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RIEMANNIAN FLOWS AND ADIABATIC LIMITS

GEORGES HABIB AND KEN RICHARDSON

Abstract. We show the convergence properties of the eigenvalues of the Dirac operator on a spin manifold
with a Riemannian flow when the metric is collapsed along the flow.
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1. Introduction

Many researchers have studied the spectrum of the Laplacian and Dirac-type operators on families of
manifolds where the metric is collapsed. We point out in particular the references [9], [12], [18], where the
behavior of the spectrum of Laplacians on Riemannian submersions are noted under collapse of the fiber
metrics. In [22], R. R. Mazzeo and R. B. Melrose related the properties of the Laplace eigenvalues under

adiabatic limits in a Riemannian fiber bundle to the Leray spectral sequence, and J. A. Álvarez-López and
Y. Kordyukov extended this analysis in [2] to the more general case of Riemannian foliations; see [20] for an
exposition and further references. Adiabatic limits of the eta invariants of Dirac operators have also been
considered, as in [27], [6], and [10].

In [4], B. Ammann and C. Bär examined the eigenvalues of the Dirac operator of circle bundles over a
closed Riemannian manifold M�S1, such that the bundle projection is a Riemannian submersion. They
found that as the metric is changed such that the lengths of the circles collapse to zero, the eigenvalues
separate into two categories: those that converge to the eigenvalues of the base (quotient) manifold which
correspond to the projectable spinors — for which the Lie derivative is zero in the direction of the fibers
— and those eigenvalues that go to infinity, corresponding to non-projectable spinors. The main idea is to
decompose the Lie derivative of any spinor field on M into finite-dimensional eigenspaces Vk (k ∈ Z), and
such a decomposition is preserved by the Dirac operator. This comes from the representation of the Lie
group S1 on the spinor bundle on M . In a second step, they decompose the Dirac operator of the whole
manifold M into a horizontal and vertical Dirac operator and a zeroth order term. It turns out that the
horizontal Dirac operator commutes with the Lie derivative, while the vertical part anticommutes. This
allows the researchers to compute explicitly the eigenvalues of the Dirac operator on M on each eigenspace
Vk in terms of k. Here the zeroth order term does not contribute in the adiabatic limit, since it is a bounded
operator and tends to zero with the length of the fibers. In [3], B. Ammann extended the result above
to the case where the circles form a more general Riemannian submersion with projectable spin structures
over a base manifold. Also, in [24], F. Pfäffle studied the degeneration of Dirac eigenvalues in a sequence
of compact spin hyperbolic manifolds in the case the limit has discrete Dirac spectrum. We also mention
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2 G. HABIB AND K. RICHARDSON

the work of J. Lott in [21], where the limit of a general Dirac-type operator is studied under a collapse for
which the diameter and sectional curvature are bounded. In this case, the spectrum of the Dirac operator
converges to the spectrum of a limiting first order operator.

In this paper, we consider a particular case of foliations, namely Riemannian flows. On a Riemannian
manifold (M, g), a Riemannian flow is a foliation of 1-dimensional leaves given by the integral curves of a
unit vector field ξ such that g is a bundle-like metric. This means the Lie derivative of the transverse metric
in the direction of ξ vanishes. Examples of such flows are those given by Killing vector fields and Sasakian
manifolds. Those are called taut (meaning the mean curvature form is exact), but examples of nontaut
Riemannian flows exist (see, for example, [8]).

We now take the adiabatic limit of the Riemannian flow, and in our situation it is often not the case that
the limit is a manifold. This means we consider the bundle-like metric

gf = f2ξ∗ ⊗ ξ∗ + gξ⊥ ,

where f is a positive basic function onM , and we prove that the eigenvalues of the Dirac operator on (M, gf )
corresponding to basic sections tend to those of the basic Dirac operator Db, which is morally the Dirac
operator of the local quotients in the foliation charts; see the next section for details. We point out that
our case does not require the leaves to be circles, unlike the situation in [4] or in [3]. Also, we prove that
when the flow is taut, the eigenvalues from the L2-orthogonal complement of the space of basic sections of
the spinor bundle go to ±∞. The main difference between our case and the one in [4] is that there is not
necessarily a circle action on the manifold M , which mainly means that the L2-decomposition of the Lie
derivative in the direction of the flow cannot carry over. Moreover, the leafwise Dirac operator could fail to
have discrete spectrum. We also mention the work of P. Jammes in [19], where he considered adiabatic limits
of Riemannian flows, similar to our setting, and examined their effect on the eigenvalues of the Laplacian.

In Section 2, we provide preliminary details on spin Riemannian flows and in particular define the leafwise
Dirac operator DF and the symmetric transversal Dirac operator DQ (Q = ξ⊥ = NF). In Lemma 2.8, we
express the anticommutator of these operators in terms of the mean curvature. We show the operator
DF is symmetric, and its kernel is the L2-closure of the space of basic sections (see Proposition 2.7). In
Corollary 2.9, we prove that when the flow is minimal, the spectrum of DF contains a countable number
of real eigenvalues, and there exists a complete orthonormal basis of the L2 spinors consisting of smooth
eigensections of DF .

Our main result is Theorem 3.2, where we show that the eigenvalues behave as stated above in the
adiabatic limit. In Section 4, we exhibit examples which show interesting behavior of the operators DF and
DQ. In these examples, which are not fibrations, the operator DF does not have discrete spectrum, but
nonetheless the conclusion of the main theorem is made clear.

2. Dirac operators on Riemannian flows

Let (M, g) be a closed (n+ 1)-dimensional Riemannian manifold, endowed with an oriented Riemannian
flow. This means that there exists a unit vector field ξ on M such that the Lie derivative of the transverse

metric vanishes: Lξ

(
g|ξ⊥

)
= 0 (see [25], [8], [26]). Suppose in addition that M is spin, and let DM be the

Dirac operator associated to the spin structure acting on sections of the spinor bundle ΣM , which has a
given hermitian metric and metric spin connection.

