{\bar{X}}$ of forms on Γ as usual, by $L_{\bar{X}} a:=\frac{d}{d t}\left(\bar{\varphi}_{t}{ }^{*} a\right)_{t=0}$. Finally, one can checks Cartan's formula for \bar{X}, namely (setting $i_{\bar{X}}$ for the interior product with \bar{X}):

$$
\begin{equation*}
L_{\bar{X}}=i_{\bar{X}} d+d i_{\bar{X}} \tag{2}
\end{equation*}
$$

by verifying it for a generic function f on Γ and for its exterior derivative $d f$ (with d defined as in [17]).
Following [4], and using our global chart $\omega_{g} \mapsto u(c f$. supra), we apply (2) to the 1-form σ on Γ defined at ω_{g} by the function $\rho_{g}(\sigma):=\mathbf{D}[u]$ (see (1)). Arguing as in [4, p.102], one readily verifies in the chart u (and using constant local vector fields on Γ) that the 1-form σ is closed due to the self-adjointness of the linearized operator L_{u} in $L^{2}\left(M_{n}, d \mu_{u}\right)$; furthermore (dropping the chart u), one derives at once the G-invariance of σ from the naturality of $g \mapsto D(g)$. We thus have $d \sigma=0$ and $L_{\bar{X}} \sigma=0$, hence $d\left(i_{\bar{X}} \sigma\right)=0$ by (2). So the function $i_{\bar{X}} \sigma$ is constant on Γ, in other words $\int_{M} \mathbf{D}[u] L_{X} \omega_{u}$ is independent of u, or else, integrating by parts, so is $\int_{M} X \cdot \mathbf{D}[u] d \mu_{u}$ (where X. stands for X acting as a derivation on real-valued functions on M_{n}).
To complete the proof of the first part of Theorem 3, let us show that the integrand of the latter expression at $u=0$, namely $X \cdot D\left(g_{0}\right)$, vanishes for a suitable choice of the metric g_{0} in the conformal class \mathbf{c}. To do so, we recall the Ferrand-Obata theorem $[18,20]$ according to which, either the conformal group G is compact, or if not then $\left(M_{n}, \mathbf{c}\right)$ is equal to \mathbb{S}^{n} equipped with its standard conformal class. In the former case, averaging on G, we may pick $g_{0} \in \mathbf{c}$ invariant under the action of G : with g_{0} such, so is $D\left(g_{0}\right)$ by naturality, hence indeed $X \cdot D\left(g_{0}\right) \equiv 0$. In the latter case, as observed below (section 5.1) $D\left(g_{0}\right)$ is constant on \mathbb{S}^{n} hence the desired result follows again.
Finally, the last assertion of the theorem ${ }^{4}$ follows from the first one, by taking for the vector field X the gradient of z with respect to the standard metric of \mathbb{S}^{n}, which is conformal Killing as well-known.

3. Back to Q-curvatures on spheres: Basic facts recalled

3.1. The special case $n=2 \mathrm{~m}$. Here we will consider the Q-curvature increment operator given by $\mathbf{Q}[u]=Q\left(g_{u}\right)-Q_{0}$, with

$$
\begin{equation*}
Q\left(g_{u}\right)=e^{-2 m u}\left(Q_{0}+P_{0}[u]\right) \tag{3}
\end{equation*}
$$

where, on $\left(\mathbb{S}^{n}, g_{0}\right), Q_{0}=Q\left(g_{0}\right)$ is equal to $Q_{0}=(2 m-1)$! and (see $\left.[6,2]\right)$:

$$
\begin{equation*}
P_{0}=\prod_{k=1}^{m}\left[\Delta_{0}+(m-k)(m+k-1)\right] \tag{4}
\end{equation*}
$$

setting henceforth Δ_{0} (resp. ∇_{0}) for the positive laplacian (resp. the gradient) operator of $g_{0}\left(P_{0}\right.$ is the so-called Paneitz-Branson operator of the metric $\left.g_{0}\right)$.

