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Abstract

On a Riemannian manifold (M, g) endowed with a Riemannian flow, we study in this paper the
curvature term in the Bochner-Weitzenböck formula of the basic Laplacian. We prove that this
term splits into two parts; a first part that depends on the curvature operator of the manifold
M and a second part that can be expressed in terms of the O’Neill tensor of the flow. After
getting a lower bound for this curvature term depending on a bound of each of these two parts,
we establish an eigenvalue estimate for the basic Laplacian. We then discuss the limiting case
of this latter estimate and prove that, when equality occurs, the manifold M is isometric to a
local product.
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1 Introduction

Given a Riemannian manifold (Mn, g) of dimension n, the Hodge Laplacian ∆ = dδ + δd (δ being
the L2-adjoint of d) is related to the curvature operator on M through the Bochner-Weitzenböck
formula. Namely, the formula is

∆ = ∇∗∇+ B[p],

where B[p], usually called the Bochner operator, is a symmetric endomorphism on the bundle of
p-forms Λp(M) given by B[p] =

∑n
i,j=1 ej ∧ (eiyRM (ej , ei)). Here RM is the curvature operator

associated to the Levi-Civita connection ∇M on M considered as RM (X,Y ) = ∇M
[X,Y ]− [∇M

X ,∇M
Y ]

and {ei}i=1,··· ,n denotes a local orthonormal frame of TM. In all the paper, we shall identify vector
fields with their corresponding 1-forms through the usual musical isomorphism.

It is clear that the Bochner-Weitzenböck formula is a useful tool to estimate the eigenvalues of
the Laplacian on a compact manifold, since any lower bound of the Bochner operator provides a
lower bound for the eigenvalues. For example, when p = 1, A. Lichnerowicz [13] proved that if B[1]

(that is, the Ricci tensor of the manifold) is greater than some positive number k, the first positive
eigenvalue is greater than n

n−1k. This inequality was later characterized by M. Obata in [19] who
shows that equality occurs if and only if the manifold is isometric to a round sphere.

Another estimate of the Bochner operator was obtained by Gallot and Meyer in [7] when p =
1, · · · , n− 1. Indeed, they showed that if the curvature operator of M, considered as a symmetric
2-tensor, has a lower bound k then B[p] is always greater than p(n− p)k. This inequality has led to
the following rigidity result [7, Prop. 2.9]: when the lower bound k is positive, all the cohomology
groups Hp(M) vanish which means that the manifold M is cohomologically isometric to a round
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sphere. Moreover, based on the same inequality, they proved the following estimates for the first
eigenvalues λ′1,p and λ′′1,p of the Laplacian restricted respectively to closed and co-closed p-forms.
Namely,

λ′1,p ≥ kp(n− p+ 1) and λ′′1,p ≥ k(p+ 1)(n− p). (1)

Besides the round sphere of curvature k, the authors provided examples of hypersurfaces in the
complex projective space where the equality in (1) is attained [7, Prop. 8.1].

In [23], A. Savo used a new technique to bound the Bochner operator for submanifolds. In fact, on
a given Riemannian manifold M of dimension n and a submanifold Σ, he expressed the curvature
operator of Σ in terms of the one on M and of the second fundamental form of the immersion
through the Gauss formula. Indeed, he showed that the term B[p], acting on p-forms of Σ, can be
split into two parts: the restriction part B[p]

res that mainly depends on the ambient manifold M and
the exterior part B[p]

ext that is determined by the Weingarten tensor S [23, Thm. 1]. The proof is
based on the expression of the Bochner operator B[p] in terms of the curvature of the manifold Σ
through the Clifford Lie bracket used in [21, Lemma 4.7] (see also [23, Thm. 17]). In particular he
proved that, for a hypersurface Σ, the following inequality

B[p] ≥ p(n− p)(γM + βp(Σ)) (2)

holds, where γM is a lower bound of the curvature operator of M and βp(Σ) is the lowest eigenvalue
of the operator T [p] := (trS)S[p] − S[p] ◦ S[p]. The operator S[p] is some canonical extension of S to
differential p-forms on Σ. Then, he deduced from Inequality (2) several rigidity results; among them
on the vanishing of de Rham cohomology groups of Σ, on the existence of compact hypersurfaces
of the round sphere having nonnegative sectional curvature, etc. Also with the help of the Bochner-
Weitzenböck formula, he found a new sharp estimate for the eigenvalues of the Laplacian on Σ.
Note that this last eigenvalue estimate has been later generalized to all codimensions in [4].

In this paper, we consider Riemannian foliations (see Section 2 for the definition) which are the
global geometric aspects of Riemannian submersions. As in Savo’s work, we aim to express the
Bochner operator in the transverse Bochner-Weitzenböck formula [11] in terms of the geometric
data of the foliations. With the help of the O’Neill formulas [20] we prove that, for Riemannian
flows (Riemannian foliations of 1-dimensional leaves), the Bochner operator splits into a restriction
part and an exterior part (see Equation (8)). The former part depends on the geometry of the
ambient manifold while the latter involves the O’Neill tensor. We deduce in Corollary 5.3 a lower
bound for this operator leading to vanishing results on the basic cohomology groups (see Corollary
5.4). Also, we establish a sharp estimate for the first positive eigenvalue λ1,p of the basic Laplacian
restricted to p-forms (1 ≤ p ≤ [ q

2 ] where q is the codimension of the flow) on minimal flows (that
is, the leaves are minimal submanifolds). Namely, we show

Theorem 1.1 Let (M, g) be a compact Riemannian manifold endowed with a minimal Riemannian
flow of codimension q. Let p be any integer number such that 1 ≤ p ≤ m with m = [ q

2 ]. Then the
first positive eigenvalue of the basic Laplacian acting on basic p-forms satisfies

λ1,p ≥ p(q − p+ 1)(γM + β1
M ),

where γM is a lower bound of the curvature operator on M restricted to the normal bundle and β1
M is

the lowest eigenvalue of the square of the O’Neill tensor. If equality is attained, then M is isometric
to the quotient of R×Σ by some fixed-point-free cocompact discrete subgroup Γ ⊂ R×SOq+1, where
Σ is a compact simply connected manifold of positive curvature.

The paper is organized as follows. In Section 2, we review the definitions of foliations and the
basic Laplacian. We also state an eigenvalue estimate for the basic Laplacian that involves a lower
bound of the Bochner operator (see Proposition 2.1). In Section 3, we adapt the technique used
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in [21, Lemma 4.7] for writing the Bochner operator in terms of Clifford Lie bracket to the set-up
of foliations. As a consequence, we state a rigidity result for the basic cohomology groups (see
Proposition 3.4). In Section 4, we made some technical computations on Riemannian flows to prove
the main results in Section 5. Several examples are also provided. The last section is devoted to
some general results on flows that we use in our study.

2 Preliminaries

In this section, we recall the basic facts on Riemannian foliations and some well-known results that
can be found in [26].

