A splitting theorem for Riemannian manifolds of generalised Ricci-Hessian type

Nicolas Ginoux^{*}, Georges Habib[†], Ines Kath[‡] March 29, 2021

Abstract. In this paper, we study and partially classify those Riemannian manifolds carrying a non-identically vanishing function f whose Hessian is minus f times the Ricci-tensor of the manifold.

Mathematics Subject Classification (2010): 53C20, 58J60

Keywords: Obata equation, Tashiro equation

1 Introduction

In this paper, we are interested in those Riemannian manifolds (M^n, g) supporting a non-identically-vanishing function f satisfying

$$\nabla^2 f = -f \cdot \text{Ric} \tag{1}$$

on M, where $\nabla^2 f := \nabla \nabla f$ denotes the Hessian of f and Ric the Ricci-tensor of (M^n, g) , both seen as (1, 1)-tensor fields. This equation originates in the search for nontrivial solutions to the so-called skew-Killing-spinor-equation [3].

Equation (1) looks much like that considered by C. He, P. Petersen and W. Wylie in their search for warped product Einstein metrics where functions f are considered whose Hessian is a positive scalar multiple of $f \cdot (\text{Ric} - \lambda \text{Id})$ for some real constant λ , see e.g. [6, Eq. (1.4)]. However, no attempt has been made to deal with the negative case since. In another direction, J. Corvino proved [1, Prop. 2.7] that a positive function f satisfies $\nabla^2 f = f \cdot \text{Ric} - (\Delta f) \cdot \text{Id}$ on f if and only if the (Lorentzian) metric f is Einstein on f is Einstein on f in f in f in f is replaced by $f \cdot f$ in f in

^{*}Université de Lorraine, CNRS, IECL, F-57000 Metz, France, E-mail: nicolas.ginoux@univ-lorraine.fr

[†]Lebanese University, Faculty of Sciences II, Department of Mathematics, P.O. Box 90656 Fanar-Matn, Lebanon, E-mail: ghabib@ul.edu.lb

[‡]Universität Greifswald, Institut für Mathematik und Informatik, Walther-Rathenau-Straße 47 17487 Greifswald, Germany, E-mail: ines.kath@uni-greifswald.de

Along the same line, S. Güler and S.A. Demirbağ define a Riemannian manifold (M^n, g) to be quasi Einstein if and only if there exist smooth functions u, α, λ on M such that

$$Ric + \nabla^2 u - \alpha du \otimes \nabla u = \lambda \cdot Id,$$

see [4, Eq. (1.1)]. It is easy to see that, for $\alpha = -1$ and $\lambda = 0$, a function u solves that equation if and only if $f := e^u$ solves (1). However the results of [4] cannot be compared with ours since the quasi Einstein condition seems to be interesting only in the case where $\alpha > 0$ and u > 0.

Independently from [5, 6], F.E.S. Feitosa, A.A. Freitas Filho, J.N.V. Gomes and R.S. Pina define gradient almost Ricci soliton warped products by means of functions $f > 0, \varphi, \lambda$ satisfying in particular

 $\frac{m}{f}\nabla^2 f + \lambda \cdot \mathrm{Id} = \mathrm{Ric} + \nabla^2 \varphi$

for some nonzero real constant m, see [2, Eq. (1.4)]. Our equation (1) is the special case of that equation where m = -1 and $\lambda = \varphi = 0$. But again [2] only deals with the case where m > 0; besides, only positive f are considered. Therefore, no result of [2] can be used in our setting.

Ricci-flat manifolds carry obvious solutions to (1), just pick constant functions. Constant functions are actually all solutions to (1) in case M is Ricci-flat and closed. If M is Ricci-flat, complete but noncompact, then there exists a nonconstant solution to (1) if and only if M is the Riemannian product of $\mathbb R$ with a (complete) Ricci-flat manifold N; in that case, f is an affine-linear function of the $t \in \mathbb R$ -coordinate. In the search for further nonconstant functions satisfying (1), a natural setting that comes immediately to mind is the case where (M^n,g) is Einstein, because then (1) gets close to the Obata resp. Tashiro equation. But surprisingly enough only certain two-dimensional spaceforms carry such functions among complete Einstein manifolds, see Lemma 2.1 below. Further examples can be constructed taking Riemannian products of manifolds carrying a function solving (1) – e.g. some 2-dimensional spaceforms – with any Ricci-flat Riemannian manifold. It is however a priori unclear whether other examples exist besides those.

We show here that, under further geometric assumptions, only products of two-dimensional spaceforms with a Ricci-flat Riemannian manifold can appear, see Theorem 2.4. In particular, we obtain a classification result covering to some extent the missing case in [6].

2 Main result and proof

2.1 Preliminary remarks

We start with preliminary results, most of which are elementary or already proved in the literature. From now on, we shall denote by S the scalar curvature of M and, for any function h on M, by ∇h the gradient vector field of h w.r.t. g on M. First observe that the equation $\nabla^2 f = -f \cdot \text{Ric}$ is of course linear in f but is also invariant under metric rescaling: if $\overline{g} = \lambda^2 g$ for some nonzero real number λ , then $\overline{\nabla}^2 f = \lambda^{-2} \overline{\nabla}^2 f$ (this comes from the rescaling of the gradient) and $\overline{\text{Ric}} = \lambda^{-2} \text{Ric}$.

Lemma 2.1 Let (M^n, g) be any connected Riemannian manifold carrying a smooth real-valued function f satisfying (1) on M.

1. The gradient vector field ∇f of f w.r.t. g satisfies

$$\operatorname{Ric}(\nabla f) = \frac{S}{2} \nabla f + \frac{f}{4} \nabla S. \tag{2}$$

2. There exists a real constant μ such that

$$f\Delta f + 2|\nabla f|^2 = \mu. \tag{3}$$

- 3. If n > 2 and f is everywhere positive or negative, then f solves (1) if and only if, setting $u := \frac{1}{2-n} \ln |f|$, the metric $\overline{g} := e^{2u}g$ satisfies $\overline{\text{ric}} = (\overline{\Delta}u)\overline{g} (n-2)(n-3)du \otimes du$ on M and in that case $\overline{\Delta}u = -\frac{\mu}{n-2}e^{2(n-3)u}$. In particular, if n = 3, the existence of a positive solution f to (1) is equivalent to $(M, f^{-2}g)$ being Einstein with scalar curvature $-3\overline{\Delta}\ln |f|$.
- 4. If M is closed and f is everywhere positive or negative, then f is constant on M.
- 5. If nonempty, the vanishing set $N_0 := f^{-1}(\{0\})$ of f is a scalar-flat totally geodesic hypersurface of M. Moreover, N_0 is flat as soon as it is 3-dimensional and carries a nonzero parallel vector field.
- 6. If furthermore M is non-Ricci-flat, Einstein or 2-dimensional, then n = 2 and M has constant curvature. In particular, when (M², g) is complete, there exists a nonconstant function f satisfying (1) if and only if, up to rescaling the metric, the manifold (M², g) is isometric to either the round sphere S² and f is a nonzero eigenfunction associated to the first positive Laplace eigenvalue; or to flat R² or cylinder S¹ × R and f is an affine-linear function; or to the hyperbolic plane ℍ² and f is a solution to the Tashiro equation ∇²f = f · Id.
- 7. If S is constant, then outside the set of critical points of f, the vector field $\nu := \frac{\nabla f}{|\nabla f|}$ is geodesic. Moreover, assuming (M^n, g) to be also complete,
 - (a) if S > 0, then up to rescaling the metric as well as f, we may assume that S = 2 and that $\mu = f\Delta f + 2|\nabla f|^2 = 2$ on M, in which case the function f has 1 as maximum and -1 as minimum value and those are the only critical values of f;
 - (b) if S = 0, then up to rescaling f, we may assume that $\mu = 2$ on M, in which case f has no critical value and $f(M) = \mathbb{R}$, in particular M is noncompact;
 - (c) if S < 0, then up to rescaling the metric, we may assume that S = -2 on M, in which case one of the following holds:
 - i. if $\mu > 0$, then up to rescaling f we may assume that $\mu = 2$, in which case f has no critical value and $f(M) = \mathbb{R}$, in particular M is noncompact;
 - ii. if $\mu = 0$, then f has no critical value and empty vanishing set and, up to changing f into -f, we have $f(M) = (0, \infty)$, in particular M is noncompact;
 - iii. if $\mu < 0$, then up to rescaling f we may assume that $\mu = -2$, in which case f has a unique critical value, which, up to changing f into -f, can be assumed to be a minimum; moreover, $f(M) = [1, \infty)$, in particular M is noncompact.