Remark 2. One can define [7] a Paneitz-Branson operator P_{0} for any metric g_{0} (given by a formula more general than (4) of course), and a Q-curvature $Q\left(g_{0}\right)$ transforming like (3) under the conformal change of metrics $g_{u}=e^{2 u} g_{0}$. Importantly

[^2]then, the map $g \mapsto Q(g) \in C^{\infty}\left(\mathbb{S}^{n}\right)$ is natural, meaning (see e.g. [21, Definition 2.1]) that for any diffeomeorphism ψ we have:
\[

$$
\begin{equation*}
\psi^{*} Q(g)=Q\left(\psi^{*} g\right) \tag{5}
\end{equation*}
$$

\]

Remark 3. From (3) and the formal self-adjointness of P_{0} in $L^{2}\left(\mathbb{S}^{n}, d \mu_{0}\right)$ [12, p.91], one readily verifies that, for each $u \in C^{\infty}\left(\mathbb{S}^{n}\right)$, the linear differential operator $d \mathbf{Q}[u]$ is formally self-adjoint in $L^{2}\left(\mathbb{S}^{n}, d \mu_{u}\right)$.
3.2. The case $n \neq 2 m$. The expression of the Paneitz-Branson operator on $\left(\mathbb{S}^{n}, g_{0}\right)$ becomes [13, Proposition 2.2]:

$$
\begin{equation*}
P_{0}=\prod_{k=1}^{m}\left[\Delta_{0}+\left(\frac{n}{2}-k\right)\left(\frac{n}{2}+k-1\right)\right] \tag{6}
\end{equation*}
$$

while the corresponding one for the metric $g_{u}=e^{2 u} g_{0}$ is given by:

$$
\begin{equation*}
P_{u}(.)=e^{-\left(\frac{n}{2}+m\right) u} P_{0}\left[e^{\left(\frac{n}{2}-m\right) u} .\right] \tag{7}
\end{equation*}
$$

with the Q-curvature of g_{u} given accordingly by $\left(\frac{n}{2}-m\right) Q\left(g_{u}\right)=P_{u}(1)$. The analogue of Remark 2 still holds (now see [11, 12]). We will consider the (renormalized) Q-curvature increment operator: $\mathbf{Q}[u]=\left(\frac{n}{2}-m\right)\left[Q\left(g_{u}\right)-Q_{0}\right]$, now with:

$$
\begin{equation*}
\left(\frac{n}{2}-m\right) Q_{0}=\left(\frac{n}{2}-m\right) Q\left(g_{0}\right)=P_{0}(1)=\prod_{k=0}^{2 m-1}\left(k+\frac{n}{2}-m\right) \tag{8}
\end{equation*}
$$

Remark 4. Finally, we note again that the linearized operator $d \mathbf{Q}[u]$ is formally self-adjoint in $L^{2}\left(\mathbb{S}^{n}, d \mu_{u}\right)$. Indeed, a straightforward calculation yields

$$
d \mathbf{Q}[u](v)=\left(\frac{n}{2}-m\right) P_{u}(v)-\left(\frac{n}{2}+m\right) P_{u}(1) v
$$

and the Paneitz-Branson operator P_{u} is known to be self-adjoint in $L^{2}\left(\mathbb{S}^{n}, d \mu_{u}\right)$ [12, p.91].

For later use, and in all the cases for (m, n), we will set p_{0} for the degree m polynomial such that $P_{0}=p_{0}\left(\Delta_{0}\right)$.

4. Proof of Theorem 2

The case $m=1$ was settled in [8] with a proof robust enough to be followed again. For completeness, let us recall how it goes (see [8] for details).
If \mathcal{P}_{1} stands for the orthogonal projection of $L^{2}\left(\mathbb{S}^{n}, g_{0}\right)$ onto Λ_{1}, Lemma 1 and the self-adjointsess of L imply [8, Theorem 7] that the modified operator

$$
u \mapsto \mathbf{Q}[u]+\mathcal{P}_{1} u
$$

is a local diffeomorphism of a neighborhood of 0 in $C^{\infty}\left(\mathbb{S}^{n}\right)$ onto another one: set \mathcal{S} for its inverse and $\mathcal{D}=\mathcal{P}_{1} \circ \mathcal{S}$ (defect map). Then $u=\mathcal{S} f$ satisfies the local non-linear Fredholm-like equation:

$$
\begin{equation*}
\mathbf{Q}[u]=f-\mathcal{D}(f) \tag{9}
\end{equation*}
$$

Moreover [8, Theorem 2] if a local constraint exists for \mathbf{Q} at 0 , then $\mathcal{D} \circ \mathbf{Q}=0$ (recalling the above symmetry fact). Fixing $z \in \Lambda_{1}$, we will prove Theorem 2 by showing that $\mathcal{D} \circ \mathbf{Q}[t z] \neq 0$ for small $t \in \mathbb{R}$; here is how.