Let (Mn, g,F) be a Riemannian manifold of dimension n endowed with a Riemannian foliation F
of codimension q. We assume, throughout this paper, the metric g to be a bundle-like. That means,
F is given by an integrable subbundle L of TM and the metric g satisfies the holonomy-invariance
condition LXg|Q = 0 on the normal vector bundle Q = TM/L, for all X ∈ Γ(L). Here L denotes
the Lie derivative. In this case, the tangent bundle of M decomposes orthogonally into L and Q
and the bundle Q is identified with L⊥. We equip the bundle Q with the transverse Levi-Civita
connection ∇ [26, p. 48] which is the unique metric and free torsion connection with respect to the
induced metric on Q. The curvature of this connection vanishes along the leaves and therefore data
on Q are defined along orthogonal directions.

A basic form ω is a differential form on M that does uniquely depend on the transverse variables,
in other words, ω satisfying Xyω = 0 and Xydω = 0, for all X ∈ Γ(L). Roughly speaking, basic
forms can be seen as differential forms on the base manifold of the local submersions that define the
foliation. The set of basic forms, denoted by Ω(M,F), is preserved by the exterior derivative d and
is used to define the basic Laplacian ∆b = dbδb + δbdb. Here, db is the restriction of d to Ω(M,F)
and δb is its L2-adjoint. Locally, the exterior differential and its adjoint are given by the formulas
db =

∑q
i=1 ei∧∇ei and δb = −

∑q
i=1 eiy∇ei +κby, where {ei}i=1,··· ,q is a local orthonormal frame of

Γ(Q) and κb denotes the basic component of the mean curvature field κ of the foliation [14]. The
basic Laplacian yields the basic Hodge theory that can be used to compute the basic cohomology
groups

Hp
b (F) =

ker {d : Ωp(M,F) → Ωp+1(M,F)}
image {d : Ωp−1(M,F) → Ωp(M,F)}

,

for 0 ≤ p ≤ q.

In the study of the basic Poincaré duality which fails to hold for the basic cohomology groups, the
authors in [11] introduce a new cohomology group H̃b(F) that uses the twisted exterior derivative
d̃b := db − 1

2κb∧, [14]. They prove that the twisted derivative d̃b and its L2-adjoint δ̃b := δb − 1
2κby

share the same formulas with the basic Hodge star operator ?̄ as on ordinary manifolds. Also, the
corresponding twisted Laplacian ∆̃b := d̃bδ̃b + δ̃bd̃b commutes with ?̄ and, therefore, the Poincaré
duality holds for those twisted cohomology groups. They state a Bochner-Weitzenböck formula for
∆̃b which allows to get several rigidity results on the twisted cohomology groups as well as on the
usual basic cohomology [11, Thm. 6.16]. Namely, on basic p-forms, the formula is [11, Prop. 6.7]

∆̃b = ∇∗∇+ B[p] +
1
4
|κb|2, (3)

where ∇∗∇ := −
∑q

i=1∇ei,ei + ∇κb
and B[p] =

∑q
i,j=1 ej ∧ (eiyR(ej , ei)) with R(X,Y ) =

∇[X,Y ] − [∇X ,∇Y ] is the transversal curvature operator and {ei}i=1,··· ,q is a local orthonormal
frame of Q. Here the basic component of the mean curvature κb is assumed to be a harmonic
1-form, i.e. dbκb = δbκb = 0.

As in [23, Prop. 3], we can state the following result
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Proposition 2.1 Let (M, g,F) be a compact Riemannian manifold endowed with a Riemannian
foliation F of codimension q and a bundle-like metric g. Let p be an integer number such that
1 ≤ p ≤ q.

1) If B[p] ≥ 0 for some integer p and κb is a basic-harmonic one form, then any basic harmonic
p-form is transversally parallel. If the strict inequality B[p] > 0 holds, then Hp

b (F) = 0.

2) If the foliation is minimal and B[p] ≥ p(q − p)Λ for some Λ > 0, then the first positive
eigenvalue λ1,p of the basic Laplacian satisfies

λ1,p ≥ p(q − p+ 1)Λ, (4)

where p is chosen such that 1 ≤ p ≤ q
2 .

Proof. The proof of the point 1) is a direct consequence of the Bochner-Weitzenböck formula. Indeed,
take any basic harmonic p-form ω, that is dbω = δbω = 0, one can easily see that |d̃bω|2 + |δ̃bω|2 =
1
4 |κb|2|ω|2. Hence, applying Equation (3) to ω and taking the scalar product with the same form,
we get after integrating over M

1
4

∫
M
|κ|2|ω|2dvg =

∫
M
|∇ω|2dvg +

∫
M
〈B[p]ω, ω〉dvg +

1
4

∫
M
|κ|2|ω|2dvg ≥

1
4

∫
M
|κ|2|ω|2dvg,

which yields the first statement. Now, if B[p] > 0 then it is clear that any basic harmonic p-form
vanishes. By [5] and [17, Thm 6.2], one can always change the bundle-like metric into another
bundle-like metric with the same transverse metric so that the basic component of the mean cur-
vature κb is a basic harmonic 1-form with respect to the new metric. Therefore, we can work with
such a metric keeping the same condition on B[p]. Hence the assumption on the mean curvature can
be dropped off and we deduce the statement as the basic cohomology is independent of the choice
of the bundle-like metric.

The proof of the point 2) follows the same steps as in [23, Prop. 3]. Indeed, by the pointwise
inequality |∇ω|2 ≥ |dbω|2

p+1 + |δT ω|2
q−p+1 that is valid for any basic p-form ω where δT = δb − κby [7], [16],

we get on minimal foliations that∫
M
|∇ω|2dvg ≥

∫
M

(
|dbω|2

p+ 1
+

|δbω|2

q − p+ 1

)
dvg ≥

λ1,p

q − p+ 1

∫
M
|ω|2dvg.

Here, we use the fact that p+ 1 ≤ q − p+ 1, as p ≤ q
2 . Applying Equality (3) to ω and taking the

scalar product with ω itself yields the result after integration. �

Remark.

1. The estimate (4) is not valid for nonminimal Riemannian foliations when considering the
eigenvalues of the twisted Laplacian. Indeed by a straightforward computation we have, for
any p-form ω where p ≤ q

2 , that

|∇ω|2 ≥ |dbω|2

p+ 1
+

|δTω|2

q − p+ 1
≥ 1
q − p+ 1

(
|d̃bω|2 + |δ̃bω|2 −

1
4
|κb|2|ω|2 + 〈(κbydb − κb ∧ δT )ω, ω〉

)
.

2. When the equality case in (4) is attained, the associated eigenform is a basic conformal Killing
form [24, 16] which is either closed or of degree p = q

2 (that is, q should be even). Recall here
that a basic conformal Killing form ω is a basic form that satisfies, for all X ∈ Γ(Q), the
equation

∇Xω =
1

p+ 1
Xydbω −

1
q − p+ 1

X ∧ δTω,

where we recall δT = δb − κby.
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3 Clifford multiplication on basic forms

In this section, we will review the approach of [21, Sect. 4] to write the curvature term in the
Bochner-Weitzenböck formula in terms of the Clifford Lie bracket. We also refer to [23] for more
details.

