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The purpose of this text is to make a few comments about the book
Categories and Sheaves by Kashiwara and Schapira, Springer 2006,
referred to as “the book” henceforth.
An important reference is

[GV| Grothendieck, A. and Verdier, J.-L. (1972). Préfaisceaux. In Artin, M.,
Grothendieck, A. and Verdier, J.-L., editors, Théorie des Topos et Cohomologie
Etale des Schémas, volume 1 of Séminaire de géométrie algébrique du Bois-Marie, 4,
pages 1-218. Springer.

http:/ /www.normalesup.org/~forgogozo/SGA4/01/01.pdf
Here are two useful links:

Schapira’s Errata:
https:/ /webusers.imj-prg.fr /~pierre.schapira/books/Errata.pdf,

nLab entry: http://ncatlab.org/nlab/show/Categories+and-+Sheaves.
The tex and pdf files for this text are available at

http://www.iecl.univ-lorraine.fr/~Pierre-Yves.Gaillard/DIVERS /KS/
The tex file is available at

https:/ /github.com/Pierre- Yves-Gaillard /acs

https://goo.gl/eJxVyj
More links are available at http://goo.gl/df2Xw.

I have rewritten some of the proofs in the book. Of course, I'm not suggesting
that my wording is better than that of Kashiwara and Schapira! I just tried to make
explicit a few points which are implicit in the book.

The notation of the book will be freely used. We will sometimes write BA for
Fct(A, B), «; for a(i), fg for fog, and some parenthesis might be omitted. We write
| | instead of ] for the coproduct.

Following a suggestion of Pierre Schapira’s, we shall denote projective limits by
lim instead of lim, and inductive limits by colim instead of lim. We sometimes use
<—

H
the words limit and colimit instead of the phrases projective limit and inductive limit.

Thank you to Pierre Schapira and to Olaf Schniirer for their help and thei interest!


http://www.normalesup.org/~forgogozo/SGA4/01/01.pdf
https://webusers.imj-prg.fr/~pierre.schapira/books/Errata.pdf
http://ncatlab.org/nlab/show/Categories+and+Sheaves
http://www.iecl.univ-lorraine.fr/~Pierre-Yves.Gaillard/DIVERS/KS/
https://github.com/Pierre-Yves-Gaillard/acs
https://goo.gl/eJxVyj
http://goo.gl/df2Xw

1 U-CATEGORIES AND U-SMALL CATEGORIES

1 U-categories and U-small Categories

Here are a few comments about the definition of a U-category on page 11 of the
book.

§ 1. First of all let us insist on the fact that, in this text, the hom-sets of a category
are not necessarily disjoint. For more on this disjointness issue, see §7] p. [[] and

p. [25] below.

Let U be a universe. Recall that an element of U is called a U-set. The following
definitions are used in the book:

Definition 2 (U-category). A U-category is a category C such that, for all objects
X,Y, the set Home(X,Y) of morphisms from X to Y is equipotent to some U-set.

Definition 3 (U-small category). The category C is U-small if in addition the set of
objects of C is equipotent to some U -set.

One could also consider the following variant:

Definition 4 (U-category). A U-category is a category C such that, for all objects
X,Y, the set Home(X,Y') is a U-set.

Definition 5 (U-small category). The category C is U-small if in addition the set of
objects of C is a U-set. More concisely: C is U-small if and only if C € U.

Definition 6 (essentially U-small category). The category C is essentially U-small
if it is equivalent to a U-small category.

Note that: (a) a category C is a U-category in the sense of Definition 2] if and
only if there is a U-category in the sense of Definition [ which is isomorphic to C;
(b) a similar statement holds for ¢/-small categories; (c¢) Statement (a) would have
to be modified if the hom-sets were required to be disjoint.

In this text we shall always use Definitions [4] and ‘

We often assume implicitly that a universe U has been chosen, and we say “cate-
gory” and “small category” instead of “U-category” and “U-small category”.

See also Section p. 24
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2 TYPOS AND DETAILS

2 Typos and Details

« P. 11, Definition 1.2.1, Condition (b): Hom(X, X') should be Hom¢ (X, X).

§ 7. Page 14, definition of Mor(C). As the hom-sets of C are not assumed to be
disjoint, it seems better to define Mor(C) as a category of functors. See p.

x P. 25, Corollary 1.4.6. Due to the definition of {/-small category used in this text
(see Section [1] p. [L0), the category C4 of the corollary is no longer ¢-small, but only
canonically isomorphic to some U-small category.

« P. 25, Proof of Corollary 1.4.6 (second line): he should be he.

« P. 26, Proposition 1.4.10, end of the proof: Hom¢(Y,X) — F(X) should be
Home(Y, X) — F(Y).

x P. 33, Exercise 1.19: the arrow from L; o Ry o Ly to Lo should be 1, o Ly instead
of €10 LQ.

x P. 37, Remark 2.1.5: “Let I be a small set” should be “Let I be a small category”.
x P. 39, penultimate line “exits” should be “exists”.

x P. 47, Proposition 2.2.4 (ii): “If Y5 x Y7 and Y, X x Y7 exist in C” should be “If
Xo x X7 and Xy Xy X exist in C”.

« P. 41, sixth line: (i) should be (a).
« P. 52, fourth line: Mor(/,C) should be Fct(I,C).

« P. 53, Part (i) (c) of the proof of Theorem 2.3.3 (Line 2): “8 € Fct(J,.A)” should
be “p € Fet(J,C)".

« P. 54, second display: we should have i — ¢(j) instead of ¢(j) — 1.

x P. 58, Corollary 2.5.3: The assumption that [ and J are small is not necessary.
(The statement does not depend on the Axiom of Universes.)

« P. 58, Proposition 2.5.4: Parts (i) and (ii) could be replaced with the statement:
“If two of the functors ¢, 1) and ¢ o1 are cofinal, so is the third one”.

x Pp. 63-64, statement and proof of Corollary 2.7.4: all the h are slanted, but they
should be straight.

x P. 65, Exercise 2.7: see Section p- 93] below.

11



2 TYPOS AND DETAILS

x P. 74, first line of the proof of Theorem 3.1.6: lim should be lim.
— —
x P. 74, last four lines: « should be .

x P. 79, proof of Proposition 3.2.5: the word “filtrant” should be replaced with the
word “connected”.

x P. 80, last display: a lim is missing.
H

« P. 83, Statement of Proposition 3.3.7 (iv) and (v): &k might be replaced with R.

« Pp 83 and 85, Proof of Proposition 3.3.7 (iv): “Proposition 3.1.6” should be “The-
orem 3.1.6”. Same typo on p. 85, Line 6.

« P. 84, Proposition 3.3.13. It is clear from the proof (I think) that the intended
statement was the following one: If C is a category admitting finite inductive limits
and if A : C°? — Set is a functor, then we have

C small and C4 filtrant = A left exact = C4 filtrant.
« P. 88, Proposition 3.4.3 (i). It would be better to assume that C admits small
inductive limits.

x P. 89, last sentence of the proof of Proposition 3.4.4. The argument is slightly
easier to follow if )" is factored as

(Jl)jQ N (Jl)wz(jz) i> (Kl)w(jz) N (Kl)@z(iz)_

Then a,b and ¢ are respectively cofinal by Parts (ii), (iii) and (iv) of Proposition
3.2.5 p. 79 of the book.

x P. 90, Exercise 3.2: “Proposition 3.1.6” should be “Theorem 3.1.6”.

x P. 115, line 4: “two morphisms 41,79 : ¥ — Y Ux Y” should be “two morphisms
il,ig Y = Y |—|X Y”.
x P. 115, Line 8: 71 0 g = i3 0 g should be g oi; = g o is.

« P. 120, proof of Theorem 5.2.6. We define v’ : X’ — F as the element of F'(X’) cor-
responding to the element (u,ug) of F(X) Xp(x,) F'(Zy) under the natural bijection.
(Recall X’ := X Uy, Zy.)

x P. 121, proof of Proposition 5.2.9. The fact that, in Proposition 5.2.3 p. 118 of
the book, only Part (iv) needs the assumption that C admits small coproducts is
implicitly used in the sequel of the book.

12



2 TYPOS AND DETAILS

x P. 128, proof of Theorem 5.3.9. Last display: U should be U. It would be simpler
in fact to put

Ob(F,) ={Y1Ux Y2 | X = Y] and X — Y5 are morphisms in F,,_1}.

x P. 128, proof of Theorem 5.3.9,, just before the “q.e.d.”: Corollary 5.3.5 should be
Proposition 5.3.5.

« P. 132, Line 2: It would be slightly better to replace “for small and filtrant categories
I and J” with “for small and filtrant categories I and .J and functors o : I — C, 3 :
J—=C"

* P. 132, Line 3: Home (A, B) should be Hompnqae) (A, B).

x P. 132, Lines 4 and 5: «We may replace “filtrant and small” by “filtrant and cofinally
small” in the above definition»: see Proposition p. [104]

x P. 132, Corollary 6.1.6: The following fact is implicit. Let C 5¢ 5 ¢ e
functors, let X’ be in C’, and assume that G is fully faithful. Then the functor
Cx' — Cg(x7) induced by G is an isomorphism.

x P. 133, Proposition 6.1.9. “There exists a unique functor ...” should be “There
exists a functor ... Moreover, this functor is unique up to unique isomorphism.”

§ 8. P. 133. In Part (ii) of Proposition 6.1.9 the authors, I think, intended to write

“lim”(IF o) = IF(“lim” )
—

By
instead of
IF(“lim”a) = “lim” (IF o a).

— —

« P. 134, proof of Proposition 6.1.12: “C4 x Ca” should be “C4 x C/,” (twice).

x P. 135, Corollary 6.1.14: f = “lim” ¢ should be f ~ “lim”¢. (This is an isomor-
— —

phism in Mor(Ind(C)).)

§ 9. x P. 135, Corollary 6.1.15: f = “lim” ¢ should be f ~ “lim” ¢ and g = “lim "¢
— — —
should be g ~ “lim”4. (See Section p. 137 below.)

x P. 136, proof of Proposition 6.1.16: see §128| p.

13



2 TYPOS AND DETAILS

x P. 136, proof of Proposition 6.1.18. Second line of the proof: “Corollary 6.1.14”
should be “Corollary 6.1.15”.

« P. 136, last line: “the cokernel of («(i), 5(7))” should be “the cokernel of (p;,1;)”.
Moreover, the cokernel in question is denoted by A; on the last line of p. 136 and by
A(7) on the first line of p. 137.

x P. 138, second line of Section 6.2: “the functor “lim” is representable in C” should
—
be “the functor “lim”« is representable in C”. Next line: “natural functor” should
—

be “natural morphism”.

x P. 138, Proposition 6.2.1. The assumption that I is small is not really necessary.

(See Section 8.7 p. below. )
+ P. 141, Display (6.3.2): # should be % (see Section [8.1] p. below).

« P. 141, Corollary 6.3.7 (ii): id should be idc.
« P. 143, third line of the proof of Proposition 6.4.2: {Y;};cr should be {Y;}ic;.

« P. 144, proof of Proposition 6.4.2, Step (ii), second sentence: It might be better to
state explicitly the assumption that X! is in C, for v = 1,2.

x P. 146, Exercise 6.3. “Let C be a small category” should be “Let C be a category”.
« P. 146, Exercise 6.8 (ii): (Mod(A))a should be (Mod(R)) -

x P. 150, before Proposition 7.1.2. One could add after “This implies that Fs is
unique up to unique isomorphism”: Moreover we have Q' F ~ Fg ~ Q'F.

x P. 153, statement of Lemma 7.1.12. The readability might be improved by changing
s: X =X e€Sto(s: X = X') €. Same for Line 4 of the proof of Lemma 7.1.21
p- 157.

x P. 156, first line of the first display and first line after the first display: Cs should
be Cs.

x P. 160, second line after the diagram: “commutative” should be “commutative up
to isomorphism”.

§ 10. P. 160, proof of Proposition 7.3.2. “F(s) is an isomorphism” should be “Qs(s)
is an isomorphism” or “G(Qs(s)) is an isomorphism”. In fact I would replace

“Let us check that Lemma 7.1.3 applies to Z = C @s, Cs and hence to Z = C GoGs,

A. Let X € C. By the hypothesis, there exist Y € Z and s : X — «(Y) with s € S.

14



2 TYPOS AND DETAILS

Therefore, F'(s) is an isomorphism. ..”
with

“Let us check that Lemma 7.1.3 applies to Z = C GoQs A Let X € C. By the
hypothesis, there exist Y € Z and s : X — «(Y') with s € S. Therefore, G(Qs(s)) is
an isomorphism. ..”

x P. 163, last sentence of Remark 7.4.5: “right localizable” should be “universally
right localizable”.

x P. 168, Line 9: “f : X — Y” should be “f : Y — X"

x P. 170, Corollary 8.2.4. The period at the end of the last display should be moved
to the end of the sentence.

x P. 172, proof of Lemma 8.2.10, first line: “composition morphism” should be “ad-
dition morphism”.

x P. 179, about one third of the page: “a complex X —— Y - { Z 7 should be

w

“a sequence X —— Y ;? Z 7.

* P. 180, Lemma 8.3.11 (b) (i): Coker f = Coker f’ should be Coker f' = Coker f.
Proof of Lemma 8.3.11: The notation Hom for Hom¢ occurs eight times. Lemma
8.3.11 is stated below as Lemma [290] p. [I78]

x P. 181, Lemma 8.3.13, second line of the proof: h o f2 should be f2o h.

§ 11. P. 184, Definitions 8.3.21 (v) and (vi). Definition 8.3.21 (vi) says that a
full subcategory S of a category C is generating if any object of C is the target of
some epimorphism whose source is in §. It seems to me this definition might create
confusion with Definition p. [II8] For want of a better idea, I suggest to say
that C is a-generating if its satisfies the above condition. (The letter a stands for the
word “abelian”, the reason being that this notion seems to be only used for abelian
categories.) The notion of co-a-generating is defined in the obvious way.

x P. 186, Corollary 8.3.26. The proof reads: “Apply Proposition 5.2.9”. One could
add: “and Proposition 5.2.3 (v)”.

x P. 187, proof of Proposition 8.4.3. More generally, if F' is a left exact additive
functor between abelian categories, then, in view of the observations made on p. 183

15



2 TYPOS AND DETAILS

of the book (and especially Exercise 8.17), F is exact if and only if it sends epi-
morphisms to epimorphisms. (A solution to the important Exercise 8.17 is given in

Section [10.8.2) p. [203])

v v
« P. 188. In the second diagram Y’ — Z should be Y’ — X. After the second
diagram: “the set of isomorphism classes of A” should be “the set of isomorphism
classes of objects of A”.

« P. 190, proof of Proposition 8.5.5 (a) (i): all the R should be R°P; except for the
last one.

x P. 191: The equality ¥(M) = G ®g M is used in the second display, whereas
(M) = M ®g G is used in the third display. It might be better to use (M) =
M ®po» GG both times.

« P. 191, Proof of Theorem 8.5.8 (iii): “the product of finite copies of R” should be
“the product of finitely many copies of R

« P. 196, Proposition 8.6.9, last sentence of the proof of (i)=-(ii): “Proposition 8.3.12”
should be “Lemma 8.3.12”.

x P. 201, proof of Lemma 8.7.7, first line: “we can construct a commutative diagram”.
I think the authors meant “we can construct an exact commutative diagram”.
§ 12. P. 218, middle of the page: “b := inf(J \ A)” should be “b := inf(J \ A")” (the

prime is missing).

x P. 218, proof of Lemma 9.2.5, first sentence: “Proposition 3.2.4” should be “Propo-
sition 3.2.2".

« P. 220, part (ii) of the proof of Proposition 9.2.9, last sentence of the first paragraph:
s(j) should be 3(j). Moreover, in the last two paragraphs of the proof, it would be
better to denote j(u) by i(u).

« P. 221, Lemma 9.2.15. “Let A € C” should be “Let A € Ind(C)”.

« P. 224, proof of Proposition 9.3.2, line 2: “there exist maps S — A(G) — S whose
composition is the identity” should be “there exist maps A(G) — S such that the
composition S — A(G) — S is the identity of S”.

* Pp 224-228, from Proposition 9.3.2 to the end of the section. The notation G,
where S is a set, is used twice (each time on p. 224), and the notation G is used
many times in the sequel of the section. I think the two pieces of notation have the
same meaning. If so, it might be slightly better to uniformize the notation.
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§ 13. P. 225, line 3: “Since Nj is a subobject of A and card(A(G)) < «” should be
“Since card(A(G)) < 7.

x P. 225, line 4: “there exists ig — 41 such that NV;; — A is an epimorphism” should
be “there exists s : ig — ¢ such that Ny, — A is an epimorphism”.

« P. 226, four lines before the end: “By 9.3.4 (c¢)” should be “By (9.3.4) (c)” (the
parenthesis are missing).

« P. 227. The second sentence uses Proposition p. [106]
x P. 228, line 3: C should be C,.
x P. 228, Corollary 9.3.6: lim should be o.
H
§ 14. P. 228: It might be better to state Part (iv) of Corollary 9.3.8 as “G is in S,
instead of “there exists an object G € S which is a generator of C”. (Indeed, G is

already mentioned in Condition (9.3.1), which is one of the assumptions of Corollary
9.3.8.)

« P. 229, proof of 9.4.3 (i): it might be better to write “containing S strictly” (or
“properly”), instead of just “containing S”.

x P. 229, proof of 9.4.4: “The category CX is nonempty, essentially small ...”: the
adverb “essentially” is not necessary since C is supposed to be small.

« P. 237: “Proposition 9.6.3” should be “Theorem 9.6.3” (twice).
* P. 237, proof of Corollary 9.6.6, first display: “¢) : C — C” should be “¢ : C — Z;,,;".

x P. 237, end of proof of Corollary 9.6.6: it might be slightly more precise to write
“X = 1(P(X)) = KHome(X K™ instead of “X — (X)) = KHome(X.K)»

« P. 244, second diagram: the arrow from X’ to Z’ should be dotted. (For a nice
picture of the octahedral diagram see p. 49 of Mili¢i¢’s text

http://www.math.utah.edu/~milicic/Eprints/dercat.pdf.)

x P. 245, beginning of the proof of Proposition 10.1.13: The letters f and g being

used in the sequel, it would be better to write X Jo v % 7 5 TX instead of
X—=Y—=>7Z->TX.

x P. 245, first display in the proof of Proposition 10.1.13: The subscript D is missing
(three times) in Homp.
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x P. 250, Line 1: “TR3” should be “TR2”. After the second diagram, s o f should be
fos.
x P. 251, right after Remark 10.2.5: “Lemma 7.1.10” should be “Proposition 7.1.10".

x P. 252, last five lines:

e “y is represented by morphisms u' : @; X; Y ¥ & Y7 should be “u is
represented by morphisms @; X; — Y’ & Y7,

e v should (I believe) be u!,

e (u) should be Q(u').

« P. 253, Definition 10.3.1. It would be better (I think) to remove (or alter) the
second sentence of the definition. (This sentence is supposed to recall Definition 7.3.1
p. 159 of the book, but it is not clear to me that the formulation in the reminder
is equivalent to the one in Definition 7.3.1; moreover the formulation in Definition
7.3.1 is consistent with the way Kan extensions are defined in the book.)

x P. 253, sentence between Definition 10.3.2 and Proposition 10.3.3: “Note that if
F(N) c N/, then D is both F-injective and F-projective.” T don’t understand why
this is true.

* P. 2564. The functor RF' of Notation 10.3.4 coincides with the functor RuoF of
Definition 7.3.1 p. 159 of the book.

« P. 257, first display: the expression Ty, & Tx,, which occurs twice, should be
replaced with Tx, X Tx,.

x P. 266, Exercise 10.6. I think the authors forgot to assume that the top left square
commutes.

« P. 278: The first display should start with 7" (s"”) instead of 7"(s), and the second
F(X,dy) on the third line of the display should be F(X’,dy).

« P. 287, first display after Proposition 11.5.4: v(X™™) should be v(X)™™.

§ 15. P. 282, Definition 11.3.12. As indicated in Pierre Schapira’s Errata,

déymyx) = (=1)" F(dy" )

should be replaced with

Gryx) = (D" F(dY.
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The following is essentially a rewriting of the comment after Definition 11.3.12
taking the above correction into account:

We have

FoOL1 = —dpxp)-

§ 16. x P. 290, Line 17: as indicated in Pierre Schapira’s Errata, one should read

11

d™m = Homc((—l)mﬂd;{m’l, Yy™).

x P. 290, Line -3: “We define the functor” should be “We define the isomorphisms of
functors”.

x P. 303, just after the diagram: “the exact sequence (12.2.2) give rise” should be
“the exact sequence (12.2.2) gives rise”.

x P. 313, third line from the bottom: it would be better to write “double complex”
instead of “complex”.

* P. 320, Display (13.1.2): we have Qis = N"(C).

* P. 321, Line 8 72"(X) — 72"(X) should be 72"(X) — 7=2"(X).
* P. 327, Lemma 13.2.4: C(Z¢) should be C*(Z¢).

« P. 327, Proposition 13.2.46: A/ should be N(C).

* P. 328, Line 8: I think the authors meant “X* — Z% is an isomorphism for i > n+d”
instead of “4 > n +d”.

 P. 328. After the second display the phrase “the natural isomorphism Coker d4,;* —
Ker di, is an isomorphism” should be “the natural morphism Coker d4,*> — Ker d};,
is an isomorphism”.
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« P. 330, right after Definition 13.3.1: “F admits a right derived functor on K*(C)”
should be “F admits a right derived functor on D*(C)”.

* P. 331, Remark 13.3.6 (iii): C*(Z) should be C*(Z¢).

§ 17. P. 337, Theorem 13.4.1. The phrase “right localizable at (Y, X)” should be
“universally right localizable at (Y, X), and let RHom¢ denote its right localization”.

* P. 348, proof of Lemma 14.1.2: dys(x) should be dy;(z).
x P. 359, Line 3: o should be sh.

« P. 360, Line 5 of Step (ii) of the proof of Theorem 14.4.5: “Then X” is an exact
complex in K™ (P)” should be (I think) “Then X" is an exact complex in K™ (C)”.

x P. 362, Line 8: K(G)-projective should be G-projective (see Definition 13.4.2 p. 338
of the book).

x P. 364, Step (g) of the proof of Theorem 14.4.8: P; = K™ (C;) should be P; = C;.
x P. 365, line between the last two displays: “adjoint” should be “derived”.

x P. 392, Lemma 16.1.6 (ii). It would be better to write v : C' — U instead of
u:C — U and t o v instead of ¢ o u.

« P. 396, proof of Lemma 16.2.4 (ii), last sentence of the proof: It would be better
(I think) write “by LE2 and LE3” instead of “by Proposition 16.1.11 (ii)”.

x P. 401, Line 6: B” — B should be B” — B’.
« P. 406, first line of the second display: (Cy )" should be Cy (twice). (See §510

p-[293)
* P. 409, line 2: X o (h)4 ~ hy should be X o (h%;)4 ~ h.

§ 18. P. 410, Display (17.1.15): instead of

HompSh(XvA) (F, G) ~ lim HOTTLPSMU’A)(F, G)(U)

UeCx

we should have

HompSh(XA) (F, G) ~ Uhercn ’Hompgh(X,A)(F, G)(U)
X

See §510| p. 297]
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§ 19. P. 412, proof of Lemma 17.2.2 (ii), (b)=-(a), Step (3). “Since (f*)”" (uy) is an
epimorphism by (2), (f*)” (uy) is a local isomorphism” should be “Since (f*)™ (uy)
is a local epimorphism by (2), (%) (uy) is a local isomorphism”.

x P. 414, line before the last display: hﬂ(F should be h& F, i.e. the h should be
straight, not slanted.

« P. 417, first sentence of the paragraph containing Display (17.4.2): A/ A" € C"
should be A, A" € C%.

x P. 418, last display:

lim: lim F(B)— lim F%B)

— — —
(B—A)ELT 4 (B—A)ELT 4
should be
lim : lim F(B)— lim F%B).
— — —
(B—A)ELT,  (B—A)ELT 4 (B—A)ELT 4

* P. 419, second line: “applying Corollary 2.3.4 to 6 = id;z,” should be “applying
Corollary 2.3.4 to ¢ =id,z,”.

« P. 421, Theorem 17.4.7 (i): (R} F)? ~ (B}, F*) should be (b F)b ~ (bl F?), i.e.
the h’s should be straight, not slanted.

* P. 424, proof of Theorem 17.5.2 (iv). “The functor fT is left exact” should be “The

functor f1is exact”. (See p. [296])

x P. 426, Line 5: “morphism of sites by” should be “morphism of sites”.

« P. 428, Notation 17.6.13 (i). “For M € A, let us denote by M, the sheaf associated
with the constant presheaf Cx > U — M” should be

“For M € A, let us denote by M4 the sheaf over C4 associated with the constant
presheaf C4 5 (U — A) — M".

It might also be worth mentioning that M, is called the constant sheaf over A
with stalk M.

« P. 437, Line 3 of Step (ii) of the proof of Lemma 18.1.5: It might be better to write
“@Dicaw) GU % A)” instead of “ Hscaw) GU 2% A)’; indeed @ is more usual
that ] to denote the coproduct of k-modules.
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« P. 438, right after “q.e.d.”: “Notations (17.6.13)” should be “Notations 17.6.13” (no
parenthesis).

« P. 438, bottom: One can add that we have Homg (R, F') ~ F for all F' in PSh(R).

x P. 439, after Definition 18.2.2: One can add that we have F TX})]R R ~ F for F'in
PSh(R) and FF ®x R ~ F for F' in Mod(R).

x P. 439, Proposition 18.2.3 (ii). Here is a slightly stronger statement: If R, S, 7T are
kx-algebras, if F'is a (T @, R°P)-module, if G is an (R @4, S)-module, and if H
is an (S ®y, 7T )-module, then there are isomorphisms

Homsg, 7(F ®r G, H) ~ Homge, s(G,Homr(F, H)),
Homsg, 7(F ®r G, H) = Homgg, s(G, Homy(F, H)),
functorial with respect to F, G and H.
* P. 440, last line of second display: Homgw)(G(U) @i F(U), H(U)) should be
Homy,(F(U) @grwy G(U), H(U)).
x P. 440, first line of the fourth display, I%};R(V) should be @z v.

« P. 441. The proof of Proposition 18.2.5 uses Display (17.1.11) p. 409 of the book
and Exercise 17.5 (i) p. 431 of the book (see §559 p. [317)).

« P. 442 first line of Step (ii) of the proof of Proposition 18.2.7: Homg (R ® kxa, F')
should be Homg (R Ry kxa, F).

x P. 442, Line 3 of last display of Section 18.2: j4_, y1j4’,yx should be jil-)XjA—>X*'
« P. 442, Lemma 18.3.1 (i) follows from Proposition 17.5.1 p. 432 of the book.
* P. 443, first display: On the third and fourth lines, Homy, should be Homy, .

« P. 443, sentence preceding Lemma 18.3.2: js,x should be j,_, y (the slanted j
should be straight).

« Pp 447-8, proof of Lemma 18.5.3: in (18.5.3) M'|y and M|y should be M'(U) and
M(U), and, after the second display on p. 448, s; € ((R°?)®" ®@% P)(U) should be
s1 € (R®)*" @r P)(U).

* P. 448, Proposition 18.5.4, Line 3 of the proof: G®! — M should be G¥* — M.
« P. 452, Part (i) (a) of the proof of Lemma 18.6.7. I think that Oy and Oy stand
for Ox|y and Oy|y. (If this is so, it would be better, in the penultimate display of
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3 ABOUT CHAPTER 1

the page, to write Oy instead of Oy|y.)

x P. 452, a few lines before the penultimate display of the page, fI;,l : Og" = o
should be (I think) fy;' : OF" — OF™.

« P. 494, Index. I found useful to add the following subentries to the entry “injective™
F-injective, 231; F-injective, 253, 255, 330.

3 About Chapter 1

3.1 Universes (p. 9)

The book starts with a few statements which are not proved, a reference being given
instead. Here are the proofs.

A universe is a set U satisfying
(i) oel,
{)ueUelU=uel,

(i) U e U = {U} e U,
ivyUeU=PU)elU,

(v) T €U and U; € U for all i =
(vi) Nel.

Ui €,
We want to prove:
(vii) U eU = Uyep v €U,
(viii) U,V eld = U xV elU,
ix)yUcVeU=Ucecl,
(x)IeUand Uy el forall i = [[,.,U; € U.
(We have kept Kashiwara and Schapira’s numbering of Conditions (i) to (x).)

Obviously, (ii) and (v) imply (vii), whereas (iv) and (ii) imply (ix). Axioms (iii), (vi)
and (v) imply

() UV eU = {UV}el,
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and thus
(b)U,Veld= (UV)={{U},{U,V}} elU.

Proof of (viii). If u € U and v € V, then {(u,v)} € U by (ii), (b) and (iii). Now
(v) yields

UxV = U U {(u,v)} eU. qed.

uelU veV

Assume U,V € U, and let VY be the set of all maps from U to V. As VU &
P(U x V), Statements (viii), (iv) and (ii) give

() U,VeU=VYel.
Proof of (x). As
I
[[vier <U UZ-) ,
iel i€l

(x) follows from (v), (c¢) and (iv). q.e.d.

3.2 Definition of a category (p. 11)

We slightly modify Definition 1.2.1 p. 11 as follows:
Definition 20. A category C consists of:
(i) a set Ob(C),
(i) for any X,Y in Ob(C), a set Home(X,Y),
(iii) for any X,Y,Z in Ob(C), a map:
Home(X,Y) x Home(Y, Z) — Home (X, Z)

called the composition and denoted by

(f,9) = gozvx f,
these data satisfying:

(a) o is associative, i.e., for f € Home(X,Y), g € Home(Y, Z), h € Home(Z, W), we
have
(h owzy 9) owyx f =howzx (g ozyXx f)v
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(b) for each X in Ob(C), there exists idx in Home(X, X) such that
fovxxidx = f

for all f in Home(X,Y) and
idyoyyx g=yg

for all g in Home(Y, X).

The common practice is to abbreviated ozy x by o. If one does that without any
precaution, one may end up with an inequality of the form go f # go f, as suggested
by the diagram

Y
/ X
X A
SN Y
YI

where we assume (as we may) g ozyx f # g ozy'x f. It is not clear to me which
precautions one can take in order to avoid this problem. Also note that a phrase
like “the morphism f is a monomorphism” doesn’t make sense, and one should say
instead something like “the morphism f is a monomorphism with respect to the pair
of objects (X,Y)”.

Another option (which would be simpler in my humble opinion) would be to
impose, in the definition of a category, the condition that the Hom-sets are disjoint,
and, for each category, to choose a universe U such that the (automatically disjoint)
union of the Hom-sets is an element of 4. An argument in favor of this option
would be to say that, as we want our statements to be compatible with universe
enlargement, there is no harm in choosing a large enough universe at the outset.

See also Section [1] p.