We wish to construct the basic Dirac operator associated to the induced spin structure on the normal
bundle. Since TM = Rξ⊕ξ⊥, the pullback of the spin structure onM induces a spin structure on the normal
bundle Q = ξ⊥ = NF . In this case, the spinor bundle ΣM is canonically identified with the spinor bundle
ΣQ of Q, for n even, and with the direct sum ΣQ ⊕ ΣQ for n odd. The metric on ΣM induces a metric

on ΣQ. When n is even, then iξ· is taken to be the chirality operator, as (iξ·)2 = id, and we let (ΣQ)
±

be
the eigenspaces associated to the ±1 eigenvalues, with Clifford multiplication ·Q defined by Z ·Q ϕ = Z ·M ϕ

for Z ∈ Γ (Q), ϕ ∈ Γ (ΣQ). When n is odd, the Clifford multiplications ·M on ΣM and ·Q on ΣQ := ΣM+

are related by Z ·Q ϕ = Z ·M ξ ·M ϕ (as in [5]). Therefore, by using the above identification, the spinor
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connections ∇ΣM and ∇ΣQ are related by the following relations (see [13, formula 4.8]). For all Z ∈ Γ (Q),

∇ΣM
ξ ϕ = ∇ΣQ

ξ ϕ+
1

2
Ω ·M ϕ+

1

2
ξ ·M κ ·M ϕ,

∇ΣM
Z ϕ = ∇ΣQ

Z ϕ+
1

2
ξ ·M

(
∇M

Z ξ
)
·M ϕ, (2.1)

where the Euler form Ω is the 2-form given for all Y, Z ∈ Γ (Q) by Ω (Y, Z) = g
(
∇M

Y ξ, Z
)
and κ# =

∇M
ξ ξ ∈ Γ (Q) is the mean curvature vector field of the flow. The one-form κ is also identified with the

corresponding Clifford algebra element. We identify Ω with the associated element of the Clifford algebra

by Ω = 1
2

∑n
j=1 e

j ∧
(
∇M

ej
ξ
)♭

= 1
2

∑n
j=1 ej ·M

(
∇M

ej
ξ
)
·M where here and in the following {ej}nj=1 is a local

orthonormal frame of Γ (Q).

Lemma 2.1. (in [13]) If K (X,Y ) = X · Y ·
(
∇ΣQ

X ∇ΣQ
Y −∇ΣQ

Y ∇ΣQ
X +∇ΣQ

[Xi,Y ]

)
is the Clifford curvature of

ΣQ, then K (X,Y ) = 0 if X = ξ.

Lemma 2.2. The transverse connection commutes with the Clifford action of ξ; that is, ∇ΣQ
X (ξ ·M ϕ) =

ξ ·M ∇ΣQ
X ϕ for any spinor field ϕ ∈ Γ (ΣQ) and X ∈ Γ (TM). In particular, this means that the spinor field

ξ ·M ϕ is basic if and only if ϕ is basic.

Proof. We use (2.1). For Z ∈ Γ (Q),

∇ΣQ
Z (ξ ·M ϕ) = ∇ΣM

Z (ξ ·M ϕ)− 1

2
ξ ·M ∇M

Z ξ ·M ξ ·M ϕ

=
(
∇ΣM

Z ξ
)
·M ϕ+ ξ ·M ∇ΣM

Z ϕ− 1

2

(
∇M

Z ξ
)
·M ϕ

= ξ ·M ∇ΣM
Z ϕ− 1

2
ξ ·M ξ ·M

(
∇M

Z ξ
)
·M ϕ

= ξ ·M ∇ΣQ
Z ϕ,

since ∇M
Z ξ is orthogonal to ξ. Next,

∇ΣQ
ξ (ξ ·M ϕ) = ∇ΣM

ξ (ξ ·M ϕ)− 1

2
Ω ·M ξ ·M ϕ− 1

2
ξ ·M κ ·M ξ ·M ϕ

= H ·M ϕ+ ξ ·M ∇ΣM
ξ ϕ− 1

2
ξ ·M Ω ·M ϕ− 1

2
κ ·M ϕ

= ξ ·M ∇ΣM
ξ ϕ− 1

2
ξ ·M Ω ·M ϕ− 1

2
ξ ·M ξ ·M κ ·M ϕ

= ξ ·M ∇ΣQ
ξ ϕ.

�

We define the transversal Dirac operator DQ on Γ (ΣQ) as

DQ =

n∑

i=1

ei ·Q ∇ΣQ
ei − 1

2
κ ·Q .

This differential operator is first-order and transversally elliptic. Using the metric on ΣQ induced from the
metric on ΣM , we obtain the L2 metric on Γ (ΣQ).

Lemma 2.3. (From [13, p. 31]) The operator DQ is self-adjoint on L2 (Γ (ΣQ)).

The basic Dirac operator Db is the restriction of

PDQ =

n∑

i=1

ei ·Q ∇ΣQ
ei

− 1

2
κb·Q

to the set Γb (ΣQ) of basic sections (sections ϕ in Γ (ΣQ) satisfying ∇ΣQ
ξ ϕ = 0):

Db = PDQ|Γb(ΣQ) .
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In the above, P : L2 (Γ (ΣQ)) → L2 (Γb (ΣQ)) is the orthogonal projection onto basic sections, and κb = Pbκ

where Pb : L2 (Ω∗ (M)) → L2 (Ω∗
b (M)) (see [1], [23], [7]). It is always true that P preserves the smooth

sections and that κb is a closed one-form. Recall that the basic Dirac operator preserves the set of basic
sections and is transversally elliptic and essentially self-adjoint (on the basic sections). Therefore, by the
spectral theory of transversally elliptic operators, it is a Fredholm operator and has discrete spectrum ([17],
[16]). Observe that when κ is a basic form,

κb = κ, Db = DQ|Γb(ΣQ) .

If the mean curvature is not necessarily basic, then

DQ =

n∑

i=1

ei ·Q ∇ΣQ
ei − 1

2
κ ·Q

=

n∑

i=1

ei ·Q ∇ΣQ
ei

− 1

2
κb ·Q +

1

2
(κb − κ) ·Q ,

DQ|Γb(ΣQ) = Db +
1

2
(κb − κ) ·Q .