Let (M, g,F) be a Riemannian manifold endowed with a Riemannian foliation F and let Q be the
normal bundle of codimension q. For X ∈ Γ(Q) and ω ∈ ΛpQ, the Clifford multplication of X with
ω is defined as

X · ω = X ∧ ω −Xyω and ω ·X = (−1)p(X ∧ ω +Xyω). (5)

A direct consequence of the definition is that the following relation

X · Y + Y ·X = −2g(X,Y )

holds, for any two sections X and Y on Q. Given any two forms ω and θ in ΛpQ, we can extend
the definition (5) to the Clifford multplication between ω and θ as follows: write locally ω =∑

i1<···<ip
ωi1···ipei1 ∧ · · · ∧ eip in any orthonormal frame {e1, · · · , eq} of Q and define

ω · θ =
∑

i1<···<ip

ωi1···ipei1 · · · · eip · θ.

The Clifford multiplication “·” is associative by construction. The Lie bracket between differential
forms is now defined as [ω, θ] = ω · θ − θ · ω. In particular, for a 2-form Ψ and a p-form ω, the Lie
bracket between Ψ and ω can be expressed explicitly as

Lemma 3.1 Let Ψ be a 2-form and let ω be a p-form. We have

[Ψ, ω] = 2
q∑

i=1

(eiyΨ) ∧ (eiyω),

where {e1, · · · , eq} is an orthonormal frame of Q. In particular, the degree of [Ψ, ω] is the same as
the one of the form ω.

Proof. The proof relies mainly on the use of Equations (5) and the fact that X ·Φ = (−1)pΦ ·X −
2XyΦ that is valid for any vector X and a p-form Φ. Indeed if we write Ψ =

∑
i<j Ψijei ∧ ej , we

compute

Ψ · ω =
∑
i<j

Ψijei · ej · ω =
∑
i<j

Ψijei · ((−1)pω · ej − 2ejyω)

=
∑
i<j

Ψij

(
ω · ei · ej − 2(−1)p(eiyω) · ej − 2(−1)p−1(ejyω) · ei + 4eiy(ejyω)

)
= ω ·Ψ− 2(−1)p

∑
i<j

Ψij(eiyω) · ej − 2(−1)p−1
∑
i<j

Ψij(ejyω) · ei + 2
∑
i,j

Ψijeiy(ejyω)

= ω ·Ψ− 2(−1)p
∑
i,j

Ψij(eiyω) · ej + 2
∑
i,j

Ψijeiy(ejyω)

= ω ·Ψ + 2
∑
i,j

Ψij(ej ∧ (eiyω) + ejy(eiyω)) + 2
∑
i,j

Ψijeiy(ejyω).

Finally, we deduce that [Ψ, ω] = 2
∑

i,j Ψijej ∧ (eiyω) which finishes the proof of the lemma. �

Now, we state another useful property of the Lie bracket that will be used later in this paper.
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Lemma 3.2 Let Ψ be a 2-form and let ω be a p-form. Then we have

[Ψ, X ∧ ω] = X · [Ψ, ω] + 2(XyΨ) · ω + [Ψ, Xyω],

for any X ∈ Γ(Q).

Proof. Using the definition of the Lie bracket and again the formula X · Φ = (−1)pΦ ·X − 2XyΦ
as before, we write

[Ψ, X ∧ ω] = Ψ · (X ∧ ω)− (X ∧ ω) ·Ψ
= Ψ · (X · ω +Xyω)− (X · ω +Xyω) ·Ψ
= X ·Ψ · ω + 2(XyΨ) · ω + Ψ · (Xyω)−X · ω ·Ψ− (Xyω) ·Ψ
= X · [Ψ, ω] + 2(XyΨ) · ω + [Ψ, Xyω].

The proof of the lemma is then finished. �

Next, we recall the definition of the basic Dirac operator restricted to basic forms [8]. Given any
orthonormal frame {ei}i=1,··· ,q of Γ(Q), the basic Dirac operator is given by

Db =
q∑

i=1

ei · ∇ei −
1
2
κb·,

where κb is as usual the basic component of the mean curvature. From its definition, one can easily
check that this operator is transversally elliptic and self-adjoint, if the manifold M is compact. Also
from the first equation in (5), it can be split as Db = d̃b + δ̃b where we recall that d̃b = db − 1

2κb∧
and δ̃b = δb − 1

2κby. Hence by squaring both sides and using the fact that d̃2
b = δ̃2b = 0 we get

that D2
b = ∆̃b. Following the same steps as in [21, Thm. 50], we have the corresponding Bochner-

Weitzenböck formula for the square of the basic Dirac operator.

Proposition 3.3 Let (M, g,F) be a Riemannian manifold endowed with a Riemannian foliation
of codimension q. Assume that the basic component of the mean curvature is closed and co-closed.
Then, we have

D2
b = ∇∗∇− 1

2

q∑
i,j=1

ei · ej ·R(ei, ej) +
1
4
|κb|2,

and

D2
b = ∇∗∇+

1
2

q∑
i,j=1

R(ei, ej) · ei · ej +
1
4
|κb|2.

Proof. We begin to prove the first identity. At any point x ∈ M, we consider a local orthonormal
frame {ei}i=1,··· ,q of Γ(Q) such that ∇ei|x = 0. Then, we write at x

D2
b =

(
q∑

i=1

ei · ∇ei −
1
2
κb·

) q∑
j=1

ej · ∇ej −
1
2
κb·


=

q∑
i,j=1

ei · ej · ∇ei∇ej −
1
2

q∑
i=1

ei · ∇eiκb · −
1
2

q∑
i=1

ei · κb · ∇ei −
1
2

q∑
j=1

κb · ej · ∇ej −
1
4
|κb|2

=
q∑

i,j=1

ei · ej · ∇ei∇ej −
1
2
(dbκb + δbκb − |κb|2) +∇κb

− 1
4
|κb|2

= −
q∑

i=1

∇ei∇ei +
∑
i6=j

ei · ej · ∇ei∇ej +∇κb
+

1
4
|κb|2

= ∇∗∇− 1
2

q∑
i,j=1

ei · ej ·R(ei, ej) +
1
4
|κb|2.
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This shows the desired identity by using that ∇∗∇ = −
∑q

i=1∇ei∇ei + ∇κb
. The second identity

can be done in the same way as the first one. Indeed we introduce, for any basic p-form ω, the
operator

D̂bω =
q∑

i=1

∇eiω · ei −
1
2
ω · κb = (−1)p(d̃b − δ̃b)ω

and we observe that D̂2
b = ∆̃b = D2

b . This ends the proof. �

Now adding the two equations in Proposition 3.3 and dividing by 2, we deduce after comparing
with Equation (3) that

B[p]ω =
1
4
[R(ei, ej)ω, ei · ej ].

Moreover following the same lines of the proof of [23, Thm. 17] one can show that, for any basic
p-forms ω and ϕ, the pointwise scalar product

〈B[p]ω, ϕ〉 =
1
4

(q
2)∑

r,s=1

〈Rψr, ψs〉〈[ψ̂r, ω], [ψ̂s, ϕ]〉 (6)

holds. Here {ψr}r=1,...,(q
2)

is any orthonormal frame of ∧2Q and {ψ̂r}r=1,...,(q
2)

is its dual basis.

The curvature R : Λ2Q → Λ2Q is viewed as a symmetric operator by 〈R(X ∧ Y ), Z ∧ W 〉 =
g(R(X,Y )Z,W ) for all X,Y, Z,W ∈ Γ(Q).

A direct consequence of (6) is that the Bochner operator is nonnegative when the transversal
curvature operator is assumed to be nonnegative. Therefore applying Proposition 2.1, we deduce
the following result as in [21, Thm. 51] (see also [18, Cor. D] for a different proof)

Proposition 3.4 Let (M, g,F) be a compact Riemannian manifold endowed with a Riemannian
foliation of codimension q.