3.3 Brief comments

§ 21. Page 14, category of morphisms. Here are some comments about Definition
1.2.5 p. 14:
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Notation 22. For any category C define the category C* as follows. The objects of
C* are the objects of C, the set Homes(X,Y') is defined by

Home«(X,Y) :={Y} x Hom¢(X,Y) x {X},
and the composition is defined by

(Z,9,Y)o (Y, [, X):=(Z,g0 [, X).

Note that there are natural mutually inverse isomorphisms C &= C*.

Notation 23. Let C be a category. Define the category Mor(C) by

Ob(Mor(C)) := | Home:(X,Y),

X,Y€0b(C)

HomMOI‘(C)((}/’ f7 X)? (‘/7 ng)) =
{(a,b) € Home(X,U) x Home(Y, V) | goa=bo f},

1.e.
X ‘25U

i l#

Y ——V,
and the composition is defined in the obvious way.
Observe that a functor A — B is given by two maps
Ob(A) — Ob(B), Ob(Mor(A)) — Ob(Mor(B))

satisfying certain conditions.

When C is a small category (see Section (1] p. , we assume that the hom-sets
of C are disjoint.

§ 24. P. 16, Definition 1.2.11 (iii). Note that fully faithful functors are conservative.
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§ 25. P. 16. Here are some exercises.

(a) Let U be a universe and Set the category of U-sets. Show that the only proper
subfunctor of the identity functor I : Set — Set is the initial object of SetSe*.

(b) In the same setting, let 7' : Set — Set be a terminal object of Set®®*. Show
that the only proper subfunctors of T" are the initial object of SetS® and the image
of the unique morphism I — T'.

§ 26. P. 18, Definition 1.2.16. If F': C — (' is a functor and X’ an object of C’, then
we have natural isomorphisms

(Cx)® = (€)Y, (€)™ = (CP)x. (1)

Also note that, if Cat is the category of small categories (Definition [5] p. , then
the formula X’ — Cx+ defines a functor C’ — Cat, and the formula X’ — C* defines
a functor C'°? — Cat.

§ 27. P. 18, Definition 1.2.18. We define a subobject as being an element of the
indicated equivalence class. Unless otherwise stated, we choose this element “at
random”. (Note that there a many cases in which an explicit choice is possible.) See

§496] p. 290}

§ 28. P. 19. Let M be a monoid. Define the category C by the conditions Ob(C) =
{*x} and Endc¢(x) = M.

We want to reconstruct the monoid M from the category C.
Define
e the functor A : C — Set by A(x) := M and A(m)(n

):
o the forgetful functor U : Set® — Set by U(X) := X (%) and U(a) := a, for any
morphism o : X — Y in Set®,

e the map f: M — End(U) by f(m)x := X(m) for any X : C — Set and any m in
M,

e the map ¢ : End(U) — M by g(0) := 04(1) for any endomorphism 6 of U.

=mn,

Then f and g are inverse monoid morphisms.
Proof. For m,n in M and X : C — Set we have
f(mn)x = X(mn) = X(m) o X(n) = f(m)x o f(n)x = (f(m)o f(n))x
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This shows that f is a monoid morphism. Thus it suffices to prove that f and g are
inverse bijections.

For m in M we have

Let 6 be an endomorphism of U and let’s check f(g(6)) = 6. Let X : C — Set
be a functor and = an element of X (%). It suffices to prove

We leave it to the reader to verify that the formula a,(m) := X(m)(z) defines a
morphism a : A — X. We get

f(9(0))x (x) = X(g(0))(x) = X (0a(1))(x) = . (0a(1)) = Ox((1)) = Ox(2).
O

§ 29. P. 19. We compute the endomorphisms of the covariant power set functor
P :Set — Set. Let ¢ : P — P be defined by 4(Z) = @ for all set A and all Z C A.

We claim

(2) [End(P) = {idp, ¢}

Set 1 :={0},2:={0,1} and let § be an endomorphism of P.
(b) We obviously have 0y = idp(z).

(c) Using (b) and applying 6 to @ — 1 we see that 61(9) = @.
e Case 1: 6,(1) = 2.

We claim 6 = ¢ for all set A and all Z C A, and prove the claim by applying 6 to
A—1.

o Case 2: 6;(1) = 1.

We claim

(d) 6 =idp.

This will imply (a).

(e) We have 0, = idp(g). |Left to the reader.|
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(f) Let A be a set with at least three elements. It suffices to show 64 = idpa).

(g) If Z and Y are two distinct subsets of A, then there is an f : A — 2 such that
P(f)(Z) # P(HY).

Proof: We can assume that there is a y in Y\ Z. Letting f be the characteristic
function of Y\ Z, we get 1 € P(f)(Y) \ P(f)(2).

(h) Let Z be a subset of A. Applying 6 to all the maps from A to 2 and using (g),
we see that 04(Z) = Z. This proves (f), and thus (d), and thus (a).

§ 30. P. 19. Let A be a set and F the functor Hom(—, A). A mazimal subfunctor
of F shall mean a subfunctor of F' which is maximal among the proper subfunctors
of F. A mazimal quotient of F shall mean a quotient of F' which is maximal among
the proper quotients of F'. A congruence on F' consists of an equivalence relation
on each F(X) such that each map F(X) — F(Y) induced by a morphism sends
equivalent elements to equivalent elements. Such a congruence is called minimal
if it is minimal among the non-discrete congruences on F. Minimal congruences
correspond of course to maximal quotients. There are analogous definitions for the
functor Hom(A, —); the details are left to the reader.

Here we want to classify the maximal subfunctors and quotients of Hom(—, A)

and Hom(A, —).

The classification being easy when A has zero or one element, we assume that A
has at least two elements.

There is only one maximal subfunctor of Hom(A, —) and of Hom(—, A). The
maximal subfunctor of Hom(A, —) consists of all the non-injective maps A — X,
and the maximal subfunctor of Hom(—, A) consists of all the non-surjective maps
X — A. The maximal quotients of Hom(—, A) are attached to subsets {a,b} of
cardinality two of A by forming the least equivalence relation on Hom(X, A) which
identifies the constant map with value a to the constant map with value b.

We now describe the maximal quotients of Hom(A, —), and we do this by de-
scribing the minimal congruences.

Let A,B,C, D, E and X be sets. Assume that A = B C U D U E, that A has
at least two elements, and that B is nonempty. Suppose also that at least one of the
three sets C, D and F is nonempty. For each zi, x5, 23,24 € X write xyxox324 for
the map from A to X which has the constant value 1 on B, x5 on C, x3 on D, and
x4 on B,

29



3.4 Horizontal and vertical compositions (p. 19) 3 ABOUT CHAPTER 1

Then there is a unique equivalence relation on F(X) := Hom(A, X) such that
the equivalence class of f is {zyzy, yrzy} if f = zyxy for some distinct elements «
and y of X, and is the singleton {f} otherwise.

If C' is nonempty, then the equivalence relation attached to (C, B, E, D) coincides
with that attached to (B,C, D, E), and this is the only case in which there is a
coincidence.

Let A, B, E and X be sets, and let y be in X. Assume that A = B FE, and that
B is nonempty. For each u,v in X write uv for the map from A to X which has the
constant value uw on B and v on E.

Then there is a unique equivalence relation on F(X) such that the equivalence
class of fis {zy | z € X} if f = 2y for some x in X, and is the singleton {f}
otherwise.

We claim that, when X varies, each of these equivalence relations on F'(X) defines
a minimal congruence on F', and that there are no other minimal congruences on F'.

We sketch the proof of the last statement. Let ~ be a minimal congruence of F,
and let f,g € F(X) satisfy f # g and f ~ g. Pick an a in A such that f(a) # g(a).
Let h : X — {f(a),9(a)} fix f(a) and g(a). Then ho f # hogand ho f ~ hog.
By minimality, the congruence ~ is generated by ho f ~ h o g. In other words, we
can assume that f(A)U g(A) has exactly two elements. From this point the proof is
somewhat tedious, but straightforward. The proofs of the other statements are also
straightforward.

3.4 Horizontal and vertical compositions (p. 19)

For each object X of C3 the diagram

Cl < fu CQ < fr2 Cg
011 012

Cl < el Cg < f2 Cg
021 022

Cl < oy CQ < s Cg

of categories, functors and morphisms of functors yields the commutative diagram
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FiuPoX « 025 Fy PO X <2028 py Py X
F11912XT F21912XT TF31912X
Fiy P X 25 By P X 2225 py By X
F11922XT F21922XT TF31922X

Fii1F50X «———— Fo Fo X «———— I3 F5X
11432 11 FoaX 21132 o1 Foa X 31432

in C;. So, we get a well-defined morphism in C; from F3;F3, X to Fi1F12X, which is
easily seen to define a morphism of functors from F3; F35 to FiqFis.

Notation 31. We denote this morphism of functors by

0 0
<911 912>  FaiFsg — P Fia.
21 Voo

If 051 and 05 are identity morphisms, we put
O Oio
011 x 013 := )
11 12 <921 922

If 012 and 055 are identity morphisms, we put

011 0
911 (¢] 021 = (6;1 922) .

Let m,n > 1 be integers, let Cy,...,C,+1 be categories, let
Foj:Cip—C;, 1<i<m+1,1<j<n
be functors, let
O Fiyi;, —Fj, 1<i<m, 1<j<n
be morphisms of functors. For instance, if m = 2,n = 4, then we have
Fi2

F13 F14

Cy < Cy < C3 < Cy ¢ C5
011 012 013 014

Cl < 2 CQ < F2 C3 < f2s C4 < F2 C5
021 022 023 024

Cy < LR B2 ¢y LR L

The following proposition is clear
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Proposition 32. The operations x and o are associative, and, in the above setting,
we have the equality

(011 % *01 )00 (Opmix - *bpyn)

= (0170 00p1) %Kk (010 00,,).

between functors from Fpi11- - Frg1p to Fiq-- Fip.

Notation 33. We denote this morphism of functors by

i1 Fogan = g Fig.

em,l T em,n

Proposition 34. We have, in the above setting,
01’1 Ko *Ql,n

Qmjl ) oo *Qm,n

91,1 el,n
em,l em,n
01 1 el,n
= o :(01,1O"'Oem,l)*"'*(el,no"'Oem,n>‘
Qm,l Qm,n

Definition 35 (horizontal and vertical composition, Interchange Law). We call *
the horizontal composition. We call o the vertical composition. We call the equalities
in Proposition [34] the Interchange Law.
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3.5 Brief comment
P. 19, Definition 1.3.16, notion of essentially small category. Here is a simple but
crucial fact which is often left implicit:

The category of U-sets is not essentially small. More precisely, there is no U-set
which is equipotent to the set of cardinalities of U-sets.

Here is a sketch of a proof.

Let k be the supremum of the cardinalities of the elements of . Then k is
strongly inaccessible. See

http: //www.normalesup.org/~forgogozo/SGA4/01/01.pdf
Section 5 of the appendix. Then k = N,.. See
https://mathoverflow.net/a/117809/461

Hence the set of cardinals less than x coincides with the set
{N, | @ ordinal less than k},

whose cardinality is x. [
For additional details, see also
https://en.wikipedia.org/wiki/CofinalityfRegular and singular ordinals
https://mathoverflow.net/a/117809/461

3.6 The Yoneda Lemma (p. 24)

We state the Yoneda Lemma for the sake of completeness:

Theorem 36 (Yoneda’s Lemma). Let C be a category.

(a) Let h : C — C" be the Yoneda embedding, let A be in C", let X be in C, and
define

A(X) # Homen (h(X), A) 2)
by
o(r)y (f) = A(f)(z), () :=0x(idx) (3)


http://www.normalesup.org/~forgogozo/SGA4/01/01.pdf
https://mathoverflow.net/a/117809/461
https://en.wikipedia.org/wiki/Cofinality#Regular_and_singular_ordinals
https://mathoverflow.net/a/117809/461
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for
re AX), Yel, feHomeY,X), 6¢cHomer(h(X),A):

f € Home (Y, X) 2% A(v) &2 4(x) 5 2.

Then @ and v are mutually inverse bijections. In the particular case where A is equal
to h(Z) for some Z in C, we get

o(x) = h(z) € Homen (h(X), h(Z)).
This shows that h s fully faithful.

(b) Let k : C — CY be the Yoneda embedding, let A be in CV, let X be in C, and
define

A(X) # Homev (A, k(X)) = Homgye (k(X), A) (4)

by for
reAX), YeC, feHome(X,Y), 0¢cHomgyc(k(X),A):
f € Home(X, V) 2% A(v) &2 A(x) 5 #.

Then ¢ and v are mutually inverse bijections. In the particular case where A is equal
to k(Z) for some Z in C, we get

o(x) = k(x) € Homev (k(Z), k(X)).
This shows that k is fully faithful.
(¢c) The bijections and are functorial in A and X .

Proof. (a) We have
V(p(x)) = p()x(idy) = A(idx)(z) = =

and
e((0)y (f) = A(f)(¥(0)) = A(f)(0x(idx)) = Oy (f),

the last equality following from the commutativity of the square
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which is equal to the square

Home(Y, X) —25 A(Y)

OfT TA(f)

(b) The proof of (b) is similar.

(c) Let h : C — C” be the Yoneda embedding, and, for X in C and A in C" let
®x 4 : Homen (R(X), A) - A(X), 6+ 0x(idy)

be the Yoneda bijection. We shall prove that ®x 4 is functorial in X and A.

Functoriality in A: Let B be in C" and let h(X) % A2 B be morphisms of
functors. We must show Ax(®x 4(6)) = @x 5((Ao)(0)):

dx

Homen (h(X), A) —2 A(X)

o o

Homen (h(X), B) —— B(X).

®x B

We have
Ax(Px.a(0)) = Ax(0x(idx)),

Px p((Ao)(0)) = Px p(Aof) = (Aof)x(idx) = (Ax 0 Ox)(idx) = Ax(0x(idx)),

where the penultimate equality follows from the definition of the vertical composition
of morphisms of functors (Definition [35] p. [32)):

Home (X, X) 25 A(X) 2% B(X).

Functoriality in X: Let f: X — Y be a morphism in C and 0 : h(Y) — A be a
morphism in C*. We must show

xa((o (D) (B) = AU (@ra(0)) :

Dx A

Homen (h(X), A) A(X)

Oh(f)T TA(f)

Homen (h(Y), B) —— A(Y).

Dy A
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We have
x4 ((0h()(6)) = Dxa(0 0 h(f) = (Bx o h(f)x)(idx)
= (0x o (fo))(idx) = Ox(f),

where the second equality follows from the definition of the vertical composition of

morphisms of functors:

0

h(X) " py) Y A,

Home (X, X) 2% Home (X, Y) 25 A(X)
because h(f)x = fo. We also have

A(f)(@y.a(8)) = A(f) (v (idy)) = Ox(f),

where the last equality follows from the naturality of 6:

Home(X,Y) —2 A(X)

ofT TA(f)
(

Home(Y,Y) — A(Y).

]

Corollary 37. In the setting of Theorem[36 (a), p. X represents A if and only
if there is an x in A(X) such that, for all'Y in C, the map f — A(f)(x) from
Home (Y, X) to A(Y) is bijective. In particular this condition does not depend on the
universe U such that C,A € U. (See Remark 1.4.18 p. 27 of the book.)

Convention 38. An object Y in a category A is terminal if all X in A admits a
unique morphism X — Y. Let T4 be the set of terminal objects of A. If Y, Z € T}y,
then there is a unique morphism Y — Z, and this morphism is an isomorphism. For
all category A such that T4 # @ we choose an element in 74 and call it the terminal
object of A. Let us insist: we make a distinction between “a terminal object of A”
and “the terminal object of A” (when they exist). Unless otherwise indicated, the
choice of the terminal object of A is random (but there will be two exceptions to

this rule: see Convention [55| p. [A7] and Convention [57] p. [48)).

Convention 39. We often identify the source and the target of ¢ in and , and
we also often consider C as a full subcategory of C and CV thanks to the Yoneda
embeddings. Let A be in C" and (X, z), with X in C and z : X — A a morphism
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in C”, an object in the category C4 (see Definition 1.2.16 p. 18 of the book). Then
(X, z) is terminal if and only if x is an isomorphism. If the category C4 admits a
terminal object, we say that A is representable. Let (X, z) be a (resp. the) terminal
object of C4. We say that the couple (X, x), or sometimes just the morphism z,
is a (resp. the) representation of A, and that X is a (resp. the) representative of
A (or that X, or x, represents A). We use a similar terminology if A in is in C¥
instead of C", replacing the words representable, representative, representation with
co-representable, co-representative, co-representation.

A morphism z : X — A in C" with X in C is a representation of A if and only if
any morphism Y — A with Y in C factors uniquely through z:

A morphism z : A — X in CY with X in C is a co-representation of A if and only if
any morphism A — Y with Y in C factors uniquely through z:

A s Y

Here are two corollaries to the Yoneda Lemma:

Corollary 40. In the setting of the Yoneda Lemma (Theorem . , an element
x € A(X) represents A if and only if, for any Y in C, the map Home(Y, X) —
AY), f— A(f)(x) is bijective.

Corollary 41. Let U and V be universes, let C be a U- and V-category, let A be in
C/) and B in C}, and assume A(X) = B(X) for all object X in C, and A(f) = B(f)
for all f € Home(X,Y) and all X,Y € C. Then A is representable if and only if B
is. Let X be in C. Then X represents A if and only if X represents B. Let x be in

A(X) = B(X). Then x is a representation of A if and only if x is a representation
of B.

Proof. This follows from Corollary [0 O
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Here is a typical situation where Corollary applies: Let L : C — C' be an
arbitrary functor, let X’ be an object of C’, let & and V be universes such that C
and C" are Y- and V-categories, and define A € Cj} and B € Cj; by

A(X) = B(X) = Home/(L(X), X').

Then A is representable if and only if B is. More on this in p. 39

3.7 Brief comments

§ 42. P. 25, Corollary 1.4.7. A statement slightly stronger than Corollary 1.4.7 of
the book can be proved more naively:

Proposition 43. A morphism f: A — B in a category C is an isomorphism if and

only if
Home (X, f) : Home(X, A) - Home (X, B)

is (i) surjective for X = B and (ii) injective for X = A.

Proof. By (i) there is a g : B — A satisfying f o g = idp, yielding fogo f = f, and
(ii) implies g o f = id 4. O

§ 44. P. 26, Lemma 1.4.12. We can define the functors
A
(€ == (Ca)"
as follows:

w(C) = (mo(C) = A), pm(C)(X):= || C(X 5 A,

z€eA(X)

1o(C)(X) — A(X) being the obvious map.
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3.8 Partially defined adjoints (Section 1.5, p. 28)

§ 45. Let L : C — C' be a functor and X’ an object of C’. If the functor
HOII]@(L( ), X,) : CP — Set

is representable, we denote its representative by R(X') and its representation by
nx: : L(R(X')) — X' (see Convention 39| p. B6), and we say that

“the value of the right adjoint R to L at X’ is defined and isomorphic to R(X')”,
or, abusing the terminology, that
“R(X'") exists”.

The following lemma will result from Lemma [49| below.

Lemma 46. In the above setting, if nx: : L(R(X")) — X' is a morphism in C’, then
the following two conditions are equivalent:

(a) nxs is a representation of Home: (L( ), X'),

(b) for all X in C and all g : L(X) — X' there is a unique f : X — R(X') such that
nx o L(f) =g

X LX) —— X'
fi L(f)l % (5)
R(X") L(R(X")).

We call nx: the unit of the adjunction.

§ 47. Note that Condition (b) in Lemma 46| involves no universe. In the statement
of Condition (a) it is implicitly assumed that a universe U such that C and C" are
U-categories (Definition {4 p. has been chosen. In particular, if V' is another such
universe, then (a) holds for V if and only if it holds for ¢. (See also Corollary

p-B7)

§ 48. By definition, nx/ : L(R(X')) — X’ in C' is a representation of Home (L( ), X')
if and only if, for all morphism 6 : X — Home/(L( ), X') in C", there is a unique
morphism f: X — R(X’) in C such that ny, o f = 6:

X —%— Home (L( ), X)
s - (6)
R(X').

39



3.8 Partially defined adjoints (Section 1.5, p. 28) 3 ABOUT CHAPTER 1

Even if it is straightforward, we state and prove formally the fact that the above
condition is equivalent to the condition in Lemma [46] For the purpose of this proof,
we prefer to rewrite as

X L(x) X0,y

| 7
fJf L(f)l 4}%0{’)(1‘%@’)) ()
R(X) L(R(X")).

Lemma 49. If L : C — C' is a functor, if X and R(X') are objects of C, if f : X —
R(X') is a morphism in C, and if

nx : R(X") — Home (L( ), X') and 6: X — Home (L( ), X')
are morphisms of functors, then we have
Nxr © f =0 g nX’,R(X’)(idR(X’)) (¢] L(f) == 0X<1dX)

(see (6) and (7))
Proof. The equalities

(nx o f)x(dx) = nxr x(f) = nx rexn (idrxry) © L(f)

are respectively justified by the definition of the vertical composition of morphisms
of functors and by the naturality of nx/. As the Yoneda Lemma (Theorem 36| p.
implies

nx’ O f =0 «<— (T]X/ o f)X(ldX) = (9)((1(1)(),

the lemma is proved. O

§ 50. Let T be a terminal object of Set. Then a functor A : C°® — Set is repre-
sentable if and only if the right adjoint of A°? : C — Set” is defined at T'.

Indeed we have
Homgegor (A°P( ), T) ~ Homget (7, A( ) ~ A.

§ 51. Let us spell out the statement dual to §45}
Let R :C' — C be a functor and X an object of C. If the functor

Homc/(X, R( )) :C — Set
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is co-representable, we denote its co-representative by L(X) and its co-representation

by ex : X — R(L(X)) (see Convention [39| p. [36]), and we say that

“the value of the left adjoint L to R at X is defined and isomorphic to L(X)”,
or, abusing the terminology, that

“L(X) exists”.

Concretely this means that, for all X’ in C' and all g : X — R(X’) there is a unique
f:L(X)— X'such that R(f)oex = g:

X 5 R(L(X)) L(X)
p lR(f) vf
R(X") X'

We call ex the co-unit of the adjunction.

3.9 Commutativity of Diagram (1.5.6) p. 28

Let us prove the commutativity of the diagram (1.5.6) p. 28 of the book. Recall the
setting: We have a pair (L, R) of adjoint functors:

C
LlTR
C'.
Let us denote the functorial bijection defining the adjunction by
)\X,X’ : HomC(X, RX/> — HOIDC/(LX, X/)

for X in C and X’ in C’. The diagram (1.5.6) can be written as

Home (X', Y") —£— Home(RX', RY"),

S (8)
O)‘RX’,X’m l ey

Home (LRX',Y").
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As the diagram

)‘RX/,X/

Home(RX', RX') 22X Home (LRX', X),

R(f)Ol lfo

Home(RX', RY') -—— Home (LRX',Y")
RX'Y!

commutes for f in Home (X', Y”), we get in particular
foArx x/(ldrxr) = Arxry (R(f) 0 idrx') = Arxy (R([))-

This shows that commutes, as required.

3.10 Equalities (1.5.8) and (1.5.9) p. 29

Warning: many authors designate € by n and n by ¢.

3.10.1 Statements

We have a pair (L, R) of adjoint functors:
C
| Tr
C'.
Recall that ex € Home (X, RLX) and nx € Home (LRX', X') for all X in C and all

X" in C"
ex: X - RLX, nx : LRX' — X',

Using Notation 31 p. B1} Equalities (1.5.8) and (1.5.9) become respectively
(mxL)o(Lxe)=1L 9)
and
(Rxn)o(exR)=R. (10)

42



3.10 Equalities (1.5.8) and (1.5.9) p. 29 3 ABOUT CHAPTER 1

3.10.2 Pictures

Let us try to illustrate these two equalities by diagrams:

Picture of L <"~ LRL:

C < L C < L C < ! C
| | |

C ¢ 7R C' ¢ . C ¢ : C

C < L C

3
h
—
()

C/

LRL
Picture of LRL & L:
C' < ! C' < L C < RL C
1]\ L s]\

C' < n C' < . C < n C

C < LRL C
L*ET

C ¢ - C.

Picture of (9)), that is, (nx L) o (L*¢) = L:

43



3.10 Equalities (1.5.8) and (1.5.9) p. 29 3 ABOUT CHAPTER 1

L
C < C
nxL
C < LRL C
N
Lxe
C < 7 C
L
C < C

Cl

X

Picture of R ﬂ RLR:

C < ! C < R C’ < ! c’
| i |

C < n C < = C’ « = C’

C < " c’

C < c’

RLR
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Picture of RLR ﬁ R:

[P C

C < T C

1

AN

|
C ¢ '

=y}
D|— |

C < RLR c
E*RT
C < - c

Picture of (10)), that is, (R*n)o (¢ x R) = R:

C < A !
Rxn

C < RLE c’
exR

C < = C’

C < R C’
]

C < - !

3.10.3 Proofs

For the reader’s convenience we prove @D p. and p. It clearly suffices to
prove @D Recall that @D claims

(mxL)o(Lxe)=1L.
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Let us denote the functorial mutually inverse bijections defining the adjunction by
)‘X,X’
Home(X, RX') - Home/(LX, X'), (11)

Hx x’

and recall that ex and nxs are defined by
Ex — [LX7Lx(ide), Nxr = )‘RX’,X’(idRX’)- (12)
Equality @ p. 42| can be written

Arpx,ox(drrx) o L(ex) = idpx,

and we have

—~

. a . b c .
idrx (:) )\X,LX (MX,LX(ldLX)) :) )\X,LX (é?X) (:) (/\X,LX © (O€X>)(1dRLX)

(i_) << © L(EX)) © ARLX,LX) <1dRLX) g ARLX7LX(idRLX) [0) L(gX)’

the successive equalities being justified as follows:

(a) follows from (11]),
b) follows from ((12)),

(
(c) is obvious,
(d) follows from the commutative square

ARLX,LX

Home(RLX, RLX) Home (LRLX, LX)

Oaxl lOL(EX)

Homc (X, RLX) T) HomC/ (LX, LX),

(e) is obvious.

4 About Chapter 2

4.1 Definition of limits (§2.1 p. 36)

Notation 52. If I and C are categories, we denote by A the diagonal functor from
C to C!. The categories I and C shall be explicitly indicated only when they are not

46



4.1 Definition of limits (§2.1 p. 36) 4 ABOUT CHAPTER 2

clear from the context. Furthermore, we shall often write AX for A(X). To be more
precise, AX is the constant functor from I to C with value X.

Definition 53 (“projective limit” or “limit”). Let v : I°? — C be a functor. If the
value at « of the right adjoint lim to A : C — Fct(I°P,C) exists (see p.[39), we
denote it by lim « and call it the projective limit, or just the limit, of a. Moreover,
we say that the unit p : Alima — « of the adjunction is the projection. More
generally we say that ¢ : AX — « (with X in C) is a projection if the corresponding
morphism

X — Hompey(ror ) (A( ), @)

in C" (see Convention[39 p.[36) is an isomorphism.
The characteristic property of the pair (lim «, p) can be described as follows: For

each Y in C and each morphism of functors 6 : AY — « there is a unique morphism
f:Y — lim« satisfying po Af = 6:

Y AY

/! Afl 0 (13)
\|,

lim o Alim o — a.

Remark 54. Note that this definition of limit involves no universe. This will be also
the case for the notion of colimit that will be introduced shortly. This observation
has already been made in p. B9

In Convention [38| p. [36] we stated a rule and indicated that we would make some
exceptions to it. Here is the first such exception:

Convention 55. If o : I°P — Set is a functor defined on a small category (Deﬁnition
p. , then we define its projective limit lim a by

limo = {x € Ha(i)

il

;= os)(z;) Vst —>j} € Set,

and we define the projection p : Alima — «a by p;(z) := ;. Then pis a projection in
the sense of Definition . [Indeed, let 6 in be given. If such an f exists, it must
satisfy p;(f(y)) = 6;(y) for all ¢ in I and all y in Y. This implies f(y) = (6;(v)):er,
and proves the uniqueness of f. It is straightforward to check that the map f defined
by the above equality does the job.]
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Note that the projective limit of « : I°P — Set does not depend on the universe
which makes I a small category (Definition 5| p. .

Definition 56 (“inductive limit” or “colimit”). Let o : I — C be a functor. If the
value at o of the left adjoint colim to A : C — C! exists, we denote it by colim o and
call it the inductive limit, or the colimit, of « (see . @) Moreover, we say that
the co-unit p : « — Acolima of the adjunction is the coprojection. More generally
we say that ¢ : o — AX (with X in C) is a coprojection if the corresponding
morphism

Homer(a, A()) = X

in CV is an isomorphism.
The characteristic property of the pair (colim a, p) can be described as follows:

For each Y in C and each morphism of functors 6 : @ — AY there is a unique
morphism f : X — Y satisfying Afop =06:

a —2— Acolima colim «
| 14
x lAf i (14)
AY Y.

In Convention |38 p. [36| we stated a rule and indicated that we would make some
exceptions to it. Here is the second such exception:

Convention 57. Let a : I — Set be a functor defined on a small category (Deﬁnition

p.,set
U:={(,x)eU|iecl,xeali)}

and let ~ be the least equivalence relation on U satistying (i,z) ~ (j, a(f)(z)) for
all morphisms f : ¢ — 7. Then we define the inductive limit colim « as the quotient
U/~. Let m : U — colim « be the canonical projection, and, for all ¢ in I, define p; :
a(i) — colima by p;(x) := w(i,z). We call the resulting morphism p : & — colim «
the coprojection. Then p is a coprojection in the sense of Definition . [Indeed,
given 0 in let us prove the uniqueness of f. Any = in X is of the form p;(¢) for
some 7 in [ and ¢ in (i), and we must have f(z) = 6;(t). This proves the uniqueness.
To verify the existence, we must assume p;(t) = p;(u) (obvious notation), and derive
0;(t) = 0;(u). We may assume that there is a morphism s : i — j, and the verification
is straightforward.|

Note that the inductive limit of o : I — Set does not depend on the universe
which makes I a small category (Definition 5| p. .
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4.2 Brief comments
§ 58. We shall spell out two wordings of a certain statement about the following
setting: « : I — C is a functor and Z is an object of C.

First wording: Assume that colim « exists in C and, for each ¢ in I, let p; : a(i) —
colim v be the corresponding coprojection. Then the map

Home(colim o, Z) — [ [ Home(a(i), Z),  f = (f 0 pi)ies
iel
induces a bijection

Home (colim v, Z) = lim Home (o, Z).

The proof is left to the reader.

Second wording: Let X be an object of C and p : « — AX a coprojection in the
sense of Definition [56] p. 48}

a —2 5 AX X
\J lAf i (15)
AY Y.

We claim that
op : AHome(X, Z) — Home (o, Z)

is a projection in the sense of Definition [53] p. A7

S
9 Agi \ (16)
Hom¢ (X, Z) AHome (X, Z) —;— Home(a, Z).