Proof: The proof of the first statement follows that of [7, Lemma 4]. On the one hand, we take the codifferential of $\nabla^2 f$ and obtain, choosing a local orthonormal basis $(e_j)_{1 \leq j \leq n}$ of TM and using Bochner's formula for 1-forms:

$$\delta \nabla^2 f = -\sum_{j=1}^n (\nabla_{e_j} \nabla^2 f) (e_j)$$

$$= -\sum_{j=1}^n \nabla_{e_j} \nabla_{e_j} \nabla f - \nabla_{\nabla_{e_j} e_j} \nabla f$$

$$= \nabla^* \nabla (\nabla f)$$

$$= \Delta(\nabla f) - \text{Ric}(\nabla f).$$

On the other hand, by (1) and the formula $\delta \text{Ric} = -\frac{1}{2}\nabla S$,

$$\begin{split} \delta \nabla^2 f &= \delta \left(-f \cdot \mathrm{Ric} \right) \\ &= \mathrm{Ric}(\nabla f) - f \cdot \delta \mathrm{Ric} \\ &= \mathrm{Ric}(\nabla f) + \frac{f}{2} \nabla S. \end{split}$$

Comparing both identities, we deduce that $\Delta(\nabla f) = 2\text{Ric}(\nabla f) + \frac{f}{2}\nabla S$. But identity (1) also gives

$$\Delta f = -\text{tr}\left(\nabla^2 f\right) = fS,\tag{4}$$

so that $\Delta(\nabla f) = \nabla(\Delta f) = \nabla(fS) = S\nabla f + f\nabla S$ and therefore $\text{Ric}(\nabla f) = \frac{S}{2}\nabla f + \frac{f}{4}\nabla S$, which is (2).

By (1) and (2), we have

$$\begin{split} 2\nabla(|\nabla f|^2) &= 4\nabla_{\nabla f}^2 f \\ &= -4f \cdot \mathrm{Ric}(\nabla f) \\ &= -4f \cdot \left(\frac{S}{2}\nabla f + \frac{f}{4}\nabla S\right) \\ &= -2Sf\nabla f - f^2\nabla S \\ &= -\nabla(Sf^2) \\ \stackrel{(4)}{=} -\nabla(f\Delta f), \end{split}$$

from which (3) follows.

If f vanishes nowhere, then up to changing f into -f, we may assume that f>0 on M. Writing f as $e^{(2-n)u}$ for some real-valued function u (that is, $u=\frac{1}{2-n}\ln f$), the Ricci-curvatures (as (0,2)-tensor fields) ric and $\overline{\text{ric}}$ of (M,g) and $(M,\overline{g}=e^{2u}g)$ respectively are related as follows:

$$\overline{\operatorname{ric}} = \operatorname{ric} + (2 - n)(\nabla du - du \otimes du) + (\Delta u - (n - 2)|du|_q^2)g. \tag{5}$$

But $\nabla df = (n-2)^2 f \cdot du \otimes du + (2-n)f \cdot \nabla du$ and the Laplace operators Δ of (M,g) and $\overline{\Delta}$ of (M,\overline{g}) are related via $\overline{\Delta}v = e^{-2u} \cdot (\Delta v - (n-2)g(du,dv))$ for any function v, so that

$$\overline{\operatorname{ric}} = \operatorname{ric} + \frac{1}{f} \nabla df - (n-2)^2 du \otimes du + (n-2) du \otimes du + (\overline{\Delta}u) \overline{g}$$
$$= \operatorname{ric} + \frac{1}{f} \nabla df - (n-2)(n-3) du \otimes du + (\overline{\Delta}u) \overline{g}.$$

As a consequence, f satisfies (1) if and only if $\overline{\text{ric}} = (\overline{\Delta}u)\overline{g} - (n-2)(n-3)du \otimes du$ holds on M. Moreover,

$$\begin{split} f\Delta f + 2|df|_g^2 &= f \cdot \left(-(n-2)^2 f |du|_g^2 - (n-2) f \Delta u\right) + 2(n-2)^2 f^2 |du|_g^2 \\ &= -(n-2) f^2 \cdot \left(\Delta u - (n-2) |du|_g^2\right) \\ &= -(n-2) f^2 \cdot e^{2u} \cdot \overline{\Delta} u \\ &= -(n-2) e^{2(2-n)u} \cdot e^{2u} \cdot \overline{\Delta} u \\ &= -(n-2) e^{2(3-n)u} \cdot \overline{\Delta} u, \end{split}$$

in particular (3) yields $\overline{\Delta}u = -\frac{\mu}{n-2}e^{2(n-3)u}$. In dimension 3, we notice that $\overline{\Delta}u = \frac{\overline{S}}{3}$. This shows the third statement.

If f vanishes nowhere, then again we may assume that f>0 on M. Since M is closed, f has a minimum and a maximum. At a point x where f attains its maximum, we have $\mu=f(x)(\Delta f)(x)+2|\nabla_x f|^2=f(x)(\Delta f)(x)\geq 0$. In the same way, $\mu=f(y)(\Delta f)(y)\leq 0$ at any point y where f attains its minimum. We deduce that $\mu=0$ which, by integrating the identity $f\Delta f+2|\nabla f|^2=\mu$ on M, yields df=0. This shows the fourth statement.