Next, we give the relationship between DM and DQ on Γ (ΣM). By (2.1) we have

DM = DQ − 1

2
ξ ·M Ω ·M +ξ ·M ∇ΣQ

ξ for n even,

DM = ξ ·M (DQ ⊕ (−DQ))−
1

2
ξ ·M Ω ·M +ξ ·M

(
∇ΣQ⊕ΣQ

ξ

)
for n odd. (2.2)

Using the formulas above, the restrictions of the Dirac operators DM and Db to basic sections are related
by

DM |Γb(ΣQ) = Db +
1

2
(κb − κ) ·Q −1

2
ξ ·M Ω ·M for n even,

DM |Γb(ΣQ) = ξ ·M Db +
1

2
ξ ·M (κb − κ) ·Q −1

2
ξ ·M Ω ·M for n odd. (2.3)

For n even, respectively n odd, and for any basic spinor field ϕ, we have that Db (ξ ·M ϕ) = −ξ ·M Db (ϕ),
respectively Db (ξ ·M ϕ) = ξ ·M Db (ϕ). Hence, the spectrum of Db is symmetric about 0 for n even.

Observe that Rummler’s formula is

d (ξ∗) = −κ ∧ ξ∗ + ϕ0

= ξ∗ ∧ ∇M
ξ ξ

∗ +
n∑

j=1

ej ∧ ∇M
ej ξ

∗

= −κ ∧ ξ∗ + 2Ω,

so that ϕ0 = 2Ω. Since ϕ0 is always of type (2, 0) in Λ∗Q ∧ Λ∗TF for flows, we see Ω ∈ Γ
(
M,Λ2Q

)
.

Lemma 2.4. If κ is a basic form, then Ω is basic.

Proof. We see that

iξΩ =
1

2
iξ (d (ξ

∗) + κ ∧ ξ∗) = 0,

which is clear since ϕ0 = 2Ω is of type (2, 0) in Λ∗Q ∧ Λ∗TF . Next, since κ is a basic closed form,

iξdΩ =
1

2
iξ ((dκ) ∧ ξ∗ − κ ∧ d (ξ∗))

=
1

2
iξ (−κ ∧ (−κ ∧ ξ∗ + 2Ω))

=
1

2
iξ (−κ ∧ (2Ω)) = 0.

�
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Remark 2.5. The calculation above also shows that in the case where κ is not necessarily basic,

iξdΩ =
1

2
d1,0κ =

1

2
d1,0 (κ− κb) .

For the case when κ = κb, by the equations above for DM when n is even, we see that DM preserves
the basic sections of ΣM = ΣQ, and since DM is orthogonally diagonalizable over L2 (ΣM) = L2 (ΣQ),
there exists an orthonormal basis of L2 (Γb (ΣQ)) consisting of eigensections of DM . Similarly, there exists

an orthonormal basis of L2 (Γb (ΣQ))⊥ consisting of eigensections of DM . The analogous facts are true for
n odd and DM |Γb(ΣQ⊕ΣQ) and DM |(Γb(ΣQ⊕ΣQ))⊥ .We have shown the following.

Lemma 2.6. Suppose that κ is basic. Then the operator DM decomposes as DM |Γb(ΣQ) ⊕ DM |Γb(ΣQ)⊥ as

an L2-orthogonal direct sum, when n is even. It decomposes as DM |Γb(ΣQ⊕ΣQ) ⊕ DM |(Γb(ΣQ⊕ΣQ))⊥ when n

is odd.

We call the operator DF := ξ ·M ∇ΣQ
ξ acting on Γ (ΣQ) the tangential Dirac operator.

Proposition 2.7. The operator DF is symmetric, and kerDF = L2 (Γb (ΣQ)).

Proof. For any (smooth) spinor fields ψ and ϕ, letting (•, •) be the pointwise inner product,

(DFψ, ϕ) =
(
ξ ·M ∇ΣQ

ξ ψ, ϕ
)

=
(
∇ΣQ

ξ (ξ ·M ψ) , ϕ
)

by Lemma 2.2. Then

(DFψ, ϕ) = ξ (ξ ·M ψ, ϕ)−
(
ξ ·M ψ,∇ΣQ

ξ ϕ
)

= ξ (ξ ·M ψ, ϕ) +
(
ψ, ξ ·M ∇ΣQ

ξ ϕ
)

= ξ (ξ ·M ψ, ϕ) + (ψ,DFϕ) .

Observe that, letting f be the function f = (ξ ·M ψ, ϕ),
∫

M

ξ (f) = −
∫

M

f div (ξ) = 0,

since ξ generates a Riemannian flow and thus is divergence-free. Thus, by integrating 〈DFψ, ϕ〉 = 〈ψ,DFϕ〉.
Next, if DF (ϕ) = 0 for some section ϕ ∈ Γ (ΣQ), then

ξ ·M 0 = ξ ·M ξ ·M ∇ΣQ
ξ ϕ = −∇ΣQ

ξ ϕ,

so ϕ is basic. �

Lemma 2.8. We have DQDF = −DFDQ + κ ·M DF = −DF (DQ + κ·M ).

Proof. We see that, letting e1, ..., en be a local orthonormal frame for Q,

DQ

(
ξ ·M ∇ΣQ

ξ

)
=

(
n∑

i=1

ei ·Q ∇ΣQ
ei − 1

2
κ·Q
)(

ξ ·M ∇ΣQ
ξ

)

=

n∑

i=1

(
ei ·M ξ ·M ∇ΣQ

ei
∇ΣQ

ξ

)
− 1

2
κ ·M ξ ·M ∇ΣQ

ξ ,

by Lemma 2.2. Then

DQ

(
ξ ·M ∇ΣQ

ξ

)
=

n∑

i=1

(
K (ei, ξ) + ei ·M ξ ·M

(
∇ΣQ

ξ ∇ΣQ
ei +∇ΣQ

[ei,ξ]

))
− 1

2
κ ·M ξ ·M ∇ΣQ

ξ .

By Lemma 2.1, K (ei, ξ) = 0 for every i. Note that [ei, ξ] ∈ TF so that

[ei, ξ] = 〈[ei, ξ] , ξ〉 ξ = 〈∇eiξ −∇ξei, ξ〉 ξ

=
1

2
ei 〈ξ, ξ〉 − 〈∇ξei, ξ〉 ξ

= 〈ei,∇ξξ〉 ξ = κ (ei) ξ.