More precisely, assume we are given y as above and s in .S. Then we set YV := Z and
A == p;(s) in (15]). We get an f: X — Z, and we set g( ) := f. We leave it to the
reader to Check that this process yields a solution to , and that this solution is
unique.

§ 59. P. 38, Proposition 2.1.6. We want to find a setting where the isomorphism

colim a(j) = (colim &) (j)
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makes sense and is true.

Let a : I — C7 be a functor, and let us assume that for each j in J the functor
a()(j) : I — C admits a coprojection p; : o )(j) = AXj in the sense of Definition 56|

p- 48
)(j) = AX;
\ l
AY

We claim that there is a natural functor g : J — C satisfying §(j) = X, for all j
in J. Given j — j' we define X; — X as suggested by the commutative diagram

X

o J

(17)

¥
Y.

o) 2o AX, X,
o) 5 Ay X

We leave it to the reader to verify that this construction does define our functor .

We want to define a morphism ¢ : a — ApB. Let ¢ be in I. We must define
¢; - a(i) — B, that is, given j in J we must define ¢;; : a(¢)(j) — £(j). It suffices to
set qij = pﬂ

Proposition 60. In the above setting the morphism q is a coprojection in the sense

of Definition [56 p. [/§

Proof. Let v : J — C be a functor and A : « — Ay a morphism of functors. We
must solve the problem described by the commutative diagram

a —— AS 8

x AlM

I
I
I
-

7.

Note that A is given by a family of morphisms \; : a(i7) — 7, morphisms given in
turn by families \;; - a(7)(j) — v(4).
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In view of we can define p; : B(j) = v(j) as suggested by the commutative
diagram

a()(j) —— AB(j) p()

|
\ lA;},J :Nj
N2

It is straightforward to check that the morphisms p; : 5(j) — v(j) give rise to a
morphism p : 8 — =, and that this morphism satisfies Ay o ¢ = A, as required. [

§ 61. P. 38, Proposition 2.1.6. Here is an example of a functor a : I — C” such that
colim «v exists in C/ but there is a j in J such that colim (p; o ) does not exist in
C. (Recall that p; : C/ — C is the evaluation at j € J.) This example is taken from
Section 3.3 of the book Basic Concepts of Enriched Category Theory of G.M.
Kelly:

http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html

The category J has two objects, 1, 2; it has exactly one nontrivial morphism; and
this morphism goes from 1 to 2. The category C has exactly three objects, 1, 2, 3,
and exactly four nontrivial morphisms, f,g,h,go f = ho f, with

g
110 —=3
h

Then C’ is the category of morphisms in C. It is easy to see that the morphism
(f,h): f— g, that is

11—

f g

2 T> 3,

in C’ is an epimorphism, and that this implies that the commutative square

()

f g
ow|  Ja
g9—79

g
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in C”’ is cocartesian. But it is also easy to see that the morphism f in C is not an
epimorphism, and that this implies that the commutative square

1152

f lidz
2 o 2
in C is not cocartesian.

In Proposition p- we shall see a way to prevent the kind of pathology
displayed by the above example.

§ 62. P. 39, Proposition 2.1.7. We want to find a setting where the isomorphism
colim a (i, j) ~ colim colim « (3, 7)
,J ? J
makes sense and is true.

Let a : I x J — C be a bifunctor, and let (X;);e; be a family of objects of C.
Assume that for any ¢ in I there is some morphism p; : a(i, ) — AX; which is a
coprojection in the sense of Definition [56] p. A8}

Y.

By arguing as in p. A9 we see that there is a natural functor 3 : I — C such that
p(i) = X; for all 7. Let ¢ : 5 — AX be a coprojection:

B —15 AX X

\ AlY

We claim that the obvious morphism of functors r : a — AX is a coprojection.

| (18)
Y.

Let Y be in C and 6 : @« — AY a morphism of functors. We must solve the
problem
a —— AX X

Ny

52

¥
Y.



4.2 Brief comments 4 ABOUT CHAPTER 2

Noting that 6 induces, for all ¢, a morphism of functors a(i, ) — AY', we get firstly
a morphism (i) — Y:

a(i, ) —>AB 6(Ii)
\ l .
Y.

secondly a morphism of functors § — AY’, and thirdly a morphism X — Y by .
It is straightforward to check that this morphism X — Y does the job. g.e.d.

§ 63. The two propositions below are basic.

Proposition 64. If a : I°° — C is a functor defined on a small category (Deﬁnition@

p.[10), if X isinC, if p: AX — «a is a morphism in Fct(I°P,C), and if h: C — C"

is the Yoneda embedding, then the following conditions (a), (b), (c) are equivalent:

(a)

(b) the morphism h(p) : Ah(X) — hoa in Fet(I°P,C") induced by p is a projection,
)

(c) for all' Y in C the morphism Home(Y,p) : AHome(Y,X) — Home(Y, ) in
Fet(1°P, Set) induced by p is a projection,

p is a projection in the sense of Deﬁm’tz’on .

Moreover, if (b) holds for some universe U such that I is U-small and C is a U-
category (Definitions |4 p. and@ . @), then it holds for any such universe; the

same applies to (c).

Condition (c) is often abridged by

Home (Y, lim o) = lim Home (Y, ).

Proof. Conditions (b) and (c) are equivalent by Proposition 60| p. . We sketch the
proof that (a) and (c) are equivalent. Let us summarize (a) and (c) by the following
self-explanatory commutative diagrams:

Z

! Afl \ (19)
+

X AX —— a,
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S AS
" a0 \ (20)
\l/

Home(Y, X) AHome(Y, X) ——————— Home(Y, a).

To prove (¢)=>(a), we suppose Z and A given in (19), and in we let S be
a singleton, we set Y := Z, we define p by the formula pu;(s) := \;, we get a g as
above, we set f := g(s), and we check that this works.

To prove (a)=-(c), we suppose S,Y and p given in (20)), and we let s be in S. We
must define g(s) : ¥ — X. We set Z := Y in (19). We must define A : AY — a.
Letting ¢ be in I, it suffices to define \; : Y — «a(i). To do this we set \; := pu;(s), we
get an f (depending on s) as above, we set g(s) := f, and we check that this works.

The last sentence is obvious (see Remark [p4] p. [47). [

The proof of the following proposition is similar to the previous one and is left to
the reader as an easy exercise.

Proposition 65. If a: I — C is a functor defined on a small category (Deﬁm’tz’on@
p. @), if X is in C, if p: a — AX is a morphism in C!, and if k : C — CV is the
Yoneda embedding, then the following conditions (a), (b), (c¢), (d) are equivalent:

(a) p is a coprojection in the sense of Deﬁm’tz’on P.
(b) the morphism k(p) : koa — Ak(X) in Fet(I,CY) induced by p is a coprojection,

(¢) the morphism k(p) : Ak(X) — koa®® in Fct(I°P, Set®) induced by p is a projec-
tion in the sense of Definition[53 p. [{7,

(d) for all Y in C the morphism Home(p,Y) : AHome(X,Y) — Home(a,Y) in
Fct(I°P, Set) is a projection.

Morevover, if (b) holds for some universe U such that I is U-small and C is a U-
category (Definitions 4] p. and E] . @), then it holds for any such universe; the
same applies to (c) and (d).

Condition (d) is often abridged by
Home (colim o, Y') = lim Home (v, Y).
In p. 49| we proved that (a) implies (d).
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4.3 Proposition 2.1.10 p. 40

4.3.1 A first generalization

Here is a mild generalization of Proposition 2.1.10 p. 40 of the book (stated below
as Corollary :

Proposition 66. LetC &AL Boe functors and I a small category (Deﬁnition@
. @) Assume that A admits inductive limits indexed by I, that G commutes with
such limits, and that for each Y in B there is a Z in C and an isomorphism

Homgp(F( ),Y) ~ Home(G( ), Z)

in AN. Then F commutes with inductive limits indexed by I.

Proof. Let 6 be the isomorphism Homg(F( ),Y) = Home(G( ), Z), let a: I — A
be a functor and let p : @« — Acolima be the coprojection. Note that colim F' o «
exists in BY. Consider the self-explanatory commutative diagrams

Foa —23 AcolimF o« colim F' o o
| 21
m lAf 4,f ( )
AF(colim «) F(colim )
and
Goa —— AcolimG o« colimG o «
P i
AG(colim «) G(colim ),

where ¢ and r are the coprojections. Note that ¢ is an isomorphism by assumption.
Our goal is to prove that f is an isomorphism too. Let Y be in B. It suffices to show
that the map

Hompv(f,Y) : Homp(F (colimav),Y’) — Hompv (colim F' o, Y")
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is bijective. Form the commutative diagram

Homp (F(p),Y)

A Homgp(F(colima),Y) » Homg(F o ,Y)
Abcolim alN Nlea
A Home (G(colima), Z) — 22D Home(G o a, Z)
A Home (gvz)lN H

A Home(colimG o a,Y) Home(&0)2) _, Hom¢(Go o, Z)

NTQQ

> Homg(F o o, Y).

A Hompgv (COlim Foa, Y) Hompv (¢,Y)

The last three horizontal arrows are projections. The bottom horizontal arrow being
a projection, there is a unique map

h : Home/(colim G o o, Y) — Hompv (colim F o o, Y)
making the diagram

Homp(F(p),Y)

A Hompg(F(colima),Y)

~

Homgp(F oa,Y)

Abcolima |~ Nlea
M Home (r,2)
A Home(G(colim ), Z) » Home (G o, Z)
AHome(g,2) |~ H (22)
A Home(colim G o , Y') Home (G®):2)_, Home(G o o, Z)
Ah NT@Q

Hompv (¢,Y)

A Hompgv (colim F'o o, Y)

Homgp(F oa,Y)

~

commute. Moreover h is bijective because Home(G(p), Z) is a projection. Define the
bijection

k : Homp(F (colim «v),Y') — Hompv (colim F o o, Y")
by k := hoHome¢(g, Z)00colimo- It is enough to check that we have Hompv (f,Y) = k.
As Hompv(q,Y) is a projection, this equality follows from the commutativity of

22 =

Corollary 67 (Proposition 2.1.10 p. 40). Let F': A — B be a functor and I a small
category (Definition @ D. @) Assume that A admits inductive limits indexed by [
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and that F admits a right adjoint. Then F' commutes with inductive limits indexed
by I.

Proof. Let R : B — A be right adjoint to F', and in Proposition let C be A, G
be id4 and Z be R(Y). O

4.3.2 A second generalization

Here is another mild generalization of Proposition 2.1.10.

Proposition 68. Let F' : A — B be a functor admitting a left adjoint and o a
functor from I°P to C, where I is a small category, such that lim « exists in C. Then
F(lim «) is a limit of F' o . Moreover, if p: Alima — « is the old projection, then
F(p) : AF(lima) — F o « is the new projection.

Proof. Let 0 : AX’ — F o « be a morphism. It suffices to solve the problem

X' AX'

" , o'

Ty Afl \
F(lim ) AF(lim «) o Foa.

By adjunction we get a morphism 6 : AG(X’') — «. Write f : G(X') — lima for
the solution to the new problem

G(X') AG(X')
i 0
lim a Alima —— a,

and define ' : X’ — F(lim«) as the morphism attached to f : G(X') — lima by
adjunction. Let ¢ be in I. We are left with checking that F'(p;) o f' = 6, knowing
that Ppi o f = 92 Let

Ax+x : Home (X', F(X)) — Home(G(X'), X).
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be the bijection given by the adjunction. Set X := lim . The equality F'(p;)o f' = 0!
follows from the commutativity of

Home: (X', F(X)) ——X* s Home(G(X"), X)

F (Pi)ol lpi °

Home: (X, F(a(i))) ——— Home(G(X"), a(i)).

AX7 (i)

4.4 Universal limits

Proposition 69. Let o : I — C be an arbitrary functor. For each universe U such
that I 1s U-small and C is a U-category (Deﬁm'tions@ . and . @), let hy : C —
C/) be the Yoneda embedding and define Ay € Cf)} by Ay(X) := colim Home (X, a),
where colim Home (X, o) is defined as in Convention |57 p. . Let U and V be two
such universes. Then Ay is representable if and only if Ay is. Let X be in C. Then
X represents Ay if and only if X represents Ay,. Assume that such is the case. Then
X is a colimit of a in C. Moreover, for any functor F': C — C', the natural morphism
colim F oo — F(X) is an isomorphism.

Proof. Let us prove the last sentence, the others following from Corollary [41] p. [37]
Let U be a universe such that [ is U-small and C and C’ are U-categories, let X’ be in
C' and define A € C/; by A := Home/ (F( ), X’). Let p : @« — AX be the coprojection.
By Proposition [65] p. it suffices to show that the morphism

Home (F(p), X') : AHome (F(X), X') — Home/ (F o a, X')

in Fet(I°P, Sety) is a projection (see Definition 53 p. [47). Consider the commutative
diagram
Alp)

AA(X) > Ao«

Nl lN

A Homgy (X, A) » Homeys (v, A)

Homey, (hus(p).A)

in Fet(I°P, Sety), where V is a universe such that Cj} is a V-category, the vertical
isomorphisms being given by the Yoneda Lemma. The bottom horizontal arrow
being a projection by assumption, the top horizontal arrow is also a projection. [J
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Definition 70 (universal inductive limit). Let o : I — C be an arbitrary functor
and let X be an object of C. If, in the notation of Proposition[09, the functor Ay is
representable for some U such that I is U-small and C is a U-category (Definitions
. and @ p. @), we say that X is a universal inductive limit of o, and that

colim «v exists universally in C.

There is of course an analogous notion of universal projective limit.

Here is the classic example of a non-universal inductive limit. Letting a be
the unique functor from the empty category to Set, we get colima = &. Writing
h : Set — Set” for the Yoneda embedding yields colimh o o = A@. But we have,
on the one hand (A@)(2) = @, and on the other hand (h(2))(@) # @, implying

colimh o a % h(colim a).

This shows that the inductive limit of o does not exist universally in Set.

4.5 Brief comments

§ 71.

Proposition 72. If I and J are big categories, if C is a U-category (Definition
. @), if o I x J = C is a functor and if colim; (i, ) exists universally in the
sense of Deﬁm’tz’on . then colim; a(i, j) exists universally for all j.

In §61] p. [51] we saw that, without the adverb “universally”, the claim is false.

Proof. To prove the proposition, we may assume that [ is small (Definition [5| p. .
Then the statement follows from Proposition [60] p. [50] O

§ 73. P. 40, proof of Lemma 2.1.11 (minor variant).

Lemma 74. If T is an object of a category C, then

T is terminal < T ~ colimide.

Proof. =: Straightforward.
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«<: Let p:ide — AT be a coprojection (see Definition 56| p. and let X be in C.
For all morphism of functors 6 : ide — AX there is a unique morphism f : 7T — X
satisfying Afop = 6:

ide —2— AT T
X lM i
AX X.
We claim

We have indeed (Apr op)x = propx = px = (Aidrop)x. This proves (23). If
f X — T is a morphism in C, then we have f = idrof = pr o f = px, the second
equality following from . This shows that T' is terminal. [

Corollary 75. IfC is a category and A an object of C™, then the following conditions
are equivalent:

(a) A is representable,
(b) Ca has a terminal object,

(c) the identity of Ca has an inductive limit in C4.

Proof. This follows from Lemma [74] above and Convention [39] p. 36} O

§ 76. P. 41, Lemma 2.1.12. The following variant will be useful to prove Proposition
2.5.2 p. 57 of the book (see §105( p. |79 below).

Lemma 77. If I and C are categories, if X is in C, if AX : I — C is the constant
functor with value X, and if I is connected, then

(a) idax : AX — AX is a coprojection in the sense of Definition [56 p.
(b)ifiisimI,Y inC, f: X —=Y and 0 : AX — AY, then the equalities Af =6

and f = 0; are equivalent:

AX —4 5 AX X
X‘ lAf if
AY Y.

(¢c) we have 0; = 0; for all @ : AX — AY withY in C and all i,j in I.
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Proof. To prove (c) we can assume that there is a morphism ¢ — j, in which case
the claim is obvious. Clearly (c) implies (a) and (b). O

§ 78. P. 42, proof of Lemma 2.1.15. Here are some additional details about the last
diagram on p. 42:

To the commutative diagram

i L

{1

id

in I we attach the commutative diagram

idl Tﬁ(f) (24)
(i) —— B0

in C. Turning upside down we get

a(i) 219 50
idT lﬁ(f) (25)
ali) —o BU)

To the commutative diagram
f

L]
fl Tid
J =g

in I we attach the commutative diagram

0] [l (26)
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in C. Splicing and we get
ali) == p(i)
ldT lﬁ(f)
(i

ol

(J) —= B().

~.
~—
/\
\_/

e

Reversing the identity arrows, we get

ali) === B(i)

ldl lﬁ(f)
a(i) —— B()

] lid

a(j) —aay PO

as desired.
§ 79. Lemma 2.1.15 p. 42. Here is a complement which will be used in §516| p.

Theorem 80. Let I be a small (Deﬁm'tion@p. @) category; let a, B : I — C be two
functors; for each i in I, let U* : I* — I be the forgetful functor; and set

S := Hompey(r,0)(a, B), T := lim Hompeysic)(ao U',BoUY).

ielopP

Then there is a unique map f : T — S satisfying f(t); = tiq, for allt in T'. Moreover
f is inverse to the natural map from S to T.

Proof. Left to the reader. ]

§ 81. P. 44, Definition 2.2.2 (iii). A sequence X — Y =% Z in a category C is exact
if and only if its image in C" is exact.
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4.6 Stability by base change

§ 82. (See also Section p.[93]) Recall the following definition:

Definition 83 (Definition 2.2.6 p. 47, stability by base change). Let C be a category
which admits fiber products and inductive limits indexed by a category 1.

(i) We say that inductive limits in C indexed by I are stable by base change if for
any morphism'Y — Z in C, the base change functor Cz; — Cy given by

Cz25(X—=2)— (X xzY =Y)ely

commutes with inductive limits indexed by I.

This is equivalent to saying that for any inductive system (X;)ie; in C and any
pair of morphisms Y — Z and colim; X; — Z in C, we have the isomorphism

colim(X; xzY) = (colim XZ-> XzY.

(ii) If C admits small inductive limits and (i) holds for any small category I (Defi-
nition @ D. @), we say that small inductive limits in C are stable by base change.

The following lemma is implicit:

Lemma 84. Let I and C be categories, let Y be an object of C, let U : Cy — C be
the forgetful functor, and let o : I — Cy be a functor such that colim U o « exists in
C. Then colim «v exists in Cy and is given by the natural morphism colimUoa — Y.
More precisely, let X — Y be a morphism in C, let p : a« — A(X — Y) be a
morphism in Fct(1,Cy ), and let Uxp: Uoa — AX be the corresponding morphism
inFet(I1,C). [Recall that + denotes the horizontal composition defined in Definition[35

. ] If U % p is a coprojection (see Deﬁmtion . @), then so is p.

Proof. Let Z — Y be a morphism in C and A : « — A(Z — Y') be a morphism in
Fct(I,Cy). We must show that there is a unique morphism f : X — Z in Cy such
that Afop = \:

a —L5 AKX =Y) (X =)
A lﬁf if
AZ =Y) (Z—=Y).
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Let po: U oa — AZ be the morphism in Fct(/,C) induced by A. Then there is a
unique morphism f : X — Z such that Af o (U xp) =

Uoa 225 AX X
X‘ lAf if
AZ

It remains to check that f is a morphism in Cy, that is, we must prove
xXLzov)=x ).
Let i be in I. As U x p is a coprojection, it suffices to show
<WMM%XLZ%Y%%WMM%X%Y)

But we have

(Ua)) —22 s x — L g . Y) -
(U(a() > 4 »Y) -
(U(ali)) ) _
(U(ali)) —2— X LY.

Indeed, the first and third equalities follow from the fact that U xp is a coprojection,
and the second equality follows from the fact that )\; is a morphism in Cy-. ]

§ 85. We make an easy but useful observation. Let I, J and C be three categories.

If C admits fiber products, and if inductive limits indexed by I exist in C and are
stable by base change, then C’ admits fiber products, and inductive limits indexed by
I exist in C’ and are stable by base change.

4.7 Brief comments
§ 86. P. 50, Corollary 2.2.11. We also have:
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A category admits finite projective limits if and only if it admits a terminal object
and binary fibered products.

Indeed, if f,g: X =2 Y is a pair of parallel arrows, and if the square

K—Y

L b

X —Y xY
(f,9)

is cartesian, then K ~ Ker(f,g). (As usual, A is the diagonal morphism.)

§ 87. P. 50, Definition 2.3.1. The three pieces of notation ¢,, ¢ and ¥ are justified
by Notation 17.1.5 p. 407 (see also ((199) p.[295)).

§ 88. P. 50, Definition 2.3.1. Let ¢ : J — I be a functor of small categories
(Definition [5] p. [10)), let C be a category, and consider the functor

@, =op:Cl —= 7. (27)
The following fact results from Proposition 2.1.6 p. 38 of the book (see p. :

If C admits small inductive (resp. projective) limits, then so do C! and C’, and
Y commutes with such limits.

Recall that we denote horizontal composition of morphisms of functors by * (see
Definition 35| p. .

The effect of the functor on morphisms can be described as follows: If
0 : o — B is a morphism in C’, then the morphism ¢,0 : .o — ¢, in C’ is defined
by .0 := 6 x ¢, which is in turn defined by (6 x ¢); 1= O,(;).

§ 89. P. 51, Definition 2.3.2. Recall that we have functors I < J 50 We spell out
Definition 2.3.2 using the terminology of Section p. Let ¢f3 and ¢*f3 be in
cL.

(a) We say that “¢f 3 exists” if there is a co-unit eg: B — ©.'3, that is, for all
a: I — Candallw: 8 — p.a thereis a unique v : '3 — a such that (vxp)oes = w:

1>
B —25 p.ptB o'
x l”*‘f’ K
\l/
P Q.
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(b) We say that “p* 3 exists” if there is a unit LR 0. pf3 — 3, thatis, foralla : I — C
and all w : p,a — 8 there is a unique v : @ — p*3 such that ng o (v* ) = w

(67 (Vomes
vi v*gpl X
B puplB —— B

(c) Let v : I — C and let u be an endomorphism of the functor ¢,y : J — C. The
phrase “p*p, exists and is isomorphic to v via u” shall mean that for all a : I — C
and all w : p,a — @,y there is a unique v : & — 7 such that u o (v @) = w:

« e’
”i ”*“"l \
Y Py — 7 P

In particular, the phrase “@¥p,y exists and is isomorphic to v via the identity of
wsy : J — C” shall mean that, for all a : I — C, the map

Homer (o, y) — Homes (@ecr, 9i7y), v 0%

is bijective. (See §246| p. below.)
§ 90. Let [ <& J S5 ebe functors, let 8 be in C/ and assume that ¢f(3) and
@' (F o B) exist:

J 4 > 1

B @T(Fop)

C s C.

F

We claim that there is a natural morphism '(F o 8) — F o o'(B).

As Fopl(B)op = ¢, (Fop'(B)), it suffices to define a natural morphism Fof —
Fopl(B)oy:

Fop —"% p.pt(Fop) o' (F o)
o.(Fo¢!(p)) Fool(B).
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As we have g5 : 3 — ¢'(8) o, we can take Fxez: F o8 — Fogl(B)og.

Definition 91. If the above morphism o' (F o 3) — F o ©'(3) is an isomorphism,
we say that F commutes with ¢ at B.

§ 92. P. 51, Definition 2.3.2 (minor variant). We assume that no underlying universe

has been given. Let I <& J B, ¢ be functors, let B be in €7, and let o3 be in CI.
The following conditions are equivalent:

(a) ¢ B represents Homes (B3, 0.( ) € (CT)), for some universe U such that C”7 is a
U-category (Definition [ p. [L0]),

(b) ¢'B represents Home. (B, ¢.( ) € (C')) for any universe U such that C’ is a
U-category.

Definition 93 (Universal Kan extension). If the above equivalent conditions hold, we
say that '3 exists (this is compatible with (a) p.[63). If, in addition, ¢ (F o j3)
ezists and the natural morphism @' (F o ) — F o ¢'(B) is an isomorphism for all
big category C' and all functor F : C — C', we say that ¢ 3 exists universally.

4.8 Theorem 2.3.3 (i) p. 52

Note that projective and inductive limits are particular cases of Kan extensions.

Recall the statement:

Theorem 94 (Theorem 2.3.3 (i) p. 52). Let I < J 5 be functors. Assume that

colim ]
(p(g)—i)ed; 5(])

exists in C for all i in I. Then ©'(B) exists and we have

P'(8)(i) = colim 5(j) (28)

(p(j)—i)ed;

for all i in I. In particular, if C admits small inductive limits and J is small, then
ot exists. If moreover o is fully faithful, then o' is fully faithful and the co-unit

e :ides = L0l (see . @) s an isomorphism.

Note that, as observed by Kelly (see Section 4.2 of the book quoted above in
p. , the above sufficient condition for ¢f(3) to exist is not necessary. This
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non-necessity results from and the following remark. If 7 : I x J — [ is the
projection, and a : I x J — C is a functor, then 7f(a) ~ colime;a( ,j) (in the
strong sense that one exists if and only if the other exists); in contrast we have
colim g (i j)—iye(rxy, @(j) = colimjey a(i, j) (in the same strong sense); and we saw
that the existence of colim;e; (i, 7) for all ¢ implies that of colim;e; a( , 5), but the
converse is not true. We have however

Theorem 95 (Universal Kan Extension Theorem). If I < J 5 ¢ are arbitrary
functors and

colim fA(j) (29)

(p(3)—i) €

exists in C for all i in I, then o' exists, and (p'B)(i) is isomorphic to [29). More-
over, the following conditions are equivalent

(a) the colimit exists universally for all i in the sense of Deﬁm’tion .
(b) o8 exists universally in the sense of Deﬁmtion@ . @

(c) ¢'B exists and there is a universe U such that J is U-small, C is a U-category

(Definitions 4| p. and@ . @), the functor of(h o 3) (where h : C — C" is the
Yoneda embedding) exists, and the natural morphism o' (h o B) — ho ¢'(B) is an

1somorphism.

Proof. This follows from Theorem [94] p. [67] and Proposition [69] p. 58] O

In the book the proof of Theorem 2.3.3 (i) is divided into three steps, called (a),
(b) and (c). We shall follow this subdivision.

4.8.1 Step (a)

We define ¢'(3) by (28). The purpose of Step (a) is to show that ¢f(3) is indeed a
functor.

For the reader’s convenience we reproduce the argument in the book:

Let i — i’ be a morphism in /. It is easily checked that there is a unique morphism
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o' (B)(i) — ' (8)(#') which make the diagrams

AB)@) = colim () b colim =l (B)()

(p(g)—i)EJ; e(f)—i)e Ty B())

"
p[som dlo()—ii]
B(

J)

commute, where plp(j) — ] and ¢[p(j) — ¢ — '] are the coprojections, and that
the assignment

(i~ 1)~ (SB)0) > ¢ (D))

is functorial.

4.8.2 Step (b)

The purpose of Step (b) is to prove

Homer (¢'(8), @) = Homes (8, p.(a)) (30)

for all « : I — C. As pointed out in the book, this can also be achieved by using
Lemma 2.1.15 p. 42. Here is a sketch of the argument. We start with a reminder of
Lemma 2.1.15.

To any category A we attach the category Morg(.A) defined as follows. The
objects of Morg(.A) are the triples (X, f,Y) such that f is a morphism in C from X
to Y. The morphisms in Morg(.A) from (X, f,Y) to (X', f,Y’) are the pairs (u,v)
withu: X - X' v:Y' =-Y and f=vo flou:

x 1,y

X' T> Y’

The composition of morphisms is the obvious one. Lemma 2.1.15 can be stated as
follows:

If I and A are categories, and a,b : I = A are functors, then
(i, = j,j) = Homu(a(), b(5))
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is a functor from Mory(/)° to Set, and there is a natural isomorphism
Hom 4 (a, b) = lim  Homy(a(i),b(5)). (31)

(i—j)eMoro (1)

Returning to (30)), we have functors

J i s
C.

Let us define the categories M and N as follows: an object of M is a pair

(J0(g) =i = 1)
with j in J and 4,7 in /. A morphism
(1,000 = i = 1) = (Ja i) = 12— )

is given by a triple of morphisms j; — jo,4; — i9,1] < 45 such that the obvious
diagram commutes. The category N is Morg(J). Consider the functors

~: M — Set, (j, o(j) =i — i’) — Home (8(5), (i),

0: N — Set, (j— j') = Home (8(5),ale()"))).
The existence of a natural bijection
Homes (8, ¢s(a)) = lim 6 (32)

follows immediately from (31)). Using again, it is easy to see that we also have
a natural bijection
Homer (¢'(8), ) = lim~. (33)

By and , it suffices to show

Lemma 96. There is a natural bijection lim~y ~ lim §.
Proof. To define a map lim~y — lim §, we attach, to a family
. ./ .
(B(7) = (i) 5y € limy
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and to a morphism j — 7', a morphism 3(j) — a(p(j’)) by setting
i=1 =), (@—1)=idyyn,

and by taking as 5(j) — a(¢(j')) the corresponding member of our family. We leave
it to the reader to check that this defines indeed a map lim~y — limd. To define a
map limd — lim v, we attach, to a family

(B() = ale(i)),,, € limd

and to a chain of morphisms ¢(j) — i — @', a morphism 3(j) — «(i') by setting

-/

j=7, (=7 =1d;
and by taking as (j) — a(i') the composition
B() = ale(h) = ali) = a(i').

We leave it to the reader to check that this defines indeed a map lim § — lim~, and
that this map is inverse to the map constructed above. ]

4.8.3 Step (c)

The purpose of Step (c) is to prove the last two sentences of the statement of Theorem
2.3.3 (i) p. 52 of the book (stated above as Theorem [94] p. 7). We assume that C
admits small inductive limits, that J is small (in particular o' exists), and that
¢ is fully faithful. We must show that ¢ is fully faithful, and that the co-unit
g 1 ides — .0 ol (see p. is an isomorphism. Recall that we have

¥ (B)(i) == colim A(j),

(p(5)—i) e

and let
ple(i) =i B() = ¢'(8) ()
be the coprojections. By the proof of Step (b) in the book, the co-unit

esg  B) = €' (B)(e()))
coincides with the coprojection p[p(j) SN ©(7)]. We shall define a morphism
P (B)(p(7) = B()

71



4.8 Theorem 2.3.3 (i) p. 52 4 ABOUT CHAPTER 2

and leave it to the reader to check that it is inverse to €3 ;. It suffices to define a
functorial family of morphisms

F(e(i") = ()« BU") = BG)

indexed by (¢(j') = ¢(J)) € Jy(;)- Let such a morphism ¢(j') — ¢(j) be given. As
p is fully faithful, we get a Well deﬁned morphism ;' — j, and we set

(o) = »(4) = B — J).

It is straightforward to verify that the family of morphisms defined this way is func-
torial.