The first part of the fifth statement is the consequence of the following very general fact [5, Prop. 1.2], that we state and reprove here for the sake of completeness: if some smooth real-valued function f satisfies $\nabla^2 f = fq$ for some quadratic form q on M, then the subset $N_0 = f^{-1}(\{0\})$ is – if nonempty – a totally geodesic smooth hypersurface of M. First, it is a smooth hypersurface because of $d_x f \neq 0$ for all $x \in N_0$: namely if $c: \mathbb{R} \to M$ is any geodesic with c(0) = x, then the function $y := f \circ c$ satisfies the second order linear ODE $y'' = \langle \nabla_{\dot{c}}^2 f, \dot{c} \rangle = q(\dot{c}, \dot{c}) \cdot y$ on \mathbb{R} with the initial condition y(0) = 0; if $d_x f = 0$, then y'(0) = 0 and hence y = 0 on \mathbb{R} , which would imply that f = 0 on M by geodesic connectedness, contradiction. To compute the shape operator W of N_0 in M, we define $\nu := \frac{\nabla f}{|\nabla f|}$ to be a unit normal to N_0 . Then for all $x \in N_0$ and $X \in T_x M$,

$$\nabla_X^M \nu = X \left(\frac{1}{|\nabla f|} \right) \cdot \nabla f + \frac{1}{|\nabla f|} \cdot \nabla_X^M \nabla f
= -\frac{X \left(|\nabla f|^2 \right)}{2|\nabla f|^3} \cdot \nabla f + \frac{1}{|\nabla f|} \cdot \nabla_X^M \nabla f
= \frac{1}{|\nabla f|} \cdot \left(\nabla_X^2 f - \langle \nabla_X^2 f, \nu \rangle \cdot \nu \right),$$
(6)

in particular $W_x = -(\nabla \nu)_x = 0$ because of $(\nabla^2 f)_x = f(x)q_x = 0$. This shows that N_0 lies totally geodesically in M.

Now recall Gauß equations for Ricci curvature: for every $X \in TN_0$,

$$\operatorname{Ric}_{N_0}(X) = \operatorname{Ric}(X)^T - R_{X,\nu}^M \nu + \operatorname{tr}_q(W) \cdot WX - W^2 X,$$

where $\operatorname{Ric}(X)^T = \operatorname{Ric}(X) - \operatorname{ric}(X, \nu)\nu$ is the component of the Ricci curvature that is tangential to the hypersurface N_0 . As a straightforward consequence, if S_{N_0} denotes the scalar curvature of N_0 .

$$S_{N_0} = S - 2\operatorname{ric}(\nu, \nu) + (\operatorname{tr}_g(W))^2 - |W|^2.$$

Here, W=0 and $\text{Ric}(\nu)=\frac{S}{2}\nu$ along N_0 because N_0 lies totally geodesically in M, so that

$$S_{N_0} = S - 2\mathrm{ric}(\nu, \nu) = S - S = 0.$$

This proves N_0 to be scalar-flat. If moreover N_0 is 3-dimensional and carries a parallel vector field, then it is locally the Riemannian product of a scalar-flat – and hence flat – surface with a line, therefore N_0 is flat. This shows the fifth statement.

In dimension 2, we can write $\operatorname{Ric} = \frac{S}{2}\operatorname{Id} = K\operatorname{Id}$, where K is the Gauß curvature. But we also know that $\operatorname{Ric}(\nabla f) = \frac{S}{2}\nabla f + \frac{f}{4}\nabla S = K\nabla f + \frac{f}{2}\nabla K$. Comparing both identities and using the fact that $\{f \neq 0\}$ is dense in M leads to $\nabla K = 0$, that is, M has constant Gauß curvature. Up to rescaling the metric as well as f, we may assume that $S, \mu \in \{-2, 0, 2\}$. If M^2 is complete with constant S > 0 (hence K = 1) and f is nonconstant, then $\mu > 0$ so that, by Obata's solution to the equation $\nabla^2 f + f \cdot \operatorname{Id}_{TM} = 0$, the manifold M must be isometric to the round sphere of radius 1 and the function f must be a nonzero eigenfunction associated to the first positive eigenvalue of the Laplace operator on \mathbb{S}^2 , see [9, Theorem A]. If M^2 is complete and has vanishing curvature, then its universal cover is the flat \mathbb{R}^2 and the lift \tilde{f} of f to \mathbb{R}^2 must be an affine-linear function of the form $\tilde{f}(x) = \langle a, x \rangle + b$ for some nonzero $a \in \mathbb{R}^2$ and some $b \in \mathbb{R}$; since the only possible

nontrivial quotients of \mathbb{R}^2 on which \tilde{f} may descend are of the form \mathbb{R}/\mathbb{Z} . $\check{a} \times \mathbb{R}$ for some nonzero $\check{a} \in a^{\perp}$, the manifold M itself must be either flat \mathbb{R}^2 or such a flat cylinder. If M^2 is complete with constant S < 0, then f satisfies the Tashiro equation $\nabla^2 f = f \cdot \operatorname{Id}_{TM}$. But then Y. Tashiro proved that (M^2, g) must be isometric to the hyperbolic plane of constant sectional curvature -1, see e.g. [11, Theorem 2 p.252]. Note that the functions f listed above on \mathbb{S}^2 , \mathbb{R}^2 , $\mathbb{S}^1 \times \mathbb{R}$ or \mathbb{H}^2 obviously satisfy (1).

If (M^n,g) is Einstein with $n\geq 3$, then it has constant scalar curvature and $\mathrm{Ric}=\frac{S}{n}\cdot\mathrm{Id}$. But again the identity $\mathrm{Ric}(\nabla f)=\frac{S}{2}\nabla f+\frac{f}{4}\nabla S=\frac{S}{2}\nabla f$ yields n=2 unless S=0 and thus M is Ricci-flat. Therefore, n=2 is the only possibility for non-Ricci-flat Einstein M. This shows the sixth statement.

If S is constant, then $\mathrm{Ric}(\nabla f) = \frac{S}{2}\nabla f$. As a consequence, $\nabla^2_{\nabla f} f = -f\mathrm{Ric}(\nabla f) = -\frac{Sf}{2}\nabla f$. But, as already observed in e.g. [10, Prop. 1], away from its vanishing set, the gradient of f is a pointwise eigenvector of its Hessian if and only if the vector field $\nu = \frac{\nabla f}{|\nabla f|}$ is geodesic, see (6) above.

Assuming furthermore (M^n,g) to be complete, we can rescale as before f and g such that $S,\mu\in\{-2,0,2\}$. In case S>0 and hence S=2, necessarily $\mu>0$ holds and thus $\mu=2$. But then $f^2+|\nabla f|^2=1$, so that the only critical points of f are those where $f^2=1$, which by $f^2\leq 1$ shows that the only critical points of f are those where $f=\pm 1$ and hence where f takes a maximum or minimum value. Outside critical points of f, we may consider the function $g:=f\circ\gamma:\mathbb{R}\to\mathbb{R}$, where $g:\mathbb{R}\to M$ is a maximal integral curve of the geodesic vector field g:=f=f. Then g:=f=f such that g:=f=f and therefore there exists some g:=f=f and therefore there exists some g:=f=f such that

$$y(t) = \cos(t + \phi) \quad \forall t \in \mathbb{R}.$$

Since that function obviously changes sign and 0 is not a critical value of f, we can already deduce that f changes sign, in particular $N_0 = f^{-1}(\{0\})$ is nonempty. Moreover, the explicit formula for g shows that f must have critical points, which are precisely those where cos reaches its minimum or maximum value. This shows statement f.