6 G. HABIB AND K. RICHARDSON

Thus,

DQ

(
ξ ·M ∇ΣQ

ξ

)
=

n∑

i=1

ei ·M ξ ·M
(
∇ΣQ

ξ ∇ΣQ
ei + κ (ei)∇ΣQ

ξ

)
− 1

2
κ ·M ξ ·M ∇ΣQ

ξ

=
n∑

i=1

ei ·M ξ ·M ∇ΣQ
ξ ∇ΣQ

ei
+

n∑

i=1

κ (ei) ei ·M ξ ·M ∇ΣQ
ξ − 1

2
κ ·M ξ ·M ∇ΣQ

ξ

=

n∑

i=1

ei ·M ξ ·M ∇ΣQ
ξ ∇ΣQ

ei
+

1

2
κ ·M ξ ·M ∇ΣQ

ξ

= −
(
ξ ·M ∇ΣQ

ξ

) (
ei ·Q ∇ΣQ

ei

)
−
(
ξ ·M ∇ΣQ

ξ

) 1

2
κ ·M

= −
(
ξ ·M ∇ΣQ

ξ

)
DQ −

(
ξ ·M ∇ΣQ

ξ

)
κ ·M

= −
(
ξ ·M ∇ΣQ

ξ

)
DQ + κ ·M

(
ξ ·M ∇ΣQ

ξ

)
.

�

Corollary 2.9. If κ = 0, then the spectrum of DF contains a countable number of real eigenvalues, and
there exists a complete orthonormal basis of L2 (ΣQ) consisting of smooth eigensections of DF .

Proof. If κ = 0, we consider the essentially self-adjoint, elliptic operator

L = DQ +DF .

There exists a complete orthonormal basis of L2 (ΣQ) consisting of smooth eigensections of L, and each
eigenspace is finite-dimensional. By Lemma 2.8, DQDF +DFDQ = 0, so L2 = D2

Q+D2
F , and DF commutes

with L2. Then DF restricts to a self-adjoint operator on the finite-dimensional eigenspaces of L2 and thus
has pure real eigenvalue spectrum restricted to those subspaces. The result follows. �

Remark 2.10. As shown in Example 4.1, it is possible that the spectrum of DF is R but also contains
a countable number of real eigenvalues, whose smooth eigensections form a complete orthonormal basis of
L2 (ΣQ).

Remark 2.11. Suppose instead that κ = df . Note that this means that f is a basic function, since otherwise
κ would have ξ∗ components. Then we modify the metric on M so that 〈ξ, ξ〉′ = e2f but otherwise keep
everything the same. Then the leafwise volume form is

χ′ = efξ∗,

and

dχ′ = − (κ− df) ∧ χ+ ϕ0 = ϕ0,

so that κ′ = 0. Then in the new metric L′ = D′
Q + D′

F has the same properties, and D′
F commutes with

(L′)2. But observe that D′
F = e−fDF because for all ψ ∈ Γ (ΣQ), ξ′ ·′M ψ = ξ ·M ψ, and ξ′ = e−fξ. In

examples it appears that DF does not have a complete basis of eigenvectors, even though D′
F does.

3. Adiabatic limits

In this section, given the bundle-like metric g on (M,F), we consider the family of metrics

gf = f2ξ∗ ⊗ ξ∗ + gξ⊥ ,

where f is a positive basic function on M . This metric is bundle-like for the foliation and has the same
transverse metric as the original metric, and ξf = 1

f ξ is the corresponding unit tangent vector field of the

foliation.

Lemma 3.1. The spaces L2 (Γb (ΣQ)) and L2 (Γb (ΣQ))
⊥

are the same for any such metric gf .
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Proof. The space Γb (ΣQ) does not depend on the metric and thus is independent of f . Since f is a smooth
positive function, we see easily that L2 (Γb (ΣQ)) is also independent of f . Next, suppose that α is orthogonal
to any given β ∈ Γb (ΣQ) with respect to the old metric. Then if we let (•, •) denote the original pointwise
metric on ΣQ, we have that (α, β) is independent of f since β has no components with ξ∗. Also, ν ∧ ξ∗ is
the original volume form on M with ν the transverse volume form. In the new metric, fν ∧ ξ∗ is the volume
form. Then

〈α, β〉f =

∫
(α, β) fν ∧ ξ∗ =

∫
(α, fβ) ν ∧ ξ∗ = 0

since fβ is also a basic form. Therefore, we also have that the space L2 (Γb (ΣQ))⊥ is independent of f . �

Recall that the basic component κb of the mean curvature form κ is always a closed form and defines a
class [κb] in basic cohomology H1

b (M,F) that is invariant of the transverse Riemannian foliation structure
and bundle-like metric (see [1]). Such a Riemannian foliation is taut if and only if [κb] = 0. Also, recall from
[11]: given any Riemannian foliation (M,F) with bundle-like metric, there exists another bundle-like metric
on M with identical transverse metric such that the mean curvature is basic.

Theorem 3.2. Let M be a closed Riemannian spin manifold, endowed with an oriented Riemannian flow
given by the unit vector field ξ. Suppose that the mean curvature form κ is basic. Let DM,f be the Dirac oper-
ator associated to the metric gf and spin structure. The eigenvalues of DM,f are {λj (f)}∞j=1 ∪ {µk (f)}∞k=1,

corresponding to the restrictions of DM,f to L2 (Γb (ΣQ)) and L2 (Γb (ΣQ))
⊥
, respectively. Then these eigen-

values can be indexed such that

(1) (a) (n even) as f → 0, λj (f) converges to eigenvalues of the basic Dirac operator Db.
(b) (n odd) as f → 0, λj (f) converges to the eigenvalues of the basic Dirac operators ±Db.
In the cases above, the convergence is uniform in j.

(2) If F is taut (i.e. κ = dh for a function h), the nonzero eigenvalues in {µk (f)} approach ±∞ as

f → 0 uniformly with df
f

uniformly bounded.

Proof. (1a) Observe that ξf = 1
f
ξ, ξ∗f = fξ, κf = κ− df

f
and Ωf = fΩ. For the case where n is even, from

(2.2),

DM,f = DQ,f − 1

2
ξf ·M,f Ωf ·M,f +ξf ·M,f ∇ΣQ

ξf

= DQ,f − f

2
ξf ·M,f Ω ·M,f +

1

f
ξf ·M,f ∇ΣQ

ξ .

