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ON THE HIGH FREQUENCY LIMIT OF THE LLL EQUATION

PIERRE GERMAIN AND LAURENT THOMANN

Abstract. We derive heuristically an integro-differential equation, as well as a shell model, governing
the dynamics of the Lowest Landau Level equation in a high frequency regime.

1. Introduction

1.1. The LLL equation. The Lowest Landau Level evolution equation (LLL for short) reads

(1.1) i∂tu = Π
(
|u|2u

)
,

where the unknown function u = u(t, z) is a map from R × C to C, and where Π is the orthogonal

projector in L2(C) on the Bargmann-Fock space E = {e−
|z|2

2 f(z), where f is entire} ∩L2(C). Denote
by L the Lebesgue measure on C, then the kernel of Π is explicitly given by

[Πu](z) =
1

π
e−

|z|2

2

∫

C

ewz−
|w|2

2 u(w) dL(w).

The equation (1.1) derives from the Hamiltonian

H(u) =

∫

R2

|u(z)|4 L(dz),

defined on E equipped the symplectic form ω(f, g) =

∫

fg L(dz) defined on L2(R2).

This equation appears in the context of rapidly rotating Bose-Einstein condensates, and more
precisely in the study of vibration modes of condensates, the so called Tkachenko modes, see [4, 17, 18].
From a more mathematical point of view, the variational problem was examined in [1, 2], and the
dynamical properties of (1.1) in [15, 10, 11, 9] for more on the analysis of this equation.

The equation (1.1) is globally well-posed in E (see [15]). It is then natural to study the long-time
dynamics, and in particular to decide if large amounts of energy can be transfered from low to high
frequencies. Such a phenomenon would also have counterparts for the 3-dimensional Gross-Pitaevskii
equation (see [13] for more details).

In this paper we derive, heuristically, an integro-differential equation which may govern the dynamics
of the LLL equation. In the same spirit, we also derive a shell model. Understanding the dynamics
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2 PIERRE GERMAIN AND LAURENT THOMANN

of these models (in particular the possible transfer of energy) may help to catch key features of the
dynamics of the full model.

1.2. Our Ansatz. As discussed in [10, 11], a basis of the Bargmann-Fock space which is particularly
well suited to the analysis of LLL is provided by

ϕn(z) =
1√
πn!

zne−
|z|2

2 , with n ∈ N,

so that a natural Ansatz for the high frequency limit of (1.1) is given by

(1.2) u = aϕ0 + vλ with vλ(t, z) =
1√
λ

∑

n∈N

g
(

t,
n

λ

)

ϕn(z) =
1√
λ

∑

k∈N/λ

g(t, k)ϕλk(z),

where g is such that g(·, 0) = 0. The high frequency limit corresponds to λ→ ∞.
In this limit, it is natural to view g as a continuous function of its second variable; our aim is to

derive an effective equation for it.

1.3. The limiting equation. It turns out to be simpler to pass to the limit in the Hamiltonian.
With the above Ansatz, we will show heuristically in Section 2 that, up to a multiplicative constant,

H(u)
λ→∞∼ hλ(a, g) := |a|4 + 4

∫ +∞

0

∣
∣
∣
ag(s)

2λs/2
+K

( s

λ

) 1

4

g2
(s

2

)∣
∣
∣

2
ds,

with K = 2−3/4π1/4. As λ → ∞, this leads to the dynamics iȧ = ∂hλ
∂a and iġ = 1

λ
∂hλ
∂g , where the 1

λ

factor is due to our Ansatz. In other words,






iȧ = 2|a|2a+ 4a

∫ +∞

0

|g(s)|2
2λs

ds + 4K

∫ +∞

0

g(s)

2λs/2

( s

λ

) 1

4

g2
(s

2

)

ds

iġ(s) =
1

λ

[

4|a|2 g(s)
2λs

+ 4K
( s

λ

) 1

4 a

2λs/2
g2

(s

2

)

+ 8K

(
2s

λ

) 1

4 a

2λs
g(s)g(2s) + 16K2

(
2s

λ

) 1

2

|g(s)|2g(s)
]

.