1. If the transversal curvature operator is nonnegative and κb is basic-harmonic, then any basic
harmonic form is transversally parallel.

2. If the transversal curvature operator is positive, then Hp
b (F) = 0 for all p ∈ {1, · · · , q − 1}.

4 Curvature operator for Riemannian flows

In this section we will consider a Riemannian flow, that is a Riemannian foliation of 1-dimensional
leaves given by a unit vector field. As mentioned in the introduction, we will prove throughout this
section that the curvature operator of the normal bundle splits into two parts. The first part, that
we call restriction part, depends on the curvature operator of the underlying manifold. The second
part, that we call exterior part, is expressed in terms of the O’Neill tensor of the flow.

Let (M, g, ξ) be a Riemannian manifold endowed with a Riemannian flow given by a unit vector
field ξ. Recall the condition on the metric is that Lξg|ξ⊥ = 0 which means in this situation that the
tensor h := ∇Mξ, called the O’Neill tensor, is a skew-symmetric endomorphism on Γ(Q). From the
relation g(h(X), Y ) = −1

2g([X,Y ], ξ) that is valid for any X,Y ∈ Γ(Q), one can characterize the
integrability of the normal bundle of a Riemannian flow by the vanishing of the O’Neill tensor [20].
Moreover, when both the O’Neill tensor and the mean curvature κ := ∇M

ξ ξ vanish, the manifold
M is in this case isometric to a local product.

By a straightforward computation, one can show that the endomorphism h is a basic tensor, that
is ∇ξh = 0, when the mean curvature κ is a basic 1-form [12, Lemma 2.4]. This fact fails to hold
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for higher Riemannian foliations and that’s why we shall restrict our study for Riemannian flows.
Based on this fact, the curvature RM restricted to sections of the form ξ ∧X for X ∈ Γ(Q) can be
expressed as follows.

Lemma 4.1 On a Riemannian manifold (Mn, g, ξ) endowed with a Riemannian flow with basic
mean curvature κ, we have that

RM (ξ,X)ξ = −h2(X) + g(κ, h(X))ξ +∇M
X κ− g(κ,X)κ,

for any X ∈ Γ(Q). In particular, for a minimal Riemannian flow, the matrix of RM in the or-
thonormal frame {ξ ∧ ei}i=1,··· ,n−1 is the same as −h2.

Proof. Let X be any foliated vector field, that is ∇ξX = 0. The curvature RM applied to ξ and X
is equal to

RM (ξ,X)ξ = −∇M
ξ ∇M

X ξ +∇M
X κ+∇M

[ξ,X]ξ

= −∇M
ξ h(X) +∇M

X κ− g(κ,X)κ.

The last equality comes from the fact that [ξ,X] = g([ξ,X], ξ)ξ = −g(κ,X)ξ, as X is foliated. Now
using the O’Neill formula for Riemannian flows [10, Eq. 4.4]

∇M
ξ Y = ∇ξY + h(Y )− g(κ, Y )ξ,

that is valid for all Y ∈ Γ(Q) and the fact that the tensor h is a basic tensor as mentioned before,
the curvature reduces to

RM (ξ,X)ξ = −h2(X) + g(κ, h(X))ξ +∇M
X κ− g(κ,X)κ.

This finishes the proof of the lemma. �

At any point x ∈ M, we denote by γM
0 (x) and γM

1 (x) the smallest and largest eigenvalues of
the symmetric tensor RM : Λ2(Q) → Λ2(Q) defined by g(RM (X ∧ Y ), Z ∧ W ) := RM

XY ZW for
X,Y, Z,W ∈ Γ(Q). Again using the O’Neill formulas in [20], this curvature term is related to the
one on the normal bundle Q by the following relation: for all sections X,Y, Z,W of Q, we have

RM
XY ZW = RXY ZW − 2g(h(X), Y )g(h(Z),W ) + g(h(Y ), Z)g(h(X),W ) + g(h(Z), X)g(h(Y ),W ).

(7)

Therefore, according to Equation (7), the curvature of Q splits into Rext and Rres, where we set

g(Rext(X∧Y ), Z∧W ) = 2g(h(X), Y )g(h(Z),W )−g(h(Y ), Z)g(h(X),W )−g(h(Z), X)g(h(Y ),W )

and
g(Rres(X ∧ Y ), Z ∧W ) = RM

XY ZW .

Hence, Equation (6) can be written in the following way

B[p] = B[p]

ext + B[p]
res, (8)

where

〈B[p]

extω, ϕ〉 =
1
4

(q
2)∑

r,s=1

〈Rextψr, ψs〉〈[ψ̂r, ω], [ψ̂s, ϕ]〉 (9)

and

〈B[p]
resω, ϕ〉 =

1
4

(q
2)∑

r,s=1

〈Rresψr, ψs〉〈[ψ̂r, ω], [ψ̂s, ϕ]〉.
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In order to find a lower bound of the operator B[p], we need to bound both terms B[p]

ext and B[p]
res.

For this, we first choose an orthonormal basis of eigenvectors of Rres and use the formula

1
4

(q
2)∑

r=1

|[ψ̂r, ω]|2 = p(q − p)|ω|2 (10)

which follows from [23, Lem. 18], to get the pointwise estimate

p(q − p)γM
0 (x) ≤ B[p]

res ≤ p(q − p)γM
1 (x). (11)

Second, for a lower bound of the term 〈B[p]

extω, ω〉, we will compute the eigenvalues of Rext in terms
of the eigenvalues of the tensor h.

Computation of the eigenvalues of the tensor Rext : Let us treat the case where q is even,
say q = 2m. Since the tensor h is skew-symmetric and a basic form, we can always find a local
basic orthonormal frame {ei}i=1,...,q of Q such that the matrix of h can be written in this basis as



(
0 −b1
b1 0

)
0 . . . 0

0
(

0 −b2
b2 0

)
. . .

...

...
. . .

. . . 0

0 . . . 0
(

0 −bm
bm 0

)


where b1, · · · , bm are smooth basic functions onM chosen in a way such that |b1| ≤ |b2| ≤ · · · ≤ |bm|.
That is, h(e2i−1) = bie2i and h(e2i) = −bie2i−1 for all i = 1, · · · ,m. Depending on the different
choices of indices, we will now compute Rext. For all i, j, k, l ∈ {1, . . . , q}, we have

g(Rext(e2i−1 ∧ e2i), e2i−1 ∧ e2i) = 3b2i
g(Rext(e2i−1 ∧ e2i), e2k−1 ∧ e2k) = 2bibk for k 6= i

g(Rext(e2i−1 ∧ e2j−1), e2k ∧ e2l) = −bibjδjkδil + bibjδikδjl

g(Rext(e2i−1 ∧ e2j), e2k−1 ∧ e2l) = 2bibkδijδkl + bibjδjkδil.