4.8.4 A Corollary

Here is a corollary to Theorem (94 p. (which is Theorem 2.3.3 (i) p. 52 of the
book):

Corollary 97. If, in the setting of Theorem [94, we have C = Set and J is small
(Deﬁm‘tion@ . @), then @' (B)(3) is (in natural bijection with) the quotient of

| | B(j) x Homy((j), )

jeJ

by the smallest equivalence relation ~ satisfying the following condition: If j — j' is
a morphism in J, if x is in B(j), and if (j') — i is a morphism in I, then

pi(, () = (i) = 1) ~ py (B — j)(x), e(5') = ),

where p; 1s the j-coprojection.

Proof. Recall that Theorem [94] p. [67] states the existence of an isomorphism

P'(B)(i) = colim B(j).

(p(§)—i) €

By Proposition 2.4.1 p. 54 of the book, the right-hand side is, in a natural way, the
quotient of
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by a certain equivalence relation. We have

| ] = | | ] B(j) ~ | | 8(j) x Homy((4), 1),

(w(j)—n')EJ Jj€J ucHomy (4 (4),8) jeJ

and it easy to see that the three data of the above bijection, of the equivalence relation
in Proposition 2.4.1 of the book, and of the equivalence relation in Corollary [97/above
are compatible. O

Under the same assumptions ¢*(5)(i) is (in natural bijection with) the set of all

T In
1 56
(i—p(j))ett

such that ;u()—ei) = B = J')(Tise()) for all morphism j — 5/ in J.

4.9 Brief comments

§ 98. P. 53, Corollary 2.3.4. Recall that we have functors C R A I, where I
and J are small (Definition [5| p. and C admits small inductive limits, and that
Corollary 2.3.4 says that we have a natural isomorphism colim 3 ~ colim ¢f3, that
is

colim 3 ~ colim colim 3(j), (34)

i (J,u)€J;

where (j,u) runs over J;, with u : ¢(j) — i.
Proof of . We define morphisms

f
colim 3 <_> cohm ((;%1)1;51 B(j5),

and claim that f and g are inverse isomorphisms. We have the coprojections

B(j) 2 colim f, B(j) 22 colim B(j )£>col/im colim  S(5").
(4" w)edi i (G ") e Ty

We define f by the condition that we have
fopi = 7o) © 4o did g
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for all 7 in J:

v colim  3(j")

~ v

colim 8 —— colim colim 3(j').
I i (ju)ed;

To define g, we form the commutative diagram

B(5) s B()
Qi,j,ul pj

1. ./ gi 1
Son, PV ) colim (3)

nl id

colim colim f(j") —— colim .
i (' ') eTy g

as follows: We let ¢ be in I and define g; by the condition that the top square of
(35) commutes for all (j,u) € J;. Then we define g by the condition that the bottom
square of commutes for all 7.

Let us prove that f o g is the identity of colim; colimy; e, 5(j). We have

fogoriogju=fopj=ry; o Qo(5),7,id 5

for all i € J, (j,u) € J;. Let i € J, (j,u) € J;. It suffices to show

Ty © qi:jzu = r@(]) o qu(j),J,ld¢(])> (36)
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that is, it suffices to show that the diagram

) id )
B) > B(5)
qw(j),j,idw(‘j)l lqi,j,u
colim fB(j') ———— colim B(j')
(.j,’ul)eJ«p(j) (j,vu/)e‘]i

To (5 )l lri

colim colim S(j') —— colim colim B(j),
i (' ') EJ; B(j ) id i (' ') EJ; /8('] )

where u, denotes the morphism induced by u, commutes. The top square commutes
by definition of u,, and the bottom square commutes for obvious reasons.

We leave the proof of the fact that go f is the identity of colim 3 to the reader. [J

Display p. |73| above just says that there exists an isomorphism between two
given objects of C. But the proof proves much more than that! The proof indeed
exhibits a morphism from the first object to the second, a morphism from the second
to the first, and a proof that these two morphisms are inverse isomorphisms. When
we invoke in a subsequent argument, we shall often tacitly refer not only to the
mere display , but also to the two morphisms involved in its proof. In many cases
it will be clear that the mere existential statement (34]) wouldn’t suffice to make the
argument in question work, and that the invocation of the proof of is crucial.
Such a situation will happen so often that we think it advisable to issue a general
warning:

Warning 99. When we invoke a previously proved statement, we tacitly understand
once and for all that the proof of the statement in question is also implicitly invoked.

4.10 Kan extensions of modules

Let R be a ring, let & and ) be universes such that R € U € V, put, with self-
explanatory notation,

I :=Mod“(R), C:=Mod"(R),

let J be the full subcategory of I whose single object is R, and let C LT Ibe
the inclusion functors. We identify Hompg(R, M) to M whenever convenient.
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We claim that the functor of(3) : I — C satisfies

o (B)(M) ~ M. (37)
To prove , set
M := colim ReC,
(m:R—)M)EJIV[

and let p, : R — M’ be the coprojections. As Theorem 2.3.3 (i) p. 52 of the book
(stated above as Theorem p. implies M’ ~ ©f(B)(M), it suffices to prove
M' ~ M. We define a family of linear maps ®, : R — M, indexed by = : R — M,
by setting ®, := x, and leave it to the reader to check that the ®, induce a linear
map ® : M’ — M. We define the set theoretic map ¥ : M — M’ by putting
U(z) := p.(1), and leave it to the reader to verify that ® and ¥ are mutually inverse
bijections. This proves .

We claim that the functor ¢#(8) : I — C satisfies

¢H(B) (M) =~ M*, (38)
where M** is the double of M.
To prove , set
M = lim ReC,
(f:M—R)eJM

and let py : M" — R be the projections. As Theorem 2.3.3 (ii) p. 52 of the book
implies M’ ~ o*(B)(M), it suffices to prove M’ ~ M**. We define a family of linear
maps ¢ : M** — R, indexed by f : M — R, by setting ®((F) := F(f), and leave it
to the reader to check that the ®; induce a linear map ® : M** — M’. We define the
linear map W : M’ — M** by putting ¥((Ar))(g) := Ay, and leave it to the reader to
verify that ® and ¥ are mutually inverse linear bijections. This proves .

Let R, U and V be as above, put, with self-explanatory notation,
I := Mod*(R)°?, C := Mod"(R°P),

let J be the full subcategory of I whose single object is R, let ¢ : J — I be the
inclusion functor, and let 8 : J — C be the obvious functor satisfying 5(R) = R°P.

We claim that the functor ¢f(8) : I — C satisfies

P! (B) (M) = M, (39)
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where M* is the of M.
To prove , set

M' = colim R = colim R® e C,
(R—=M)edy (f:M—R)e(Jor)M
and let py : R®® — M’ be the coprojections. As Theorem 2.3.3 (i) p. 52 of the
book (stated above as Theorem [94] p. implies M’ ~ ¢'(8)(M), it suffices to prove
M" ~ M*. We define a family of linear maps ®; : R°°> — M*, indexed by f : M — R,
by setting ® (1) := f, and leave it to the reader to check that the ®; induce a linear
map ® : M’ — M*. We define the set theoretic map ¥ : M* — M’ by putting

U(f) :=ps(1), and leave it to the reader to verify that ® and ¥ are mutually inverse
bijections. This proves .

We claim that the functor ¢#(5) : I — C satisfies

P (B) (M) =~ M", (40)
where M* is the of M.
To prove , set
M= (M—l>ifgleJM 1 = (x:R—)]\l/}?el(Jop)M R* e,

and let p, : M’ — R°P be the projections. As Theorem 2.3.3 (ii) p. 52 of the book
implies M’ ~ ©*(3)(M), it suffices to prove M’ ~ M*. We define a family of linear
maps ¢, : M* — R°P, indexed by z : R — M, by setting ®,(f) := f(z), and leave
it to the reader to check that the ®, induce a linear map ® : M* — M’. We define
the linear map W : M’ — M* by putting U((\;))(y) := A,, and leave it to the reader
to verify that ® and W are mutually inverse linear bijections. This proves (40)).

4.11 Brief comments

§ 100. P. 55, proof of Corollary 2.4.4 (iii) (minor variant).

Proposition 101. If I is a small category (Definition @ . @), if S is in Set
and AS : I — Set is the corresponding constant functor, then there is a canonical
bijection

colim AS ~ my(I) x S.
(See Notation [59 p. [44.)
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Proof. On the one hand we have
mo(1) := Ob(I)/~,

where ~ is the equivalence relation defined on p. 18 of the book. On the other hand
we have by Proposition 2.4.1 p. 54 of the book

colim AS ~ (Ob(I) x S)/~ ,

where = is the equivalence relation described in the proposition. In view of the
definition of &~ and ~, we get

(i,8) = (j,t) < [i~jands=t1|.

4.12 Corollary 2.4.6 p. 56

Recall the statement:

Proposition 102 (Corollary 2.4.6 p. 56). If X’ and X" are objects, if C and C' are
categories, and if F and G are functors satisfying

xXec&cSesx (41)
then we have

colim Home (X', F(X)) ~ colim Homer (G(X), X"). 49
(G(X)—=X")eCxn o (X)) (X'—F(X))e(cX)op er(G(X), X7) (42)

Proof. Consider the diagram

f
colim  Home (X', F(X)) (2227 colim Homen (G(X), X”)
(G(X)—=X")ECxn 9 (X'=F(X))e(CX")op
a0 Japr—rco
HOmcl<X/, F(X)) HOHl@/(G(X),X”),

where the vertical arrows are the coprojections. We leave it to the reader to check
firstly that there are maps f and ¢ as in the above diagram satisfying

F(p[G(X) = X(X = F(X))) = g[X' = F(O)](G(X) = X"),

78



4.13 Brief comments 4 ABOUT CHAPTER 2

g(a[x’ = FOX)](GIX) = X7)) == p[G(X) = X"] (X' = F(X))

for all morphism G(X) — X" in C” and all morphism X’ — F(X) in C’, and secondly
that f and ¢ are inverse bijections. ]

4.13 Brief comments

§ 103. P. 56, proof of Lemma 2.4.7 (minor variant).

Lemma 104. If I is a small category (Deﬁm’tion@p. @), tgisinl, anda: I — Set
is the functor Homy(ig, ), then colim «v is a terminal object of Set.

Proof. We shall use (14) p. 48] Let X = {z} be a terminal object of Set, let
p: o — AX be the unique morphism from a to AX, let § : « — AY be a morphism
in Set’ (with Y in Set), and let us show that there is a unique map f : X — Y such
that Afop=20:

a —2 3 AX X
Nl b
AY Y.

Any such f must satisfy f(x) = 0,,(id;,). This proves the uniqueness. For the
existence, it is easy to see that the map f defined by the above equality does the
job. ]

Here is a second proof:

Proof. Each element of colim;c; Hom; (4, ) is represented by some morphism iy — 4
in I. Moreover, a composition of the form iq — ¢ — j represents the same element
as i9 — %. In particular 7o — ¢ represents the same element as id;,,. O

§ 105. P. 57, proof of Proposition 2.5.2 (minor variant). Instead of proving (i)=(v),
we prove (i)=-(ii), that is, we prove the following statement:

Lemma 106. If ¢ : J — [ and p : I°° — Set are functors defined on small
categories (Deﬁmtion@ . @) and if the category J' is connected for all i in I, then

the natural map
f:lim B — lim 8 o °P

1s bijective.
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Proof. We shall define a map
g:limpop® — limp

and leave it to the reader to check that f and g are inverse. Let y be in lim 3 o ©°P.
In particular y is of the form (y;),e; with y; € B(p(j)). We must define the element
g(y)i in (i), where 7 is an arbitrary element in /. Let us choose a morphism i — ¢(j)
in I. It suffices to show that the element 5(i — ¢(j))(y;) in 5(i) does not depend
on the choice of i — (), enabling us to set

9(y)i = Bi = 9(4))(y)-
Given another choice ¢ — ¢(j), we must prove
Bl = () (i) = Bli = ¢(4") (yir)-

As J' is connected, we may assume that there is a morphism j — j' in J such that
(i = (3) =G — ¢(j) = ¢(j'), and the proof is straightforward. O

§ 107. P. 58, implication (vi)=-(i) of Proposition 2.5.2. Here is a slightly stronger
statement:

Proposition 108. If ¢ : J — [ is a functor, then the obvious map
colim Hom; (4, @) — mo(J*) (43)
15 bijective.
Proof. Let L; be the left-hand side of , and, for j in J, let
p; : Homy (i, 0(j)) — L
be the coprojection. It is easy to check that the map
Ob(J') = Li, (4,1 — ¢(5)) = pii = ©(5))

factors through 7o (J?), and that the induced map mo(J?) — L; is inverse to ([43). O
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4.14 Proposition 2.6.3 (i) p. 61

Let C be a category and let A be in C”. Consider the statements

“colim” X = A, (44)
(X—A)eCxy
colim  Home (Y, X) = A(Y) for all Y € C, (45)
(X—A)eCy
Homen (A, B) = lim  B(X) for all B € C". (46)
(X—A)eCy

We prove , and in §109| p. [81] below. [Note that Warning (99 p.
applies particularly well to ([44)), and ([46)).|

Note that can be stated as follows: If h : C — C” is the Yoneda embed-
ding, then the natural morphism Af(h) — ide~ is an isomorphism. This implies in

particular that is functorial in A.

§ 109. We shall prove , and . More precisely, we shall spell out these
three isomorphisms in terms of Diagram p. 48 and Diagram p. .

Warning: In this proof the symbols X and Y will designate either two objects of
C or the image of these objects in C". The context only will tell which interpretation
is the good one. (It seems to me the choice of the correct interpretation will always
be obvious.)

e [somorphism can be decoded as follows: Consider the functor
a:Cy—C", (X —=A)—X,
and let p : @ — AA be the tautological morphism in (C")¢4 defined by
Px—a = (X = A) (47)
for all X — A in C4. Let B be in C" and 0 : « — AB. Diagram p. 48 becomes

a —2 5 AA A
SN v b
AB

¥
B.
81
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The uniqueness of f follows from the fact that the equality
Afop=20 (48)

implies

(X >AL B =04 V X — A, (49)
and the existence of f follows from the fact that implies .
e [somorphism can be decoded as follows: Let Y be in C, consider the functor

p:Ca— Set, (X — A)— Home(Y, X),
and let ¢ :  — AA(Y) be the morphism in Set® defined by
gxsa(Y = X) =Y - X — A)

for all X — A in C4. Let S be in Set and Y in C. Diagram ({14)) p. |48 becomes

B —1s AA(Y) A(Y)
S I
AS S.

The equality Af o ¢ = @ is equivalent to the condition
fY = X 5 A)=0x4Y —-X) V VXA (50)
Consider the condition
fY = A)=0y,a(idy) V Y — A (51)

The uniqueness of f follows from the fact that implies , and the existence
of f follows from the fact that implies ((50)).

e [somorphism can be decoded as follows: Let B be in C”, consider the functor
7:(Ca)® — Set, (X — A) — B(X),
let  : AB(A) — v be the morphism in Set®4” defined by

rxsa(A— B):=(X - A— B)
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forall X — Ain C4 and all A — B in B(A), and let S be in Set. Diagram
p. 7] becomes

é‘ AS
fi Afl 0
B(A) AB(A>> 7.

The uniqueness of f follows from the fact that the equality
roAf=46 (52)

implies
(X = A LGN B) =0x_4(s) forallse Sandall X — A, (53)
and the existence of f follows from the fact that implies (52). q.e.d.

4.15 Brief comments

§ 110. P. 62, Proposition 2.7.1. Consider the commutative diagram

where [ is a small category (Definition |5| p. and F satisfies

F(A)~ colim F(X)
(X—)A)ECA

for all A in C". Let us rewrite the proof of the fact that the natural morphism
colim F' o & — F'(colim ) is an isomorphism.

By Proposition 2.1.10 p. 40 of the book (stated on p. |56/ above as Corollary ,
it suffices to check that the functor G : A — C" defined by

G(X")(X) := Hom4(F(X), X').

is right adjoint to F. This results from the following computation:

H (ﬁA,X’):H m F(X),X')~ lim Homu(F(X), X'
om.s (F(4) om4 <(Xcg PO, ) =l Homy(P(X), X)
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= (X—1>iglecA G(X")(X) ~ Homen (A, G(X")),
the last isomorphism following from p.[B1] q.e.d.
§ 111. P. 62. In the setting of Proposition 2.7.1, the functors
AC 5 A, Fs (Wi F)(A) and CM— A, A (bl F)(A)
commute with small inductive limits.

Indeed, for the first functor the conclusion follows from the isomorphism

-I- ~ .
(b, F)(4) = colim F(U) (54)

and, for the second functor it follows from Proposition 2.7.1 p. 62 of the book.

4.16 Three formulas

Here is a complement to Section 2.3 pp 52-54 of the book, complement which will
be used in §515| p. to prove Proposition 17.1.9 p. 409 of the book.

In this section we shall use the following notation: The Yoneda embedding C —
C" will be denoted by h[C], and the forgetful functor C4 — C by j[Cal:

hCl:C—C",  j[Ca]:Ca — C.

4.16.1 Preliminaries

Let C be a category and A an object of C*. Recall that there is a unique functor
A (C/\)A — (CA)/\

such that
AMB — A)(U — A) = Homeny, (U = A,B — A) (55)
for all (B — A) in (C")4 and all (U — A) in C4. Moreover
A is an equivalence, (56)
and we have
Ao h[Cla =~ h[C4], (57)
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that is, the diagram

h[C

Ca (CM)a

hMl

quasi-commutes. (See Lemma 1.4.12 p. 26 of the book.)
The statement below follows from Proposition 2.7.1 p. 62 of the book:

Proposition 112. Let F : C — A be a functor, assume that C is small (Deﬁmtzon@
p.[10) and that A admits small inductive limits. Then the functor h[C]T(F) : C" — A
exists, commutes with small inductive limits and satisfies h[C]1(F) o h|C] ~ F.

Let F : C — A be a functor and A an object of C”, and assume that C is small
(Definition [5| p. and that 4 admits small inductive and projective limits.

4.16.2 First Formula

We claim

h[CAI'(F 0 j[Ca]) 0 A = RICT'(F) 0 5[(C") a] (58)
(see the diagram below).

Proof. Consider the diagram

JlCal

1t (F)
eal Aw [CA\ Al (59)
C/\

For B in C" and B — A in (C") 4, setting
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X = h[CA]T<F Oj[CA]> <)\(B — A))v

we get

X ~ hlCA](F o j[C4]) (A((U(i)g)léchhC U)—)A)) by (44)
~ h[CA]T(F o j[Ca]) ()\ ((UCj)gIélCB ))) by Lemma [84]
~ T
_UCB};'HSCBhCA (Fo] )( —>A) by (56) & Prop. [112]
~ T
~ U(fglchhcA (Fo] CA>( ( [Cla(U — A) )
~ T
_(UC—?JIBI)IchhCA (Fo] )( CA](U—>A)) by (57)
~ (U(:_?]131)ré163 (FojlCal)(U — A) by Prop.
~ colim F(U)

(U—B)eCp
= (eri(rye((¢) ) (B 4 by (5D).
]

4.16.3 Second Formula

Proposition 113. Consider the quasi-commutative diagram

JlCal

\ AAF

and let U be in C. Then we have

jleall (@) (U) ~ [ GU — A). (60)

U—A
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Lemma 114. The discrete category A(U) is cocofinal in (C4)Y.

Proof of Lemma[11] We probably give too many details, and the reader may want
to skip this proof. An object a of (C4)Y is given by a triple
a= (U, U, =% A;U 2% U,),
and a morphism from a to
b= (U, Uy = A;U 2 Uy) € (Ca)Y

is given by a commutative diagram

/\
\/

The embedding ¢ : A(U) — (C4)Y implicit in the statement of Lemma [114|is given
by

idy

gp(u)z(U,U&A;U——)U)

It is easy to see that, for any b in (C4)Y, there is precisely one pair (u,c) such that
wis in A(U) and c is a morphism from U to U, making the diagram

\/

commute. This implies the lemma. O]

Proof of Proposition[113. We have
FCAHG)(U) ~ lim G(V — A)

(U=jlCal(V—A))E(Ca)Y

~ lim G(U — A) ~ [[ ¢ — 4,
U—A
the penultimate isomorphism following from Lemma [114] O]
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4.16.4 Third Formula

Put j := j[Ca], h:= h[C], ha := h|C4], and consider the diagram

M ¢ h C < J CA hA>(CA)/\<L(C/\)A

ht (Tt (G))l gt (G)l lG l(hA)T (@)

A A A A.
(See p. [84] for the definition of \.) Let B be in C". We claim
WG G)(B) = (ha)(G)(A(B x A — A)). (61)

Proof. We have, for U in C,

FNG)U) ~ colim GV —=A)~ colim GV — A)
(J(V=A)=U)e(Ca)v (A=V—=U)e(Ca)u

~ ((V%AHUX%OE%)E(CA)UXAHA GV — A) ~ (h) (GYAU x A — A)),
that is:
FNG)U) = (h) (G)AU x A — A)). (62)
For B in C" we get

W (G))(B) ~ o, je)w) (Ugg)rch(hA)T(G)(A(U X A= A))

(U—=B)eCp
2 (ha)i(@) (/\ (((Uggch(U x A)) - A))

2 (ha)'(G) <)\ (((“colim” U) x A A)) 2 (h) (G)AB x A — A)),

Y (i@ <)\ ( colim (U x A — A)>)

U—)B)ECB

where (a) follows from (62)); (b) follows from Proposition p. [85] and p.
(c) follows from Lemma [84] p.[63} (d) follows from the fact that small inductive limits

in Set are stable by base change (see Section [4.6 p. [63 above and Section p.
below; (e) follows from p. B O
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4.17 Notation 2.7.2 p. 63

Recall that F : C — C' is a functor of small categories (Definition [5| p. [10). The
formula

FA)(X") = (X(E}Lll)rgcA Home (X', F(X))

may also be written as

F(A) = “colim” F(X). 63
(4) = jcolim? F(X) (63)

It might be worth stating explicitly the isomorphism
F\ 9} hc 1) hcl OF,

which says that the diagram
c——L—c

o |

C/\ —_— CIA.
F

quasi-commutes.

Remark 115. Recall that F' : C — C’ is a functor of small categories (Definition
p. . Let A’ be in C", and let Cyop = C'y, ¥, C'" be the natural functors. The
natural morphism colim o ¢ — colim induces a morphism f : F(A" o F) — A’
functorial in A" R

F(A o F) = colim o o — colimep ~ A’

the equality F'(A" o F') = colim o ¢ and the isomorphism colim ¢ ~ A’ following
respectively from and p- Moreover f is an isomorphism whenever ¢ is

cofinal. Note that the condition that f is an isomorphism means that, for each X’
in C’, the natural map

colim  Home (X', F(X)) = A'(X")

(X—=A'0F)eCyrop

is bijective. This condition depends only on the functor F' : C — C’ and the projective
system of sets (A'(X’))xrecr. (This remark will be used to prove Proposition [242]
p. |154])

The proof is obvious.

Remark 116. If F is fully faithful, then there is an isomorphism F (A)o FF = A
functorial in A € C".
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Proof. We have

F(A)(F(X)) = Kol Home (F(X), F(Y))

~ colim Hom¢(X,Y) = A(X),
(Y —A)eCa

the last isomorphism following from p. . [
As observed in the book (see also §110] p. [83):
Remark 117. The functor F commutes with small inductive limits.

Let X be in C and A a terminal object of C*. We have

F(A)(F(X)) = |_| Home/ (F(X), F(Y)).

Let us identify these two sets.

Remark 118. Assume A is a terminal object of C", and define, using the above
identification, G : C — C;?( 4 by

G(X) = (F(X),px(idr))),

where px : Home (F(X), F(X)) — ﬁ(A)(F(X)) is the coprojection. Then the
composition of G with the forgetful functor C 7 C'is F.

The proof is obvious.

4.18 Brief comments

§ 119. P. 63, Corollary 2.7.4. Here is a variant:

Let C be a category and A a category admitting small projective limits, let
h : C — C" the Yoneda embedding, and let Fct?((C")°P, A) be the category of
functors from (C")°P to A commuting with small projective limits. Then the functors

hoP),

Fet?’((C)°P, A) T Fct(C, A)
(hov):
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are mutually quasi-inverse equivalences.

Let F be in Fet((C")°P, A). Assume (A4;) is a projective system in (C")°P, or,
equivalently, (A4;) is an inductive system in C". In particular (F(4;)) is a projective
system in A.

Then F is in Fet?’((C")°P, A) if and only if the following condition holds:

For any system (A;) as above, the natural morphism
F (coljm AZ-) — lim F'(A;)
is an isomorphism.
The functor (h°P)* is given by

(RP)H(F)(A) = o lm F(U).

The functors
A 5 A, F e (RP)H(F)(A) and C"— A, A (h°P)HF)(A)
commute with small projective limits. (For a justification, see §I11] p. [84])

§ 120. P. 64. It might be worth displaying the formula

F(A)(X')~ colim Home (X', F(X))~  colim  A(X), (64)
(X—A)eCa (X'=F(X))ecX’

which is contained in the proof of Proposition 2.7.5 p. 64 of the book, and which
follows from Corollary 2.4.6 p. 56 of the book (see Proposition p. [78). Recall
that F': C — (' is a functor of small categories (Definition [5|p. , that A is in C”,
and that X’ is in C’.

For the reader’s convenience we reproduce the statement of Proposition 2.7.5:

Proposition 121 (Proposition 2.7.5 p. 64). If F' : C — C' is a functor of small
categories, then the functors F and (F°P)T from C" to C" are isomorphic.

This follows from ([64)).
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§ 122. P. 64, end of Chapter 2. One could add the following observation:
If C is a small category (Definition |Z5] . @), if A is in C", if B is a terminal
object of (Ca)", and if F': C4 — C is the forgetful functor, then we have

F(B) ~ A.

Indeed, we have

F(B)(X) ~ colim Home (X, F(Y — A
BIX) = (o SO ¢ PO E )

~ colim Home(X,Y) ~ A(X),
(Y —A)ECa

the last isomorphism following from p. 81}

4.19 Exercise 2.4

P. 64, Exercise 2.4. Here is (with some minor changes) the statement of Exercise 2.4.

Let f : X — Y be a morphism in a category admitting fiber products. Set
P = X xy X; let p1,p2 : P — X be the projections; and let § : X — P be the
diagonal morphism.

(i) We have p; 0§ = idx = pe 0 d. In particular p; and p, are epimorphisms and 0 is
a monomorphism.

(ii) We have: f monomorphism < p; = py < ¢ isomorphism < § epimorphism.
Solution: Claim (i) is obvious. Let us prove (ii):
f monomorphism = p; = py: we have fop; = fopy;

p1 = p2 = 6 isomorphism: p; 0§ op; = p; oidp for all 7, j, and thus § o p; = idp for
all j;

0 isomorphism =- § epimorphism: obvious;

0 epimorphism = f monomorphism: let g,h : Z == X satisfy fog = foh; let
k : Z — P satisfy pjok = g, pook = h; then the assumption that J is an epimorphism
and the equality p; 0 § = py 0 4 observed in (i) imply p; = ps, and thus g = h.
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4.20 Exercise 2.7

P. 65, Exercise 2.7, Line 3: “that the functor - x 7Y : Set; — Set;” should be “that,
given Y € Set, the functor - x5 Y : Set; — Sety”. For the reader’s convenience
we paste the exercise below:

Exercise 2.7. Let Z € Set.

(i) Prove that the category Set; admits products (denoted here by X x; Y') and
that, given Y € Setz, the functor - xz Y : Set; — Sety is left adjoint to the functor
Homz(Y, - ) given by

Homz(Y, X) = || Homser (Y, X.),
z2€Z

where X, is the fiber of X — Z over z € Z.

(ii) Deduce that small inductive limits in Set are stable by base change (see Defini-
tion 83| p. .

Here is a solution: (i) The fact that Set, admits products is clear. The bijective

correspondence between
f € Homget,, (U x2 Y, X)

and

g S Homsetz (U ) |_| HomSet (}/zaXZ)>

z€2
is given by
(VzeZ) Vuell) (VyeY,) (fu,y) =g(u)(y)).
(ii) The statement follows from (i) and Proposition 2.1.10 p. 40 of the book.

(See also Section [4.6] p. [63])

Note that (ii) can also be proved directly by observing that the category Set  is
canonically isomorphic to
H Set,

and that, given f:Y — Z, if we identify Setz to [[,., Set and Sety to [], ., Set,
then the change of base functor, viewed as a functor

H Set — H Set,

z2€Z yey

maps (XZ)ZGZ to (Xf(y))yey-
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5 About Chapter 3

5.1 Brief comments
§ 123. P. 72, proof of Lemma 3.1.2. Here is a minor variant of the proof of the
following statement:

If o - J — I is a functor with I filtrant and J finite, then lim Hom;(p, 1) # & for
some 1 in 1.

Indeed, let S be a set of morphisms in .J. It is easy to prove

(Fiel) (EI a€ HHomI(gp(j),i)> (V(s:73—=7)€8) (ayop(s) =aj)

=
by induction on the cardinal of S, and to see that this implies the claim. q.e.d.
§ 124. P. 74, Theorem 3.1.6. The proof of Theorem 3.1.6 implies:

Proposition 125. Let I be a (not necessarily small) filtrant U-category (Definitions
. andE‘i] . @), J a finite category, and o : I x J°°® — Set a functor such that
colim; a(i, j) exists in Set for all j. Then colim; lim; a(i, j) exists in Set, and the
natural map

coliim li]m ali,j) — li§n coliim a(i, g)

15 bigective.

This corollary is implicitly used in the proof of Proposition 3.3.13 p. 84 (see
Proposition p. below).

§ 126. P. 75, Proposition 3.1.8 (i). In the proof of Proposition 3.3.15 p. 85 of the
book, a slightly stronger result is needed (see §151| p. [101]). We state and prove this

stronger result.

Proposition 127. Let

J—2 57 9>L<w K

be a diagram of categories. Assume that ¢ is cofinal, and that the obuvious functor
Ok Sy — Ly is cofinal for all k in K. Then ¢ is cofinal.
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Proof. Pick a universe making 7, .J, K and L small (Definition [5| p. , let a: 1 —
Set be a functor, and consider the commutative diagrams

alp(j)) ——— a(e())) = » a(e(h))

| !

colim « ) —————  colim « ]
0(p(4))—¢ (0(5)) 0(p(5)) = (k) (p(4))

| !

colima o p —— colim colim « ))) —— colim colim « 1)),
v € 0(e()) e (PU) = ko 0(e(3) (k) (i)

pj

ale() . > alp())) T alp())
colim  a(p(j)) ———— colim (i) —4— colim (i)
0(p(5)) =9 (k) 0(1) (k) 0(1) = (k)

| | |

colim colim «a(p(j)) —— colim colim «(z) —— colim colim «a(7),
ko 0(e(3) (k) (PU) — ko 0(i)—y(k) Q d € (i)~ Q

alp(j)) «—— a(e(j))

|

li ] :
o000 * "

|

colim colim (7)) <—— colim .
¢ 0(i)—L
Note that the last row of the first (resp. second) diagram coincides with the first row
of the second (resp. third) diagram. Moreover the vertical arrows are coprojections,
the squares above a and e result from the proof of p- , the squares above
b and d result from the cofinality of ¢, and the squares above c¢ result from the
cofinality of ¢,. In particular, the maps a, b, ¢,d and e are bijective. As the bijection
fi=elodocoboa satisfies f op; = g;, it is the natural map from colima o ¢ to
colim a. O
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§ 128. P. 75. Throughout the section about the IPC Property, one can assume that
A is a big category. This applies in particular to Corollary 3.1.12 p. 77, corollary
used in this generalized form at the end of the proof of Proposition 6.1.16 p. 136 of
the book.