Then for any basic spinor ψ,

DM,f (ψ) = Db,fψ − f

2
ξf ·M,f Ω ·M ψ, (3.1)

since κ is basic. Thus,

‖(DM,f −Db,f )ψ‖L2

‖ψ‖L2

=

∥∥∥ f
2 ξf ·M,f Ω ·M ψ

∥∥∥
L2

‖ψ‖L2

≤

∥∥∥ f
2Ω ·M ψ

∥∥∥
L2

‖ψ‖L2

≤ max |f |
2

C,

where C is the operator norm of (Ω·M ). Thus

‖(DM,f −Db,f )ψ‖L2

‖ψ‖L2

→ 0

uniformly in f and ψ, hence

‖(DM,f −Db,f )‖Op ≤ max |f |
2

C → 0

as f → 0 uniformly. Since the eigenvalues of Db,f are constant in f and are those of Db(see [14]), the
eigenvalues of DM,f converge to those of Db, because the spectrum is continuous as a function of the
operator norm (see Lemma 5.1 in the appendix).
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(1b) For the case where n is odd, from (2.2),

DM,f = ξ ·M,f (DQ,f ⊕ (−DQ,f ))−
1

2
ξf ·M,f Ωf ·M,f +ξf ·M,f ∇ΣQ⊕ΣQ

ξf

= ξ ·M,f (DQ,f ⊕ (−DQ,f ))−
f

2
ξf ·M,f Ω ·M,f +

1

f
ξf ·M,f ∇ΣQ⊕ΣQ

ξ .

Then, since κ is basic, for any basic spinor ψ = (ψ1, ψ2) ∈ Γb (ΣQ⊕ ΣQ),

DM,f (ψ) = ξ ·M,f (DQ,fψ1 ⊕ (−DQ,fψ2))−
f

2
ξf ·M,f Ω ·M,f (ψ1, ψ2) +

1

f
ξf ·M,f ∇ΣQ

ξ (ψ1, ψ2)

= ξ ·M,f (Db,fψ1,−Db,fψ2)−
f

2
ξf ·M,f Ω ·M (ψ1, ψ2) .

Thus,

‖DM,f (ψ1, ψ2)− ξ ·M,f (Db,fψ1,−Db,fψ2)‖L2

‖ψ‖L2

=

∥∥∥ f
2 ξf ·M,f Ω ·M ψ

∥∥∥
L2

‖ψ‖L2

≤

∥∥∥ f
2Ω ·M ψ

∥∥∥
L2

‖ψ‖L2

≤ max |f |
2

C,

where C is the operator norm of (Ω·M ). The same conclusions follow.

(2′) Now we suppose the particular case that κ = 0. Then κf = − df
f . For the case where n is even,

DM,f = DQ,f − f

2
ξ ·M Ω ·M +

1

f
ξ ·M ∇ΣQ

ξ

=

n∑

i=1

ei ·Q ∇ΣQ
ei

+
1

2

(
df

f

)
·Q −f

2
ξ ·M Ω ·M +

1

f
DF .

We consider the elliptic operator Lf = Dtr+
1
fDF = DQ + 1

fDF , which is self-adjoint with respect to the

original metric and therefore has discrete real spectrum. Then if ∗ is used as the adjoint with respect to the
L2 (M, gf) metric,

L∗
fLf =

(
Dtr +

1

f
DF

)∗(
Dtr +

1

f
DF

)

=

(
D∗

tr +
1

f
D∗

F

)(
Dtr +

1

f
DF

)

=

(
Dtr +

df

f
·Q +

1

f
DF

)(
Dtr +

1

f
DF

)

= D2
tr +

df

f
·Q Dtr +

1

f
DFDtr +Dtr ◦

1

f
DF +

df

f2
·Q DF +

1

f2
D2

F

= D2
tr +

df

f
·Q Dtr +

1

f
DFDtr −

df

f2
·Q DF +

1

f
DtrDF +

df

f2
·Q DF +

1

f2
D2

F

= D2
tr +

df

f
·Q Dtr +

1

f2
D2

F

where Dtr =
∑n

i=1 ei ·Q ∇ΣQ
ei

, which is self-adjoint with respect to the original metric. Clearly L∗
fLf is

nonnegative, elliptic, and self-adjoint with respect to the new metric and thus has discrete spectrum. The
operator DF restricts to the eigenspaces of L∗

fLf since they commute. Indeed, DF anticommutes with

Dtr and with df
f2 ·Q and commutes with 1

f
. By Corollary 2.9, we may restrict to an eigenspace of DF

corresponding to an eigenvalue α 6= 0 (since we are only considering antibasic sections now), and we see that
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such an eigenvalue, normalized antibasic eigensection pair λf , ψf satisfies

〈
L∗
fLfψf , ψf

〉
f

=

〈(
D2

tr +
df

f
·Q Dtr +

1

f2
D2

F

)
ψf , ψf

〉

f

=

〈(
D2

tr +
df

f
·Q Dtr +

1

f2
α2

)
ψf , ψf

〉

f

=

〈(
1

f
Dtr (fDtr) +

1

f2
α2

)
ψf , ψf

〉

f

= 〈Dtr (fDtr)ψf , ψf 〉+
〈

1

f2
α2ψf , ψf

〉

f

= 〈Dtrψf , Dtrψf 〉f + α2

〈
1

f2
ψf , ψf

〉

f

≥ α2

max (f2)
→ ∞

as f → 0 uniformly. Thus, the eigenvalues of L∗
fLf go to +∞ as f → 0 uniformly. Since the eigenvalues of

L∗
fLf are precisely the squares of the eigenvalues of Lf , we also get that the eigenvalues of Lj approach ±∞

as f → 0 uniformly. Next, observe that

‖DM,f − Lf‖Op =

∥∥∥∥
1

2

(
df

f

)
·Q −f

2
ξ ·M Ω·M

∥∥∥∥
Op

≤ 1

2
max |f |max ‖Ω‖+ 1

2
max

∣∣∣∣
df

f

∣∣∣∣ ,

and the right hand side remains bounded as f → 0 uniformly with |df |
f bounded. Thus, since the spectrum

is continuous as a function of the operator norm (see Lemma 5.1), the eigenvalues of DM,f go to ±∞ as

f → 0 uniformly with |df |
f

bounded. The n odd case is similar.