The other terms are all equal to zero. Therefore, in the basis {ei∧ ej}1≤i<j≤2m, arranged as follows

{e2i−1 ∧ e2i}1≤i≤m, {e2i−1 ∧ e2j−1, e2i ∧ e2j}1≤i<j≤m, {e2i−1 ∧ e2j , e2i ∧ e2j−1}1≤i<j≤m

the tensor Rext is a block diagonal matrix having diagonal blocks matrices D,Di,j ,−Di,j , for
1 ≤ i < j ≤ m where:

• D is the matrix representation of the restriction of Rext to the subspace generated by {e2i−1∧
e2i}1≤i≤m and is given by

D =


3b21 2b1b2 . . . 2b1bm

2b1b2 3b22 . . . 2b2bm
...

. . .
2b1bm 2b2bm . . . 3b2m

 .
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• Di,j is the matrix representation of the restriction of Rext to the subspace generated by
{e2i−1 ∧ e2j−1, e2i ∧ e2j} which is given by(

0 bibj
bibj 0

)
.

• The last block −Di,j is the matrix representation of the restriction of Rext to the subspace
generated by {e2i−1 ∧ e2j , e2i ∧ e2j−1}.

One can easily check that the eigenvalues of the matrices Di,j are ±bibj with unit eigenvectors
θ±ij = 1√

2
(e2i−1 ∧ e2j−1 ± e2i ∧ e2j). Also the eigenvalues of the matrices −Di,j are ±bibj with unit

eigenvectors given by ρ∓ij = 1√
2
(e2i−1 ∧ e2j ∓ e2i ∧ e2j−1). The eigenvalues of the matrix D are

not easy to compute but we know that they are all nonnegative since 〈DX,X〉 =
∑m

i=1 b
2
iX

2
i +

2(
∑m

i=1 biXi)2 ≥ 0 for any vector X.

In conclusion, the eigenvalues {λr}r=1,··· ,(q
2)

of the tensor Rext consist of three families (q is even):

• Type I : The eigenvalues are ±bibj (i < j) with unit eigenvectors θ±ij = −1√
2
(e2i−1 ∧ e2j−1 ±

e2i ∧ e2j).

• Type II : The eigenvalues are ±bibj (i < j) with unit eigenvectors given by ρ∓ij = 1√
2
(e2i−1∧

e2j ∓ e2i ∧ e2j−1).

• Type III : The eigenvalues are those of the matrix D which are all nonnegative and the
eigenvectors are in the subspace generated by {e2i−1 ∧ e2i}i=1··· ,m.

The case where q is odd can be treated in a similar way as the even case but an additional direction
e0 is involved corresponding to the eigenvalue 0 of h. Since g(Rext(e0 ∧X), Y ∧ Z) = 0 for every
X,Y, Z ∈ Γ(Q), we deduce that the eigenvalues of Rext consist of families of type I, II, III (the
same as defined above) and IV, where in the last family 0 is an eigenvalue and the corresponding
eigenvector is in the subspace generated by {e0 ∧ ei}i=1,··· ,2m.

5 Main results

In this section we will show that, on a given Riemannian flow (M, g, ξ), the Bochner operator B[p]

on basic p-forms is bounded from below by the lowest eigenvalue of the curvature operator of M
and by the O’Neill tensor (see Corollary 5.3). In particular, this will allow us to estimate the first
eigenvalue of the basic Laplacian by some lower bound that we will completely characterize its
limiting case (see Theorem 1.1).

Theorem 5.1 Let (M, g, ξ) be a Riemannian manifold endowed with a Riemannian flow of codi-
mension q given by a unit vector field ξ. For any integer p such that 1 ≤ p ≤ q − 1 and a basic
p-form ω, we have

〈B[p]
extω, ω〉 ≥ −p(q − p)b2m|ω|2,

with m = [ q
2 ]. If the equality is attained for some p ∈ {1, · · · ,m} where m > 1, then |b1| = · · · = |bm|.

If m = 1 and the equality is attained, then b1 = 0.

Proof: The proof of the inequality in Theorem 5.1 is based on the use of Equation (9) and the
computation of the eigenvalues of the tensor Rext in Section 4. For this, we denote by λ̃r (1 ≤ r ≤ m)
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the eigenvalues of the matrix D and by {θ̃r} an orthonormal family of eigenvectors associated with
the eigenvalues λ̃r. Now, we compute

〈B[p]

extω, ω〉 =
1
4

∑
1≤i<j≤m

bibj(|[θ+
ij , ω]|2 + |[ρ−ij , ω]|2)− 1

4

∑
1≤i<j≤m

bibj(|[θ−ij , ω]|2 + |[ρ+
ij , ω]|2)

+
1
4

m∑
r=1

λ̃r|[θ̃r, ω]|2

≥ 1
4

∑
1≤i<j≤m

bibj(|[θ+
ij , ω]|2 + |[ρ−ij , ω]|2)− 1

4

∑
1≤i<j≤m

bibj(|[θ−ij , ω]|2 + |[ρ+
ij , ω]|2)

≥ −1
4
b2m

 ∑
1≤i<j≤m

(
|[θ+

ij , ω]|2 + |[ρ−ij , ω]|2 + |[θ−ij , ω]|2 + |[ρ+
ij , ω]|2

)
(10)

≥ −p(q − p)b2m|ω|2. (12)

In the inequalities above, we use the fact that the eigenvalues λ̃r are all nonnegative and that
|b1| ≤ |b2| ≤ · · · ≤ |bm|. Therefore, we get the first part of the theorem.

To discuss the equality case of (12), we first treat the even codimension case q = 2m > 2. Two
possibilities may occur: either for all (i, j) one of the Lie bracket of the coefficient bibj does not
vanish and in this case we get |b1| = · · · = |bm| or there exist i and j with i < j and such that all
the coefficients of bibj vanish, that is

[θ±ij , ω] = [ρ±ij , ω] = 0. (13)

Let us now prove that the second alternative gives |b1| = · · · = |bm| as well. When Equalities (13)
hold for some i and j, we have an explicit expression for the form ω that we describe it in the
following lemma:

Lemma 5.2 Assume that there exist i, j with i < j such that Equalities (13) hold. Then, there
exist basic forms ω1 and ω2 such that

ω = e2i−1 ∧ e2i ∧ e2j−1 ∧ e2j ∧ ω1 + ω2,

with {
e2i−1yω1 = e2iyω1 = 0
e2j−1yω1 = e2jyω1 = 0,

The same system holds for ω2.

Proof. By adding (and substracting) the brackets [θ+
ij , ω] and [θ−ij , ω] together as well as the bracket

[ρ+
ij , ω] with [ρ−ij , ω], we deduce that the following equations

[e2i−1 ∧ e2j−1, ω] = [e2i ∧ e2j , ω] = [e2i−1 ∧ e2j , ω] = [e2i ∧ e2j−1, ω] = 0

hold. Now, using Lemma 3.1 for each of the above brackets, these equations reduce to the following
system



e2j−1 ∧ (e2i−1yω) = e2i−1 ∧ (e2j−1yω)

e2j ∧ (e2iyω) = e2i ∧ (e2jyω)

e2j ∧ (e2i−1yω) = e2i−1 ∧ (e2jyω)

e2j−1 ∧ (e2iyω) = e2i ∧ (e2j−1yω).
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In order to solve this system, we take the interior product of the first equation with e2i−1 (resp.
with e2j−1) to get that

e2i−1yω = e2j−1 ∧ β0 and e2j−1yω = e2i−1 ∧ β1,

where β0 (resp. β1) is a form that does not contain neither e2i−1 nor e2j−1. The same can be done
for the third equation with respect to e2i−1 and e2j to obtain

e2i−1yω = e2j ∧ β3 and e2jyω = e2i−1 ∧ β4,

for some β3, β4. Comparing the above equations and using the fact that the general solution of any
equation of type X ∧ α = Y ∧ β where X and Y are orthogonal and Xyα = Y yβ = 0 is given by
α = Y ∧ (Xyβ), we conclude that β0 should be of the form e2j ∧ β5 for some form β5. The same
technique can be used for the second and fourth equations in the system. This allows us to finish
the proof of the lemma by using the fact that the general solution of any equation of the form
Xyω = α is ω = X ∧ α+ β where Xyβ = 0. �

We now proceed with the proof of Theorem 5.1. According to Lemmas 5.2, 3.2 and to Equality (9),
we set Φ := e2i ∧ e2j−1 ∧ e2j ∧ ω1 and compute

〈B[p]
extω, ω〉 = 〈B[p]

ext(e2i−1 ∧ Φ), e2i−1 ∧ Φ〉+ 2〈B[p]
ext(e2i−1 ∧ Φ), ω2〉+ 〈B[p]

extω2, ω2〉

=
1
4

(q
2)∑

r=1

λr|[θ̂r, e2i−1 ∧ Φ]|2 +
1
2

(q
2)∑

r=1

λr〈[θ̂r, e2i−1 ∧ Φ], [θ̂r, ω2]〉+ 〈B[p]
extω2, ω2〉

=
1
4

(q
2)∑

r=1

λr|[θ̂r,Φ]|2 +
(q
2)∑

r=1

λr|e2i−1yθ̂r|2|Φ|2 +
(q
2)∑

r=1

λr〈e2i−1 · [θ̂r,Φ], (e2i−1yθ̂r) · Φ〉

+
1
2

(q
2)∑

r=1

λr〈e2i−1 · [θ̂r,Φ], [θ̂r, ω2]〉+
(q
2)∑

r=1

λr〈(e2i−1yθ̂r) · Φ, [θ̂r, ω2]〉+ 〈B[p]
extω2, ω2〉

= 〈B[p−1]
ext Φ,Φ〉+

(q
2)∑

r=1

λr|e2i−1yθ̂r|2|Φ|2 −
(q
2)∑

r=1

λr〈[θ̂r,Φ], e2i−1 · (e2i−1yθ̂r) · Φ〉

+
1
2

(q
2)∑

r=1

λr〈e2i−1 ∧ [θ̂r,Φ], [θ̂r, ω2]〉+
(q
2)∑

r=1

λr〈(e2i−1yθ̂r) ∧ Φ, [θ̂r, ω2]〉+ 〈B[p]
extω2, ω2〉.

(14)

Here, we recall that {λr} are the eigenvalues of the tensor Rext and {θ̂r} are the corresponding
dual eigenvectors found previously. In the last equality, we use the fact that the degrees of the
differential forms [θ̂r, ω2] and [θ̂r,Φ] are p and p − 1 respectively, according to Lemma 3.1. In the
following, we will compute each sum separately with respect to the family of eigenvalues of type (I),
(II) and (III) that we already got in Section 4. For this, we denote by S1,S2,S3,S4 the respective
sums in Equality (14).

Type I : We will prove that S1,S2,S3 and S4 all vanish with respect to an orthonormal basis of
type I. In fact, as we have that

esyθ
±
kl =

−1√
2
(δs2k−1e2l−1 − δs2l−1e2k−1 ± δs2ke2l ∓ δs2le2k), (15)

we first deduce that |e2i−1yθ
±
kl|

2 = 1
2 if i = k or i = l and thus S1 is zero (the sum of all the

eigenvalues). Next, from Lemma 3.1, we have that

[θ±kl,Θ] =
−2√

2
(e2l−1 ∧ (e2k−1yΘ)− e2k−1 ∧ (e2l−1yΘ)± e2l ∧ (e2kyΘ)∓ e2k ∧ (e2lyΘ)) , (16)
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for any form Θ. Therefore, we get that

(e2i−1yθ
±
kl)y[θ±kl, ω2] =


±e2i ∧ (e2k−1ye2kyω2) for i = l

±e2i ∧ (e2l−1ye2lyω2) for i = k

(up to a factor −1√
2
) which, by taking the scalar product with Φ, gives that S4 = 0. Here we used

the fact that ω2 does not contain any factor in ei and ej . For the sum S3, we first compute

e2i−1y[θ±kl, ω2] =
−2√

2
(δile2k−1yω2 − δike2l−1yω2) .

Hence, the term (up to the factor −2√
2
)

〈[θ±kl,Φ], e2i−1y[θ±kl, ω2]〉 =


〈[θ±ki,Φ], e2k−1yω2〉 for i = l

−〈[θ±il ,Φ], e2l−1yω2〉 for i = k

also vanishes by Equation (16) (replace Θ by Φ and l or k by i). Hence S3 = 0. Now, we are left
with the sum S2 that we will prove that it vanishes as well. Indeed, we write

S2 =
∑
k<l

bkbl〈[θ+
kl,Φ], e2i−1 · (e2i−1yθ

+
kl) · Φ〉 −

∑
k<l

bkbl〈[θ−kl,Φ], e2i−1 · (e2i−1yθ
−
kl) · Φ〉

(15)
=

∑
i<l

bibl〈[θ+
il − θ−il ,Φ], e2i−1 · e2l−1 · Φ〉 −

∑
k<i

bkbi〈[θ+
ki − θ−ki,Φ], e2i−1 · e2k−1 · Φ〉.

Now from the expression of the vector fields θ+
kl and θ−kl and using again Lemma 3.2, we have that

〈[θ+
il − θ−il ,Φ], e2i−1 · e2l−1 · Φ〉 =

−2√
2
〈[e2i ∧ e2l,Φ], e2i−1 · e2l−1 · Φ〉

=
−4√

2
〈e2l ∧ (e2iyΦ)− e2i ∧ (e2lyΦ), e2i−1 · e2l−1 · Φ〉

=
−4√

2
〈e2l ∧ (e2iyΦ), e2l−1y(e2i−1 ∧ Φ)〉

=
−4√

2
〈e2l−1 ∧ e2l ∧ (e2iyΦ), e2i−1 ∧ Φ〉 = 0,

which means that the first sum vanishes. By interchanging the roles of i and l, we also deduce that
the second sum S2 is zero.

Type II : The computation can be done in the same way as for Type I and shows that all of the
sums vanish.