In case S=0, we have $\Delta f=0$ and therefore (3) becomes $|\nabla f|^2=\mu$ on M, in particular $\mu>0$ and f has no critical point on M. But because of $|\nabla f|=1$, the function $y=f\circ\gamma$ is in fact equal to $t\mapsto t+\phi$ for some constant $\phi\in\mathbb{R}$. This shows that $f(M)=\mathbb{R}$ and in particular that M cannot be compact. This proves statement 7.(b).

In case S < 0 and thus S = -2, there are still three possibilities for μ :

- If $\mu > 0$, then $\mu = 2$ and (3) becomes $-f^2 + |\nabla f|^2 = 1$, hence f has no critical point. If γ is any integral curve of the normalized gradient vector field $\nu = \frac{\nabla f}{|\nabla f|}$, then the function $y := f \circ \gamma$ satisfies the ODEs $y' = \sqrt{1+y^2}$, therefore $y(t) = \sinh(t+\phi)$ for some real constant ϕ . In particular, $f(M) = \mathbb{R}$ and M cannot be compact.
- If $\mu=0$, then (3) becomes $f^2=|\nabla f|^2$. But since no point where f vanishes can be a critical point by the fifth statement, f has no critical point and therefore must be of constant sign. Up to turning f into -f, we may assume that f>0 and thus $f=|\nabla f|$. Along any integral curve γ of $\nu=\frac{\nabla f}{|\nabla f|}$, the function $y:=f\circ\gamma$ satisfies y'=y and hence $y(t)=C\cdot e^t$ for some positive constant C. This shows $f(M)=(0,\infty)$, in particular M cannot be compact.
- If $\mu < 0$, then $\mu = -2$ and (3) becomes $-f^2 + |\nabla f|^2 = -1$. As a consequence, because of $f^2 = 1 + |\nabla f|^2 \ge 1$, the function f has constant sign and hence we may assume that $f \ge 1$ up to changing f into -f. In particular, the only possible critical value of f is 1, which is an absolute minimum of f. If γ is any integral curve of the normalized gradient vector field $\nu = \frac{\nabla f}{|\nabla f|}$, which is defined at least on the set of regular points of f, then the function $y := f \circ \gamma$ satisfies the ODEs $y' = \sqrt{y^2 1}$, therefore $y(t) = \cosh(t + \phi)$ for some real constant ϕ . Since that function has an absolute minimum, it must have a critical point. It remains to notice that $f(M) = [1, \infty)$ and

thus that M cannot be compact. This shows statement 7.(c) and concludes the proof of Lemma 2.1.

Example 2.2 In dimension 3, Lemma 2.1 implies that, starting with any Einstein – or, equivalently, constant-sectional-curvature- – manifold (M^3,g) and any real function u such that $\Delta u = \frac{S}{3}$, the function $f := e^{-u}$ satisfies (1) on the manifold $(M, \overline{g} = e^{-2u}g)$. In particular, since there is an infinite-dimensional space of harmonic functions on any nonempty open subset M of \mathbb{R}^3 , there are many nonhomothetic conformal metrics on such M for which nonconstant solutions of (1) exist. On any nonempty open subset of the 3-dimensional hyperbolic space \mathbb{H}^3 with constant sectional curvature -1, there is also an infinite-dimensional affine space of solutions to the Poisson equation $\Delta u = -2$: in geodesic polar coordinates about any fixed point $p \in \mathbb{H}^3$, assuming u to depend only on the geodesic distance r to p, that Poisson equation is a second-order linear ODE in u(r) and therefore has infinitely many affinely independent solutions. In particular, there are also lots of conformal metrics on \mathbb{H}^3 for which nonconstant solutions of (1) exist.

Note however that, although \mathbb{H}^3 is conformally equivalent to the unit open ball \mathbb{B}^3 in \mathbb{R}^3 , we do not obtain the same solutions to the equation depending on the metric we start from. Namely, we can construct solutions of (1) starting from the Euclidean metric g and from the hyperbolic metric $e^{2w}g$ on \mathbb{B}^3 , where $e^{2w(x)} = \frac{4}{(1-|x|^2)^2}$ at any $x \in \mathbb{B}^3$. In both cases we obtain solutions of (1) by conformal change of the metric. Since g and $e^{2w}g$ lie in the same conformal class, the question arises whether solutions coming from $e^{2w}g$ can coincide with solutions coming from g on \mathbb{B}^3 . Assume f were a solution of (1) arising by conformal change of g (by e^{-2u} for some $u \in C^{\infty}(\mathbb{B}^3)$) and by conformal change of $e^{2w}g$ (by e^{-2v} for some $v \in C^{\infty}(\mathbb{B}^3)$). Then $f = e^{-u} = e^{-v}$ and thus v = u would hold, therefore u would satisfy $\Delta_g u = 0$ as well as $\Delta_{e^{2w}g} u = -2$, in particular

$$0 = \Delta_g u$$

= $e^{2w} \Delta_{e^{2w}g} u + \langle dw, du \rangle_g$
= $-2e^{2w} + \langle dw, du \rangle_g$.

But the r.h.s. of the last identity has no reason to vanish in general. Note also that the conformal metrics themselves have no reason to coincide, since otherwise $e^{-2v}e^{2w}g=e^{-2u}g$ would hold hence u=v-w as well and the same kind of argument would lead to an equation that is generally not fulfilled.

Note 2.3 If S is a nonzero constant and M is closed, then the function f is an eigenfunction for the scalar Laplace operator associated to the eigenvalue S on (M,g) and it has at least two nodal domains. Mind however that S is not necessarily the first positive Laplace eigenvalue on (M,g). E.g. consider the Riemannian manifold $M = \mathbb{S}^2 \times \Sigma^{n-2}$ which is the product of standard \mathbb{S}^2 with a closed Ricci-flat manifold Σ^{n-2} , then the first positive Laplace eigenvalue of Σ can be made arbitrarily small by rescaling its metric; since the Laplace spectrum of M is the sum of the Laplace spectra of \mathbb{S}^2 and Σ , the first Laplace eigenvalue on M can be made as close to 0 as desired by rescaling the metric on Σ .

2.2 Classification in presence of a particular Killing vector field

Next we aim at describing the structure of M using the flow $(F_t^{\nu})_t$ of ν . Namely, outside the possible critical points of f, the manifold M is locally diffeomorphic via $(F_t^{\nu})_t$ to the product $I \times N_c$ of an open interval with a regular level hypersurface N_c of f. Moreover, the induced metric has the form

 $dt^2 \oplus g_t$ for some one-parameter-family of Riemannian metrics on N_c . To determine g_t , one would need to know the Lie derivative of g w.r.t. ν ; but for all $X, Y \in TN_c$,

$$(\mathcal{L}_{\nu}g)(X,Y) = \langle \nabla_{X}\nu, Y \rangle + \langle \nabla_{Y}\nu, X \rangle \stackrel{(6)}{=} \frac{2}{|\nabla f|} \left(\langle \nabla_{X}^{2}f, Y \rangle - \langle \nabla_{X}^{2}f, \nu \rangle \langle \nu, Y \rangle \right) = -\frac{2f}{|\nabla f|} \operatorname{ric}(X,Y)$$

and we do not know a priori more about the Ricci curvature of M. Besides, we have a priori no information either on the critical subsets $\{\nabla f = 0\}$, we do not even know whether they are totally geodesic submanifolds or not.