One of the very attractive peculiarities of this system is that a given frequency s only interacts with
the frequencies s

2 or 2s. In particular, it seems natural, in order to further simplify the system, to

assume that g is supported on 2Z. With this aim in mind, observe that the Ansatz

g =
∑

j∈Z

gj1[2j ,2j(1+ε)]

leads, as ε→ 0, to dynamics given by a shell model:






iȧ = 2|a|2a+ 4aε
∑

j∈Z

2j
|gj |2
2λ2j

+ 4Kε
∑

j∈Z

2j
gj

2λ2j−1

(
2j

λ

) 1

4

g2j−1

iġj =
1

λ

[

4|a|2 gj

2λ2j
+ 4K

(
2j

λ

) 1

4 a

2λ2j−1
g2j−1 + 8K

(
2j+1

λ

) 1

4 a

2λ2j
gjgj+1 + 16K2

(
2j+1

λ

) 1

2

|gj |2gj
]

.

As a shell model, the above equation only retains information about dyadic frequency ranges. This
particularly simple structure makes its simulation computationally much more accessible, while con-
serving essential nonlinear features.
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1.4. Comparison to other models. Shell models have been influential in turbulence theory [12, 16,
3]. They also rely on a dyadic decomposition in frequency, except that now uj ∈ C accounts for the
whole frequency range [2j , 2j+1]. For the popular GOY model, the dynamics is given by

u̇j = −ν22juj + i
(
2juj+2uj − b2j−1uj+1uj−1 − (1− b)uj−1uj−2

)

(where ν > 0 is the viscosity, and b a parameter depending on the system). This system of ODE
enjoys two conserved quantities, and has been successful in reproducing some aspects of hydrodynamic
turbulence. However, its derivation is only phenomenological, and it lacks a Hamiltonian structure
for ν = 0.

The model that we propose eschews these two shortcomings, and we hope it can lead to some insight
into weak turbulence.

The toy model proposed in [5], see also [6, 14], derives from the Hamiltonian
∑∞

j=1

(
1
4 |bj |4−Reb2jb

2
j−1

)

.

It reads
iḃj = |bj|2bj + 2b2j−1bj + 2b2j+1bj.

It shares many features with the model we propose here, both as far as the structure of the system
goes; and in the aim of modeling weakly turbulent flow. But it corresponds to a very different context:
it can be seen as a subsystem of NLS on the 2-torus, in the case when the data is sparse in Fourier,
and satisfies a certain condition of ”separation between generations”.

A model for growth of high frequencies in the weakly turbulent regime has been derived in the work [7,
Section 5.1]. More precisely, this reference deals with the kinetic wave equation (or Kolmogorov-
Zakharov equation) and the idea pursued is to model the interaction of a (Bose-Einstein) condensate at
frequency zero with a high frequency perturbation. This is of course similar to the model proposed here,
where part of the solution is in the ground state (aϕ0) while the other one is at high frequency (vλ).
However, since it is derived from the kinetic wave equation, it is an equation of kinetic type instead
of a Hamiltonian system.

2. Derivation of the asymptotic Hamiltonian

2.1. A few more words on LLL. Recall that

ϕn(z) =
1√
πn!

zne−
|z|2

2 , with n ∈ N

gives an orthonormal basis of the Bargmann-Fock space (see [19]). Expanding u in this basis

u(t, z) =

∞∑

n=0

cn(t)ϕn(z),

and accelerating time by a factor π
2 , a simple computation [10] gives that the equation (1.1) becomes

iċn = 2
∑

k+ℓ=m+n
k,ℓ,m,n∈N

(k + ℓ)!

2k+ℓ
√
k! ℓ!m!n!

ckcℓcm.

or

iċn =
∂H(c)

∂cn
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after defining

H(e, f, g, h) =
∑

k+ℓ=m+n
k,ℓ,m,n∈N

(k + ℓ)!

2k+ℓ
√
k! ℓ!m!n!

ekfℓgmhn, and H(c) = H(c, c, c, c).

2.2. Expanding the Hamitonian. Recall the definition of vλ in (1.2). Then we write

H(aϕ0 + vλ) = |a|4H(ϕ0)
︸ ︷︷ ︸

Hλ
0
(a,a,a,a)

+2 [H(vλ, aϕ0, aϕ0, aϕ0) +H(aϕ0, aϕ0, vλ, aϕ0)]
︸ ︷︷ ︸

Hλ
1
(a,a,a,g)

+ [H(vλ, vλ, aϕ0, aϕ0) +H(aϕ0, aϕ0, vλ, vλ) + 4H(vλ, aϕ0, vλ, aϕ0)]
︸ ︷︷ ︸

Hλ
2
(a,a,g,g)

+ 2 [H(vλ, vλ, vλ, aϕ0) +H(aϕ0, vλ, vλ, vλ)]
︸ ︷︷ ︸

Hλ
3
(a,g,g,g)

+ H(vλ)
︸ ︷︷ ︸

Hλ
4
(g,g,g,g)

.