Type III : Recall that in this case, the eigenvectors of Rext are in the subspace generated by
{e2k−1∧e2k}k=1··· ,m. Hence any eigenvector θ̃r (1 ≤ r ≤ m) can be written as θ̃r =

∑m
k=1 α

k
re2k−1∧

e2k for some functions αk
r . Thus, we have

e2i−1yθ̃r = αi
re2i. (17)

The first sum S1 is then equal to
∑m

r=1 λ̃r(αi
r)

2|Φ|2, where λ̃r are the eigenvalues of the matrix D
defined before. Next, we will show that S3 and S4 are equal to zero. Indeed, using (17), we can
easily see that (e2i−1yθ̃r) ∧ Φ = 0 which gives that S4 = 0. Now using Lemma 3.2, we have

[θ̃r,Θ] =
m∑

k=1

αk
r [e2k−1 ∧ e2k,Θ] = 2

m∑
k=1

αk
r (e2k ∧ (e2k−1yΘ)− e2k−1 ∧ (e2kyΘ)),

13



for any form Θ. This gives that e2i−1y[θ̃r, ω2] = 0 and thus S3 = 0. Here, we used the fact that ω2

does not contain any factor in ei. The term S2 is now equal to

S2 =
m∑

r=1

λrα
i
r〈[θ̃r,Φ], e2i−1 · e2i · Φ〉

= 2
m∑

k,r=1

λrα
i
rα

k
r 〈(e2k ∧ (e2k−1yΦ)− e2k−1 ∧ (e2kyΦ), e2i−1 ∧ (e2iyΦ)〉

= −2
m∑

k,r=1

λrα
i
rα

k
r 〈e2k−1 ∧ (e2kyΦ), e2i−1 ∧ (e2iyΦ)〉

= −2
m∑

k,r=1

λrα
i
rα

k
rδik|e2iyΦ|2 = −2

m∑
r=1

λr(αi
r)

2|Φ|2.

We now replace all the computations done above in Equation (14) to deduce that

−p(q − p)b2m|ω|2 = 〈B[p]
extω, ω〉 = 〈B[p−1]

ext Φ,Φ〉+ 3
m∑

r=1

λr(αi
r)

2|Φ|2 + 〈B[p]
extω2, ω2〉

(12)

≥ −(p− 1)(q − p+ 1)b2m|Φ|2 − p(q − p)b2m|ω2|2.

Here, we use the fact that all the eigenvalues λr are nonnegative. As |ω|2 = |Φ|2 + |ω2|2, the last
inequality implies that either bm = 0 or that Φ = 0. Recall here that the integer p is chosen such
that 1 ≤ p ≤ m. The fact that the bi’s are chosen in a way that |b1| ≤ · · · ≤ |bm|, then bm = 0 implies
that |b1| = · · · = |bm| = 0, which is the statement of Theorem 5.1. We are now left with the case
when Φ = 0, which means by Lemma 5.2 that ω = ω2 with e2i−1yω = e2iyω = e2j−1yω = e2jyω = 0.
But recall that i and j are chosen in a way so that all the Lie bracket coefficients of bibj in Equation
(12) are equal to zero. Therefore the same choice holds for i = 1 and 1 ≤ j ≤ m, since otherwise
we would get |b1| = · · · = |bm|. Hence by varying j, we arrive at Xyω = 0 for any X, which leads
to ω = 0; that is a contradiction. This finishes the proof for m > 1.

Now, we discuss the equality when q is odd, say q = 2m+ 1. In this case, we have [e0 ∧ el, ω] = 0
for all l = 1, · · · , 2m. Recall here that e0 is the eigenvector of h that corresponds to the eigenvalue
0. As in the even case, either for all (i, j) one of the Lie bracket of the coefficient of bibj in (12)
does not vanish and we get |b1| = · · · = |bm| or there exist i and j with i < j and such that all
the coefficients vanish. In the second alternative, Equations (13) still hold and we get the same
description as in Lemma 5.2. That means, we write ω = e2i−1 ∧ e2i ∧ e2j−1 ∧ e2j ∧ ω1 + ω2. From
the one hand, we take l = 2i− 1 in the equation [e0 ∧ el, ω] = 0 and make the interior product of
this last identity with e2i−1 to get after using Lemma 3.1 that

e0yω2 = 0 and e0 ∧ ω1 = 0. (18)

From the other hand, we take l /∈ {2i− 1, 2i, 2j − 1, 2j} and make the interior product of the same
equation with e2i−1 ∧ e2i ∧ e2j−1 ∧ e2j to find that

el ∧ (e0yω1) = 0 and e0 ∧ (elyω2) = 0. (19)

Now, the interior product of the first equation in (18) with el combined with the second equation
in (19) allows us to deduce that elyω2 = 0 for any l = 1, · · · , q. Therefore, we deduce that ω2 = 0
and hence ω = e2i−1 ∧ Φ. The rest of the proof can be done in the same way as the even case. We
notice that the family IV of eigenvalues does not contribute to Equation (14), since in this case all
the eigenvalues are equal to zero.
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We are now left with the case when m = 1. As from the first line of Equation (12) the term
〈B[1]

extω, ω〉 is nonnegative, we then deduce that the equality in Theorem 5.1 is attained if b1 = 0.
This ends the proof. �

In the following, we will give some direct consequences of Theorem 5.1. By adding the estimate in
Theorem 5.1 to the l.h.s. of Inequality (11), we get the following

Corollary 5.3 Let (M, g, ξ) be a Riemannian manifold endowed with a Riemannian flow of codi-
mension q given by a unit vector field ξ. For any integer p such that 1 ≤ p ≤ q − 1 and any basic
p-form ω, we have

〈B[p]ω, ω〉 ≥ p(q − p)(γM
0 − b2m)|ω|2, (20)

where γM
0 is the lowest eigenvalue of the curvature operator of M restricted to Q and m = [ q

2 ]. If
m > 1 and the equality is attained for some p ∈ {1, · · · ,m}, then |b1| = · · · = |bm|. If m = 1 and
the equality is attained, then b1 = 0.

Examples.

1. One can easily check that for the Hopf fibration S2m+1 → CPm for m > 1, the Kähler form
Ω on CPm, which is a parallel basic 2-form, satisfies the equality of the estimate in the above
theorem. Here γM

0 = b2m = 1. For m = 1, the inequality is strict for any basic form ω.

2. On the Riemannian product S1 × S2m+1 for m > 1, we consider the flow defined by the unit
vector field ξ := 1√

2
(ξ1 + ξ2) where ξ1 is the unit parallel vector field on S1 and ξ2 is the unit

Killing vector field that defines the Hopf fibration. The Kähler form on CPm is transversally
parallel and satisfies the equality of the estimate since γM

0 = b2m = 1
2 .

3. Another example of the equality case for nonminimal Riemannian flows. Consider in the
3-dimensional case the Carrière example [3]. Let B be any matrix in SL(2,Z) with two eigen-
values λ > 1 and 1

λ . We define the hyperbolic torus T3
B as the quotient of T2 × R by the

equivalence relation which identifies (m, t) to (Bm, t + 1). We chose a bundle-like metric so
that the vectors e1 := λ−tV1, e2 := λtV2, e3 := ∂t form an orthonormal frame. Here V1 and V2

are respectively the eigenvectors associated to λ and 1
λ . An easy computation shows that the

Christoffel symbols Γk
ij = g(∇eiej , ek) are given by [10, p. 68]

Γ3
11 = Γ2

23 = −Γ1
13 = −Γ3

22 = −ln(λ).

The others are zero. The flow defined by the vector field e1 is Riemannian with vanishing
O’Neill tensor and the mean curvature is equal to κ = −ln(λ)e3. Also, one can easily check
that γM

0 = −(ln(λ))2 and the transversal Ricci tensor (which corresponds to B[1]) is equal to
−(ln(λ))2Id. Therefore, for any basic 1-form, the equality is satisfied.