Therefore, we introduce more assumptions. We actually introduce some that fit to the particular geometric setting induced by so-called skew Killing spinors, see [3].

Theorem 2.4 Let (M^n,g) be a complete Riemannian manifold of dimension $n \geq 3$ and constant scalar curvature S carrying a nonconstant real-valued smooth function f satisfying (1). Up to rescaling the metric as well as f we can assume that $S = 2\epsilon$ with $\epsilon \in \{-1,0,1\}$ and $\max(f) = 1 = -\min(f)$ if S = 2, $|\nabla f| = 1$ if S = 0 and $-f^2 + |\nabla f|^2 \in \{-1,0,1\}$ if S = -2. Assume also the existence of a non-identically vanishing Killing vector field η on M such that

- the vector fields η and ∇f are pointwise orthogonal,
- the vector field $\eta_{|_{N_c}}$ is parallel along $N_c := f^{-1}(\{c\})$ for every regular value c of f,
- if $S \neq 0$, the vector field η satisfies $\inf_{M} (|\eta|) = \inf_{M} (|\nabla f|)$ and vanishes where ∇f does,
- also $\nabla_{\eta} \eta = \epsilon f \nabla f$ holds in case n > 4 or f has no critical point.

Then M is isometric to either the Riemannian product $S(\epsilon) \times \Sigma^{n-2}$ of the simply-connected complete surface with curvature ϵ with a complete Ricci-flat manifold Σ in case $\epsilon \neq 0$, or to the Riemannian product of $\mathbb R$ with some complete Ricci-flat manifold carrying a nonzero parallel vector field in case $\epsilon = 0$.

Proof: The assumption that $\eta \perp \nabla f$ not only means that the flow of η preserves the level hypersurfaces of f, but also implies that $[\eta, \nabla f] = [\eta, \nu] = 0$: for

$$0 = X(\langle \eta, \nabla f \rangle) = \langle \nabla_X \eta, \nabla f \rangle + \langle \eta, \nabla_X^2 f \rangle = \langle \nabla_\eta^2 f - \nabla_{\nabla f} \eta, X \rangle \qquad \forall X \in TM$$

so that $\nabla_{\eta}^2 f = \nabla_{\nabla f} \eta$, that is, $\nabla_{\nabla f} \eta = -f \text{Ric}(\eta)$ and it also follows that

$$[\eta, \nabla f] = \nabla_{\eta} \nabla f - \nabla_{\nabla f} \eta = \nabla_{\eta}^{2} f - \nabla_{\eta}^{2} f = 0.$$

As a further consequence of $[\eta, \nabla f] = 0$, using again that η is Killing,

$$[\eta, \nu] = \eta(\frac{1}{|\nabla f|})\nabla f = -\frac{\langle \nabla_{\eta} \nabla f, \nabla f \rangle}{|\nabla f|^3} \nabla f = -\frac{\langle \nabla_{\nabla f} \eta, \nabla f \rangle}{|\nabla f|^3} \nabla f = 0.$$

In particular, the flow of ν preserves η and conversely the flow of η preserves both ∇f and ν . Next we examine the assumption that $\eta_{|_{N_c}}$ is parallel on $N_c = f^{-1}(\{c\})$, which is a smooth hypersurface for all but finitely many values of c by Lemma 2.1. By Gauß-Weingarten formula, $\nabla^{N_c} \eta = 0$ is equivalent to

$$\nabla_X \eta = \nabla_X^{N_c} \eta + \langle W \eta, X \rangle \nu = \langle W \eta, X \rangle \nu \stackrel{(6)}{=} - \frac{1}{|\nabla f|} \langle \nabla_{\eta}^2 f, X \rangle \nu = \frac{f}{|\nabla f|} \langle \text{Ric}(\eta), X \rangle \nu$$

for all $X \in TN_c$, where $W = -\nabla \nu$ is the Weingarten-endomorphism-field of N_c in M. With $\nabla_{\nu} \eta = -\frac{f}{|\nabla f|} \mathrm{Ric}(\eta)$, the above identity is equivalent to

$$\nabla \eta = \frac{f}{|\nabla f|} \cdot (\operatorname{Ric}(\eta) \otimes \nu - \nu \otimes \operatorname{Ric}(\eta)) = \frac{f}{|\nabla f|} \cdot \operatorname{Ric}(\eta) \wedge \nu. \tag{7}$$

In particular $\operatorname{rk}(\nabla \eta) \leq 2$ on the subset of regular points of f. Moreover, η cannot vanish anywhere on the subset of regular points of f: for if η vanished at some regular point x, then η would vanish along the level hypersurface containing x and, being preserved by the flow of ν , it would have to vanish identically on a nonempty open subset of M and therefore on M, which would be a contradiction. Thus $\eta^{-1}(\{0\}) \subset (\nabla f)^{-1}(\{0\})$. On the other hand, the assumption $(\nabla f)^{-1}(\{0\}) \subset \eta^{-1}(\{0\})$ yields $\eta^{-1}(\{0\}) = (\nabla f)^{-1}(\{0\})$. In particular, when nonempty, $(\nabla f)^{-1}(\{0\})$ is a totally geodesic submanifold of M (vanishing set of a Killing vector field) and has even codimension, which is positive otherwise η would vanish identically.

By e.g. [8, Sec. 2.5], the tangent bundle of $\eta^{-1}(\{0\})$ is given by $\ker(\nabla \eta)$ and therefore it has pointwise dimension at most n-2. But since $\operatorname{rk}(\nabla \eta) \leq 2$ on $M \setminus \eta^{-1}(\{0\})$, which is a dense open subset of M, the inequality $\operatorname{rk}(\nabla \eta) \leq 2$ must hold along $\eta^{-1}(\{0\})$ by continuity, in particular $\dim(\ker(\nabla \eta)) \geq n-2$ and thus $\dim(\ker(\nabla \eta)) = n-2$ along $\eta^{-1}(\{0\})$. On the whole, when nonempty, the set of critical points of f is a possibly disconnected (n-2)-dimensional totally geodesic submanifold of M.

As a further step, we translate Gauß equations for Ricci curvature along each N_c in our context. Denoting $W = -\nabla \nu = \frac{f}{|\nabla f|} \mathrm{Ric}^T$ the Weingarten-endomorphism-field of N_c in M, where Ric^T is the pointwise othogonal projection of Ric onto TM, we have $\mathrm{tr}(W) = \frac{f}{|\nabla f|} \cdot \frac{S}{2}$ by $\mathrm{Ric}(\nu) = \frac{S}{2}\nu$. As a consequence, we have, for all $X \in TN_c$:

$$\operatorname{Ric}(X) = \operatorname{Ric}(X)^{T}
= \operatorname{Ric}_{N_{c}}(X) + W^{2}X - \operatorname{tr}(W)WX + R_{X,\nu}\nu
= \operatorname{Ric}_{N_{c}}(X) + \frac{f^{2}}{|\nabla f|^{2}} \cdot \left(\operatorname{Ric}^{2}(X) - \frac{S}{2}\operatorname{Ric}(X)\right) + R_{X,\nu}\nu.$$