On the one hand, setting

$$
u_{t}=\mathcal{S} \circ \mathbf{Q}[t z]:=t u_{1}+t^{2} u_{2}+t^{3} u_{3}+O\left(t^{4}\right)
$$

Lemma 1 yields $u_{1}=0$ and the following expansion holds (as a general fact, easily verified):

$$
\begin{equation*}
\mathbf{Q}\left[u_{t}\right]+\mathcal{P}_{1} u_{t}=t^{2}\left(L+\mathcal{P}_{1}\right) u_{2}+t^{3}\left(L+\mathcal{P}_{1}\right) u_{3}+O\left(t^{4}\right) \tag{10}
\end{equation*}
$$

On the other hand, let us consider the expansion of $\mathbf{Q}[t z]$:

$$
\begin{equation*}
\mathbf{Q}[t z]=t^{2} c_{2}[z]+t^{3} c_{3}[z]+O\left(t^{4}\right) \tag{11}
\end{equation*}
$$

and focus on its third order coefficient $c_{3}[z]$, for which we will prove:
Lemma 2. Let (m, n) be admissible, then

$$
\int_{\mathbb{S}^{n}} z c_{3}[z] d \mu_{0} \neq 0
$$

Granted Lemma 2, we are done: indeed, the equality

$$
\mathbf{Q}\left[u_{t}\right]+\mathcal{P}_{1} u_{t}=\mathbf{Q}[t z]
$$

combined with (10)-(11), yields

$$
\left(L+\mathcal{P}_{1}\right) u_{3}=c_{3}[z],
$$

which, integrated against z, implies:

$$
\int_{\mathbb{S}^{n}} z \mathcal{P}_{1} u_{3} d \mu_{0} \neq 0
$$

(recalling L is self-adjoint and $z \in \operatorname{Ker} L$ by Lemma 1). Therefore $\mathcal{P}_{1} u_{3} \neq 0$, hence also $\mathcal{D} \circ \mathbf{Q}[t z] \neq 0$.
We have thus reduced the proof of Theorem 2 to those of Lemmas 1 and 2, which we now present.

5. Proof of Lemma 1

5.1. Proof of the inclusion $\Lambda_{1} \subset \operatorname{Ker} L$. We need neither ellipticity nor conformal covariance for this inclusion to hold; the naturality (5) suffices. Let us provide a general result implying at once the one we need, namely:

Proposition 1. Let $g \mapsto D(g)$ be any scalar natural differential operator on \mathbb{S}^{n}, defined on the open cone of Riemannian metrics, valued in $C^{\infty}\left(\mathbb{S}^{n}\right)$. For each $u \in C^{\infty}\left(\mathbb{S}^{n}\right)$, set $\mathbf{D}[u]=D\left(g_{u}\right)-D\left(g_{0}\right)$ and $L=d \mathbf{D}[0]$, where $g_{u}=e^{2 u} g_{0}$. Then $\Lambda_{1} \subset \operatorname{Ker} L$.

Proof. Let us first observe that $D\left(g_{0}\right)$ must be constant. Indeed, for each isometry ψ of $\left(\mathbb{S}^{n}, g_{0}\right)$, the naturality of D implies $\psi^{*} D\left(g_{0}\right) \equiv D\left(g_{0}\right)$; so the result follows because the group of such isometries acts transitively on \mathbb{S}^{n}. Morally, since g_{0} has constant curvature, this result is also expectable from the theory of Riemannian invariants (see [21] and references therein), here though, without any regularity (or polynomiality) assumption.
Given an arbitrary nonzero $z \in \Lambda_{1}$, let $S=S(z) \in \mathbb{S}^{n}$ stand for its corresponding "south pole" (where $z(S)=-M$ is minimum) and, for each small real t, let ψ_{t} denote the conformal diffeomorphism of \mathbb{S}^{n} fixing S and composed elsewhere of:

Ster $_{S}$, the stereographic projection with pole S, the dilation $X \in \mathbb{R}^{n} \mapsto e^{M t} X \in \mathbb{R}^{n}$, and the inverse of Ster_{S}. As t varies, the family ψ_{t} satisfies :

$$
\psi_{0}=I, \quad \frac{d}{d t}\left(\psi_{t}\right)_{t=0}=-\nabla_{0} z
$$

and if we set $e^{2 u_{t}} g_{0}=\psi_{t}^{*} g_{0}$ we get:

$$
\frac{d}{d t}\left(u_{t}\right)_{t=0} \equiv z
$$

Recalling $D\left(g_{0}\right)$ is constant, the naturality of D implies

$$
\mathbf{D}\left[u_{t}\right]=\psi_{t}^{*} D\left(g_{0}\right)-D\left(g_{0}\right)=0
$$

in particular, differentiating this equation at $t=0$ yields $L z=0$ hence we may conclude: $\Lambda_{1} \subset$ Ker L.
5.2. Proof of the reversed inclusion Ker $\mathbf{L} \subset \Lambda_{1}$. To prove Ker $L \subset \Lambda_{1}$, let us argue by contradiction and assume the existence of a nonzero $v \in \Lambda_{1}^{\perp} \cap \operatorname{Ker} \mathrm{L}$. If \mathcal{B} is an othonormal basis of eigenfunctions of Δ_{0} in $L^{2}\left(\mathbb{S}^{n}, d \mu_{0}\right)$, there exists an integer $i \neq 1$ and a function $\varphi_{i} \in \Lambda_{i} \cap \mathcal{B}$ (where Λ_{i} henceforth denotes the space of i-th spherical harmonics) such that

$$
\int_{\mathbb{S}^{n}} \varphi_{i} v d \mu_{0} \neq 0
$$

(actually $i \neq 0$, due to $\int_{\mathbb{S}^{n}} v d \mu_{0}=0$, obtained just by averaging $L v=0$ on \mathbb{S}^{n}). By the self-adjointness of L, we may write:

$$
0=\int_{\mathbb{S}^{n}} \varphi_{i} L v d \mu_{0}=\int_{\mathbb{S}^{n}} v L \varphi_{i} d \mu_{0}
$$

infer (see below):

$$
0=\left[p_{0}\left(\lambda_{i}\right)-p_{0}\left(\lambda_{1}\right)\right] \int_{\mathbb{S}^{n}} \varphi_{i} v d \mu_{0}
$$

and get the desired contradiction, because $p_{0}\left(\lambda_{i}\right) \neq p_{0}\left(\lambda_{1}\right)$ for $i \neq 1$ (cf. Appendix A). Here, we used the following auxiliary facts, obtained by differentiating (3) or (7) at $u=0$ in the direction of $w \in C^{\infty}\left(\mathbb{S}^{n}\right)$:

$$
\begin{aligned}
& n=2 m \quad \Rightarrow \quad L w=P_{0}(w)-n!w \\
& n \neq 2 m \quad \Rightarrow \quad L w=\left(\frac{n}{2}-m\right) P_{0}(w)-\left(\frac{n}{2}+m\right) p_{0}\left(\lambda_{0}\right) w .
\end{aligned}
$$

From $\Lambda_{1} \subset$ Ker L, we get, taking $w=z \in \Lambda_{1}$:

$$
\begin{align*}
& n=2 m \quad \Rightarrow \quad p_{0}\left(\lambda_{1}\right)-n!=0 \\
& n \neq 2 m \quad \Rightarrow \quad\left(\frac{n}{2}-m\right) p_{0}\left(\lambda_{1}\right)-\left(\frac{n}{2}+m\right) p_{0}\left(\lambda_{0}\right)=0 . \tag{12}
\end{align*}
$$

Moreover, taking $w=\varphi_{i} \in \Lambda_{i}$, we then have:

$$
\begin{aligned}
& n=2 m \quad \Rightarrow \quad L \varphi_{i}=\left[p_{0}\left(\lambda_{i}\right)-p_{0}\left(\lambda_{1}\right)\right] \varphi_{i} \\
& n \neq 2 m \quad \Rightarrow \quad L \varphi_{i}=\left(\frac{n}{2}-m\right)\left[p_{0}\left(\lambda_{i}\right)-p_{0}\left(\lambda_{1}\right)\right] \varphi_{i} .
\end{aligned}
$$

6. Proof of Lemma 2

6.1. Case $m=2 n$. For fixed $z \in \Lambda_{1}$ and for $t \in \mathbb{R}$ close to 0 , let us compute the third order expansion of $\mathbf{Q}[t z]$. By Lemma 1 it vanishes up to first order. Noting the identity

$$
\forall v \in \Lambda_{1}, \frac{\mathbf{Q}[v]}{Q_{0}} \equiv e^{-n v}(1+n v)-1
$$

we find at once:

$$
\frac{\mathbf{Q}[t z]}{Q_{0}}=-2 m^{2} t^{2} z^{2}+\frac{8}{3} m^{3} t^{3} z^{3}+O\left(t^{4}\right)
$$