4. Consider the Riemannian fibration S1 × S2m+1 → S1 × CPm and let Ω be again the Kähler
form on CPm. Here, we have the strict inequality for Ω since |b1| = · · · = |bm| = 1 and
γM

0 = 0.

When the term in the lower bound of Corollary 5.3 is positive, we get the following rigidity result:

Corollary 5.4 Let (M, g) be a compact Riemannian manifold endowed with a Riemannian flow
of codimension q given by a unit vector field ξ. If γM

0 ≥ b2m and κ is basic-harmonic, then every
harmonic basic p-form is transversally parallel. If the strict inequality holds, then Hs

b (F) = {0} for
any s ∈ {1, · · · , q − 1}.
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The proof of this corollary uses the first statement of Proposition 2.1. Another direct consequence
of Corollary 5.3 that characterizes minimal Riemannian flow on round spheres is the following (see
[9])

Corollary 5.5 Let Sn be the round sphere of constant sectional curvature 1 and assume that it is
endowed with a minimal Riemannian flow. Then, the flow defines a Sasakian structure on Sn.

Proof: As the curvature on the sphere Sn is given for all vector fields X,Y, Z by RM (X,Y )Z =
g(X,Z)Y − g(Y, Z)X, we find from Lemma 4.1 that h2(X) = −X for all X ∈ Γ(Q), that is
|b1| = · · · = |bm| = 1. Using the first part of Proposition 6.2 in the Appendix, we get that the basic
2-form Ω := −1

2dξ is a basic-harmonic 2-form. Now, Corollary 5.4 allows us to deduce that it is
transversally parallel. This ends the proof. �

Proof of Theorem 1.1: Using the second statement in Proposition 2.1 and Corollary 5.3, we easily
get the estimate for the first eigenvalue of the basic Laplacian. It now remains to treat the equality
case. Assume we have equality, then the inequality in Corollary 5.3 is also attained and therefore
|b1| = · · · = |bm| = cst for m > 1 and b1 = 0 for m = 1. In the following, we will prove that this
constant should be also zero. Assume it were not, then we would deduce that γM > cst > 0 since
λ1,p = p(q − p+ 1)(γM − cst) > 0. Therefore, from Corollary 5.4, we would get that H2

b (F) = 0 on
one hand. On the other hand, using Lemma 4.1, the Ricci curvature on M would be equal to

RicM (ξ, ξ) =
q∑

i=1

RM (ξ, ei, ξ, ei) = −
q∑

i=1

g(h2ei, ei) = |h|2 = 2mcst > 0,

and

RicM (X,X) =
q∑

i=1

RM (X, ei, X, ei) +RM (X, ξ,X, ξ) ≥ γM

q∑
i=1

|X ∧ ei|2 + |hX|2 > cst′|X|2 > 0,

for all X ∈ Γ(Q) which would mean that H1(M) = 0. From Proposition 6.1 in the Appendix,
this would give a contradiction. Thus, we deduce that |b1| = · · · = |bm| = 0 which means that the
normal bundle is integrable. In this case, the universal cover of M is isometric to the Riemannian
product of R × Σ where Σ is a simply connected compact manifold with positive curvature. This
ends the proof. �

Remarks.

1. In the equality case of the estimate in Theorem 1.1, the O’Neill tensor vanishes. Therefore,
the basic Laplacian on M restricts to the usual Laplacian on the manifold Σ and thus the
first eigenvalue on Σ satisfies the equality case in the Gallot-Meyer estimate [7, Thm. 6.13].
In view of the remark after Theorem 2.1 and if p is chosen such that p < q

2 , we deduce that
dω = 0 where ω is an eigenform associated with the first eigenvalue. If p = 2 and q > 4, the
form α = δω is a coclosed 1-form which is still an eigenform of the Laplacian (the form α
does not vanish since this would imply that ω vanishes). Hence, by a result of S. Tachibana
[25, Thm. 3.3] the manifold Σ is either isometric to a Sasakian manifold or to a round sphere
with constant curvature.

2. By the result in [2], the manifold Σ is a spherical space form. In case Σ is isometric to a
round sphere, the group Γ = π1(M) preserves the orthogonal splitting T(t,x)M̃ = R ⊕ TxSq

(the vertical distribution R is the kernel of the Ricci tensor), as it is acting by isometries
on the universal cover M̃. Therefore, the fundamental group is embedded in the product
Isom+(R)× Isom+(Sq) where Isom+ is the group of isometries that preserve the orientation
of the corresponding manifold. For q even, we deduce that Γ ' Z and that it acts as (t, x) →
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(t + a,A(x)) for some (a,A) ∈ R∗ × SO(q + 1). For q odd, the group Γ is not necessarily
isomorphic to Z, since one might consider the group Γ = Z×Γ2 where Γ2 is a finite subgroup
of SO(q + 1) consisting of rotations in orthogonal 2-planes in Rq+1.

6 Appendix

The following results are partially contained in [15, Rem. 2.14], [1, Prop. 1.8] and [6] but we include
them here for completeness. Let us denote by bs(M) = dimHs(M) (resp. bs(F) = dimHs

b (F)) the
Betti numbers (resp. basic Betti numbers).

Proposition 6.1 Let (M, g, ξ) be a compact Riemannian manifold endowed with a Riemannian
flow of codimension q with basic mean curvature κ. Assume that the first cohomology group satisfies
H1(M) = {0}. Then we have that b2(F) = 1 + b2(M).

Proof. We use the long exact sequence of cohomologies stated in [22, Thm. 3.2]

0 → H1
b (F) → H1(M)

j→ Hq
b (F) i1→ H2

b (F) i2→ H2(M) → Hq−1
b (F),

where i1 = ∧[Ω] and i2 is the inclusion map. Since H1(M) = 0, we have that Hq
b (F) ' R and

Hq−1
b (F) ' H1

b (F) = {0} (see [26]). From the fact that the map i1 is injective, i2 is surjective and
Im i1 = Ker i2, we find that Ker i2 ' R and Im i2 = H2(M). Therefore, we deduce the statement
of the proposition. �

Proposition 6.2 Let (M, g, ξ) be a compact Riemannian manifold endowed with a minimal Rie-
mannian flow of codimension q. Assume that RicM (ξ) = λξ with λ > 0. Then the Euler class
[dξ] is a non-zero cohomology class in H2

b (F). Moreover, we have that b1(F) = b1(M) and
1 ≤ b2(F) ≤ 1 + b2(M).

Proof. Take an orthonormal frame {ei}i=1,··· ,q in Γ(Q) and consider Y = Z = ei in the formula
g(RM (X,Y )ξ, Z) = g(−(∇Xh)Y + (∇Y h)X,Z). After tracing over i, we get that RicM (ξ,X) =
(δbh)(X) for all X ∈ Γ(Q). The assumption RicM (ξ) = λξ gives that the basic 2-form Ω := −1

2dξ =
g(h·, ·) is co-closed. As Ω is also a closed form, it then becomes a basic-harmonic form. But the
choice of λ = |h|2 to be positive implies that the form Ω does not vanish. This shows the first
part. To prove the second part, we use again the Gysin sequence as in the previous proposition
and the fact that Hq

b (F) ' R (recall the flow is minimal) to get that i1 is injective and thus
b2(F) = 1 + dim Im i2. Also, we get that j = 0 and therefore H1

b (F) ' H1(M). This finishes the
proof. �
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