We can compute the curvature term $R_{X,\nu}\nu$ explicitely: choosing a vector field X that is pointwise tangent to the regular level hypersurfaces of f, we can always assume w.l.o.g. that $[X,\nu]=0$ at the point where we compute, so that, with $\nabla_{\nu}\nu=0$,

$$\begin{split} R_{X,\nu}\nu &= -\nabla_{\nu}\nabla_{X}\nu \\ &= \nabla_{\nu}\left(\frac{f}{|\nabla f|}\mathrm{Ric}(X)\right) \\ &= \nu\left(\frac{f}{|\nabla f|}\right)\cdot\mathrm{Ric}(X) + \frac{f}{|\nabla f|}\cdot(\nabla_{\nu}\mathrm{Ric})(X) + \frac{f}{|\nabla f|}\cdot\mathrm{Ric}(\nabla_{\nu}X) \\ &= \frac{\nu(f)|\nabla f| - f\nu(|\nabla f|)}{|\nabla f|^{2}}\cdot\mathrm{Ric}(X) + \frac{f}{|\nabla f|}\cdot(\nabla_{\nu}\mathrm{Ric})(X) + \frac{f}{|\nabla f|}\cdot\mathrm{Ric}(\nabla_{X}\nu) \\ &= \frac{|\nabla f|^{2} - f\frac{\langle\nabla_{\nu}\nabla f,\nabla f\rangle}{|\nabla f|^{2}}}{|\nabla f|^{2}}\cdot\mathrm{Ric}(X) + \frac{f}{|\nabla f|}\cdot(\nabla_{\nu}\mathrm{Ric})(X) - \frac{f^{2}}{|\nabla f|^{2}}\cdot\mathrm{Ric}^{2}(X) \\ &= \left(1 + \frac{Sf^{2}}{2|\nabla f|^{2}}\right)\cdot\mathrm{Ric}(X) + \frac{f}{|\nabla f|}\cdot(\nabla_{\nu}\mathrm{Ric})(X) - \frac{f^{2}}{|\nabla f|^{2}}\cdot\mathrm{Ric}^{2}(X). \end{split}$$

We can deduce that, for every $X \in TN_c$,

$$\operatorname{Ric}_{N_c}(X) = \operatorname{Ric}(X) - \frac{f^2}{|\nabla f|^2} \cdot \left(\operatorname{Ric}^2(X) - \frac{S}{2}\operatorname{Ric}(X)\right) - R_{X,\nu}\nu$$

$$= \operatorname{Ric}(X) - \frac{f^{2}}{|\nabla f|^{2}} \cdot \left(\operatorname{Ric}^{2}(X) - \frac{S}{2}\operatorname{Ric}(X)\right)$$

$$-\left(1 + \frac{Sf^{2}}{2|\nabla f|^{2}}\right) \cdot \operatorname{Ric}(X) - \frac{f}{|\nabla f|} \cdot (\nabla_{\nu}\operatorname{Ric})(X) + \frac{f^{2}}{|\nabla f|^{2}} \cdot \operatorname{Ric}^{2}(X)$$

$$= -\frac{f}{|\nabla f|} \cdot (\nabla_{\nu}\operatorname{Ric})(X). \tag{8}$$

That identity has important consequences. First, choosing a local o.n.b. $(e_j)_{1 \le j \le n-1}$ of TN_c ,

$$S_{N_c} = \sum_{j=1}^{n} \langle \operatorname{Ric}_{N_c}(e_j), e_j \rangle$$

$$= -\frac{f}{|\nabla f|} \cdot \sum_{j=1}^{n} \langle (\nabla_{\nu} \operatorname{Ric})(e_j), e_j \rangle$$

$$= -\frac{f}{|\nabla f|} \cdot \left(\sum_{j=1}^{n} \langle (\nabla_{\nu} \operatorname{Ric})(e_j), e_j \rangle + \langle (\nabla_{\nu} \operatorname{Ric})(\nu), \nu \rangle \right) + \frac{f}{|\nabla f|} \cdot \langle (\nabla_{\nu} \operatorname{Ric})(\nu), \nu \rangle,$$

with $(\nabla_{\nu} \operatorname{Ric})(\nu) = \nabla_{\nu} (\operatorname{Ric}(\nu)) - \operatorname{Ric}(\nabla_{\nu} \nu) = \nabla_{\nu} (\frac{S}{2} \nu) = 0$, so that

$$S_{N_c} = -\frac{f}{|\nabla f|} \cdot \operatorname{tr}(\nabla_{\nu} \operatorname{Ric}) = -\frac{f}{|\nabla f|} \cdot \nu(\operatorname{tr}(\operatorname{Ric})) = -\frac{f}{|\nabla f|} \cdot \nu(S) = 0.$$

Therefore, each level hypersurface N_c is scalar-flat.

In the case where n=3 or 4, the manifold N_c is locally the Riemannian product of a flat manifold with an interval and is hence also flat, in particular $Ric_{N_c}=0$, which in turn implies that

$$\nabla_{\nu} \text{Ric} = 0. \tag{9}$$

This equation, which holds on the dense open subset $\{\nabla f \neq 0\}$, means that all eigenspaces and eigenvalues of the Ricci-tensor of M are preserved under parallel transport along integral curves of ν . Assume first that f has critical points, in particular $S \neq 0$. Along the critical submanifold $N_{\text{crit}} := (\nabla f)^{-1}(\{0\})$, one has $\ker(\text{Ric}) \supset TN_{\text{crit}}$: if $c: I \to N_{\text{crit}}$ is any smooth curve, then $f \circ c$ is constant and therefore $0 = (f \circ c)'' = \langle \nabla_c^2 f, \dot{c} \rangle$ (the gradient of f vanishes along N_{crit}), so that $\operatorname{ric}(\dot{c}, \dot{c}) = 0$. But $\nabla^2 f$ and thus Ric is either nonpositive or nonnegative along N_{crit} because N_{crit} is a set of minima or maxima of f as we have seen in Lemma 2.1, therefore $\operatorname{Ric}(\dot{c}) = 0$. In particular, 0 is an eigenvalue of multiplicity at least n-2 of the Ricci-tensor; since the Ricci-eigenvalues are constant along the integral curves of ν , it can be deduced that 0 is an eigenvalue of multiplicity at least n-2 everywhere in M. But the multiplicity cannot be greater that n-2, otherwise Ric would have only one nonzero eigenvalue (namely $\frac{S}{2} \in \{\pm 1\}$) and hence its trace would be $\frac{S}{2}$, contradiction. Therefore 0 is an eigenvalue of multiplicity exactly n-2 of Ric at every point in M. It remains to notice that at regular points, one has $\operatorname{Ric}(\nu) = \frac{S}{2}\nu$ and $\operatorname{Ric}(\eta) \perp \nu$, so that, using $\operatorname{Ric}(\eta) \perp \ker(\operatorname{Ric})$, we deduce that $\operatorname{Ric}^2(\eta)$ is proportional to $\operatorname{Ric}(\eta)$, the eigenvalue being necessarily equal to $\frac{S}{2}$, that is,