§ 129. P. 77, Proposition 3.1.11 (ii). This proposition says that Set has the IPC
property. Recall the setting:

Let S be a small set, for each s in S let I, be a small set and o, : I, — Set a

functor, put I := [[,.q I, let

pj 1;[9 as(js) — C(l)éi[m 1; as(is), qj, :as(Js) — Ci?ggl (i)
S S

be the coprojections, and define

f : colim H as(is) — H colim ay(i)

el is€ls
seS
by (f(pj(2)))s := qj.(xs). Let
H ClOéIIH as(is) — C(l)gm H (i) (65)

seS

and consider the following condition on g:
Condition 130. We have

9((4;. (ys))ses) = p;(y)
for all jin I and all y in [[,.q as(Js)-

Clearly the proposition below implies Proposition 3.1.11 (ii) in the book.
Proposition 131. If g satisfies Condition[130, then f and g are inverse bijections.
If I, is filtrant for all s in S, then there is a g as in satisfying Condition .

Proof. The proof of the first sentence is straightforward. To prove the second
sentence, let j and & be in I, let y in [ ,.qas(js) and 2z in [[ . as(ks) satisfy
4. (Ys) = qi,(2s) for all s in S. It suffices to show p;(y) = px(z). By Corollary 3.1.4
(ii) p. 73 in the book, for each s in S there is a diagram

Js = s <= kg

in I, and an element wg in a4(¢;) such that ag(us)(ys) = ws = as(vs)(zs). This
implies p;(y) = pe(w) = px(z), and thus p,(y) = pr(2) as requested. O
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Proposition 132. Let U be a universe, let Set be the category of U-sets, let Z be
in Set, and let Z' be the discrete category whose set of objects is Z. Then there are
canonical isomorphisms

Set, ~ H Set ~ Fct(Z', Set).

z2€Z

Propositions and imply
Proposition 133. If Z € Set, then Sety has the IPC property.

§ 134. P. 78, Proposition 3.2.2. It is easy to see that Condition (iii) is equivalent to
colim Hom;(i, ) ~ {pt} forallie I, (66)

which is Condition (vi) in Proposition 2.5.2 p. 57 of the book. (Proposition 2.5.2
states, among other things, that is equivalent to the cofinality of .)

§ 135. P. 79, proof of Corollary 3.2.3 (ii). Here are more details: For (i,5) € I x J
we have ) ~ (I')7. Part (i) implies that I’ is filtrant and the forgetful functor
I'" — I is cofinal. Then Proposition 3.2.2, (i) = (ii), p. 78 of the book implies that
(I') is filtrant. Finally, Proposition 3.2.2, (ii) = (i) implies that the diagonal functor
I — I x [ is cofinal.

§ 136. P. 79, Proposition 3.2.5. It is claimed that (ii) is a particular case of (iv).
More precisely, (ii) is obtained from (iv) by replacing the setting

IS5 TS5 K, uwik—3)
with
I8 15 0 idg (i) — o(i).
§ 137. P. 80. Propositions 3.2.4 and 3.2.6 can be combined as follows.
Proposition 138. Let ¢ : J — I be fully faithful. Assume that I is filtrant and

cofinally small, and that for each i in I there is a morphism i — ¢(j) for some j in
J. Then ¢ is cofinal and J is filtrant and cofinally small.

Proof. In view of Proposition 3.2.4 it suffices to show that J is cofinally small. By
Proposition 3.2.6, there is a small full subcategory (Definition [5| p. S C I cofinal
to I. For each s in S pick a morphism s — ¢(j,) with j, in J. Then, for each j in J
there are morphisms ¢(j) — s — ¢(js) with s in S. As ¢ is full there is a morphism
J — Js, and we conclude by using again Proposition 3.2.6. O]
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§ 139. P. 80, proof of Lemma 3.2.8 (minor variant). As already pointed out, a lim
—

is missing in the last display. Recall the statement:

Lemma 140. Let I be a small ordered set, let o : I — C be a functor, let J be the
set of finite subsets of I ordered by inclusion, and for each J in J let ay : J — C
be the restriction of a to J. Then J is small (Deﬁnétion@] . @) and filtrant, and
we have

colim v ~ colim colim «.

JeJg
in CV.
Proof. Set
A:=colima, [(J):=colimay, B :=colim/.
Let

piio(i) = A, pigcali) = B(J), ps:B(J) = B
be the coprojections. Note that p; ; is defined only for 7 in J. We easily check that
e the morphismsf; := pg;y o pi gy : (i) — B induce a morphism f: A — B,
e the morphisms g; ; := p; : a(i) — A (within J) induce a morphism g, : 5(J) — A,
e the morphisms ¢; induce a morphism g : B — A,

e f and ¢ are mutually inverse isomorphisms. O

For the reader’s convenience we reproduce Definition 3.3.1 p. 81.

Definition 141 (Definition 3.3.1, exactness). Let F': C — C' be a functor.
(i) We say that F' is right exact if the category Cx: is filtrant for all X' in C'.

(ii) We say that F' is left exact if F°P : C°? — C'°P is right exact, or equivalently if
the category CX' is cofiltrant for all X' in C'.

(iii) We say that F is exact if it is both right and left exact.

§ 142. P. 81, proof of Proposition 3.3.2 (minor variant). Recall the statement:

Proposition 143 (Proposition 3.3.2 p. 81). Consider functors I = C KN C', and
assume that I is finite, that F' 1is right exact, and that colim « exists in C. Then
colim F' o «v exists in C', and the natural morphism colim F' o o« — F(colim ) is an
isomorphism.
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Proof. Let X’ be in C'. It suffices to show that the natural map
Home: (F(colim ), X') — lim Home: (F o o, X)

is bijective. We claim

li H X,Y) ~ li Home (F(Y), X' 67
(F(Y():g)lcr})lecxx ome (X, 1) (X—Sg)elg'lx)"p ome (F(Y), X) (672)
~ Home (F(X), X'). (67b)

Indeed, we obtain ((67al) by replacing the setting p. [78 with
Xec&ecteosx

in the isomorphism p. and we prove (67b]) by noting that the identity of X

is an initial object of C*. We have five sets and four bijections:

Home (F(colima), X') = colim  Homg(colima,Y)
(F(Y)—>X")ECxs

= colim limHome(a,Y) = lim  colim  Home(a,Y)
(F(Y)>X")eCys (F(Y)=>X)EC s

:) lim HOIHCI(F o «, X/)

The first and last bijections follow from (]@, the second one is clear, and the third
one can be justified as follows: Set-valued inductive limits over the category Cx/,
which is filtrant because F' is right exact, commute with set-valued projective limits
over the finite category I (Theorem 3.1.6 p. 74 of the book).

Let us denote these five sets and four bijections by
Sy 5 5y B 5y By g, By s

and let
f : Home (F(colim ), X') — lim Home: (F o o, X).

be the natural map. It remains to show
Jio fzo fao fi= [ (68)

Let Y bein C, let FI(Y) — X’ be a morphism in C’, and let

p[F(Y) — X'] : Home(colima, YY) —  colim  Home(colim o, Y),
(F(Y)—=X")eCx
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F(Y)— X' :limH Y)— li lim H Y
q[F(Y) | : lim Home (e, Y) (F(Y()jg)l('l’r)lecxl im Home (o, Y),

F(Y)— X']: H Y) - I H Y
rlFY) J: Home(a, V) = colim  Home(a,Y)

be the coprojections.

We shall use implicitly, not only the statements of the bijections (67al) and (67b)),
but also their proofs (see Warning [99] p. [75).

For F(colima) — X' in Home (F(colim ), X'), we have (omitting most of the
parenthesis)

fafsfof1(F(colima) — X')
= fafsfo (p[F(colim a) — X'] (colim a9 colim a))

_ f4f3( (colim a) — X’]((a(z‘) - Colima)l))

(( (colimar) = X'](ev(é) — colim oz)) )

- <(F(a(i)) s F(colima) — X’)i>.
This proves . [
§ 144. P. 83, Proposition 3.3.6. Here is a mild generalization:

Proposition 145. Let C EA L Bobe functors. Assume that for each Y in B
there s a Z wn C and an isomorphism

Homgp(F( ),Y) ~ Home(G( ), Z)

in A", If G is right exact, then so if F.

Proof. The proof is similar to that of Proposition 3.3.6 in the book. The details are
left to the reader. n

§ 146. P. 83, proof of Proposition 3.3.7 (i). The proof uses Proposition 3.3.3.
§ 147. Some more details in the proof of Proposition 3.3.12 p. 84:

Proposition 148 (Proposition 3.3.12 p. 84). Let FF : C — C' and G : C' — C" be
two functors. If F' and G are right exact, then G o F' s right exact.
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Proof. Since G is right exact, Cly, is filtrant for any X” in C”. The obvious functor
Cxn — C, is again right exact. Indeed, for any G(X’) — X" in C., the category
(Cxn)axry—xn =~ Cxr is filtrant because F is right exact. Hence, Proposition 3.3.11
implies that Cx~ is filtrant. ]

§ 149. P. 84, Proposition 3.3.13. Recall the statement:

Proposition 150 (Proposition 3.3.13 p. 84). Let C be a category admitting finite
inductive limits, and let A be in C". Then A is left exact if and only if C4 is filtrant.

We spell out the details of the proof of the implication C,4 is filtrant = A left
exact.

By Proposition 3.3.3 of the book, stated as Proposition p. below, it
suffices to show that A commutes with finite projective limits. Let (X;) be a finite
inductive system in C. We must check that the natural map

e: A <c01iim Xz-> — lizm A(X5)

is bijective. Let us abbreviate (Y — A) € C4 by Y, and consider the commutative
diagram

colimy Home/(colim; X;,Y) —*— colimy lim; Home (X, Y)
lb
d lim; colimy Home (X;,Y)

A(colim; X;) > lim; A(XG),

(&

where a is defined by p. , c and d are defined by p-[81jand b is defined by

Proposition p. 94] (see Warning (99| p. . These four maps are clearly bijective.
We leave it to the reader to check that this diagram commutes. This implies that e

is bijective.

§ 151. P. 85, proof of Proposition 3.3.15. To prove that A — C is cofinal, one can
apply Proposition p. 94 with J=A,I=C,L=C,K=38.

§ 152. P. 86, proof of Theorem 3.3.18 (b). The proof uses the following fact, whose
proof is straightforward:
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Let o : I x J° — C be a functor. Assume that C admits inductive limits
indexed by I and projective limits indexed by J°P. Then the morphism obtained by
composing the canonical morphism

i 1 CA i I o
o o, 019) = i, o o))
with the projection
I I ) s eoli .
i, coima(i, ) = colima;.)
coincides with the morphism obtained by applying the functor colim;c; to the pro-
jection

i afd 4 — afd. 4.
Jim a(i, j) = a(i, j)

5.2 Proposition 3.4.3 (i) p. 88

Lemma 153. If I 5 K & T are functors between small categories (Deﬁnition@

p.[10), if

M =M% K& T

is the category defined in Definition 3.4.1 p. 87 of the book, if a : M — C is a functor,
and if C admits small inductive limits, then there is a natural functor (described in
the proof) from J to C mapping j € J to

colim (i, j, u)
(6u) €Ly (5

(u being a morphism in K from (i) to 1(j)).

Proof. Let j — j' be a morphism in J. It is easily checked that there is a unique
dashed arrow which make all diagrams

colim  «f(i,j,u) ——-------- > colim  «f(i, j', u)
(Z,U)EI¢(j) (Z,U)EI¢(j/)
piu]\ Tqiu/
;L SV
a(i, j,u >y i, u
(i,4,u) SaToT) (i, 5" )

commute, where p;, and ¢;,» are the coprojections and «' is the obvious composition
(i) = »(5) = ("),
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and that the assignment

(j —=7)— | colim «af(i,j,u) = colim «(i,j' u)
is functorial. O
Proposition 154 (Proposition 3.4.3 (i) p. 88). We have an isomorphism

colim o ~ colim colim «(4, 7, u),

iU

where (i,u) runs over Ly (with w : p(i) = ¥(j)). This isomorphism is explicitly
described in the proof.

Proof. Let
a(i, j,u) 2% colima, a(i, j,u) 2% colim a(i, j, u) — colim colim (4, §, u)
,u ¥ ,U
be the coprojections. There is a unique morphism
f i colima — colim colim a(i, j, u)
J iU
such that f o p;;, = r; o g, for all 7, j, w:
le(i, ja U) l—d> O‘(Lja U)
lQiju
Piju cqlima(i,j, U)
T
I
colim o — colim colim « (4, j, u).
J iU
We construct the commutative diagram
Oé(ia ju u) l—d> O[(i?j7 U)
‘b’jul J/piju
colim (i, j,u) —2— colim o (69)

iU
| 3

colim colim (i, j, u) —;— colim a.
j iU
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as follows: We fix j and define g; by the condition that the top square of
commutes for all (7, u). Then we define g by the condition that the bottom square of
commutes for all j. We leave it to the reader to check that f and g are inverse
isomorphisms. O

In view of Proposition p. Proposition [154] implies
Proposition 155. If J and I are filtrant for all j in J, then M 1is filtrant.

5.3 Brief comments

§ 156. We prove Proposition 3.4.3 (ii) p. 88. Recall the statement:
If ¢ is cofinal, then M[I — K + J| — I is cofinal.

To prove this, we let a : I — Set be a functor, we denote by S the composition
M|l — K < J] — I — Set, and we verify that the natural map colim § — colim «
is bijective as follows.

In the commutative diagram below we write u for a generic morphism ¢(i) — 1(j)
and v for a generic morphism (i) — k, with i € I,j € J k € K, and we abbreviate
colim; g ) by colim;,, and colim;.)es, by colimy ,:

(i) d 5 i) d > (i) 4 i)
lbiju lbwmu
aiju colim a (i) ——3—— colim o(4) e
7,U 1,U

l%' ldwu)
colim /8 SN colim colim a(i) —2— colim colim a(i) —2— colim a.
J

2,U k 2,0

(The vertical arrows are the various coprojections.) The diagram being commutative,
hogo fis the natural map colim 8 — colim a. Moreover f is bijective by the proof
of Proposition [I54] g is bijective because 1 is cofinal and h is bijective by the proof

of @) p. [

§ 157. P. 89, Proposition 3.4.5 (iii). The proof uses implicitly the following fact:

Proposition 158. If F' is a cofinally small filtrant category, then there is a small
filtrant full subcategory of F' cofinal to F'.
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This results immediately from Corollary 2.5.6 p. 59 and Proposition 3.2.4 p. 79
(see Proposition p- . This fact also justifies the sentence “We may replace
‘filtrant and small’ by ‘filtrant and cofinally small’ in the above definition” p. 132,
Lines 4 and 5 of the book.

5.4 Five closely related statements

For the reader’s convenience we collect five statements closely related to Exercise 3.4
(1) p. 90 of the book.

5.4.1 Proposition 2.1.10 p. 40

Proposition 159 (Proposition 2.1.10 p. 40). If F : C — C’ is a functor admitting a
left adjoint, if I is a category, and if C admits projective limits indexed by I, then F
commutes with such limaits.

(This fact has already been stated as Corollary [67] p. [p6])

5.4.2 Exercise 2.7 (ii) p. 65

Proposition 160 (Exercise 2.7 (ii) p. 65). The base change functors (see Section[4.d
. @) in Set commute with small inductive and projective limits. In particular, small
inductive limits in Set are stable by base change.

Note that Proposition generalizes the distributivity of multiplication over
addition in N.

5.4.3 Proposition 3.3.3 p. 82

Proposition 161 (Proposition 3.3.3 p. 82). Let F': C — C’ be a functor and assume
that C admits finite projective limits. Then F' is left exact if and only if it commutes
with such limats.

Corollary 162. In the setting of Proposition 2.7.1 p. 62 of the book, the functors

A 5 A, F (WL F)(A) and C"— A, A (bl F)(A)
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are right exact.

Proof. This follows from Proposition and §111] p. O
Corollary 163. In the setting of p. [90, the functors

A" A F = (P F)(A) and C" — A, A (RP)H(F)(A)

are left exact.

5.4.4 Proposition 3.3.6 p. 83

Proposition 164 (Proposition 3.3.6 p. 83). A functor admitting a left adjoint is left
exact.

5.4.5 Exercise 3.4 (i) p. 90

Proposition 165 (Exercise 3.4 (i) p. 90). If ' : C — C' is a right ezact functor and
f: X =Y is an epimorphism in C, then F(f): F(X) — F(Y) is an epimorphism
in C'.

(This exercise is used in the second sentence of p. 227 of the book.)
Proof. Let fi, f} : F(Y) = X’ be morphisms in C’ satisfying
fioF(f) = fyo F(f) = f".
This is visualized by the diagram

(F(X) Ry f:; X') - (F(X) AN X’).

3

It suffices to prove f| = f5. For i = 1,2 let f; be the morphism f viewed as a
morphism from (X, f’) to (Y, f!) in Cx:

F(X) "D Ry
X
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As Cx is filtrant, there are morphisms ~; : (Y, f/) — (Z,¢’), defined by morphisms
gi - Y — Z such that vy 0 f{ =y 0 fa:

Fx) 29 piyy 29 gz
1A b
X' X' X

As f is an epimorphism, the equality g; o f = g9 o f implies g; = go =: g, and thus
fil=49°oF(g) = /2 O

Corollary 166. Let C be a category, let C' be a category admitting finite inductive
limits, and let 6 : F — G be a morphism in C'°. Then 0 is an epimorphism if and
only if Ox : F(X) — G(X) is an epimorphism for all X in C.

Proof. This follows from Proposition p. and Proposition [I65] just above. [

6 About Chapter 4

§ 167. P. 93, Lemma 4.1.2. Here is a slightly more general statement:

Lemma 168. Let C be a category, let P : C — C be a functor, let ¢ : ide — P be
a morphism of functors, and let X be an object of C. Then the following conditions
are equivalent:

(a) epcx) s an isomorphism and P(ex) is an epimorphism,
(b) P(ex) is an isomorphism and €p(x) is a monomorphism,

(c) epx) and P(ex) are equal isomorphisms.

Proof. Tt is enough to prove (a)=-(c)<(b).
(a)=(c): Put u := (ep(x)) "' o P(ex). It suffices to show
w=idpx) . (70)
We have
uoey = (epx)) ' o Plex)oex = (€P(X))_1 OEp(x) 0 Ex = Ex,
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and thus
P(U) o P(Ex) = P(gx) = idPQ(X) OP(&){).

As P(ex) is an epimorphism, this implies P(u) = idp2(x), and thus
EpP(X)O0U = P(u) O Ep(X) = €P(X)-
As ep(x) is an isomorphism, this implies , as required.

(b)=(c): We shall use several times the assumption that P(ey) is an isomorphism.
Put v := P(ex) ' oep(x). It suffices to show

V= ldp(X) . (7].)

We have
voeyx = Plex) o EP(X)CEX = P(ex) ' o Plex)oex =ex,
P(v) o P(ex) = Plex),
P(’U) = idp2(X),
Epx) OV = P(U) CEpX) =EP(X) = E€P(X)© idp(X) .
As ep(x) is a monomorphism, this implies , as required. ]
Definition 4.1.1 p. 93 of the book can be stated as follows:

Definition 169 (Definition 4.1.1 p. 93, projector). Let C be a category. A projector
on C is the data of a functor P : C — C and a morphism ¢ : id¢ — P such that each
object X of C satisfies the equivalent conditions of Lemma [168

§ 170. P. 94, proof of (a)=-(b) in Proposition 4.1.3 (ii) (additional details): In the
commutative diagram

Home(P(Y), X) ——— Home(Y, X)

Ex olw Nlax o

Home(P(Y), P(X)) —= Home (Y, P(X)),

the vertical arrows are bijective by (a), and the bottom arrow is bijective by (i).
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§ 171. P. 95, end of the proof of Proposition 4.1.3. Recall that we have functors
Co T C.
P

The last sentence of the proof says that P “is a left adjoint to ¢ by (i)”. One could also
write that P “is a left adjoint to ¢ by Condition (b) in Part (ii)”. Indeed, Condition
(b) in Part (ii) asserts that the map

Home(P(Y), X) =5 Home (Y, X),

that is
Homg, (P(Y), X) 225 Home (Y, (X)),

is bijective for all Y in C.
§ 172. P. 95, Proposition 4.1.4.

e Proof of (i) (additional details). The authors write: “The two compositions

eoP RnL
Pp—— P L p
Poe

are equal to idp”. If we translate this statement into the language of Notation
p. 31 and Notation [33] p. [32], we get

RxnxLY _ (RxnxL
(5*R*L)_RL_(R*L*5)' (72)

To prove , write
RxnxL\ (Rxn L\ [(Rxn L\ (@
(e*R*L) B (5*}'{ L) N (s*R>*(L) = Rl

) (R N nxL\ (R nxL\ [(RxnxL

~ \R Lxe) \R Lxe) \R%xLxc)’
Equalities (a) and (b) resulting respectively from p. [42] and (9) p. 42} and the
other equalities following from Proposition [34] p. [32]

e Statement of (iii): As explained in the proof, the phrase “C’ is equivalent to Cy”
really means “R induces an equivalence from C’ to Cy”.
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§ 173. Definition 4.2.1 p. 96. It is important for aesthetic reasons to note that tensor
products can be transported along equivalences. We sketch a proof of this fact. In
this section we will use a notation which very different from the one used in the rest
of this text (and in the book).

Let f: A— B and g: B — A be quasi-inverse equivalences. If b is an object of
B, we write b9 for the image of b under g, and gf for the functor b — b9/, etc. We
also write xy for r ® y. Let us assume that A is a tensor category.

We define b1by for by, by in B by
biby == (b703).
Let « be the associator of A. We define
B(by, bz, bs) : (brba)bs — by (babs),

that is
B(by, by, bs) = ((b765)7905)7 — (b7 (b564)79)7,

as being the composite of the obvious isomorphisms
a(br,ba,bs)f
((6363)7708) — ((D708)b)T === (b(b3b3))" — (b (b30%)7*)".

Let by, by, 03,04 be in B. We must check that the pentagon build from by, by, b3, by
commutes.

Pick one edge of this pentagon, say the edge
B(biba, bs, bs) : ((b1b2)bs)bs — (b1b2)(bsba),

that is
! !
Blbuba, b br) = (((B0)799)°0) — ((0ges)(ege)’?)

We complete this edge to the obvious square of isomorphisms

((emgymg)ong) " 222200 (mgyss g

1 1 &

(o))’ (o)

a(bbd,b9.69)F
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We claim that commutes. Consider the diagram of isomorphisms

(((ergysomg)oeg) " 2, (ngyso g

| |

T al(b9b9)F9 b9 p9)f f
((@gogyorgyeg)” “CE0 (g ioaes) )

l l

(o)’ — (o)

a(b73,65.b7)

The top square commutes by definition of 5, whereas the bottom square commutes
by functoriality of « in its first variable. This proves that commutes.

There is a commutative square of isomorphisms similar to for each edge of
the pentagon build from b, bo, b3, by, so that we get two pentagons, one over the
other, each vertex of the top pentagon being linked by an edge to the corresponding
vertex of the bottom pentagon. The bottom pentagon commutes because A is a
tensor category. We've just verified that one of the vertical squares commutes. The
other vertical squares commute for similar reasons (the details are left to the reader).
So, the top pentagon commutes, as was to be shown.

We can also reason on the planar figure

AN

o—o/.
\o

(All the morphisms under consideration being isomorphisms, it is not necessary to
orient the edges.) The argument is this: Assuming that all the quadrilaterals com-
mute, if one of the pentagons commutes, so does the other.
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§ 174. Definition 4.2.5 p. 98. Here is an example of a category C admitting no tensor
product with unit. More precisely C is an ordered set X which admits no ordered
monoid structure. This example is taken from Comments 2 and 13 in

Azimuth Forum, Applied Category Theory Course, Lecture 21 - Chapter 2: Monoidal
Preorders, p. 1, https://tinyurl.com/y4onm8kk

X

Suppose X has an ordered monoid structure with d = 1. Then

Our ordered set X is
a

QU — >

c

a@b>ad=a®1=aqa

and
a@b>db=1®b=0".

This is a contradiction since a and b do not have a common upper bound. Similar
arguments show the unit can’t be a, b or ¢ either, so there is no ordered monoid
structure on X.

7 About Chapter 5

7.1 Beginning of Section 5.1 p. 113

We want to define the notions of coimage (denoted by Coim) and image (denoted by
Im) in a slightly more general way than in the book. To this end we start by defining
these notions in a particular context in which they coincide. To avoid confusions
we (temporarily) use the notation IM for these particular cases. The proof of the
following lemma is obvious.

Lemma 175. For any set theoretical map g : U — V we have natural bijections
Coker(U xy U = U) ~IMg ~Ker(V =V Uy V),

where IM g denotes the image of g.
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Let C be a U-small category (Definition [5|p. , and let us denote by h : C — C"
and k : C — CY the Yoneda embeddings. For any morphism f : X — Y in C define
IMh(f) in C" and IMk(f) in CV by

(IMh(f))(Z2) :=IM h(f)z, (IMK(f))(Z) :=IM k(f)z
for any Z in C. Note the equalities
IM h(f)z = foHome(Z,X)={fox |z &€ Home(Z,X)},

IM k(f)z = Home(Y, Z) o f ={yo f |y € Home(Y, Z)}.
Lemma, implies

IMh(f) =~ Coker(h(X) xnyy h(X) = h(X)),
(74)
IMk(f) ~ Ker(k(Y) = k(Y) Ux) k(Y)).

Definition 176 (coimage, image). In the above setting, the coimage of f is the object
Coim f of C¥ defined by

(Coim f)(Z) := Homen (IMh(f),h(Z))
for all Z in C, and the image of f is the object Im f of C" defined by
(Im f)(Z) := Homev (k(Z), IMk(f))
for all Z in C.

Proposition 177. We may regard (Coim f)(Z) as a subset of Home(X, Z), and
(Im f)(Z) as a subset of Home(Z,Y'). (These subsets will be spelled out by Proposi-

tion below.)

Proof. We prove that (Coim f)(Z) is naturally embedded in Hom¢ (X, Z). The mor-
phisms
h(X) — IMh(f) — h(Y)

are given by the maps

Home(Z, X) = h(X)(Z) — IMh(f)z — h(Y)(Z) = Home(Z,Y).
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In view of the definition of Coim(f), it suffices to check that h(X) — IMh(f) is an
epimorphism in C”, that is, it suffices, by Corollary p. [107, to check that the
map h(X)(Z) — IMh(f)z is surjective for all Z in C. But this is clear.

We prove that (Im f)(Z) is naturally embedded in Hom¢(Z,Y"). The morphisms
k(X) = IMk(f) — k(Y)
in CV are given by the morphisms
k(Y) = IMk(f) — k(X)
in Set®, which are, in turn, given by the maps
Home(Y, ) = K(Y)(2) — IMK(f); — k(X)(Z) = Home(X, 2).

In view of the definition of Im(f), it suffices to check that k(Y) — IMk(f) is an
epimorphism in Set®, that is, it suffices, by Corollary p. [107, to check that the
map k(Y)(Z) — IMKk(f)z is surjective for all Z in C. But this is clear. O

According to Proposition we regard from now on (Coim f)(Z) as a subset of
Home (X, Z) and (Im f)(Z) as a subset of Home(Z,Y).

Convention 178. If A = B — (' is a diagram in a given category, then the notation
[A = B — (] shall mean that the two compositions coincide.

Proposition 179. If f : X — Y is a morphism in a category C, and if Z is an
object of C, then we have

@mmwﬁ{wXﬁZ‘MjX@YF%WﬁX&dVWG@,

(Im f)(Z) = {y:Z—>Y

In particular, these two sets do not depend on the universe U making C a U-category
(Definition || p. @) There are natural morphisms

[X@YjW}#PinWﬂVWG%.

k(X) — Coim f — k(Y), h(X)—Imf — h(Y)

in C¥ and C" respectively. Moreover, k(X) — Coim f is an epimorphism, and
Im f — h(Y) is a monomorphism.

114



7.1 Beginning of Section 5.1 p. 113 7 ABOUT CHAPTER 5

For the sake of emphasis we write

k(X) — Coim f — k(Y), h(X) — Im f — h(Y).

Proof. To prove the first equality, let z : W — X be a morphism in C and consider
the condition

(a) there is a map u : f o Home(W, X)) — Home (W, Z) such that u(g) = x o g for all
¢ in Home (W, X):

Hom¢ (W, X) - » Home (W, Z)

///\,
////’ u

f oHome (W, X).

It suffices to show that (a) is equivalent to
(b) W:XLY] = [szﬁz].

To show (a)=-(b), let g; and g, in Home(W, X) satisfy fog; = fog,. This yields
zogr=u(fog)=u(fog)=wo0gs.

To show (b)=-(a), given g in Hom¢(W, X') we must prove that the morphism xog
does depends only on f o g, and not on g itself. But this is precisely what (b) says.
This proves the first equality in the statement of the proposition.

Let us show that the natural morphism k(X) — Coim f is an epimorphism. As
k(X) — Coim f is a morphism in CV, it is given by a morphism Coim f — k(X) in
Set®, and we must check that Coim f — k(X) is a monomorphism in Set®. But
in Proposition [177, we noticed that (Coim f)(Z) could be viewed as a subset of
Home (X, Z) = k(X)(Z) for any Z in C.

Let us show that the natural morphism Im f — h(Y) is an monomorphism.
But in Proposition [177, we noticed that (Im f)(Z) could be viewed as a subset of
Home(Z,Y) =h(Y)(Z) for any Z in C.

The rest of the proof is left to the reader. ]

By we have

(Coim f)(Z) ~ Ker <HomC(X, Z) = Homen (h(X) xu) h(X), h(Z))),
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(Im f)(Z) ~ Ker ( Home(Z,Y) = Homev (k(Z),k(Y) Ux) k(Y))).

This implies

Proposition 180. If P := X xy X exists in C, then Coim f is naturally isomorphic
to Coker(P = X) € CV. If S :=YUxY exists inC, then Im f is naturally isomorphic
to Ker(Y = S) € C".

In view of Lemma and Proposition we can replace the notation IM with
Im (or Coim). The following proposition is obvious:
Proposition 181. We have:

f = Imh(f) and Im are functors from Mor(C) to C",

f = Imk(f) and Coim are functors from Mor(C) to C".