(2) Now, suppose that κ is an exact form, so that κ = dh for some function h (which must be basic;

otherwise κ would have a ξ∗ component). Then we may multiply the leafwise metric by f̃2 where f̃ =
exp (h), and then in the new metric κ̃ = 0. Then, given any positive function f , gf = f2ξ∗ ⊗ ξ∗ + gξ⊥ =(
f f̃−1

)2
f̃2ξ∗ ⊗ ξ∗ + gξ⊥ . Suppose that f → 0 uniformly with df

f uniformly bounded; then f f̃−1 → 0

uniformly and
d(ff̃−1)
ff̃−1

= d(f)
f

− d(f̃)
f̃

is also uniformly bounded. By the result in (2′) above, the nonzero

eigenvalues in {µk (f)} approach ±∞. �

Remark 3.3. Example 4.3 shows that in the case that F is not taut, the methods of the proof for part (2) do
not work. In this example, the only eigenvalue of DF is 0, corresponding to the basic sections, and yet the
spectrum of DF is R. So the conclusion of Corollary 2.9 does not hold even though κ is basic. We conjecture
that the conclusion (2) is false for general Riemannian foliations.

4. Examples

Example 4.1. Consider M = T 2 = R2� (2πZ)
2
, the Euclidean two-dimensional torus, with a constant

linear flow ξ = a∂x + b∂y, where a2 + b2 = 1. The spinor bundle ΣM is C2 ×M , and we consider the

Clifford multiplication (c∂x + d∂y) =

(
0 −c+ di

c+ di 0

)
. The bundle Q = ξ⊥ = span {−b∂x + a∂y},

and ΣQ = C ×M . Covariant derivatives are the same as directional derivatives. The standard metric is
g = dx2 + dy2, and we consider the perturbed metric

gf = gt = dx2 + dy2 + (t2 − 1) (ξ∗)2 = dx2 + dy2 + (t2 − 1) (a dx + b dy)
2
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with f (t) = t. Since the foliation for this and the original metric is totally geodesic, ∇ΣM = ∇ΣQ⊕ΣQ. Then

DM,t =
∑

ej ·M ∇ΣM
ej

+ ξt ·t ∇ΣM
ξt

=
∑

ej ·M ∇ΣM
ej +

1

t
ξ ·M ∇ΣM

ξ

= DM +

(
1

t
− 1

)
ξ ·M ∇M

ξ .

We now compute the eigenvalues of DM,t. Observe that

ξ ·M ∇M
ξ =

(
0 −a+ bi

a+ bi 0

)
(a∂x + b∂y) .

Consider the space Vm,n =

{(
c

d

)
exp (i (mx+ ny)) : c, d ∈ C

}
, so that the Hilbert sum

⊕
m,n∈Z

Vm,n =

L2 (ΣM). We see that

DM,t

((
c

d

)
exp (i (mx+ ny))

)

=

((
0 −∂x + i∂y

∂x + i∂y 0

)
+

(
1

t
− 1

)(
0 −a+ bi

a+ bi 0

)
(a∂x + b∂y)

)((
c

d

)
exp (i (mx+ ny))

)

=

((
0 −im− n

im− n 0

)
+

(
1

t
− 1

)(
0 −a+ bi

a+ bi 0

)
(iam+ ibn)

)((
c

d

)
exp (i (mx+ ny))

)
.

The matrix is(
0 −im− n+ 1

t
(−t+ 1) (−a+ ib) (iam+ ibn)

im− n+ 1
t
(−t+ 1) (a+ ib) (iam+ ibn) 0

)
.

The eigenvalues are ±√
q, where

q = m2 + n2 − (am+ bn)2 +
1

t2
(am+ bn)2 .

So, in the case where b
a
is rational, the set of basic sections of ΣM is
{(

c

d

)
exp (i (mx+ ny)) : c, d ∈ C,m, n ∈ Z, am+ bn = 0

}
.

Also, ΣQ = C, and the basic Dirac operator is Db = iθ, where θ⊥ξ. It has eigenvalues
{
m

√
1 +

b2

a2
: m ∈ Z

}

with eigensections of the form {exp (i (mx+ ny)) : m,n ∈ Z, am+ bn = 0}. Actually, M�F is a circle of
radius 2π√

1+ b2

a2

. As can be seen above, the eigenvalues DM,t are

±
√
m2 + n2 − (am+ bn)

2
+

1

t2
(am+ bn)

2

with m,n ∈ Z. The eigenvalues with am+bn = 0 are independent of t and trivially converge to the eigenvalues
of Db⊕ −Db. All other eigenvalues go to ±∞ as t→ 0.

On the other hand, if b
a
is irrational, the basic sections of ΣM are

{(
c

d

)
: c, d ∈ C

}
, since each leaf is

dense. The basic Dirac operator is the zero operator and only has the eigenvalue 0. Also, since am+ bn 6= 0
for all (m,n) ∈ Z2 \ {(0, 0)}, the expression above implies that every eigenvalue besides 0 goes to ±∞ as
t→ 0.

These results are consistent with our theorem. We also find the spectrum of the operator

ξ ·M ∇M
ξ =

(
0 −a+ bi

a+ bi 0

)
(a∂x + b∂y) .
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Applied to an element of

{(
c

d

)
exp (i (mx+ ny)) : c, d ∈ C,m, n ∈ Z, am+ bn = 0

}
, we get

(
ξ ·M ∇M

ξ

)( c

d

)
exp (i (mx+ ny)) = (iam+ ibn)

(
0 −a+ bi

a+ bi 0

)(
c

d

)
exp (i (mx+ ny)) ,

and the matrix restricted to this subspace is

(iam+ ibn)

(
0 −a+ bi

a+ bi 0

)
=

(
0 (−a+ ib) (iam+ ibn)

(a+ ib) (iam+ ibn) 0

)
.