in particular (with the notation of section 1)

$$
c_{3}[z]=\frac{8}{3} m^{3} Q_{0} z^{3}
$$

and Lemma 2 holds trivially.
6.2. Case $m \neq 2 n$. In this case, calculations are drastically simplified by picking the nonlinear argument of P_{0} in $P_{u}(1)$, namely $w:=\exp \left[\left(\frac{n}{2}-m\right) u\right]$ (see (7)), as new parameter for the local image of the conformal curvature-increment operator. Since w is close to 1 , we further set $w=1+v$, so the conformal factor becomes:

$$
e^{2 u}=(1+v)^{\frac{4}{n-2 m}}
$$

and the renormalized Q-curvature increment operator reads accordingly:

$$
\begin{equation*}
\mathbf{Q}[u] \equiv \tilde{Q}[v]:=(1+v)^{1-2^{\star}} P_{0}(1+v)-\left(\frac{n}{2}-m\right) Q_{0} \tag{13}
\end{equation*}
$$

where 2^{\star} stands in our context for $\frac{2 n}{n-2 m}$ (admittedly a loose notation, customary for critical Sobolev exponents). Of course, Lemma 1 still holds for the operator \tilde{Q} (with $\tilde{L}:=d \tilde{Q}[0] \equiv \frac{2^{\star}}{n} L$) and proving Theorem 2 (section 4) for \tilde{Q} is equivalent to proving it for \mathbf{Q}. Altogether, we may thus focus on the proof of Lemma 2 for \tilde{Q} instead of \mathbf{Q}^{5}.

Picking z and t as above, plugging $v=t z$ in (13), and using (from (12)):

$$
P_{0}(z)=p_{0}\left(\lambda_{1}\right) z \equiv\left(2^{\star}-1\right)\left(\frac{n}{2}-m\right) Q_{0} z
$$

we readily calculate the expansion:

$$
\frac{1}{\left(\frac{n}{2}-m\right) Q_{0}} \tilde{Q}[t z]=-\frac{1}{2}\left(2^{\star}-2\right)\left(2^{\star}-1\right) t^{2} z^{2}+\frac{1}{3}\left(2^{\star}-2\right)\left(2^{\star}-1\right) 2^{\star} t^{3} z^{3}+O\left(t^{4}\right)
$$

thus find for its third order coefficient:

$$
\frac{1}{\left(\frac{n}{2}-m\right) Q_{0}} \tilde{c}_{3}[z]=\frac{1}{3}\left(2^{\star}-2\right)\left(2^{\star}-1\right) 2^{\star} z^{3} .
$$

So Lemma 2 obviously holds.

[^3]
Appendix A. Eigenvalues calculations

As well known (see e.g. [3]), for each $i \in \mathbb{N}$, the i-th eigenvalue of Δ_{0} on \mathbb{S}^{n} is equal to $\lambda_{i}=i(i+n-1)$. Recalling (6), we have to calculate

$$
p_{0}\left(\lambda_{i}\right)=\prod_{k=1}^{m}\left[\lambda_{i}+\left(\frac{n}{2}-k\right)\left(\frac{n}{2}+k-1\right)\right]
$$

Setting provisionally

$$
r=\frac{n-1}{2}, s_{k}=k-\frac{1}{2}
$$

so that:

$$
\frac{n}{2}-k=r-s_{k}, \frac{n}{2}+k-1=r+s_{k}, \lambda_{i}=i^{2}+2 i r
$$

we can rewrite:

$$
\begin{aligned}
p_{0}\left(\lambda_{i}\right) & =\prod_{k=1}^{m}\left[(i+r)^{2}-s_{k}^{2}\right] \\
& =\prod_{k=1}^{m}\left(\frac{1}{2}+i+r-k\right)\left(\frac{1}{2}+i+r+k-1\right) \\
& \equiv \prod_{k=0}^{2 m-1}\left(\frac{1}{2}+i+r-m+k\right)
\end{aligned}
$$

getting (back to m, n and k only)

$$
p_{0}\left(\lambda_{i}\right)=\prod_{k=0}^{2 m-1}\left(i+\frac{n}{2}-m+k\right) .
$$