Definition 182 (strict epimorphism). A morphism f: X — Y in a category C is a
strict epimorphism if the morphism Coim f — k(Y') in C¥ is an isomorphism.
The proposition below is obvious:

Proposition 183. A morphism f: X — Y in a category C is a strict epimorphism
if and only if, for all Z in C, the map

of : Home(Y, Z) — Home (X, Z)

induces a bijection
Home (Y, Z) = (Coim f)(Z).

By Proposition[I79 p. this condition does not depend on the universe U making C
al-category (Deﬁmtionp. @) Moreover, a strict epimorphism is an epimorphism.

7.2 Brief comments
§ 184. P. 115, Proposition 5.1.5 (i). For the sake of completeness we spell out some

details, and, for the reader’s convenience we reproduce Proposition 5.1.5 (i) p. 115

of the book.
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Proposition 185 (Proposition 5.1.5 (i) p. 115). If C is a category admitting finite
inductive and projective limits, then the following five conditions on a morphism
f: X =Y are equivalent:

(a)
(b) Coim f =Y,
(c) the sequence X xy X = X — Y is exact,

f is an epimorphism and Coim f — Im f is an isomorphism,

(d) there exists a pair of parallel arrows g,h : Z = X such that fog = foh and
Coker(g,h) — Y is an isomorphism,

(e) for any Z in C, the set Home(Y, Z) is isomorphic to the set of morphisms u :
X — Z satisfying u o vy = u o vy for any pair of parallel morphisms vi,vy : W = X
such that fouv, = fouvs.

Here are the additional details:

(b)=-(a): The composition Coim f — Im f — Y being an isomorphism by assump-
tion, Im f — Y is an epimorphism. Then Proposition 5.1.2 (iv) of the book implies
that f is an epimorphism and that Im f — Y is an isomorphism, from which we
conclude that Coim f — Im f is an isomorphism.

§ 186. Proposition 5.1.5 p. 115. Here is a corollary to Proposition 5.1.5 and to

Proposition p. [L06}

Corollary 187. Let F' and G be functors from a category C to a category C', let
0 : F — G be a morphism of functors, and consider the following conditions:

(a) C' admits finite inductive and projective limits,

b) 0 is an epimorphism,

c) 0 is a strict epimorphism,

d) Ox : F(X) — G(X) is an epimorphism for all X in C,
e

f

(
(
(
(e) Ox : F(X) — G(X) is a strict epimorphism for all X in C,

(f) 6 is a monomorphism,

(g) Ox : F(X) — G(X) is a monomorphism for all X in C.

Then (d) = (b), (g) = (f), (a) and (b) imply (d), (a) and (f) imply (g), (a) implies
that (c) and (e) are equivalent.

117



7.2 Brief comments 7 ABOUT CHAPTER 5

§ 188. P. 116, proof of Proposition 5.1.7 (i) (minor variant). Recall the statement:

Proposition 189 (Proposition 5.1.7 (i) p. 116). Let C be a category admitting finite
inductive and projective limits in which epimorphisms are strict. Let us denote by
I, the coimage of any morphism g in C. Let f : X — Y be a morphism in C and

X5 I 5 Y its factorization through It. Then v is a monomorphism.

Proof. Consider the commutative diagram

X 2 *5Y

I
| 7

aou

(We first form a, then b and ¢, and finally d; the existence of d is a very particular
case of Proposition p. [116) By (the of) Proposition 5.1.2 (iv) p. 114 of the
book, it suffices to show that a is an isomorphism. As a o w is a strict epimorphism,
Proposition [I85] (a)=-(b), p. [L17] implies that ¢ is an isomorphism. We claim that
doc™!is inverse to a. We have

aodoct=coct= idy,
and
doc_loaou:doc_loCOb:dOb:u:id[}ou,
and the conclusion follows from the fact that u is an epimorphism. ]

§ 190. P. 116, Proposition 5.1.7 (ii). The proof shows that the natural morphism
I — Coim f is an isomorphism.

§ 191. P. 117, Definition 5.2.1 (definition of a system of generators). There is an
important comment about this in Pierre Schapira’s Errata

https:/ /webusers.imj-prg.fr /~pierre.schapira/books/Errata.pdf.

As observed at the bottom of p. 121 of the book, the definition can be stated as
follows:

Definition 192 (generator, system of generators). Let S be a set of objects of a
category C and S the corresponding full subcategory. We say that S is a system of
generators if the functor ¢ : C — 8", X — Home( , X) is conservative. The notions
of co-generator and system of co-generators are defined in the obvious way.
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§ 193. P. 118, second display: the isomorphism
Homget (HomC(G,X),HomC(G,X)> ~ Homcv(GUHomc(G,X)’X>

is a particular case of the following isomorphism, which holds for any U-set S and
any objects G and X of C:

Homge (S, Home (G, X)) ~ Homev (GH7, X).

§ 194. P. 118, proof of Proposition 5.2.3 (v): Writing Z’ for pg(Z), observe that,
for i = 1, 2, the composition of the natural isomorphisms

(Vi xx Vo)) S %0 Y] = V]

is the natural isomorphism (Y; xx Y3) = Y/. Moreover, the phrase “Y; and Y,
are isomorphic” should be understood as “there is an isomorphism Y; = Y, whose
composition with the natural morphism Y5 — X is the natural morphism Y; — X"

§ 195. P. 119, Theorem 5.2.5: see Corollary [75] p. [60

§ 196. P. 119. Proposition 5.2.8 will be used to prove Proposition 8.3.27 p. 186 of
the book.

§ 197. P. 121, proof of Proposition 5.2.9. The last words are “by Proposition 5.2.3
(v)”. A more precise wording would be “by the proof of Proposition 5.2.3 (v)”.

§ 198. P. 121. Corollary 5.2.10 follows from Theorem 5.2.6 p. 119 and Proposition
5.2.9 p. 121 of the book. Corollary 5.2.10 will be used to prove Proposition 8.3.27
p. 186 of the book.

§ 199. P. 122, sentence following Definition 5.3.1. This sentence is “Note that if F
is strictly generating, then Ob(F) is a system of generators”. See p. [26]

7.3 Lemma 5.3.2 p. 122

Here is a minor variant of the proof of Lemma 5.3.2.

Lemma 200 (Lemma 5.3.2 p. 122). If F C G are full subcategories of a category C,
and if F is strictly generating, then G is strictly generating.
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Proof. Let
c ——g"

X 2
f/\
be the natural functors (p being the restriction), and let X and Y be in C. We have

Home (X, Y) —— Homgn (7(X),7(Y))

~ ’
© lp

77
Homzr (¢(X), p(Y)).

We want to prove that ' is bijective. As ¢’ is bijective, it suffices to show that ~/
is surjective. Let £ be in Homgn (v(X),v(Y)). There is a (unique) f in Home(X,Y)
such that

p(&) = ¢(f), (75)

and it suffices to prove £ = vy(f). Let Z be in G and z be in Hom¢(Z, X). It suffices
to show that the morphisms

£z(2)
ZZ—>Y

—
foz
coincide. As F is strictly generating, it suffices to show that the morphisms
e(€2(2))

@(foz

coincide. Let W be in F. It suffices to show that the maps

A 2)(W) 2 v )
o(foz)w 4

coincide, that is, it suffices to show that the maps

€220
Home (W, Z) ——— Home(W, Y)

fozo
coincide. We have, for w in Hom¢ (W, Z),

(b) (©)

&r(z)ow @ gu(zow) Y p©w(zow) L o(fw(zow) L

Dfozouw,
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Equality (a) following from the functoriality of £ (see diagram below), Equality (b)
following from the definition of p, Equality (c) following from (75), and Equality (d)
following from the definition of . [

For the reader’s convenience, we add the commutative diagram

Z 2 € Home(Z, X) —2— Home(Z,Y)
w Home (W, X) — Home (W, X).
w

7.4 Brief comments

§ 201. P. 122. The proof of Lemma 5.3.3 proves a statement that is much stronger
than Lemma 5.3.3. This stronger statement can be phrased as follows:

Lemma 202. Let C be a category which admits small inductive limits, let F be a
small (Deﬁnitz’onES] . @) full subcategory of C, let F' be in F", set

Y(F):= colim Y,

(Y—=F)eFr

let X be in C, let f :¢(F) — X be a morphism in C and, for each (Y — F) € Fr,
let fyr:Y — X be the composition of f with the coprojection Y — 1(F). Then
there is a unique morphism 0 : F — o(X) in F" such that

Oy (Y = F) = fyor
for allY in F. Moreover, the map
Home(¢(F), X) — Homzn (F, o(X)), f—0

is bijective and functorial in F and X. In particular ¢ : F" — C is left adjoint to
p:C— F".

Proof. We have, for X in C and A in F",

Homc< colim Y,X) = lim  Home(Y, X)
(Y—A)eFa (Y—A)eFa
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=i X\(Y) =S H ~(A (X

(Y%%le]__Acp( )( ) omgr ( 7@( ))7
the last isomorphism following from p. , and it is straightforward to check that
the composition of these bijections coincides with the map f — 6 in the statement

of our lemma. O

§ 203. P. 123, proof of Theorem 5.3.4. The following fact is implicit in the proof:
The map
[ Homzr (p(G), F) — Homzn (G, F),

obtained by composing the chain of isomorphisms in the proof, is equal to oeg. This
equality is easily checked using Lemma [202| and the commutativity of the obvious
diagram

o(X) ——— colim p(X)

l X—=G
o(linX) o

in 7" (the isomorphism on the right following from ([44)).

7.5 Theorem 5.3.6 p. 124

Theorem 204 (Theorem 5.3.6 p. 124). Let C be a category such that

(a) C admits small inductive limits and finite projective limits,

(b) small filtrant inductive limits are stable by base change (see Section [{.4 p.[63),
(c) epimorphisms are strict.

Let F be an essentially small (Deﬁmtion@ . @) full subcategory of C such that
(d) the functor ¢ : C — F" is defined by o(X)(Y) := Home (Y, X) is faithful,

(e) F is closed by finite coproducts in C.

Then ¢ is full, or, in other words, F is strictly generating.

Proof. We may assume from the beginning that F is small (Definition [f] p. [L0).

Step 1. We have slightly changed the statement of Theorem 5.3.6 p. 124 of the
book, but we want to keep the division of the proof in six steps used in the book.
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In the book ¢ is supposed to be conservative, and Step 1 consists in invoking the
proof of Proposition 5.2.3 (i) p. 118 of the book to conclude that ¢ is faithful. In
the present setting, Step 1 can be ignored thanks to Assumption (d).

Step 2. By Proposition 1.2.12 p. 16 of the book, a morphism f in C is an epimor-
phism as soon as ¢(f) is an epimorphism.

Step 3. Let X be in C, and let (Y; — X);c; be a small filtrant inductive system in
Cx. We claim that the natural morphism

colim Coim(Y; — X) — Coim <cohin = X> (76)

is an isomorphism. As F” satisfies Assumptions (a), (b) and (c), the above statement
also applies to F".

Let X and Y be in C.
Step 4. If 2 : Z — X is in Fyx, then the natural map

Home(Z,Y) — Homgzn (¢(Z), 0(Y)), (77)
which is bijective by the Yoneda Lemma, induces a bijection
Home (Coim 2, Y) = Hom g (Coim ¢(2), p(Y)) (78)
in the following sense:

There are natural bijections
Home (Coim z,Y) ~ Ker (Home(Z,Y) = Home(Z xx Z,Y)),
Homzn (Coim pz, ¢Y) ~ Ker (HOHI]:/\ (¢Z,¢Y) = Hompzn (9Z Xpx 02, ng)).

(We have omitted some parenthesis to save space.) Let Z — Y be a morphism in C.
Then Z — Y isin

Ker (Home(Z,Y) = Home(Z xx Z,Y))

if and only if its image ¢(Z) — ¢(Y) is in
Ker (Hom;A (e(Z2),0(Y)) = Homgzn (9(2) Xpix) ¢(Z), go(Y)))

[To make our argument work, it is not enough that the natural bijection
exist; the fact that it is induced by will be crucial.]
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Let us denote by I the set of finite subsets of Ob(Fx), ordered by inclusion.
Regarding I as a category, it is small (Definition [5] p. [L0). Assumption (e) implies
that [ is filtrant. For any A in I set Z4 := | ],.4((a), where ¢ : Cx — C is the
forgetful functor.

Step 5. We claim that the natural morphism
colimp(Z4) = p(X)

is an epimorphism.

Step 6. We claim that the natural morphism
colim Coim(Z4 — X) — X
Ael

is an isomorphism.

Lemma below will show that these steps imply the theorem. We have, in the
above setting,

Home(X,Y) = Homge (cglign Coim(Z4 — X), Y) by Step 6
€
= lim Home (Coim(Z4 — X),Y)
€

= ljrerll Homzn (Coim(gp(ZA) — p(X)), gp(Y)) by Step 4
= Homzx (calilrrn Coim(p(Za) — ¢(X)), gp(Y))
€

= Homzx (Coim (cgli}n o(Z4) = go(X)) ,gp(Y)) by Step 3
S

= Homzn (¢(X), o(Y)) by Step 5.

Lemma 205. Taking Steps 1 to 6 for granted, the composition of the six above
bijections coincides with the natural map Home(X,Y) — Homzn (p(X), p(Y)).
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Proof. Let us denote these six bijections by fi,..., fg; let u: X — Y be a morphism
in C; and let us compute successively fiu, fofiu,..., fs... fru. We have

fiu = (cglillrn Coim(Z, — X) = X & Y) € Home (Cglil}n Coim(Z4 — X),Y) .
€ €

Then f5fiu is the obvious family

(Coim(Zy — X) = X 5 YY), € lim Home(Coim(Z4 — X),Y). (79)
€

Let us compute f3fsfiu thanks to Step 4. Firstly, to the family we attach
the obvious family (Z4 — Y')a, each of whose member Z4, — Y is in

Ker (Homc(ZA,Y) = Hom¢(Z4 X x ZA,Y)).

Secondly, applying the functor ¢ to the family (Z4 — Y) 4 we get the obvious family
(p(Za) = @©(Y))a, each of whose member ¢(Z4) — ¢(Y) is in

Ker <Hom]m (©(Za), p(Y)) = Homzn (p(Z4) Xp(x) go(ZA),go(Y))>.
Thirdly, to the family (p(Z4) — ¢(Y))a we attach the family of morphisms
. (w)
Coim(p(Za) = ¢(X)) = o(X) == o(Y), (80)

family which makes up the sought-for morphism f3fs fiu. The morphisms give
rise to a morphism

colim Coim(p(Z4) — (X)) = o(X) 2 o(v), (81)

Ael

morphism equals to f4f3fsfiu. The morphism induces a morphism
Coim (cgli}rl P(Za) = w(X)> = 0(X) X% p(v),
€

morphism equals to f5fyf3fofiu. This shows that fgf5fsfsfof1u is indeed equal to
P(X) £ (1), 0

It remains to prove Steps 3, 4, 5 and 6.
Proof of Step 3. Set Y := colim; Y.
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Lemma 206. The natural morphism colim; Y; X x Y; = Y Xx Y is an isomorphism.

In the diagrams used to prove Step 3, the undefined arrows are the obvious ones.

Proof of Lemma[206. Consider the commutative diagrams

colimY; xx Y; —— colimY; xx Y;
K3 %,

I I

Yixx Y, ——— Yixx Vi,

. b . . .
colimY; X x Y; —— colimcolimY; X x Y; —= colimY; xx Y
1’7]

7 J %

T

colimY; X x Y
J

[

Yixx Y ———— Yixx ¥, ———— Yixx Y,

colimV; xx Y —45 ¥V xx YV
}/i X x Y.
The composition d o coboa equals ((76)), and a is an isomorphism by Corollary 3.2.3

(ii) p. 79 of the book, b is an isomorphism by p. , ¢ and d are isomorphisms
by Assumption (b).This proves Lemma [206] O

Taking the definition of Coim into account, we have
Coim(Y; — X) = Coker(Y; xx Y; =2 Y;),

Coker(Y xx Y = Y) = Coim(Y — X).
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Moreover, there is an obvious commutative diagram

colim Coker(Y; xx Y; = Y;) —— Coker(colim(Y; xx Y;) = Y)

[ [

Coker(Y; xx V; = Y)), — Coker(Y; xx V; = Y;),
where e is an isomorphism, and Lemma [206| yields a commutative diagram

Coker(colim(Y; xx ¥;) = V) —L— Coker(Y xx Y =2 Y)

T T

Coker(Y; xx V; =2 Y;) —] Coker(Y; xx V; =2 Y;),

where f is an isomorphism. This implies that is an isomorphism, completing
the proof of Step 3. ]

Proof of Step 4. We have
Home(Coim z,Y) = Home ( Coker(Z xx Z = Z),Y)
~ Ker (HomC(Z, Y) = Home(Z xx Z, Y)),
and similarly

Homzn (Coim pz, ¢Y) ~ Ker (Homp (¢Z,pY) = Homgzn (¢Z x,x 9Z, @Y)).

The natural map
Home(Z,Y) — Homzn(p(Z), o(Y))

is bijective by the Yoneda Lemma. As ¢ is faithful by Assumption (d), the natural
map
Home(Z X x Z,Y) — Homzn (9(Z xx Z),0(Y))

~ Homzn (0(2) X p(x) 9(2), (Y)).

is injective. This implies our claims. ]
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Proof of Step 5. Let Z be in F. We must show that the natural map

colim ¢(Z4)(2) = ¢(X)(2) := Home(Z, X)

is surjective. Let z be in Home(Z, X). It suffices to check that z is in the image of
the natural map

©(Zy1)(Z) = Home(Z, 2) 2 Home(Z, X),

which is obvious. O]
Proof of Step 6. As Step 3 implies

colim Coim(Z4 — X) ~ Coim (Colim Za— X) ,
Ael Ael

it suffices to prove

Coim <colim Za— X) ~ X. (82)
Ael

Epimorphisms being strict by Assumption (c), it is enough, in view of Proposi-
tion [187] (a)=(b), p. to check that

Cﬁlé?l Zy— X (83)
is an epimorphism. Let
. b . a
colimp(Za) = ¢ (Cglelgn ZA) = ¢(X)

be the natural morphisms. As aob is an epimorphism by Step 5, a is an epimorphism,
and Step 2 implies that is also an epimorphism. [

]

7.6 Brief comments

§ 207. P. 127, proof of Theorem 5.3.8.
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The sentence “Since ¢ is conservative by (a), it remains to show that ¢(u) is a
monomorphism” is justified by Proposition 5.1.5 (ii) p. 115 of the book and Corol-

lary p. above.

The phrase “the two arrows ¢(X;, Xx X;,) = colim; ¢(X;) coincide” can be
justified as follows: The two compositions

3
Xi1 Xx Xil 5_) X() —)u X
2

coincide by definition. Thus the two compositions
(P(Xil XX Xll) = @(XO) — QO(X%
which can be written as

(X, xx Xiy) = colim (Xi) = p(Xo) — p(X),

coincide. The composition colim; p(X;) = ¢(Xo) — ¢(X) being an isomorphism,
the two morphisms p(X;, xXx X;,) = colim; ¢(X;) coincide.

§ 208. P. 128, Theorem 5.3.9. To prove the existence of F, one can also argue as
follows.

Lemma 209. Let C be a category admitting finite inductive limits, and let A be a
small (Definition @ . @) full subcategory of C. Then:

(a) There is a small full subcategory B of C such that A C B C C and that B is closed
by finite inductive limits in the following sense: if (X;) is a finite inductive system
in B and X is an inductive limit of (X;) in C, then X is isomorphic to some object

of B.

(b) There is a small full subcategory A" of C such that A C A" C C and that each
finite inductive system in A has a limit in A'.

Proof. Since there are only countably many finite categories up to isomorphism, (b)

is clear. To prove (a), let A € A" C A” C --- be a tower of full subcategories
obtained by iterating the argument used to prove (b), and let B be the union of the
A, O
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8 About Chapter 6

8.1 Definition 6.1.1 p. 131

Here is an example of an object of Ind(Set) which is isomorphic (in Ind(Set)) to no
object of Set.

For each n in N set
n:={0,...,n—1} CN,

let N — Set,n — n be the obvious functor, and set
N’ := “colim” n.
n

(Note that A(X) can be identified to the set of bounded maps from X to N.) We
clearly have N’ € Ind(Set). Let X be in Set and let u : X — N’ be a morphism.
To prove that N’ is isomorphic to no object of Set, it suffices to show that u is not
an epimorphism. As u factors through some coprojection p, : n — N/ if u were an
epimorphism, so would be p,.

Claim: p,, is not an epimorphism.

Proof: Let f : N’ — N be the natural morphism. There is a morphism g : N' — N
such that
) itj<n
9(pi(3)) = {n >0
whenever 0 < j < 4, and we have gop, = f op, but g # f. This proves the claim,
and, thus, the fact that N’ is isomorphic to no object of Set.

Claim: The natural morphism f : N’ — N is a monomorphism.

Proof: Let

g
AN 4N
h

be a diagram in Ind(Set) with g # h. It suffices to prove fog # foh. We can
assume that A is in Set. There is an a in A satisfying g(a) # h(a). Recall that
pn : 1 — N is the n-th coprojection. There is an n in N and there are g,, h, : A = n
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such that g = p, 0 gn, h = p, 0 hy:

ﬁhpw—n\l

The map f o p, being injective, this yields

(fog)a) = (f opn)(gn(a)) # (f o pn)(hn(a)) = (f o h)(a),
and thus f o g # f oh. Hence, f is a monomorphism.
Claim: f is not an epimorphism.
Proof 1: Use Proposition p. below.
Proof 2: (Proof 2 is more direct.) Define u : N — N by
| i—1 iti#0
uli) = i
0 ifi =0,

and define the functor o : N — Set as follows. To the object ¢ of N we attach the
object N of Set, and to the inequality i < j in N we attach the endomap u/~* of N.
Set A := “colim” a, let ¢; : N — A be the i-th coprojection and define g : N — N by
g(1) = 0 for all i € N. It is easy to check that we have ¢y # gpog and gpo f = googo f.
This proves the claim.

8.2 Theorem 6.1.8 p. 132

Recall the statement:

Theorem 210 (Theorem 6.1.8 p. 132). If C is a category, then the category Ind(C)
admits small filtrant inductive limits and the natural functor Ind(C) — C" commutes
with such limits.

Here is a minor variant of Step (i) of the proof of Theorem 6.1.8. We must show:

Lemma 211. If o : [ — Ind(C) is a functor, if I is small (Definition [5 p. [10) and
filtrant, and if we define A € C" by A = “colim” v, then C4 is filtrant.
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Proof. Let M be the category attached by Definition 3.4.1 p. 87 of the book to the
functors

clen e

where h: C — C" and ¢ : Ind(C) — C” are the natural embeddings. Proposition [L55]
p. [L04] implies that M is filtrant, and that it suffices to check that Conditions (iii)
(a) and (iii) (b) of Proposition 3.2.2 p. 78 of the book hold for the obvious functor
@ : M — Cy4. Let us do it for Condition (iii) (b), the case of Condition (iii) (a) being
similar and simpler.

For all 7 in I and all X in C let
pi:a(i) + A and p;i(X): Home(X, a(i)) — A(X)

be the coprojections. Note that p;(X) = p;o.

Given an object ¢ of C4, and object m of M, and a pair of parallel morphisms
o,0 ¢ = p(m) in C4, we must find a morphism 7 : m — n in M satisfying
p(r)oo =p(r)oo.

Let ¢ be given by the morphism X — A in C*, let m be given by the morphism

Y — a(i) in Ind(C), and let ¢ and ¢’ be given by the morphisms s,s" : X =2 Y
making the diagram below commute:

X
‘ a
A

Then we are looking for and object n of M given by a morphism z : Z — a(j),
and for a morphism ¢ : Y — Z defining the sought-for morphism 7.

As pi(X)(yos) equals p;(X)(yos') in A(X) =~ colim Home (X, o) and T is filtrant,
there is a morphism ¢ : ¢ — j in [ such that a(t)oyos = a(t)oyos’, and we can set

"

:BT

132



8.3 Proposition 6.1.9 p. 133 8 ABOUT CHAPTER 6

Z = a(j) and z := idy(;). The situation is depicted by the commutative diagram

—
;Y—>a

X (J

o
J a(7) & a(j)
A

; lpj
A.

]

A

8.3 Proposition 6.1.9 p. 133
8.3.1 Proof of Proposition 6.1.9

The following point is implicit in the book, and we give additional details for the
reader’s convenience. Proposition 6.1.9 results immediately from the statement be-
low:

Proposition 212. Let A be a category which admits small filtrant inductive limits,
let F: C — A be a functor, and let C = Ind(C) % C be the natural embeddings.
Then the functor i’ (F) : Ind(C) — A exists, commutes with small filtrant inductive
limits, and satisfies if(F) oi ~ F. Conversely, any functor F: Ind(C) — A com-
muting with small filtrant inductive limits with values in C, and satisfying Foir~ F,
is isomorphic to i’ (F).

Proof. The proof is essentially the same as that of Proposition 2.7.1 on p. 62 of the
book. (See also §110| p. ) Again, we give some more details about the proof of
the fact that iT(F') commutes with small filtrant inductive limits. Put F := iT(F).

Let us attach the functor B := Homu(F( ),Y) € C" to the object Y of A. To
apply Proposition [66] p. [55] to the diagram

I — Ind(C) £ A

|

C/\
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(where [ is a small filtrant category — Definition [5| p. , it suffices to check that
there is an isomorphism

Hom 4 <ﬁ( ),Y> ~ Homen ( , B)

in Ind(C){}, where V is a universe containing I such that C" is a V-category (Defini-

tion M p. . We have

F(A):= colim F(X),
(X—A)eCq
as well as the following bijections functorial in A € Ind(C):

H (ﬁA,Y):H m F(X),Y)~ lim B(X
o (Fa).¥) = tom  olin, FY) =t B0

~ lim  Homen((j01)(X), B) ~ Homen ((“colim” X, B) ~ Homen (j(A), B).

(X—A)eCa X—A)ECa
[
8.3.2 Comments about Proposition 6.1.9
Let us record Part (i) of the proposition as
IF o ~1eoF, (84)
and note that we have, in the setting of Corollary 6.3.2 p. 140,
colim F o a = (JF)(“colim” «). (85)
Let us also record Part (ii) of the proposition as
“colim” (I F o o) = I F(“colim” ). (86)

(See §8 p. [13])

Also note that the proof of Proposition 6.1.9 shows

Proposition 213. If F : C — C' is a functor of small categories (Definition[d p.[10),
then the functor F : C™ — C" defined in Notation 2.7.2 p. 63 of the book induces the
functor IF : Ind(C) — Ind(C").
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8.4 Proposition 6.1.12 p. 134

We give some more details about the proof. Recall the setting: We have two cate-
gories C; and Cs, and we shall define functors

6
Ind(Cy x Co) == Tnd(C) x Ind(Ca).

and prove that they are mutually quasi-inverse equivalences. (In fact, we shall only
define the effect of 6§ and p on objects, leaving also to the reader the definition of
the effect of these functors on morphisms.) But first let us introduce some notation.
We shall consider functors

A eInd(C x Cy);  A;, B; € Ind(Cy);

objects X;,Y;,... in C;; and elements
T e A(Xl,XQ), Yy < A(}G,Yg), cee x; € Az(Xz)u Y; € AZ(K), e
When we write
colim ---, colim ---, colim ---,

we mean, in the first case, not only that = runs over the elements of A(X;, X3), but
also that X; and X, themselves run over the objects of C; and Cs, so that we are
taking the inductive limit of some functor defined over (C; x Cs) 4. In the other cases,
the interpretation is similar.

Let us define 6 and pu: We define 6 by setting 6(A) = (A, Ay) with

A; == “colim” X, (87)

and we define p by putting pu(A;, As) := Ay x Ay with
(Al X Ag)(Xl,XQ) = Al(Xl) X AQ(XQ)
for all X; in C; (i =1,2).

Proposition 214 (Proposition 6.1.12 p. 134). The functors 0 and p are mutually
quasi-1nuverse.
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Proof. Let us prove
0 o p >~ idmac;)xnd(cs) - (88)
If A; isin Ind(C;) for i = 1,2; if A is A; X Ay; and if (By, By) is 0(A), then we have

@ M) i © . 3 <
By ~ “colim” X; ~ “colim” X; ~ “colim” X; ~ A;.
x x1,T2 z1

Indeed, Isomorphism (a) follows from (87)), Isomorphism (b) from the definition of
A, Isomorphism (c) from the fact that the projection

(Cl)Al X (CQ)A2 — (Cl)Al

is cofinal by Lemma below coupled with the fact that (C)4, is connected, and
Isomorphism (d) from our old friend p. . (By the way, in this proof we are
using a lot without explicit reference.)

Lemma 215. If I and J are categories and if J is connected, then the projection
I x J— 1 is cofinal.

Proof. Let iy be in I. We must check that (I x J)® is connected. We have (I x
J)o ~ [ x J and it is easy to see that a product of two connected categories is
connected. [

This ends the proof of .

Let us prove
Mo 0 ~ idInd(Clxcz) . (89)

Let A be in Ind(C; x Cy) and set (A, As) := 6(A). We shall define morphisms
A — A x Ay and A; X Ay — A, and leave it to the reader to check that these
morphisms are mutually inverse isomorphisms of functors.

e Definition of the morphism A — A; x As: Let X; be in C; (i = 1,2). We must
define a map A(X;, Xo) — A1(X7) x A2(X2). We shall define firstly a map

A(Xl,XQ) — Al(Xl) (90)

This will enable us to define a map A(Xy, X3) — As(X3) similarly, yielding our map
A(Xy, Xo) — A1(Xy) x A2(Xs). As we have an isomorphism

A;(X7) ~ colim Homg, (X1, Y))
Yy

136



8.5 Corollary 6.1.15 p. 135 8 ABOUT CHAPTER 6

and coprojections
D1y - I‘IOIHC1 (Xl, Yi) — Al(Xl)a

we can define by © — pi,(idx,). We leave it to the reader to check that this
does define a morphism A — A; x A,.

e Definition of the morphism A; x Ay — A. Letting X; be in C; as above, we must
define a map A;(X;) X A2(Xs) — A(Xy, Xs). Letting z; be in A;(X;), we must define
an element = in A(X;, Xy). We have z1 = p1,(f1) and xo = pa,(fs) for some y and z
in (C; xCz) 4, some f; in Home, (X1, Y]) and some f; in Home, (X3, Z2). The category
(C1 x Cq) 4 being filtrant, we can assume z = y. We have an isomorphism

A(Xy, X3) ~ colim Home, (X7, W1) x Home, (X, W3)

and coprojections ¢, : Home, (X7, W1) x Home, (Xa, Ws) — A(X7, X3), we can define
x by x = q,(f1, f2). We leave it to the reader to check that this does define a
morphism A; x A — A, and that this morphism is an inverse to the morphism
A — A; x Ay defined above.