The eigenvalues are obviously ± (am+ bn), so that in the irrational slope case 0 is a limit point of the
eigenvalues of DF . In fact, the eigenvalues are dense in R. Note that the whole spectrum is R because it is
closed, even though there exists an orthonormal basis of L2 (ΣM) consisting of eigensections. The problem

is that (DF − λI)−1 for any λ not in the spectrum, but this operator is not a bounded operator.

Example 4.2. Consider M = T 3 = R3� (2πZ)
3
, the Euclidean 3-torus, with a constant linear flow ξ =

a∂x+b∂y+c∂z, where a
2+b2+c2 = 1. The spinor bundle ΣM is C2×M , and we consider the Clifford multi-

plication (c∂x + d∂y + e∂z) =

(
ie −c+ di

c+ di −ie

)
. The bundle Q = ξ⊥ = span {−b∂x + a∂y,−c∂x + a∂z},

and ΣQ = C2 ×M . Covariant derivatives are the same as directional derivatives. The standard metric is
g = dx2 + dy2 + dz2, and we consider the perturbed metric

gf = gt = g + (t2 − 1) (ξ∗)2 = dx2 + dy2 + (t2 − 1) (a dx+ b dy + cdz)
2

with f (t) = t. Since the foliation for this and the original metric is totally geodesic, ∇ΣM = ∇ΣQ. Then

DM,t =
∑

ej ·M ∇ΣM
ej

+ ξt ·t ∇ΣM
ξt

=
∑

ej ·M ∇ΣM
ej +

1

t
ξ ·M ∇ΣM

ξ

= DM +

(
1

t
− 1

)
ξ ·M ∇M

ξ .

We now compute the eigenvalues of DM,t. Observe that

ξ ·M ∇M
ξ =

(
ic −a+ bi

a+ bi −ic

)
(a∂x + b∂y + c∂z) .

Consider the space Vm,n,k =

{(
r

s

)
exp (i (mx+ ny + kz)) : r, s ∈ C

}
, so that the Hilbert sum

⊕
m,n,k∈Z

Vm,n,k =

L2 (ΣM).

We see that for ϕ =

(
r

s

)
exp (i (mx+ ny + kz)),

DM,tϕ

=

((
i∂z −∂x + i∂y

∂x + i∂y −i∂z

)
+

(
1

t
− 1

)(
ic −a+ bi

a+ bi −ic

)
(a∂x + b∂y + c∂z)

)
ϕ

=

((
−k −im− n

im− n k

)
+

(
1

t
− 1

)(
ic −a+ bi

a+ bi −ic

)
(iam+ ibn+ ick)

)
ϕ.

One can check that the eigenvalues of DM,t restricted to such sections are

±
√
k2 + n2 +m2 +

(1− t2)

t2
(am+ bn+ ck)

2
.

As t → 0+, then λ ≈ ± 1
t |am+ bn+ ck| if am + bn + ck 6= 0, and λ = ±

√
k2 + n2 +m2 otherwise. So as

t→ 0+, if am+ bn+ ck = 0 (i.e. basic eigensections of DM ), then the eigenvalues are ±
√
k2 + n2 +m2 and

do not change with t. Otherwise, if am+ bn+ ck 6= 0, then all the eigenvalues go to ±∞. This is consistent
with our theorem.



12 G. HABIB AND K. RICHARDSON

Example 4.3. Consider the Carrière example from [8] in the 3-dimensional case. This foliation is not taut,
and we will show that the spectrum of DF is all of R in this case, and its only eigenvalue is 0, corresponding

to the basic sections. Choose A =

(
2 1
1 1

)
to be a symmetric matrix in SL2(Z), and let T2 = R2�Z2.

Note that the eigenvalues of A are λ = 3+
√
5

2 , 1
λ
= 3−

√
5

2 corresponding to normalized eigenvectors

V1 =




1

2

√
5+ 1

2√
1

2

√
5+ 5

2

1√
1

2

√
5+ 5

2


 =

(
0.850 65
0.525 73

)
=: G∂x +K∂y,

V2 =




− 1

2

√
5+ 1

2√
− 1

2

√
5+ 5

2

1√
− 1

2

√
5+ 5

2


 =

(
−0.525 73
0.850 65

)
= −K∂x +G∂y,

respectively. Let the hyperbolic torus M = T3
A be the quotient of T2 × R by the equivalence relation which

identifies (m, t) to (A(m), t+ 1). We may also think of it as T2 × [0, 1] with (m, 0) identified with (Am, 1).
We choose the bundle-like metric so that the vectors V1, V2, ∂t form an orthonormal basis at t = 0 and in

general λtV1,λ
−tV2, ∂t form an orthonormal basis for t ∈ [0, 1]. Note that at t = 0, this is the standard flat

metric on the torus. If we use ∗ to denote the adjoint/dual with respect to the t = 0 metric, the metric is

g = dt2 + λ−2t (V ∗
1 )

2
+ λ2t (V ∗

2 )
2
.

We have that the mean curvature of the flow is κ = κb = − log (λ) dt, since χF = λtV ∗
2 is the characteristic

form and dχF = log (λ)λtdt ∧ V ∗
2 = −κ ∧ χF . We also have that ϕ0 = 0 for this flow.

We choose the trivial spin structure, so that the spin bundle is M ×C2 with spinor connection, with Clifford
multiplication

c
(
λ−tV2

)
=

(
i 0
0 −i

)
, c
(
λtV1

)
=

(
0 −1
1 0

)
, c (∂t) =

(
0 i

i 0

)
.

We need to calculate the covariant derivatives of spinors. We calculate for ξ = e0 = λ−tV2, e1 = λtV1,
e2 = ∂t.

[
λ−tV2, λ

tV1
]

= [e0, e1] = 0,
[
λ−tV2, ∂t

]
= [e0, e2] = + (logλ) λ−tV2 = (logλ) e0,[

λtV1, ∂t
]

= [e1, e2] = − (logλ) λtV1 = − (logλ) e1.

Then by the Koszul formula, the Christoffel symbols are

Γ2
00 = 〈∇e0e0, e2〉 =

1

2
(−〈[e0, e2] , e0〉 − 〈[e0, e2] , e0〉) = − logλ,

Γ1
12 = −Γ2

11 = −Γ0
02 = − logλ

similarly. Now we use the formula

∇ΣM
X ψ = X (ψ) +

1

2

∑

i<j

〈
∇M

X ei, ej
〉
ei ·M ej ·M ψ.