2.3. Cancellation of Hλ
1 (a, a, a, g). Since g(0) = 0, one sees immediately that Hλ

1 (a, a, a, g) = 0.

2.4. Equivalent for Hλ
2 (a, a, g, g). It is easy to see that

Hλ
2 (a, a, g, g) =

2

λ
Re a2 g2(0)

︸ ︷︷ ︸

0

+4|a|2
∑

k∈N/λ

(λk)!

2λk(λk)!λ
|g(k)|2.

Thus, as λ→ ∞, taking the continuous limit gives

Hλ
2 (a, a, g, g) ∼ 4|a|2

∫ +∞

0

1

2λx
|g(x)|2 dx.

2.5. Equivalent for Hλ
3 (a, g, g, g). By the formula giving H,

Hλ
3 (a, g, g, g) = 4Re a

∑

k=m+n
k,m,n∈N/λ

(λk)!

2λk
√

(λk)!(λm)!(λn)!

1

λ3/2
g(k)g(m)g(n).

By Stirling’s formula

Hλ
3 (a, g, g, g) ∼

27/4

π1/4λ7/4
Re a

∑

k=m+n

(
k

mn

)1/4 ( kk

22kmmnn

)λ/2

g(k)g(m)g(n).

Take now the continuous limit (k and m becomes the continuous variables x and y respectively):

Hλ
3 ∼ 27/4λ1/4

π1/4
Re a

∫

x∈R+

∫

0<y<x

(
x

y(x− y)

)1/4 ( xx

22xyy(x− y)x−y

)λ/2

g(x)g(y)g(x − y) dy dx.
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Changing the integration variable to θ = y
x , the above becomes

Hλ
3 ∼ 27/4λ1/4

π1/4
Re a

∫

x>0

∫

0<θ<1

(
1

xθ(1− θ)

)1/4 ( 1

4θθ(1− θ)1−θ

)λx/2

g(x)g(θx)g((1 − θ)x)x dθ dx

=
27/4λ1/4

π1/4
Re a

∫

x>0

∫

0<θ<1

(
x3

θ(1− θ)

)1/4 (
1

2

)λx

ψ(θ)λx/2g(x)g(θx)g((1 − θ)x) dθ dx,

where we denote

ψ(θ) =
1

θθ(1− θ)1−θ
.

Let us take a moment to study this function, which is defined on (0, 1). It is maximal and equal
to 2 for θ = 1/2, and approaches 1 as θ approaches 0 or 1. Furthermore, its second derivative at 1/2
equals 8, and thus ψ(1/2 + δ) = 2− 4δ2 +O(δ3). As λ→ ∞, it is clear that, for a smooth function F ,
a positive real α, and λ→ ∞,

(2.1)

∫

0<θ<1
ψ(θ)αλF (θ) dθ ∼ F

(
1

2

)∫ 1

0
2αλe−2αλ(θ−1/2)2 dθ ∼ F

(
1

2

)
2αλ

√
π√

2αλ
.

Using this in the equivalent for H3 gives

Hλ
3 (a, g, g, g) ∼ 29/4π1/4λ−1/4 Re a

∫

x>0
x1/4

(
1

2

)λx/2

g
(x

2

)2

g(x) dx.

2.6. Equivalent for H. By the formula giving H,

H(vλ) =
∑

k+ℓ=m+n
k,ℓ,m,n∈N/λ

(
λ(k + ℓ)

)
!

2λ(k+ℓ)
√

(λk)!(λℓ)!(λm)!(λn)!

1

λ2
g(k)g(ℓ)g(m)g(n).

By Stirling’s formula

H(vλ) ∼
1√
2π

∑

k+ℓ=m+n

1

λ5/2

(
(k + ℓ)2

kℓmn

)1/4 (
(k + ℓ)k+ℓ

2k+ℓ
√
kkℓℓmmnn

)λ

g(k)g(ℓ)g(m)g(n)

=
1√
2π

1

λ5/2

∑

S
0≤k≤S
0≤m≤S

(
S2

k(S − k)m(S −m)

)1/4 [
1

2
ψ

(
k

S

)]λS/2 [1

2
ψ
(m

S

)]λS/2

g(k)g(S − k)g(m)g(S −m)
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(where we set S = k+ℓ = m+n). Taking the continuous limit (the discrete variables k,m, S becoming
x, y, s respectively) and subsequently changing variables to θ = x/s and η = y/s gives

H(vλ) ∼
√
λ√
2π

∫

s>0

∫

0<x<s

∫

0<y<s

(
s2

x(s − x)y(s − y)

)1/4 [
1

2
ψ
(x

s

)]λs/2 [1

2
ψ
(y

s

)]λs/2

g(x)g(s − x)g(y)g(s − y) dx dy ds

=

√
λ√
2π

∫

s>0

∫

0<θ<1

∫

0<η<1

1√
s

(
1

θ(1− θ)η(1− η)

)1/4 [1

2
ψ (θ)

]λs/2 [1

2
ψ (η)

]λs/2

g(θs)g((1 − θ)s)g(ηs)g((1 − η)s) s dθ s dη ds.