$$Ric^{2}(\eta) = \frac{S}{2}Ric(\eta). \tag{10}$$

This allows for η to be normalized as we explain next. Namely we would like $\nabla_{\eta} \eta = \epsilon f \nabla f$ to hold on M. Let $\gamma \colon (-\varepsilon, \varepsilon) \to M$ be any integral curve of ν with starting point $\gamma(0)$ in some regular level hypersurface of f; we have already seen in the proof of Lemma 2.1 that $y := f \circ \gamma$ does not depend on the starting point $\gamma(0)$ of γ in a fixed level hypersurface of f. Since, as explained above,

the vector field ν is geodesic on M and η is parallel along each N_c , the function $h := |\eta|^2 \circ \gamma$ only depends on t and not on the starting point $\gamma(0)$. In other words, $\nabla(|\eta|^2) = \nu(|\eta|^2)\nu$. But

$$\nu(|\eta|^2) = 2\langle \nabla_{\nu} \eta, \eta \rangle = -2\langle \nabla_{\eta} \eta, \nu \rangle = -2 \frac{f}{|\nabla f|} \operatorname{ric}(\eta, \eta), \tag{11}$$

so that $\operatorname{ric}(\eta, \eta)$ also only depends on t. By (8) and $\operatorname{Ric}_{N_c}(\eta) = 0$ because of $\eta_{|_{N_c}}$ being parallel, we have, outside $N_0 = f^{-1}(\{0\})$,

$$\nu(\operatorname{ric}(\eta, \eta)) = (\nabla_{\nu}\operatorname{ric})(\eta, \eta) + 2\operatorname{ric}(\nabla_{\nu}\eta, \eta)$$

$$\stackrel{(8)}{=} -\frac{|\nabla f|}{f} \underbrace{\langle \operatorname{Ric}_{N_{c}}(\eta), \eta \rangle}_{0} - 2\frac{f}{|\nabla f|}\operatorname{ric}(\operatorname{Ric}(\eta), \eta)$$

$$= -2\frac{f}{|\nabla f|}|\operatorname{Ric}(\eta)|^{2}.$$
(12)

Note here that both (11) and (12) are valid in any dimension and without the condition (10). Combining (12) with (10) and using $\nu(|\nabla f|^2) = -2\epsilon f |\nabla f|$, we deduce that

$$\nu(\operatorname{ric}(\eta,\eta)) = -2\epsilon \frac{f}{|\nabla f|} \operatorname{ric}(\eta,\eta) = \frac{\nu(|\nabla f|^2)}{|\nabla f|^2} \operatorname{ric}(\eta,\eta).$$

As a consequence, there exists a real constant C, that has the sign of ϵ , such that $\operatorname{ric}(\eta, \eta) = C \cdot |\nabla f|^2$ and thus $\nabla_{\eta} \eta = C f \nabla f$ on M. Therefore, up to replacing η by $\frac{1}{\sqrt{C\epsilon}} \cdot \eta$, we may assume that $\nabla_{\eta} \eta = \epsilon f \nabla f$ on M. Note that this concerns only the case where $n \in \{3,4\}$ and f has critical points, otherwise we assume $\nabla_{\eta} \eta = \epsilon f \nabla f$ to hold on M.

Assuming from now on $\nabla_{\eta}\eta=\epsilon f\nabla f$ and $n\geq 3$ to hold, it can be deduced that $|\eta|^2=-\epsilon f^2+\operatorname{cst}$ for some $\operatorname{cst}\in\mathbb{R}$: Namely $\nabla(|\eta|^2)=-2\nabla_{\eta}\eta=-2\epsilon f\nabla f=-\epsilon\nabla(f^2)$ and the set of regular points of f is connected. Moreover, using e.g. (11), we have $\operatorname{ric}(\eta,\eta)=\epsilon|\nabla f|^2$; differentiating that identity w.r.t. ν and using (12) yields $|\operatorname{Ric}(\eta)|=|\epsilon|\cdot|\nabla f|$. In case S=2, we have $\eta=0$ on $(\nabla f)^{-1}(\{0\})=f^{-1}(\{\pm 1\})$, so that $\operatorname{cst}=1$ and hence $|\eta|=\sqrt{1-f^2}=|\nabla f|$. In case S=0, we have $|\eta|^2=\operatorname{cst}$, from which $\operatorname{ric}(\eta,\eta)=0$ and even $\operatorname{Ric}(\eta)=0$ follow. In case S=-2, we have $-f^2+|\nabla f|^2=\frac{\mu}{2}\in\{-1,0,1\}$, so that $|\eta|^2=f^2+\operatorname{cst}=|\nabla f|^2-\frac{\mu}{2}+\operatorname{cst}$. Now the assumption $\inf_{M}(|\eta|)=\inf_{M}(|\nabla f|)$ yields $\operatorname{cst}-\frac{\mu}{2}=0$, in particular $|\eta|=|\nabla f|$.

To sum up, in all cases we obtain $\mathrm{ric}(\eta,\eta) = \epsilon |\mathrm{Ric}(\eta)| \cdot |\eta|$, which is exactly the equality case in Cauchy-Schwarz inequality. We can thus deduce that $\mathrm{Ric}(\eta)$ is proportional to η and hence $\mathrm{Ric}(\eta) = \frac{S}{2}\eta$.

If n > 4 or if f has no critical point, it remains to show that $\operatorname{Ric}(\eta) = \frac{S}{2}\eta$ implies $\operatorname{ker}(\operatorname{Ric}) = \{\eta, \nu\}^{\perp}$: for we already know from $\operatorname{Ric}_{N_c} = -\frac{f}{|\nabla f|} \cdot (\nabla_{\nu}\operatorname{Ric})$ that $S_{N_c} = 0$. But by the Gauß formula, $S_{N_c} = S - 2\operatorname{ric}(\nu, \nu) + \operatorname{tr}(W)^2 - |W|^2$, so that, with $S - 2\operatorname{ric}(\nu, \nu) = 0$, we deduce that

$$0 = \frac{f^{2}}{|\nabla f|^{2}} \cdot \left(\operatorname{tr}(\operatorname{Ric}^{T})^{2} - |\operatorname{Ric}^{T}|^{2} \right)$$

$$= \frac{f^{2}}{|\nabla f|^{2}} \cdot \left(\frac{S^{2}}{4} - \frac{|\operatorname{Ric}(\eta)|^{2}}{|\eta|^{2}} - |\operatorname{Ric}_{\{\eta,\nu\}^{\perp}}|^{2} \right)$$

$$= \frac{f^{2}}{|\nabla f|^{2}} \cdot \left(\frac{S^{2}}{4} - \frac{S^{2}}{4} - |\operatorname{Ric}_{\{\eta,\nu\}^{\perp}}|^{2} \right)$$

$$= -\frac{f^{2}}{|\nabla f|^{2}} \cdot |\operatorname{Ric}_{\{\eta,\nu\}^{\perp}}|^{2},$$

from which $\mathrm{Ric}_{\{\eta,\nu\}^{\perp}} = 0$ follows.