This ends the proofs of Isomorphism p. and Proposition 214 p. [135] O

8.5 Corollary 6.1.15 p. 135

Recall the statement (see §9| p. [L3| above):

Corollary 216 (Corollary 6.1.15 p. 135). Let f,g : A = B be two morphisms
in Ind(C). Then there exist a small (Definition 5 p. [I0) and filtrant category I
and morphisms ¢, : o = B of functors from I to C such that A ~ “colim” a,
B ~ “colim” B, f ~ “colim” ¢, g ~ “colim” ¢. (The last two isomorphisms take

place in Mor(Ind(C)).)
Lemma 217. Let oy : [ — Cy and oy : I — Cy be functors defined on a small
filtrant category I. Define o : I — C; X Co by (i) := (a1(i), aa(i)) and let Xy be in
Cr (k=1,2). Then the natural map

(“colim” a) (X7, X3) — (“colim” a)(X7) % (“colim” a)(X32) (91)

15 bijective.
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Proof of Lemma[217. This follows from Corollary 3.2.3 (ii) p. 79 and Proposition
3.1.11 (ii) of the book. Let us just add that is the natural composition

colim (Homc1 (X1, aq(i)) x Homcz(X%O@(i))) -

iel

colim <Homcl(X1,a1(i)) X HOmCQ(XQaa2<j))> —

(4,9)eIxI

(colim Homg, (X7, al(i))> X (colim Home, (Xo, Oég(j))).

il jel

]

Proof of Corollary[216. Let I and J be small filtrant categories and let o : I — C
and (3 : J — C be two functors such that A ~ “colim” @ and B ~ “colim” . Denote
by a: I — C x C the functor i — (a(i), «(i)), and similarly with .

Recall that there are quasi-inverse equivalences

Ind(C x C) ﬁ Ind(C) x Ind(C),

m

that we sometimes write A; x Ay for u(A;, As), and that we have
(Al X AQ)(Xl,XQ) = Al(Xl) X AQ(XQ)

for all X; in C (i = 1,2). (See Section [8.4] p. [135])

Then A X A ~ “colim” @ and B x B ~ “colim” B By Lemma and the
above reminder, the morphism (f, g) : (A, A) — (B, B) in Ind(C) x Ind(C) defines a
morphism f x g: Ax A— Bx B in Ind(C x C). Applying Proposition 6.1.13 p. 134
in the book, we find a small (Definition [5| p. and filtrant category K, functors
pr: K — I,p;: K — J and a morphism of functors (¢, ) from o p; to fopy such
that f x g ~ “colim” (p, ). It follows that f ~ “colim” ¢ and g ~ “colim” 1. ]

8.6 Brief comments

§ 218. The proofs of Propositions 6.1.16 and 6.1.18 p. 136 in the book use the
following lemma
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Lemma 219. Let I be a small (Deﬁnition@]p. @) filtrant category, let C be category,
and let F: C! — Ind(C) be the functor a + “colim” a.

(a) If C admits finite projective limits, F is left exact.
(b) If C admits finite inductive limits, F' is right exact.

Proof. Let h : C — C” be the Yoneda embedding and ¢ : C — Ind(C) the natural
embedding. If a is in C?, then “colim” a can be defined as colim h o« or as colim o«
(Theorem 6.1.8 p. 132 in the book). Let J be a finite category.

(a) Let a: I x J°° — C be a functor. We claim
“colim” lim a(i, j) = colim h (lim a(z’,j)> :
7 J 1 J

Clearly lim commutes with h. As lim commutes also with colim; as far as C"-valued
J

j
. with 1i N ved.

functors are concerned, “colim” commutes with lim, and the claim is proved
? J

(b) Let a: I x J — C be a functor. We claim

“colim” colim a(i, j) — colim¢ (coljm a1, ])) :
7 7 7 J

The functor ¢, being right exact (Corollary 6.1.6 p. 132 in the book), commutes with

colim. As colim commutes with colim for obvious reasons, it commutes with “colim”,
(2 (2

j J
and the claim is proved. O
§ 220.

Proposition 221. IfC is a category admitting finite inductive and projective limits,
and if C is strict, then Ind(C) is strict.

Lemma 222. [f F': C — C' is an ezact functor between categories admitting finite
inductive and projective limits, and if f is a strict morphism in C, then F(f) is a
strict morphism in C'.

Proof. This is obvious. ]

Proof of Proposition[221. Let f : A — B be a morphism in Ind(C). By Corollary
6.1.14 p. 135 in the book, there is a small filtrant category I and a morphism ¢ in
C! such that “colim” ¢ ~ f. Clearly C! is strict, and the theorem follows now from
Lemmas and O
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§ 223. P. 136, Corollary 6.1.17 (i). If C admits finite projective limits, then the
natural functor C — Ind(C) is exact. (Recall that it is right exact by Corollary 6.1.6
p. 132 of the book.)

§ 224. P. 137, proof of Proposition 6.1.19. We just add a few references in the proof.
Recall the statement:

Proposition 225. If a category C admits finite inductive limits and finite projective
limits, then small filtrant inductive limits are exact in Ind(C).

Proof. By Proposition p. it suffices to check that small filtrant inductive
limits commute with finite projective limits in Ind(C). Since the embedding Ind(C) —
C" commutes with small filtrant inductive limits by Theorem 6.1.8 p. 132, and with
finite projective limits by Corollary 6.1.17 (i) p. 136, this follows from the fact that
small filtrant inductive limits are exact in C" (see Exercise 3.2 p. 90). O

§ 226. P. 137, table. In view of Corollary 6.1.17 p. 136, one can add two lines to the
table:

C — Ind(C) | Ind(C) — C"
finite inductive limits o
finite coproducts
small filtrant inductive limits
small coproducts
small inductive limits
finite projective limits
small projective limits

)

X
X
o
X
X
o
o

| O O | W N+~
OO0 | X|X|X]|O

(In Line 6 we assume that C admits finite projective limits, whereas in Line 7 we
assume that C admits small projective limits.)

§ 227. P. 138, Corollary 6.1.17. If C admits finite projective limits, then C is exact in
Ind(C). This follows from Corollary 6.1.17, Corollary 6.1.6 p. 132 and Proposition

p. 109

§ 228. P. 138, proof of Proposition 6.1.21. One can also argue as follows. Assume C
admits finite projective limits. By Remark 2.6.5 p. 62 and Corollary 6.1.17 p. 136,
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all inclusions represented in the diagram
Ind“(C)

C,

IndV(C )

A

except perhaps inclusion 4, commute with finite projective limits. Thus inclusion
commutes with finite projective limits. The argument for /-small projective limits
is the same. q.e.d.

8.7 Proposition 6.2.1 p. 138

We add a few details to the proof. Recall the statement:

Proposition 229 (Proposition 6.2.1 p. 138). Let « : I — C be a functor with I
filtrant and let Z € C. The conditions below are equivalent:

(i) Z is a unwersal inductive limit of o in the sense of Definition [7( p. [59
(ii) there exist an object ig € I and a morphism 7 : Z — «a(iy) satisfying the property:

for any morphism s : ig — i, there exist a morphism p; : a(i) — Z and a morphism
t:i— j satisfying

(a) p;oa(s)or =idy,

(b) a(t) o a(s) oTop; = aft).

Proof. Choose a universe making I and C small (Definition [f] p. [L0]), set A :=
“colim” av and let ¢; : a(i) — A be the coprojections.

e (i) implies (ii). Let ¢ : Z — A be an isomorphism. By definition of A the
isomorphism ¢ factors as Z = a(ig) 29 A. Let s : ig — i. We define p; : all) = Z

141



8.7 Proposition 6.2.1 p. 138 8 ABOUT CHAPTER 6

7

as being the composition /(%) oA % 7. As the three small triangles in the diagram

a(i) P > 7
N A
P
a(s) io T

popioa(s)oT =goa(s)oT = p,

O—Q

commute, we get

which implies (a). The coprojection

Home(a(i), a(i)) — colim Home(a(i), o) = Home(a(7), A)
being the map ¢;0, and I being filtrant, the equalities

gioa(s)oTop;=qy,oTop;=@op;=q = ¢ oidap)
imply the existence of a morphism ¢ : i — j satisfying (b).
e (i) implies (i). Let ¢ : Z — A be the composition Z = (i) 20y AL Tt suffices
to show that ¢ is an isomorphism. Let X be an object of C. It suffices to show that
the map
vx : Home(X, Z) — Home (X, A) ~ colim Home (X, o), u+— pou
is bijective.
*x @x is injective. Let u,v € Home (X, Z) satisfy ¢ o u = ¢ o v, that is,
Qiy ©TOU = @;, O T O V.

As I is filtrant and as Home (X, A) ~ colim Home (X, «), there is a morphism s : iy —
i such that a(s)oTou = a(s)oTowv. We have ¢;oa(s)oTou=¢g,oTo0u=pou,
and, similarly, ¢; o a(s) o 7 o v = p o v, yielding

pou=gqgoa(s)oTou=goa(s)oTov=pouv,

and thus u = v.
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* px is surjective. Let w : X — «a(i) be a morphism. It suffices to show that there
is a morphism v : X — Z such that ¢ ou = w. We may assume that there is a
morphism iy — 4. If p; : a(i) - Z and t : i — j are as in (ii), we get

ggow=gjoat)ow=gjoa(t)oa(s)oTopow=g,0Top, 0w =YOop;ow.
]

Corollary 230. Let o : I — X be a functor from a filtrant category I to an ordered
set X, let f: Ob(I) — X be the obvious map, and let xo be in X. Then xy = colim «
if and only if xo = sup Im f. Moreover this inductive limit is universal in the sense
of Definition[70 p. [59 if and only the supremum xq is reached by f.

8.8 Brief comments

§ 231. P. 140, proof of Corollary 6.3.2. For X in J we have
F(X) ~ oc(we(F(X))) =~ oc(IF(tg(X))).
§ 232. P. 140, Definition 6.3.3. Recall this definition:

Definition 233 (Definition 6.3.3. p. 140). Assume that C admits small filtrant
inductive limits. We say that an object X of C is of finite presentation if for any
a: I — C with I small and filtrant, the natural morphism

colim Home (X, o) — Home (X, colim «)
is an isomorphism, that is, if
Homlnd(c) (X, A) — HOIIlc(X, O'c(A))

is an isomorphism for any A € Ind(C).

We spell out some details. Recall that the embedding functor ¢ : C — Ind(C) has
a left adjoint functor o:

C
UT\LL
©)

In
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In particular, for each A in Ind(C) we have a morphism e4 : A — ¢(0(A)). Recall also
that C is a category admitting small filtrant limits. Consider the following conditions
on an object X in C:

(a) The natural map colim Home (X, o) — Home (X, colim «v) is bijective for all func-
tor a : I — C with I small (Definition [5| p. and filtrant.

(b) The map €40 : Homyq(e)(¢(X), A) = Hompgee)(¢(X), t(0(A))) is bijective for all
A in Ind(C).

Lemma 234. The above conditions are equivalent.

Proof. If a: I — C is a functor with I small and filtrant, then the obvious square

colim Home (X, «) > Home (X, colim «v)

Homp,g(c) (X, “colim” o) ————— Homypyq(c)(X, colim o)

E€¢colim” o
commutes. UJ

Definition 235. We say that X is of finite presentation if the above conditions are
satisfied.

§ 236. P. 140, proof of Proposition 6.3.4. The authors construct a bijection
Homp,g(z)(“colim” 5(j), “colim” (7))
J %
= Home (JF (“colim” B(5)), JF (“colim” a(i))).
J i
We leave it to the reader to check that this bijection coincides with the natural
map

Homu,g(z) (“colim” B(j), “colim” (7))
J )
— Home (JF(“colim” 5(j)), JF(“colim” a(3))).
j i

Here is a consequence of Proposition 6.3.4 (see Corollary 6.3.5 p. 141 in the book):

Let C be a category admitting small (Definition @ . @) filtrant inductive limits,
and let C' be the full subcategory of C whose objects are isomorphic to small filtrant
inductive limits of objects of C'P. Then C' is equivalent to Ind(C'P). In particular C’
admits small filtrant inductive limits. Moreover the inclusion C' — C commutes with
such limits.

144



8.8 DBrief comments 8 ABOUT CHAPTER 6

Proof. Let 1 : C/? — C be the inclusion functor. By Corollary 6.3.2 and Proposition
6.3.4 p. 140 of the book, the functor Ju : Ind(C/P) — C is fully faithful and commutes
with small filtrant inductive limits, and ¢ factors through J:. By Lemma 1.3.11 p. 21
of the book, Ji induces an equivalence Ind(C’?) = C’. The claims above follow easily
from these observations. O

§ 237. P. 143, proof of Proposition 6.4.1. The authors construct a bijection
Coliim Hompet(k,mace) (¢, a(t)) = Hompe(k md(c)) <1/1, coliim a(i)) .
We leave it to the reader to check that this bijection coincides with the natural map
coliim Hompet (i md(e)) (¢, (7)) = Hompee(k,md(c)) <¢, coliim a(i)) .
§ 238. P. 142, proof of Corollary 6.3.7. Let us check the isomorphism
K(X) ~ “colim” po €. (92)

Recall the setting:

5 ot P C

| 2L

Ind(C™) 5 Ind(C),

k' being quasi-inverse to Jp (for more details, see p. 141 of the book), x is defined
by k:= Ipo k', and X ~ colim p o &. We have

K(X) =~ Ip(K'(colim p o &)) ~ Ip(“colim” &)

~ “colim” (Ip o ic o &) ~ “colim”(p o &),

the second, third and fourth isomorphisms being respectively justified by p.
p. and p. . This proves .

Parts (ii) and (iii) of Corollary 6.3.7 are equivalent by Proposition 1.5.6 (ii) p. 29
of the book. To prove (ii) note that we have

o(k(colimpo§)) ~ o(“colim” po ) ~ colimpo ¢

by Corollary 6.3.7 (i) p. 141 and Proposition 6.3.1 (i) p. 139 of the book.
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8.9 Theorem 6.4.3 p. 144

Notational convention for this section, and for this section only! Superscripts will
never be used to designate a category of the form C¥ attached to a functor C — C’
and to an object X’ of C’. Only two categories of the form Cx/ (again attached to a
functor C — C’ and to an object X’ of C’) will be considered in this section. As a lot
of subscripts will be used, we shall denote these categories by

C/G(a) and L/a (93)

instead of Cg(,) and L,, to avoid confusion. Superscripts will always be used to
designate categories of functors, like the category B4 of functors from A to B.

Let C be a category and K a small category (Definition 5| p. . Recall that,
by Corollary 6.3.2 p. 140 of the book (see p- above), there is a functor
® : Ind(C*) — Ind(C)" such that, if F': N — CK is a functor defined on a small
filtrant category and if k£ is in K, then we have

O (“colim” F)(k) ~ “colim” (F'(n)(k)) = “colim” (F( )(k)).

neN

Theorem 239 (Theorem 6.4.3 p. 144). IfC is a category and if K is a finite category
such that Hompg (k, k) = {idg} for all k in K, then the functor

® : Ind(C*) — Ind(C)",

whose existence is recalled above, is an equivalence.

The key point is to check that
® is essentially surjective. (94)

(The fact that & is fully faithful is proved as Proposition 6.4.1 p. 142 of the book.)

In the book is proved by an inductive argument. The limited purpose of this
section is to attach, in an “explicit” way (in the spirit of the proof of Proposition

6.1.13 p. 134 of the book), to an object G of Ind(C)¥ a small (Definition [5| p.
filtrant category N and a functor F : N — C¥ such that

O(“colim” F) ~ G,
that is, we want isomorphisms

“colim” F( )(k) ~ G(k)
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functorial in k € K.

As in the book we assume, as we may, that any two isomorphic objects of K are
equal.

Let C, K and G be as above. We consider C as being given once and for all, so

that, in the notation below, the dependence on C will be implicit. For each k in K,
let Ij, be a small (Definition [5[ p. filtrant category and let

OszIk—>C

be a functor such that
G(k) = “colim” .

We define the category
N = N{K,G, ()}
as follows:

[Beginning of the definition of the category N := N{K, G, (ax)}.] An object of N is
a pair ((ix), P), where each iy is in I and P is a functor from K to C, subject to the
conditions

[ Oék(ik) = P(k) for all k?,

e the coprojections uy(ix) : ax(ix) = P(k) — G(k) induce a morphism of functors
WP =Gl (95)

(We regard C as a subcategory of Ind(C).) The picture is very similar to the second

diagram of p. 135 of the book: For each morphism f : £ — ¢ in K we have the
commutative square

in Ind(C).

A morphism from ((iy), P) to ((jx), @) is a pair ((fx),d), where each f; is a
morphism f; : i — j5 in I, and 6 : P — @ is a morphism of functors, subject to
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the condition 0, = ay(fy) for all k:

oy o(fr) .
a(in) —=% i (jn)

H
P(k) —5— Q(k).

|[End of the definition of the category N := N{K, G, (cox)}.|

Let pr : N — I, be the natural projection. Then the functor F : N — C¥ is
given by
F()k)=arop, VkeK:

N 251 2

In other words, we set
F((Zk)7 P) (ko) = ako(i%)'

Lemma 240. The category N is small (Definition @ . @) and filtrant, and the
functor py s cofinal.

Clearly, Lemma [240] implies Theorem [239|

Proof of Lemma[240. We start as in the proof of Theorem 6.4.3 p. 144 of the book:

We order Ob(K) be decreeing k < ¢ if and only if Homg (k, ) # @, and argue by
induction on the cardinal n of Ob(K).

If n = 0 the result is clear.

Otherwise, let a be a maximal object of K; let L be the full subcategory of K
such that
Ob(L) = Ob(K) \ {a};

let G, : L — Ind(C) be the restriction of G to L; let
ag I, - C/G(a)
(see p. for the definition of C/G(a)) be the functor defined by
Gali) = (@) : 0uli) = Cla) ):
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and put
N':= N{L,Gy, (a)}.

We define the functor L
p: N — (C/G(a))

(see p. for the definition of L/a) as follows. Let ((i7),Q) be in N'. In
particular, () is a functor from L to C, and we have, for each ¢ in L, a morphism

Q) = aulic) 2 “colim” ay = G(0)

in C (see (95) p. [147). Letting ¢ Iy abea morphism in K viewed as an object of
L/a, we put

Gy &0 G(a)) € C/Gla).

Letting
A C/G(a) = (C/G(a))"'"

be the diagonal functor (see Notation |52 p. , we can form the category
M:=M [N’ 2 (C/G(a)) " 22 Ia} .
Concretely, an object of M is a triple

(), Q). (&7 : QUO) > aalin)) 1) (96)

where ((i¢), @) is an object of N’, where i, is an object of I,, where f runs over the
morphisms from ¢ to a in K, and where £y is a morphism from Q(¢) to a,(i,) which

makes the square

Q) — a,(i)
a)

u’ (Z)l u

(
G({) <0 G(a)

in C commute, and a morphism from to
(0, @). 20 (€ QO) > aalit) 1)
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is given by a family (fx : ix — 7} )kex of morphisms in [} making the squares

Q(ﬁ) ae(fe)

o s

) y
Qg (Za) m Qg (%)

in C commute. (Recall Q(¢) = au(iz), Q'(¢) = au(i}).)
We shall define functors
A
N —>M M

and leave it to the reader to check that they are mutually inverse isomorphisms. (In
fact, we shall only define the effect of A and © on objects, leaving also to the reader
the definition of the effect of these functors on morphisms.)

We shall define maps
A
Ob(N) — Ob(M).

n

To define A let ((ix), P) be in N, and let @ be the restriction of P to L. Then
A((ig), P) will be of the form

((().Q) s (& 2 QU = i) ).

As Q(¢) = P({) and a,(i,) = P(a), we can (and do) put & := P(f).
To define p let

(1]

= (().Q) + i, ((0), Q) = Ada(i0))
be in M. The object u(Z) of N will be of the form ((i), P), so that we must define
a functor P : K — C.

We define P(k) by putting P({) := Q(¥) for £ in L and P(a) := a,(i,).

If f:¢— mis a morphism in L, then we set P(f) := Q(f) : P({) — P(m). Let
¢ be in L. There is at most one morphism f : £ — a. If this morphism does exist,
then we put P(f) := &;.

We leave it to the reader to check that A and p are mutually inverse bijections.
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We also leave it to the reader to check that the set of morphisms in M from
A (ig), P) to A((4}), P') is equal (in the strictest sense of the word) to the set of
morphisms in N from ((ix), P) to ((i},), P'), so that we get an isomorphism

Aoy

N~ M [N’ 2 (C/G(a))H/a L.

By induction hypothesis,
N’ is small and filtrant (97)

and the projection N’ — I, is cofinal for all £ in L. It follows from Proposition
2.6.3 (ii) p. 61 of the book that «, is cofinal. By assumption C/G(a) is filtrant, and
Lemma [241] below will imply that A is cofinal. Thus,

A o ag is cofinal. (98)

Taking Lemma [241] below for granted, Lemma p. now follows from (97)),
and Proposition 3.4.5 p. 89 of the book. ]

As already observed, Lemma[240/implies Theorem [239|p.[146] The only remaining
task is to prove

Lemma 241. If I is a finite category and C a filtrant category, then the diagonal
functor A : C — C! is cofinal.

Proof. 1t suffices to verify Conditions (a) and (b) of Proposition 3.2.2 (iii) p. 78 of
the book. Condition (b) is clear. To check Condition (a), let o be in C!. We must
show that there is pair (X, A), where X is in C and \ is a morphism of functors from
a to AX. Let S be a set of morphisms in /. It is easy to prove

(FY €C) (EI e HHomC(a(i),Y)> (V (s:i—j)€ S) (,uj oa(s) = /L,-)

il

by induction on the cardinal of S, and to see that this implies the existence of
(X, ). O
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8.10 Exercise 6.8 p. 146

Recall the statement:
Let R be a ring.

(i) Prove that M € Mod(R) is of finite presentation in the sense of Definition
p. if and only if it is of finite presentation in the classical sense (see Examples
1.2.4 (iv)), that is, if there exists an exact sequence R™ — R"™ — M — 0.

(ii) Prove that any R-module M is a small filtrant inductive limit of modules of
finite presentation. (Hint: consider the full subcategory of (Mod(R)),,s consisting of
modules of finite presentation and prove it is essentially small and filtrant.)

(iii) Deduce that the functor Jp defined in Diagram (6.3.1) induces an equivalence
Jp : Ind(Mod/?(R)) — Mod(R).

Solution. We shall freely use Proposition 3.1.3 p. 73 of the book, which describes
the inductive limit of a set-valued functor defined on a small (Definition [5| p.
filtrant category, as well as Corollary 3.1.5 (same page), which says that the forgetful
functor Mod(R) — Set commutes with small filtrant inductive limits.

(i) (a) Let R™ — R™ — M — 0 be exact, and let us show that M € Mod(R) is of
finite presentation in the sense of Definition p.

Let (N;)ier be an inductive system in Mod(R) indexed by a small (Definition
p. [10) filtrant category I, let N be its inductive limit, and, for each i, let

pi: N;y— N and ¢;: Homg(M,N;) — coliim Hompg (M, N;)
be the coprojections, and consider the map
colim Hompg(M, N;) — Hompg(M, N) (99)
induced by the
p;o : Homg(M, N;) — Hompg(M, N).

(i) (al) The map is injective. (This part of the proof also works if M is just
finitely generated, without being finitely presented.) Let ¢ be an object of I and
f: M — N; an R-linear map such that ¢;(f) is in the kernel of (99). It suffices to
show ¢;(f) = 0. Let F be the subset of M formed by the images of the elements of
the canonical basis of R". For each x in F', the element f(z) is annihilated by p;. As
F' is finite, there is a j in I and a morphism s : i — j such that Ny(f(x)) = 0 for all
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x in F, and thus for all z in M. This implies ¢;(f) = 0, as required. This ends the
proof of the injectivity of .

(i) (a2) The map is surjective. Let f: M — N be R-linear. It suffices to show
that f factors through p; : V; = N for some 7 in I. Let a; € M be the image of the
j-th element of the canonical basis of R", and let (\;;) be the matrix of our map
R™ — R", so that we have

Z Njgka; =0 for k=1,...,m.

j=1

There is an ¢’ in I and there are by, ...,b, in N; such that p;(b;) = f(a;) for all j.

This yields
i (Z Ajkbj> =0 for k=1,...,m.
j=1

As a result, there is a ¢ in I and there are ¢;,...,¢, in N; such that p;(c;) = f(a;)
for all 57 and

Z Nigc; =0 for k=1,...,m.

j=1
Hence there is an R-linear map ¢g : M — N; such that g(a;) = ¢; for all j, and thus
p; o g = f. This ends the proof of the surjectivity of , and also the proof of
the fact that any R-module which is of finite presentation in the classical sense is of
finite presentation in the sense of Definition [233[ p. [143

(i) (b) We assume now that M € Mod(R) is of finite presentation in the sense of
Definition [233] p. [[43] and we prove that M is of finite presentation in the classical
sense.

(i) (bl) The R-module M is finitely generated. Let I be the set of all finitely
generated submodules of M. Then [ is a small filtrant ordered set. For each N in [
let gy : Homg(M, N) — colimy Hompg (M, N) be the coprojection. Then the identity
of M is the image of gy (f) for some N in I and some R-linear f : M — N. This
implies N = M.

(i) (b2) The R-module M is finitely presented in the classical sense. The argument
is similar to the one in (i) (bl) above. There is a small set K, a positive integer n

and an exact sequence R¥K Iy R - M — 0. Let I be the set of the finite subsets
of K. Then I is a small filtrant ordered set. For each F in I set My := R"/f(R®F).
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Then (Mp)per is, in a natural way, an inductive system whose colimit is M, the
coprojections being the obvious maps pr : Mp — M. Let qr : Homg(M, Mp) —
Hompg (M, M) be the coprojections. The identity of M factors through pp : Mp — M
for some F'in I. This implies M ~ Mg, ending the proof that M is finitely presented
in the classical sense, and thus the proof of (i).

(ii) (I don’t understand the hint.) Clearly any R-module is a small filtrant inductive
limit of finitely generated R-modules. Hence, in view of p. [144] it suffices to
show that any finitely generated R-module is a small filtrant inductive limit of finitely
presented R-modules. But this follows from (i) (b2) above.

There is also a more direct way to prove that any R-module M is a small filtrant
inductive limit of finitely presented R-modules: Let F' be a finite subset of M, let
Kr be the kernel the natural map R®" — M, let G be a finite subset of K, and let
MF ¢ be the cokernel of the obvious map R®Y — R®F. Then the Mg form a small
filtrant inductive system of R-modules whose colimit is M.

(iii) Claim (iii) follows from §236|p.

8.11 Exercise 6.11 p. 147

We prove the following slightly more precise statement:

Proposition 242. Let F' : C — C’ be a fully faithful functor, let A" be in Ind(C’),
and let S be the set of objects A of Ind(C) such that IF(A) ~ A’. Then the following

conditions are equivalent:

(a) S # 2,

(b) all morphism X' — A’ in Ind(C") with X’ in C' factors through F(X) for some
X inC,

(c) the natural functor Carop — C'y is cofinal,

(d) Ao F isin S.

Proof.

(a)=(b). Let f: X’ — IF(A) be a morphism in Ind(C’') with X’ in ¢’ and A in
Ind(C), let By : I — C be a functor with I small (Definition [5| p. [10]) and filtrant and
“colim” By ~ A; in particular “colim” (F o) ~ I F(A). By Proposition 6.1.13 p. 134
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of the book there is a functor § : J — C and a morphism of functors p : AX' — Fof,
where AX’: J — (' is the constant functor equal to X', such that

J is small and filtrant,

“colim” (F o §) ~ IF(A),

“colim” ¢ ~ f.
Then f factors as X’ 2 F(B(5)) 2 IF(A), where p; is the coprojection.
(b)=-(c). This follows from Proposition p.

(c)=-(d). This follows from Remark p. [89] and Proposition p.[134]
(d)=-(a). This is obvious. O

9 About Chapter 7

§ 243. P. 149, Definition 7.1.1. We define the localization of a category C with
respect to a set S of morphisms in a way that is slightly different from the one used

in the book. It is obvious that a localization as defined here is also a localization as
defined in the book.

Definition 244. A localization of a category C with respect to a set S of morphisms
15 a category Cs equipped with a functor Q) : C — Cs such that

(a) Cs has the same objects as C,
(b) we have Q(X) = X for all object X in C,

(¢) if F: C — A is a functor turning the elements of S into isomorphisms, then
there is a unique functor Fs : Cs — A such that FsoQ = F,

(d) if G1 and Gy are two functors from Cs to A, then the natural map
Hompeg(cg,a)(G1, G2) = Hompeye,a)(G1 0 @, Ga 0 Q)

15 bijective.

Proposition 245. Let C be a category and S a set of morphisms in C.

(a) There is a category Cs equipped with a functor Q : C — Cs satisfying conditions
(a), (b) and (c) of Definition[244. Moreover, the pair (Cs, Q) is unique up to unique

isomorphism.
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(b) The category Cs satisfies also condition (d) of Definition and is thus a
localization of C with respect to S.

Proof. (a) We define the objects of Cs as being the objects of C, and we construct
the morphisms of Cs by inverting formally the elements of S. The details are left to
the reader.

(b) Let F, G be in Fct(Cs, A) and consider the map
*Q : Hocht(Cs,A) (F7 G) — HomFCt(C,A) (F © Qa Go Q)a

where x denotes the horizontal composition (see Definition [35(p. [32]). We shall define
a putative inverse

® : Hompeye,a)(F 0 Q, G o Q) — Hompeycs,a)(F, G)

to xQ. For X in Fet(C, A)(F o Q,G o Q) and X in C we define set ®(\)x = Ay :
F(X) — G(X). We must show that the square

F(X) 2% G(X)

F(f)l lG(f)

commutes for all f € Homeg(X,Y). It suffices to check that this square commutes

when f = Q(s)™! for s in S N Home(Y, X), which is straightforward. O

§ 246. P. 150, Lemma 7.1.3. The last sentence says that, in terms of (¢) p.
the functor Q*Q.G exists and is isomorphic to G via the identity of G o @, or, more
explicitly, that for all F': C' — A, the map

Hom 4o/ (F,G) = Homyc(FoQ,GoQ), v—=vxQ

is bijective. (Recall that v x ) denotes the horizontal composition of v and Q; see
Definition [35] p. 32])

Lemma 7.1.3 is used on p. 160 of the book to prove Theorem 7.1.16.