By (2.1), this is further equivalent to

H(vλ) ∼
√
2π√
λ

∫ √
s
∣
∣
∣g

(s

2

)∣
∣
∣

4
ds.

2.7. What is the relevant expansion for H? Recall that we expanded in Section 2.2

H(u) = Hλ
0 (a, a, a, a) +Hλ

1 (a, a, a, g) +Hλ
2 (a, a, g, g) +Hλ

3 (a, g, g, g) +Hλ
4 (g, g, g, g),

where, for instance, Hλ
1 (a, a, a, g), is (real) trilinear in a and linear in g. We then proved that

Hλ
0 (a, a, a, a) = hλ0(a) = |a|4

Hλ
1 (a, a, a, g) = 0

Hλ
2 (a, a, g, g)

λ→∞∼ hλ2 (a, a, g, g) = 4|a|2
∫ +∞

0

1

2λx
|g(x)|2 dx.

Hλ
3 (a, g, g, g)

λ→∞∼ hλ3 (a, g, g, g) = 29/4π1/4λ−1/4 Re a

∫

x>0
x1/4

(
1

2

)λx/2

g
(x

2

)2

g(x) dx.

Hλ
4 (g, g, g, g)

λ→∞∼ hλ4 (g, g, g, g) =

√
2π√
λ

∫ +∞

0

√
s
∣
∣
∣g

(s

2

)∣
∣
∣

4
ds.

How can we combine these different asymptotics, or in other words: what is the relevant expansion
for H?

• Keeping only terms of size O(1) (as far as their dependence on λ goes) leads to dropping Hλ
2 ,

Hλ
3 and Hλ

4 , which gives the uninteresting model H(u) ∼ π

8
|a|4.

• Keeping only terms which are polynomial in λ leads to dropping Hλ
2 and Hλ

3 (which decay
exponentially fast in λ), thus obtaining

H(u)
λ→∞∼ hλ0 + hλ4 = |a|4 +

√
2π√
λ

∫ +∞

0

√
s
∣
∣
∣g

(s

2

)∣
∣
∣

4
ds.

This corresponds once again to trivial dynamics, since for all t ∈ R we get for the associated
dynamical system |a(t)| = |a(0)| and |g(t, s)| = |g(0, s)|.



HIGH FREQUENCY LIMIT OF THE LLL EQUATION 7

• Therefore, to observe a genuine nonlinear interaction between modes, we have to include the
contributions of Hλ

3 and Hλ
4 to get

H(u)
λ→∞∼ hλ0 + hλ2 + hλ3 + hλ4 = |a|4 + 4

∫ +∞

0

∣
∣
∣
ag(s)

2λs/2
+K

( s

λ

) 1

4

g2
(s

2

)∣
∣
∣

2
ds.

Observe that this expansion must be taken with a grain of salt since, for instance, the error in
the expansion of Hλ

4 is larger than the leading order term in the expansion of Hλ
2 . It should be

understood as follows: we keep the leading contribution to trivial resonances (self interactions
at the frequency s, given by hλ4), as well as the leading contribution to nontrivial resonances
(interactions between the frequencies s and 2s, given by hλ2 and hλ3).

3. Some remarks on the limiting equation

We discuss here the dynamics of the evolution equation given by the above Hamiltonian:
(3.1)






iȧ = 2|a|2a+ 4a
∫ +∞
0

|g(s)|2

2λs
ds+ 4K

∫ +∞
0

g(s)

2λs/2

(
s
λ

) 1

4 g2
(
s
2

)
ds,

iġ(s) = 1
λ

[

4|a|2 g(s)
2λs

+ 4K
(
s
λ

) 1

4 a
2λs/2

g2
(
s
2

)
+ 8K

(
2s
λ

) 1

4 a
2λs
g(s)g(2s) + 16K2

(
2s
λ

) 1

2 |g(s)|2g(s)
]

,

with K = 2−3/4π1/4, and where λ ≥ 1. Similar conclusions can be drawn about the discrete (in s)
system.