We have now all we need to conclude that both distributions $\operatorname{Span}(\eta, \nu)$ and its orthogonal complement are integrable and totally geodesic, the first one being of constant curvature ϵ and the second one being Ricci-flat (hence flat if n=3 or 4). Namely we already know that $\operatorname{Span}(\eta, \nu)$ is integrable since $[\eta, \nu] = 0$. Moreover,

$$\begin{split} \nabla_{\eta} \eta &= \epsilon f \nabla f = \epsilon f |\nabla f| \nu \\ \nabla_{\eta} \nu &= -\frac{f}{|\nabla f|} \mathrm{Ric}(\eta) = -\frac{Sf}{2|\nabla f|} \eta = -\frac{\epsilon f}{|\nabla f|} \eta \\ \nabla_{\nu} \eta &= \nabla_{\eta} \nu = -\frac{\epsilon f}{|\nabla f|} \eta \\ \nabla_{\nu} \nu &= 0, \end{split}$$

so that all above expressions lie in $\operatorname{Span}(\eta, \nu)$, in particular $\operatorname{Span}(\eta, \nu)$ is totally geodesic. As for $\operatorname{Span}(\eta, \nu)^{\perp}$, we compute, for all $X, Y \in \Gamma\left(\operatorname{Span}(\eta, \nu)^{\perp}\right)$,

$$\begin{array}{lcl} \langle \nabla_X Y, \eta \rangle & = & -\langle Y, \nabla_X \eta \rangle \\ & \stackrel{(7)}{=} & -\frac{f}{|\nabla f|} \cdot (\mathrm{ric}(\eta, X) \langle \nu, Y \rangle - \langle \nu, X \rangle \mathrm{ric}(\eta, Y)) \\ & = & 0 \end{array}$$

and, using $\operatorname{Span}(\eta, \nu)^{\perp} = \ker(\operatorname{Ric})$,

$$\begin{split} \langle \nabla_X Y, \nu \rangle &= -\langle Y, \nabla_X \nu \rangle \\ &= \frac{f}{|\nabla f|} \mathrm{ric}(X, Y) \\ &= 0. \end{split}$$

It follows that $\nabla_X Y \in \Gamma\left(\operatorname{Span}(\eta,\nu)^{\perp}\right)$, therefore this distribution is integrable and totally geodesic. To compute the curvature of both integral submanifolds, we notice that, from the above computations, $R_{\eta,\nu}\nu = \operatorname{Ric}(\eta) = \epsilon \eta$ and $R_{X,\nu}\nu = 0 = R_{X,\eta}\eta$ for all $X \in \ker(\operatorname{Ric})$, so that

$$\frac{\langle R_{\eta,\nu}\nu,\eta\rangle}{|\eta|^2} = \frac{\epsilon|\eta|^2}{|\eta|^2} = \epsilon$$

and, using the Gauß formula for curvature, for all $X, Y \in \Gamma\left(\operatorname{Span}(\eta, \nu)^{\perp}\right)$,

$$\mathrm{ric}_{\Sigma}(X,Y) = \mathrm{ric}(X,Y) - \langle R_{X,\frac{\eta}{|\eta|}} \frac{\eta}{|\eta|}, Y \rangle - \langle R_{X,\nu}\nu, Y \rangle = 0,$$

where we denoted by $\operatorname{ric}_{\Sigma}$ the Ricci curvature of the integral submanifold Σ of $\operatorname{Span}(\eta,\nu)^{\perp}$. Therefore, Σ is Ricci-flat and thus flat if 1-or 2-dimensional. On the whole, this shows that the holonomy group of M splits locally, therefore the universal cover of M is isometric to the Riemannian product $S(\epsilon) \times \tilde{\Sigma}$ of the simply-connected complete surface with curvature $\epsilon \in \{-1,0,1\}$ with some simply-connected Ricci-flat manifold $\tilde{\Sigma}$. In case $\epsilon = 1$, the lift \tilde{f} of f to $\mathbb{S}^2 \times \tilde{\Sigma}$ is constant along the $\tilde{\Sigma}$ -factor and satisfies the equation $(\nabla^{\mathbb{S}^2})^2 f = -f \cdot \operatorname{Id}$, which is exactly the equation characterizing the eigenfunctions associated to the first positive Laplace eigenvalue [9, Theorem A]. Furthermore, the isometry group of $\mathbb{S}^2 \times \tilde{\Sigma}$ embeds into the product group of both isometry groups of \mathbb{S}^2 and $\tilde{\Sigma}$ and the first factor must be trivial since \tilde{f} , as the restriction of a linear form from \mathbb{R}^3 onto \mathbb{S}^2 , is not invariant under $\{\pm \operatorname{Id}\}$. Therefore, M is isometric to $\mathbb{S}^2 \times \Sigma$ for some Ricci-flat Σ and f is the trivial extension of an eigenfunction associated to the first positive Laplace eigenvalue on \mathbb{S}^2 .

In case $\epsilon=0$, the manifold M is Ricci-flat and therefore is isometric to the Riemannian product of $\mathbb R$ with a Ricci-flat manifold \overline{N} as we mentioned in the introduction; our supplementary assumptions only mean that \overline{N} carries a nontrivial parallel vector field. Mind in particular that \overline{N} is not necessarily isometric to the Riemannian product of $\mathbb R$ or $\mathbb S^1$ with some Ricci-flat manifold, even if this is obviously locally the case.

In case $\epsilon = -1$, the lift \tilde{f} of f to $\mathbb{H}^2 \times \tilde{\Sigma}$ is constant along the $\tilde{\Sigma}$ -factor and satisfies the equation $(\nabla^{\mathbb{H}^2})^2 f = f \cdot \mathrm{Id}$, which is exactly the Tashiro equation. Since the isometry group of $\mathbb{H}^2 \times \tilde{\Sigma}$ embeds into the product group of both isometry groups of \mathbb{H}^2 and $\tilde{\Sigma}$ and the first factor must be trivial since \tilde{f} has no nontrivial symmetry [11, Theorem 2 p.252], we can deduce as above that M is isometric to $\mathbb{H}^2 \times \Sigma$ for some Ricci-flat Σ and f is the trivial extension of a solution to the Tashiro equation on \mathbb{H}^2 . This concludes the proof of Theorem 2.4.

Acknowledgment: Part of this work was done while the second-named author received the support of the Humboldt Foundation which he would like to thank. We also thank William Wylie for interesting discussions related to [5] and [6].

References

- [1] J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. **214** (2000), no. 1, 137–189.
- [2] F.E.S. Feitosa, A.A. Freitas Filho, J.N.V. Gomes, R.S. Pina, *Gradient almost Ricci soliton warped product*, arXiv:1507.03038.
- [3] N. Ginoux, G. Habib, I. Kath, Skew Killing spinors in dimension 4, in preparation.
- [4] S. Güler, S.A. Demirbağ, On warped product manifolds satisfying Ricci-Hessian class type equations, Publications de l'Institut Mathématique, Nouvelle série, **103** (2018), no. 117, 69–75.
- [5] C. He, P. Petersen, W. Wylie, Warped product rigidity, Asian J. Math. 19 (2015), no. 1, 135–170.
- [6] C. He, P. Petersen, W. Wylie, Uniqueness of warped product Einstein metrics and applications,
 J. Geom. Anal. 25 (2015), no. 4, 2617–2644.
- [7] D.-S. Kim, Y.H. Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2573–2576.
- [8] S. Kobayashi, *Transformation groups in differential geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete **70** (1972), Springer-Verlag.
- [9] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.
- [10] A. Ranjan, G. Santhanam, A generalization of Obata's theorem, J. Geom. Anal. 7 (1997), no. 3, 357–375.
- [11] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251–275.