In particular, we have:

$$
P_{0}(1) \equiv p_{0}\left(\lambda_{0}\right)=\left(\frac{n}{2}-m\right) \prod_{k=1}^{2 m-1}\left(\frac{n}{2}-m+k\right)
$$

as asserted in (8) (and consistently there with the value of Q_{0} in case $n=2 m$). An easy induction argument yields:

$$
\forall i \in \mathbb{N}, p_{0}\left(\lambda_{i+1}\right)=\frac{\left(\frac{n}{2}+m+i\right)}{\left(\frac{n}{2}-m+i\right)} p_{0}\left(\lambda_{i}\right)
$$

(consistently when $i=0$ with (12)), which implies: $\forall i \in \mathbb{N},\left|p_{0}\left(\lambda_{i+1}\right)\right|>\left|p_{0}\left(\lambda_{i}\right)\right|$, hence in particular $p_{0}\left(\lambda_{i}\right) \neq p_{0}\left(\lambda_{1}\right)$ for $i>1$ as required in the proof of Lemma 1. Moreover, it readily implies the final formula:

$$
\forall i \geq 1, p_{0}\left(\lambda_{i}\right)=\frac{\left(\frac{n}{2}+m\right) \ldots\left(\frac{n}{2}+m+i-1\right)}{\left(\frac{n}{2}-m\right) \ldots\left(\frac{n}{2}-m+i-1\right)} p_{0}\left(\lambda_{0}\right)
$$

Acknowledgement: It is a pleasure to thank Colin Guillarmou for providing us with the explicit formula of the conformally covariant powers of the laplacian on the sphere [13, Proposition 2.2].

References

[1] Th. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der math. Wissensch. 252 (Springer, New-York, 1982)
[2] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Annals of Math 138 (1993) 213-242
[3] M. Berger, P. Gauduchon \& E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194 Springer-Verlag (1971)
[4] J.-P. Bourguignon, Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique, Lecture Notes in Math. 1209 Springer-Verlag (1986) 100-108
[5] J-P. Bourguignon \& J-P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc. 301 (1987) 723-736
[6] T. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987) 199-293
[7] T. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995) 3671-3742
[8] Ph. Delanoë, Local solvability of elliptic, and curvature, equations on compact manifolds, J. reine angew. Math. 558 (2003) 23-45
[9] G. De Rham, Variétés différentiables, Publ. Univ. Nancago III, Hermann, Paris 1960
[10] Th. Friedrich, Die Fischer-Information und symplektische Strukturen, Math. Nachr. 153 (1991) 273-296
[11] C. Robin Graham, R. Jenne, L.J. Mason \& G.A.J. Sparling, Conformally invariant powers of the laplacian, I: existence, J. London Math. Soc. 46:2 (1992) 557-565
[12] C. Robin Graham \& M. Zworski, Scattering matrix in conformal geometry, Invent. math. 152 (2003) 89-118
[13] C. Guillarmou \& F. Naud, Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds, Comm. Anal. Geom., to appear.
[14] J.L. Kazdan \& F.W. Warner, Curvature functions on compact 2-manifolds, Annals of Math. 99 (1974) 14-47
[15] J.L. Kazdan \& F.W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Diff. Geom. 10 (1975) 113-134
[16] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Interscience, vol. I (1963)
[17] S. Lang, Introduction to differentiable manifolds, John Wiley \& Sons, Inc., New-York 1962
[18] J. Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes: application à la démonstration d'une conjecture de A. Lichnerowicz, C. R. Acad. Sci. Paris, Sér. A 269 (1969) 583-586
[19] J. Moser, On a nonlinear problem in differential geometry, in: Dynamical systems (edit. M. Peixoto), Academic Press (1973), 273-279
[20] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1971) 247-258
[21] P. Stredder, Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups, J. Diff. Geom. 10 (1975) 647-660.

Authors common address:
Université de Nice-Sophia Antipolis Laboratoire J.-A. Dieudonné, Parc Valrose

F-06108 Nice CEDEX 2
first author's e-mail: delphi@math.unice.fr second author's e-mail: frobert@math.unice.fr

[^0]: Key words and phrases. conformal Q-curvature, Nirenberg problem, Paneitz-Branson operators, local image, constraints, Kazdan-Warner identities.

 The first author is supported by the CNRS.
 ${ }^{1}$ all objects will be taken smooth

[^1]: 2^{2} which is more general than a free action
 $3_{\text {in }}$ the sense of [21], see (5) below

[^2]: ${ }^{4}$ morally consistent with Proposition 1 (below) and Fredholm theorem if L_{0} is elliptic

[^3]: ${ }^{5}$ exercise (for the frustrated reader): prove Lemma 2 directly for \mathbf{Q} (it takes a few pages)