3.1. Local well-posedness. For α ≥ 0, define the spaceXα by the norm ‖(a, g)‖α = |a|+sup
s≥0

〈s〉α|g(s)|.
Then we have the following well-posedness result

Proposition 3.1. Let α ≥ 1/4 and (a0, g0) ∈ Xα. Then there exists T > 0 and a unique solution

(a, g) ∈ C
([
0, T ];Xα

)
to the system (3.1) with initial conditions (a0, g0).

The local time of existence is T ≤ C‖(a0, g0)‖−2
α and the constant C > 0 is uniform in λ ≥ 1.

Proof. Define the norm ‖(a, g)‖T,α = sup
0≤t≤T

‖(a(t), g(t))‖α . Then, we consider the space X =
{
(a, g) ∈

C
([
0, T ];Xα

)
, ‖(a, g)‖α ≤ 2‖(a0, g0)‖α

}
and the map Φ = (Φ1,Φ2) given by







Φ1(a, g)(t) = a0 − i

∫ t

0

(

2i|a|2a+ 4a

∫ +∞

0

|g(s)|2
2λs

ds+ 4K

∫ +∞

0

g(s)

2λs/2

( s

λ

) 1

4

g2
(s

2

)

ds

)

dt′,

Φ2(a, g)(t) = g0(s)−
i

λ

∫ t

0

(

4|a|2 g(s)
2λs

+ 4K
( s

λ

) 1

4 a

2λs/2
g2

(s

2

)

+

+8K

(
2s

λ

) 1

4 a

2λs
g(s)g(2s) + 16K2

(
2s

λ

) 1

2

|g(s)|2g(s)
)

dt′,

We show that for T > 0 small enough, the map Φ : X −→ X is a contraction, and hence admits a
unique fixed point, which is the unique solution to the system (3.1).
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We show that Φ maps X into itself. For 0 ≤ t ≤ T , we get

|Φ1(a, g)(t)| ≤ |a0|+ CT
(

( sup
0≤t≤T

|a(t)|)3 +
(

sup
0≤t≤T

|a(t)|
)(

sup
0≤t≤T

sup
s≥0

(〈s〉α|g(s)|)
)2

∫ +∞

0

ds

2λs〈s〉2α

+
(

sup
0≤t≤T

sup
s≥0

(〈s〉α|g(s))|
)3

∫ +∞

0

ds

2λs/2〈s〉3α−1/4

)

≤ |a0|+ CT‖(a, g)‖3T,α.
Similarly, using that α ≥ 1/4

sup
s≥0

〈s〉α|Φ2(a, g)(t)| ≤ sup
0≤t≤T

sup
s≥0

(〈s〉α|g0(s)|) + CT
(

( sup
0≤t≤T

|a(t)|)2 sup
0≤t≤T

sup
s≥0

(〈s〉α|g(s))|

+
(

sup
0≤t≤T

|a(t)|
)(

sup
0≤t≤T

sup
s≥0

(〈s〉α|g(s)|)
)2

+
(

sup
0≤t≤T

sup
s≥0

(〈s〉α|g(s)|)
)3
)

≤ sup
0≤t≤T

sup
s≥0

(〈s〉α|g0(s)|) + CT‖(a, g)‖3T,α.

Thus, putting the previous estimates together and taking the sup norm in time, we obtain the bound

‖Φ(a, g)‖T,α ≤ ‖(a0, g0)‖T,α + CT‖(a, g)‖3T,α,
from which we deduce that Φ : X −→ X provided that T ≤ C‖(a0, g0)‖−2

α with C > 0 small enough.
With similar estimates we can show that Φ is a contraction. �

3.2. Conserved quantities and symmetries.

• The ”mass” M = |a|2 + λ

∫ +∞

0
|g(s)|2 ds.

• The ”kinetic energy” E =

∫ +∞

0
s|g(s)|2 ds.

By Noether’s theorem, this corresponds to the following symmetries, which leave the set of solutions
invariant:

• Phase rotation: (a, g) 7→ (eiθa , eiθg), with θ ∈ R.
• Phase modulation: (a, g) 7→ (a, eiθsg), with θ ∈ R.

Another symmetry is given by the scaling

(a(t), g(t, s)) 7→ λ(a(λ2t), g(λ2t, s)), for λ > 0.

3.3. Transfer to high frequencies. The interactions between different frequencies, say s and 2s,
are always damped by a coefficient 1

2λs
. It suggests that any transfer of energy to high frequencies can

only happen at a logarithmic speed - and this should also be the case for the full LLL equation.
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