Then

∇ΣM
λ−tV2

ϕ = ∇ΣM
e0 ϕ = s−1λ−tV2 (ϕ) +

1

2

∑

i<j

〈
∇M

e0 ei, ej
〉
ei ·M ej ·M ϕ

= s−1λ−tV2 (ϕ) +
logλ

2

(
0 1
−1 0

)
ϕ = s−1λ−tV2 (ϕ)−

logλ

2
e1 ·M ϕ,

∇ΣM
λtV1

ϕ = ∇ΣM
e1

ϕ = λtV1 (ϕ) +
1

2

∑

i<j

〈
∇M

e1
ei, ej

〉
ei ·M ej ·M ϕ

= λtV1 (ϕ)−
logλ

2

(
i 0
0 −i

)
ϕ = λtV1 (ϕ)−

logλ

2
e0 ·M ϕ,

∇ΣM
∂t

ϕ = ∂tϕ.
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With ξ = λ−tV2, the connection satisfies

∇ΣM
ξ ϕ = λ−tV2 (ϕ) +

logλ

2

(
0 1
−1 0

)
ϕ

= ∇ΣQ
ξ ϕ+

1

2
Ω ·M ϕ+

1

2
ξ ·M κ ·M ϕ

= ∇ΣQ
ξ ϕ− logλ

2

(
i 0
0 −i

)(
0 i

i 0

)
ϕ

= ∇ΣQ
ξ ϕ+

logλ

2

(
0 1
−1 0

)
ϕ,

so

∇ΣQ
ξ ϕ = s−1λ−tV2ϕ.

Now we compute

DFϕ = ξ ·M ∇ΣQ
ξ ϕ

=

(
i 0
0 −i

)
λ−tV2ϕ

=

(
iλ−tV2 0

0 −iλ−tV2

)
ϕ.

So to determine the spectrum of DF , we consider DF − µI and determine when it has a bounded inverse.
We apply this to a section of the form

ϕ =

(
abc
fbc

)
e2πi(bx+cy).

Then

(DF − µI)ϕ =

(
iλ−tV2 − µ 0

0 −iλ−tV2 − µ

)(
abc
fbc

)
e2πi(bx+cy)

=

(
iλ−t (2πi (−Kb+Gc))− µ 0

0 −iλ−t (2πi (−Kb+Gc))− µ

)
ϕ

=

(
−λ−t2π (−Kb+Gc)− µ 0

0 λ−t2π (−Kb+Gc)− µ

)
ϕ.

Suppose that µ is actually an eigenvalue of DF . Then ϕ must satisfy the condition ϕ (t+ 1, 2x+ y, x+ y) =
ϕ (t, x, y), µ must be constant, and µ = ±λ−t2π (−Kb+Gc). So only b = c = 0 is possible, corresponding to
the double eigenvalue 0. The eigensections are exactly the sections that depend on t alone, the basic sections.
What is in the other part of the spectrum of DF? We have

(DF − µI)
−1
ϕ =

(
−p− µ 0

0 p− µ

)−1

ϕ =

( − 1
p+µ 0

0 1
p−µ

)
ϕ

acting on sections of the form ϕ, which exists as long as p−µ 6= 0 and p+µ 6= 0, where p = λ−t2π (−Kb+Gc) =
λ−t2π (−0.525 73b+ 0.850 65c) takes on every number in the range

λ−12π (−0.525 73b+ 0.850 65c) ≤ p ≤ 2π (−0.525 73b+ 0.850 65c) ;

that is,

−1. 261 7b+ 2. 041 5c ≤ p ≤ −3. 303 3b+ 5. 344 8c.

So µ is in the spectrum if and only if ±µ is in the set where −1. 261 7b+ 2. 041 5c ≤ µ ≤ −3. 303 3b+ 5.
344 8c for any integers b, c. Thus, every µ ∈ R is in the spectrum.
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5. Appendix

We include the following well-known result for completeness, although it certainly is contained in more
general perturbation theory of linear operators in the literature.

Lemma 5.1. Let A and B be two unbounded, essentially self-adjoint operators with discrete spectrum and the
same domain on a Hilbert space such that the eigenspaces according to each eigenvalue are finite-dimensional
and the eigenvalues approach ∞ in absolute value. If ‖A−B‖op ≤ ε for some ε > 0 and

... ≤ λj−1 ≤ λj ≤ λj+1 ≤ ...

with j ∈ Z are the eigenvalues of A, counted with multiplicities. Then there is a numbering of the eigenvalues

... ≤ µj−1 ≤ µj ≤ µj+1 ≤ ...

of B such that

|λj − µj | ≤ ε

for all j.

Proof. First, we prove the result for the case of nonnegative operators. Let A and B be nonnegative, satisfy
‖A−B‖op ≤ ε, and have domain D. For any subspace S of D,

sup
α∈S
‖a‖=1

‖Aα‖ ≤ sup
α∈S
‖a‖=1

‖(A−B)α‖ + ‖Bα‖ ≤ ε+ sup
α∈S
‖a‖=1

‖Bα‖ ,

so in particular

λk = inf
S⊂D

dimS=k


 sup

α∈S
‖a‖=1

‖Aα‖


 ≤ ε+ inf

S⊂D
dimS=k


 sup

α∈S
‖a‖=1

‖Bα‖


 = ε+ µk.

Reversing the roles of A and B, we do obtain |λk − µk| ≤ ε for the nonnegative case.
Next, for arbitrary operators A and B that satisfy the hypothesis, consider the nonnegative operators
A′ = |A| + A, B′ = |B| + B, so that ‖A′ −B′‖op ≤ 2ε. The eigenvalues of A′ and B′ are |λk| + λk and

|µk|+ µk, respectively, and the previous argument shows that |λk − µk| ≤ ε for all nonnegative eigenvalues
λk and µk of A and B. Similarly, we apply the previous argument to A′′ = |A| − A and B′′ = |B| − B to
show that |λk − µk| ≤ ε for all negative eigenvalues λk and µk of A and B. �
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