156



9 ABOUT CHAPTER 7

§ 247. P. 151, last sentence of the proof of Lemma 7.1.3. Omitting most of the
parenthesis, we have

Gfo 5X1 = (Gsy) ' o (GQty) ™ 0o GQt1 0G5y 0 5X1
= (GSQ)_1 o (GQtQ)_l 00Y;0 FQty o F's;
= (Gsy) ' o (GQty) ' 0 Y30 FQtyo Fsyo Ff

:gXQOFf

§ 248. P. 155, Theorem 7.1.16. If we define Cs as in the proof of Proposition 245]
p. 159} it is easy to check that, for X and Y in C, the natural map

li H X, Y)—H XY
(Yggf})lng Omc( J ) OmCs( ) )
is bijective.
§ 249. About the proof of Remark 7.1.18 (ii) p. 156. The following is almost a copy
and paste of the display in the proof of Remark 7.1.18 (ii):
~ 1 /
Home (X,Y) =~ (X’C—?%Ielsx Home (X", Y)

— colim Home (X', Y")
(X'—=X)ESx,(Y—=Y")eSY

& li H X,Y") ~ Homer (X,Y).
o St Bomel(X,Y') o Homey (X,)

Let us describe the implicit map

colim Home (X', Y') = colim  Home(X')Y). (100)
(X' X)eSx,(Y =Y )eSY (X'—=X)eSx

Given a diagram X < X' L v &V with s and t in S, we must first concoct a
diagram X <~ X” & Y with v in S. As S is a left multiplicative system, the solid
diagram
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can be completed to a commutative square as indicated, with v in S, and it suffices to
set u := sov. We leave the proof of the fact that the element in the right hand side of
(100)) so obtained does not depend on the choice of the object X" and the morphisms
¢ and v. From this point the proof of Remark 7.1.18 (ii) is straightforward.

Unsolved Problem 250. P. 157, proof of Proposition 7.1.20. In the sentence “Since
tos € S, we have thus proved that, for f : X — Y in C, if Q(f) is an isomorphism,
then there exists g : Y — Z such that go f € §”, I don’t understand why go f € S.
(Proposition 7.1.20 doesn’t seem to be used elsewhere in the book.)

§ 251. P. 159, Definition 7.3.1 (i). Recall the definition:

Let C be a U-small category (Definition [5| p. , let S be a right multiplicative
system, and let @) : C — Cs be the right the localization of C by §. A functor
F : C — Ais said to be right localizable if QT F exists, in which case we say that QTF
a right localization of F', and denote this functor by RgF'.

In terms of (a) p.[65] the condition is that there is a morphism of functors
T :F — RsF o(Q such that for all G : Cs — A and all w : FF — G o @) there is a
unique v : RgF' — G such that (vx Q) o7 = w:

F —T+ RsFoQ RsF
w lv*Q ifu
GoQ G.

(Recall that x denotes the horizontal composition of morphisms of functors; see
Definition [35] p. 32])
§ 252. P. 159, Definition 7.3.1 (ii). The following proposition is obvious:

Proposition 253. In the setting of assume that F(s) is an isomorphism for
all s in 8. Recall that o : 8% — C is the forgetful functor (X',s) — X' (see
Definition 7.1.9 p. 153 in the book). Definep: Foa™ — AF(X) by px: s := F(s)™".
Then F(X) is a universal inductive limit of Foa in A in the sense of Deﬁnition
. . In particular F is universally right localizable, RsF ~ Fs (for the definition
of Fs, see condition (c) in Deﬁm’tion . , and for any functor K : A — A’

the diagram below commutes

c—E2 A

!
Cs (KoF)s A

158
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§ 254. P. 160, Proposition 7.3.2. (See also p.[14)

(a) The second sentence of the proof reads: “By hypothesis (i) and Corollary 7.2.2,
g : I — Cs is an equivalence”. It is also worth noting that 7 is a right multiplicative
system in Z.

(b) The third sentence of the proof reads: “By hypothesis (ii) the localization Fr
of F o exists”. See Proposition 253] By Proposition 245] p. [155] there is a unique
functor Fr: I+ — A such that

FroQr=Fo.u. (101)

(c) Recall the diagram

7)

s —— A.

R

T

I
N

To each functor G : Cs — A the book attaches a bijection
fo : Hom 4es (RF, G) — Hom gc(F, G 0 Qs).
We must verify that we have
fa(p) = (p* Qs) o frr(idrr) (102)

for all G : Cs — A and all i : RF — G (see Definition [35] p. [32] and § 251 p. [158).

Here is a picture:

@

AN

AN

159
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) GoQs
M*Qs]\
RFo
A < Qs C
frRF (idRF)T
\ F

We can assume that we have the following equalities between functors:
RF:FTOLE, LélOLQZidZT, Foir=FroQr, @sot=190QT.
This gives in particular:

RFOQSOL:FTOLC_QIOQSOL:FTOLEQIOLQOQT:FTOQT:FOL.

Note that fg is characterized by the equality

(xt) o fa=x(Lg o Q7).

Here is a picture:

, GoQs

A o [
\ F
, G

A n Cs 29T 1
S RF

Setting € := frp(idrr), we get

ext=1dpo, .

160
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For p in Hom 4cs (RF, G), Equality (102) is then equivalent to the equality

(uxQs)oe)xt=pxig*Qr,

which is straightforward:

) GoQs
M*Qs]\
RFOQS
A < C+—1
il
) F
, GoQgsot
M*QS*LT
A y Fou T
idFOLT
N Fou

(d) The last claim in Proposition 7.3.2 is the existence of an isomorphism
RFoQsot~Fou.
This can be proved as follows:
RFOQSOLERFOLQOQTZFTOLZQIOLQOQTEFTOQTEFOL,

the last isomorphism following from ((101)).

(e) For each X in C let us denote by sy : X — ¢(Wx) the morphism in & with Wx
in Z which exists by assumption. Then we can define RF' by

RE(Qs(X)) := F(«(Wx)).

Moreover, the structural morphism F' — RF o (s is given by

FX) 22 p((Wy)) = RE(Qs(X)).

161
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(f) If we set W (X) := Wx, then the functor
“colim” F((W)) e A

(W(X)-»W)eTW )
is represented by RF(X).

§ 255. P. 161. We paste Display (7.3.7), which appears in Proposition 7.3.3 (iii)
p. 161 of the book:
(RsF)(Q(X)) ~ colim F(Y). (103)

(X—Y)esX

Let C be a U-category (Definition [4] p. [10), and let V be a universe such that & € V
and C is a V-small category (Definition [p|p.[10)). Writing A for the category of V-sets,
Proposition 7.3.3 (iii) of the book implies the following:

Let X and Y be two objects of C.
If § is a right multiplicative system in C, then the functor
RsHome(X, )
exists and is isomorphic to Homez (X, ).
Similarly, if S is a left multiplicative system in C, then the functor
Rsor Home( ,Y)
exists and is isomorphic to Homee (-, Y).
§ 256. P. 161. We prove the isomorphism at the bottom of p. 161.

Recall the setting: S is a right multiplicative system in a category C such that
8% is cofinally small for all X in C. Let X and Y be in C. It is claimed in the book
that there is a natural isomorphism

colim  Home(X,Y') =  lim colim Home (X', Y7). (104)
(Y—=Y")esSY (X—=X"NeSX (Y—=Y)esSY

We can rewrite (|[104) as

Home, (Q(X),Q(Y)) = lim  Home (Q(X"), Q(Y)). (105)

(X—X")eSX

For X — X' in S let
plX = X' lim  Homey (Q(X"), Q(Y)) — Homey (Q(X), Q(Y))

(X—X")eSX

162
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be the projection, and define the maps

Home, (Q(X),Q(Y) ==l Home, (Q(X'),Q(Y))

g (X—X')eSX
as follows: We define f by
pIX = X|(£(Q(X) = Q1)) = QX)) = QLX) — Q(Y))

for X — X" in S, where Q(X’) — Q(X) is the inverse of Q(X — X'), and we define
g by
id
g :=plX — X].

To show that f o g is the identity of the right-hand side of ((105)), note that we have
in the above notation

plX = X'] (f <g((Q(X") — QO/DX»X”)))

= plX > X (f(QU0) = Q)
= (QX") = Q(X) = Q) = p[X = X|((QX") = Q) ).
The proof that go f is the identity of the left-hand side of is similar and easier.

§ 257. P. 162, Display (7.4.3). We must prove Rg(tq40 F) ~ IF o as. Let X be in
C. Tt suffices to show Rs(t40 F)(Q(X)) ~ I F(as(Q(X))). We have

Rs(tyo F)(Q(X)) ~ colim 14(F(X"))

(X—X"esX
~ [F li X)) ~IF X
(| colim 1e(X) ) = IFlas(@(X)

the isomorphisms following respectively from (7.3.7) p. 161 of the book, Proposition
6.1.9 p. 133 of the book and Proposition 7.4.1 p. 162 of the book.

§ 258. P. 162, Definition 7.4.2. If F : C — A is a functor and X an object of C,
then the condition that F' is right localizable at X does not depend on the choice of
a universe U such that C and A are U-categories (Definition [4] p. [L0).

§ 259. P. 162, proof of Lemma 7.4.3. Recall the statement:
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Lemma 260 (Lemma 7.4.3 p. 162). If G : A — A’ is a functor and F is right
localizable at X, then G o F' is right localizable at X .

Proof. This follows from Proposition [69] p. 58 O

§ 261. P. 163, Remark 7.4.5. In this § we adhere to Convention 11.7.1 of the book,
according to which, paradoxically, in the expression Home(X,Y'), the variable Y is
considered as the first variable and X as the second variable.

Let S be a left and right multiplicative system in C, and let X and Y be two
objects of C. §255| p. implies that the functors

RS HOHIC (X, ), RSOP Homc( s Y), RSXSOp HOHIC

exist and satisfy
Home, (X,Y) ~ Rs(Home(X, ))(Y)

~ RSop ( Hom(;( y Y)) (X) ~ RSXSOP HOInc(X, Y)
More precisely, if, in the diagram

RS Hc(X, )(Y) E— Rsxgop Hc(X, Y) — RSop Hc( ,Y)(X)

\ I / (106)

HCS<X7 Y)7

where we have written H for Hom to save space, the horizontal arrows are the natural
maps, and the other arrows are the above bijections, then (106) commutes and all
its arrows are bijective.

§ 262. Exercise 7.4 p. 164.

Statement: In a category endowed with a right multiplicative system S, if there
is a diagram
7 ——Y +—— X

| |
W V

~
A

<

g

164
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with s, € S and Q(d)oQ(s) toQ(a) = Q(t) ' oQ(boc), then there is a commutative
diagram

Z —=Y <+ X
¢ A ¢
W f>T<u U

with u € S and Q(u)™* o Q(f) = Q(t)~! o Q(b). [This statement solves clearly the

exercise.|

Proof: We build a commutative diagram

J —25Y - X

with u,v,w € § by forming firstly g and v, secondly A and w, and thirdly f and wu.

10 About Chapter 8

10.1 About Section 8.1

The following definition of a commutative group object is much less general and
much less elegant than the one in the book (p. 168), but it is slightly simpler and
seems sufficient in this context.

Let C be a category with finite products; let 0 be the terminal object of C; let X
be in C; let p1,ps : X x X — X be the projections; and let v: X x X — X x X be
defined by the equalities

R
for all 4, j such that {7,5} = {1,2}.
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A structure of commutative group object on an object X of C is a triple («, e, a)
satisfying the following conditions:

We have
a: X xXxX—=>X, e:0-X, a:X—=X,

and the following diagrams commute:

id X«

XX XxX —XxX

axid | Jo

XXXT>X,

x 449 v o x
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10.2 About Section 8.2
10.2.1 Definition 8.2.1 p. 169

The proposition and lemma below are obvious.

Proposition 263. Let C be a pre-additive category, let A be the category of addi-
tiwe functors from C°P to Mod(Z), let h : C — A be the obuvious functor satisfying
R(X)(Y) = Home (Y, X) for all X and Y in C, let X be in C and A in A, and let

Hmndh@YLA)zéiijX)

be defined by
®(0) = Ox(idx), ¥(z)(f) = A(f) ().

Then ® and V¥ are mutually inverse abelian group isomorphisms.

(See Theorem [36] p. [33])

Convention 264. In the above setting we denote A by C" and h by he. (This abuse
is justified by Proposition [263])

Lemma 265. Let C and C' be pre-additive categories, let A be the category of additive
functors from C to C', and let o : I — A be a functor such that colim a(X) exists in
C’ for all X in C. Then colim « exists in A and satisfies

(colim ) (X) =~ colim a(X)

for all X in C. (There is a similar statement for projective limits.)

10.2.2 Lemma 8.2.3 p. 169

Here is a statement contained in Lemma &8.2.3:

Corollary 266. Let C be a pre-additive category, let X1 and Xy be two objects of C
such that the product X = X1 x Xy exists in C, let p, : X — X, be the projection,

and define i, : X, — X by
, {m& ifa=>b
Pa ©1p =

0 if a #b.
Then X is a coproduct of X1 and X5 by iy and i5. Moreover we have

i1 0p1 + 12 0Py = idx, xx, -
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For the reader’s convenience we reproduce the statement and the proof of Lemma
8.2.3 (ii) p. 169 of the book:

Lemma 267 (Lemma 8.2.3 (ii) p. 169). Let C be a pre-additive category; let X, Xy,
and X, be objects of C; and, fora = 1,2, let X, “% X 2% X, be morphisms satisfying

paoib:(sab ian7 i10p1+i20p2:idx.

Then X is a product of Xy and X5 by p1 and ps and a coproduct of X1 and Xy by 1,
and is.

Proof. For any Y in C we have
Home (Y, pa) 0 Home (Y, 4) = 0ap idHome (v, X.)5
Home (Y, 4;) o Home (Y, py) + Home (Y i2) o Home (Y, po) = idHome (v, X) -

This implies that Home(Y, X) is a product of Home(Y, X;) and Home(Y, X5) by
Home (Y, p1) and Home(Y, p2), and thus, Y being arbitrary, that X is a product of
X, and X, by p; and py, and we conclude by applying this observation to the opposite
category. O]

Note also the following corollary to Lemma 8.2.3 (ii) (stated above as Lemma

267).

Corollary 268. Let F': C — C' be an additive functor of pre-additive categories; let
X, X1 and Xy be objects of C; and, for a = 1,2, let X, Loy X Poy X, be morphisms
such that X is a product of X1 and X5 by p1,ps and a coproduct of X1 and Xo by
i1,13. Then F(X) is a product of F(X1) and F(X3) by F(p1), F(p2) and a coproduct
of F(X1) and F(Xs) by F(i1), F(ia).

10.2.3 Brief comments

§ 269. P. 170, Corollary 8.2.4. Recall the statement:

Corollary 270 (Corollary 8.2.4 p. 170). Let C be a pre-additive category and let
X1, X, €C. If X1 x Xy exists in C, then X1 U Xy also exists. Moreover denoting by

168



10.2 About Section 8.2 10 ABOUT CHAPTER 8

i X; — XU Xy and p; : Xy X Xy — X the j-th co-projection and projection, the
morphism r : X7 U X — X X Xy given by

. dx, fj=k
pjoroi, = o
0 if 1 # k.

1s an isomorphism.

Convention 271. Let X; and X, be two objects of a category C. Assume that the
product X; x X5 and the coproduct X; LI X, exist in C and are isomorphic. In such
a situation, we make a new exception to Convention 38| p. [36} we set X; @ X5 :=
X1 x X5, we transport the coprojections of X7 U X5 to X7 @ X5 and redefine X; LI X,
by setting

XiUXs: =X Xy =X, x X,

so that X; & X5 is at the same time a product and a coproduct of X; and Xs.

The following lemma, whose proof is left to the reader, is implicit in the book.

Lemma 272. Fora = 1,2 let f, : X, — Y, be a morphism in a pre-additive category
C. Assume that X1 @ Xo and Yy ® Ys exist in C (see Convention above). Then
we have

fixfa=filfo
(equality in Home (X7 @ X5, Y @ Y3)).
We denote this morphism by f; & fs.
§ 273. P. 171, Corollary 8.2.6. Recall the statement:

Corollary 274 (Corollary 8.2.6 p. 171). Let C be a pre-additive category, X,Y € C
and f1, fo € Home(X,Y'). Assume that the direct sums X & X andY @Y ewist (see
Convention . . Then f1+ fo € Home (X, Y) coincides with the composition

X5 xax 2 yvay 2y

Here 6x : X - X x X = X @& X is the diagonal morphism and oy : Y ®Y =
YUY — Y s the codiagonal morphism.
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Proof. For a =1,2 let

Pa qa
XoX X Yoy — 2V
iq Ja

be the projections and coprojections. Writing xy for x o y we have

oy (fi1® f2) 6x = Z oy Ja Ga (f1 ® f2) i Dy Ox

a,b

:Z qa (fl@fg) Zb:Z 4a (fl@f2) Z-a:f1_|—f?>
a,b

a

the second equality following from the definitions of oy and dx, and the third and
fourth equalities following from the definitions of f; @ fo. (The justification of the
first equality is left to the reader.) ]

§ 275. P. 172, Lemma 8.2.9. Recall the statement:

Lemma 276 (Lemma 8.2.9 p. 172). Let C be a pre-additive category which admits
finite products. Then C s additive.

Let us check that C has a zero object. (This part of the proof is left to the reader
by the authors.)

Let X and Y be in C. By Lemma 8.2.3 p. 169 of the book, the product X x Y
is also a coproduct of X and Y. Let us denote this object by X &Y. Let T be a
terminal object of C. For any X in C we have a natural isomorphism X &7 ~ X. In

particular 7" can be viewed as 1" LI T" via the morphisms 7T’ o 7 This implies
successively that, for X in C, the diagonal map

Home (T, X ) — Home(T, X) x Home(T, X)

is bijective, that the set Home (7', X') has at most one element, and that it has exactly
one element. As X is arbitrary, this entails that 7" is a zero object. q.e.d.

Also note that Corollary 8.2.4 p. 170 of the book is useful to prove Lemma 8.2.9.
§ 277. P. 172, Lemma 8.2.10. Let me state the result in a more explicit way:

Lemma 278 (Lemma 8.2.10 p. 172). If X is an object of an additive category C,
then the morphism
XxX=XUX "+ X

defines a structure of a commutative group object on X.
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The associativity of the addition can also be proved as follows:

Put X" :=X & ---® X (n factors), and let X oy Xm 2% X be respectively the
a-th coprojection and the codiagonal morphism. It clearly suffices to show that the
composition

X
X3 208, X2 2 x

is equal to o3. This follows from the fact that the composition

X oy x3 20X 52
b {1 ?fa:1,2
2 ifa=3.

§ 279. P. 173, proof of Proposition 8.2.13. The fact that any X in C has a structure
of commutative group object follows from Lemma 8.2.10 p. 172 of the book.

is equal to 7, with

q.e.d.

§ 280. Proposition 8.2.13 p. 173. Let C be an additive category, let C’ be the category
of finite product preserving functors from C to Mod(Z), let C” be the category of finite
product preserving functors from C to Set, let U be the forgetful functor from Mod(Z)

to Set and define the functor V : C” — C’ by the formula (V(F))(X) := (F(X),+),
where + is the addition defined in the proof of Proposition 8.2.13.

Proposition 281. In the above setting, the functors V and Uo : C' — C" are
mutually inverse isomorphisms (not just mutually quasi-inverse equivalences).

Proof. For F'in C", for G in C" and for X in C we have

((Wey e V)())(x) = U((V(F)) (X)) = F(X)

and
(Ve (U))@)) = (V(U 2 6))(xX) = G(X).

Indeed, the last equality follows from Lemma 8.2.11 p. 172 of the book, and the
others are straightforward. ]

§ 282. P. 173, Theorem 8.2.14. Let me state the result in a more explicit way:
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Theorem 283 (Theorem 8.2.14). If C is an additive category, then C has a unique
structure of a pre-additive category. More precisely, for f and g in Home(X,Y'), the
morphism f + g € Home(X,Y') is given by the composition

X 2, xxx 9 yxy

Xuxfmﬁyuy—ﬂ+y

Let me also try to rewrite the beginning of the proof:

Let X € C. By applying Proposition 8.2.13 p. 173 of the book (see p.
to the functor F' := Home (X, ), we obtain that Home(X,Y') has a structure of an
additive group for all Y in C. Then Lemma 8.2.11 p. 172 of the book implies that
the addition on Home (X, Y') is given by the above commutative diagram.

We complete the proof by showing as in the book that this addition does define
a pre-additive structure on C.

§ 284. P. 173, Theorem 8.2.14 (stated above as Theorem 283]). Consider the following
claims:

(a) the fields Q and F3(X) have isomorphic multiplicative groups,

(b) there is a category C admitting two pre-additive structures p and ¢ such that
there is no additive equivalence from (C,p) to (C, q).

We leave it to the reader to prove (a) and to show that (a) implies (b).

§ 285. P. 173, Proposition 8.2.15. Recall the setting: F': C — C' is a functor between
additive categories, and the claim is:

Fis additive < F commutes with finite products.
I think the authors forgot to prove implication =. Let us do it. It suffices to

show that F' commutes with n-fold products for n =0 or n = 2.

Case n = 0: Put X := F(0). We must prove X ~ 0. The equality 0 = 1 holds
in the ring Home (X, X) because it holds in the ring Home(0,0). As a result, the
morphisms 0 — X and X — 0 are mutually inverse isomorphisms.

Case n = 2: Let X4, X5 be in C. The natural morphisms
F(X;8 Xs) &2 F(X,)® F(X,)
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are mutually inverse isomorphisms by Corollary p. [16§ above. q.e.d.

§ 286. Let us insist on the main point.

If C is an additive category, then the following categories are canonically isomorphic:
the category C' of finite product preserving functors from C to Mod(Z),
the category C" of finite product preserving functors from C to Set,
the category C" of additive functors from C to Mod(Z).

Moreover C' and C" are equal.

This follows from §280] p. [171] and §285| p. [172]

10.3 About Section 8.3
10.3.1 Proposition 8.3.4 p. 176

Here are a few more details about the proof of Proposition 8.3.4. Recall the setting:
We have a morphism f : X — Y in an abelian category C. Let P be the fiber product
X Xy X;let p1,pe : P = X be the projections; let p be the morphism p; — ps from
P to X; and consider the diagram

Ker f —— X —% Cokerh

P > X > Coker p =——= Coim f,

p b

g
g

where h, a, and b are the natural morphisms.

We claim bo h = 0. Indeed, we define ¢ : Ker f — P by the condition p; o ¢ =
h,ppoc=0:
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and we get boh =bopoc=00c=0. This proves the claim. Hence, there is a
unique morphism d : Coker h — Coim f making the diagram

Ker f —» X —% 4 Cokerh

|k

P r X —— Coim f === Cokerp

p

commute.

As p factors through h, we have a o p = 0, and there is a unique morphism
e : Coim f — Coker h making the diagram

Ker f ——+ X —%— Cokerh

| T

P » X —— Coim f == Cokerp

p

commute.

It is easy to see that d and e are mutually inverse isomorphisms. In short, there
is a natural isomorphism Coker h ~ Coim f which makes the diagram

Ker f —— X —%— Cokerh
T o
P > X » Coim f === Cokerp

p b

commute.

Dually, let S (for “sum”) be the fiber coproduct Y @&x Y, let i, : Y — S be the
coprojection, let ¢ be the morphism i; — i3 from Y to S, and consider the diagram

Imf ——Y LS

Kerk —2—» Y p > Coker f

where a,b, and k are the natural morphisms. Then there is a natural isomorphism
Im f ~ Ker £ which makes the diagram

Im f > Y L4 S

NI ‘ (108)

Ker k Y T Coker f
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commute. Let us record these observations:

Proposition 287. In the above setting there are natural isomorphisms

Coker h ~ Coim f, Im f ~ Kerk
which make Diagrams (107) and (108)) commute.

Note that we can splice Diagrams (107)) and ((108]):

Ker f h, X > Coker h

P 7 X > Coim f
Im f > Y S
Ker k > Y » Coker f.

10.3.2 Definition 8.3.5 p. 177

The following definitions and observations are implicit in the book. Let A be a
subcategory of a pre-additive category B, and let ¢+ : A — B be the inclusion. If A
is pre-additive and ¢ is additive, we say that A is a pre-additive subcategory of B. If,
moreover, A and B are additive (resp. abelian), we say that A is an additive (resp.
abelian) subcategory of B. Now let A and B be categories. If B is pre-additive (resp.
additive, abelian), then so is the category C := B4 of functors from A to B. Assume
furthermore that A is pre-additive. If B is pre-additive (resp. additive, abelian), then
the full subcategory D := Add(A, B) of C whose objects are the additive functors
from A to B is a pre-additive (resp. additive, abelian) subcategory of C.

10.3.3 The Complex (8.3.3) p. 178

Let us just add a few details about the proof of the isomorphisms

Imu ~ Coker(¢ : Im f — Ker g) ~ Coker(X' — Ker g)

109
~ Ker(1) : Coker f — Im g) ~ Ker(Coker f — X"), (109)
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labeled (8.3.4) in the book. Recall that the underlying category C is abelian, and
that the complex in question is denoted

x L x4 x (110)

We shall freely use the isomorphism between image and coimage, as well as the

abbreviations
K, :=Kerv, K :=Cokerv, I,:=Imuv.

Let us also write “A = B” for “the natural morphism A — B is an isomorphism”.

Proposition p. can be stated as follows.

Proposition 288. Let f : X — Y be a morphism, and consider the commutative

diagram
h . X / .Y k
K;L > ]f > Kk

Then the bottom arrows are isomorphisms.

\ /
I Kf

Going back to our complex (110]) p. let us introduce the notation

X' ! N '¢ g . X
X — s [ =2 K, »2s X —» K w>>]g>d>X”
K, » £ > K, “ » K b » K|,
K! : s 1, '; s K.
By Proposition 287 p. [I75]
i and j are isomorphisms. (111)
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We shall prove

k 14 i J
K’ » K, s K! —— 1, » Ky, —— Ky —— Kyoy.

@poa ~ ~ e ~

This will imply (109) p. [175]

The morphisms £ and n are isomorphisms because a is an epimorphism and d a

monomorphism. Thus, in view of (111]), it only remains to prove that

¢ and m are isomorphisms.

There is a natural monomorphism from 7 to K,. Indeed, we have
uopoa=co f=0.

As a is an epimorphism, this implies u o ¢ = 0.

It is easy to see that there is a natural monomorphisms from K, to K.. By

Proposition p. , we have Iy = K., and it is easy to see that this implies

I} = K. Similarly we prove K/, = I,,.

We can thus complete our previous diagram as follows:

X’ ! y X g y X"
® b P d
X —= Iy > > K, y X C»K} » 1, > y X
// K\
Lf/ H H AN
K, » > K, “ / » K|,

. h
7 Kf \
- > I, ; > K,

(The two dashed arrows have been added.) Now ((112)) is clear.

e
!/
Ke
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10.3.4 Brief comments

§ 289. For the reader’s convenience we state Lemma 8.3.11 p. 180. Consider the
commutative square

x Ly

Jo (13)

in the abelian category C.
Lemma 290 (Lemma 8.3.11 p. 180). We have:
(a) Assume that is cartesian.

(i) We have Ker f' = Ker f.

(i) If f is an epimorphism, then is cocartesian and [’ is an epimorphism.
(b) Assume that is cocartesian.

(i) We have Coker f = Coker f.

(ii) If f" is a monomorphism, then is cartesian and f is a monomorphism.
§ 291. P. 180, Lemma 8.3.12. Here is a minor variant:

Lemma 292. For a complex Z — Y — X in some abelian category, the following
conditions are equivalent:

(a) the complez is exact,

(b) any commutative diagram of solid arrows

V- » W
ANy
+Z y Y y X

can be completed as indicated (V — W being an epimorphism,),

(¢c) any commutative diagram of solid arrows

A s Y 5
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can be completed as indicated (W — V' being a monomorphism,).

Proof. Equivalence (a) < (b) is proved in the book, and Equivalence (a) < (c)
follows by reversing arrows. ]
§ 293. Here are two lemmas which be used in the sequel:

Lemma 294. Let

72,y _",Xx
[ R
Z —— W f>V

be a commutative diagram of complexes in an abelian category, and assume that the
right square is cartesian.

(a) If e is a monomorphism, so is a.

(b) If f is an epimorphism, so is b.

(c) If the bottom row is exact, so is the top row.

Proof. Part (a) is obvious, and (b) follows from Lemma [290| (a) (ii) p.[L78 To prove
(c), let g : U — Y be a morphism satisfying bg = 0 (in this proof we write uv for

uov). By Lemma m, (a) < (b), p. [178] it suffices to complete the commutative
diagram

Vs U

i 0

Z\:r gl \
Z —Y . >y X

as indicated. Consider the larger commutative diagram

Invoking again Lemma , (a) < (b), p.|178, we find an epimorphism h : V — U
and a morphism ¢ : V' — Z such that cgh = ei, and it suffices to prove gh = ai. But
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the equality gh = at is equivalent to the conjunction of the equalities cgh = cai and
bgh = bat, equalities whose proof is straightforward. O

Lemma 295. Let

7+ ,y b, x
T R
W ——V f>X

be a commutative diagram of complexes in an abelian category, and assume that the
left square is cartesian.

(a) If e is a monomorphism, so is a.
(b) If the bottom row is exact, so is the top row.
Proof. Part (a) follows from Lemma (a) (i) p. [L78] Let us prove (b). By

Lemma (a) < (b), p. 178 it suffices, given a morphism ¢ : U — Y such
that bg = 0, to complete the commutative diagram

T--"s U

| 0

7,\:/ gl \
Z ——Y —/ X

as indicated. (In this proof we write uv for u o v.) Invoking again Lemma [292] (a)
& (b), p.[178} we find h: T — U and j : T — W such that ej = dgh:

h

T —>U
jl dglx
W ——V f>X.

As ej = dgh, there is a unique morphism ¢ : 7' — Z such that ¢i = j and ai = gh. O
§ 296. Page 181, the Five Lemma (minor variant of the proof).

Theorem 297 (Lemma 8.3.13 p. 181, Five Lemma). Consider the commutative
diagram of complexes

1

0
X0 2, xl 2, x2_9 , X3

f“l fgl lfQ IfS

YO

i
e

o bt b
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where fO is an epimorphism, f! and f3 are monomorphisms, and X' — X? — X3
and Y° — Yt — Y? are exact. Then f? is a monomorphism.

Proof. Note that Equivalence (a)<(b) in Lemma[292] p. can be stated as follows:

(x) f: X — Y is an epimorphism if and only if any subobject of Y is the image of
some subobject of X.

We write fx for the image of a subobject z of X, and fg for fog.

Put 2% := Ker f2. Using (%) we see that there is:
e a subobject ! of X! such that 2% = a'x! (because f? is a monomorphism, f3a%2? =
0, and X! o x2 D X3 s exact),
e a subobject 3° of Y? such that flz! = %° (because b flz! = 0 and Y° Poyr iy
is exact), and
e a subobject z¥ of X such that 3° = f%2% (because f¥ is an epimorphism).

This yields
Fla0q0 = 10 050 — 0,0 — §1,1
implying a’z® = 2! (because f! is a monomorphism), and thus

0=a'a’s’ =a'2' =2°

]

§ 298. P. 181, Lemma 8.3.13 (Five Lemma). We spell out the dual of Theorem 297
above.

Theorem 299. Consider the commutative diagram of complexes

1

0
X0+, xlt 2 , x2_ ¢ X3

fol fjl lfQ If3

YO

S
S

po pt "’ b2

where fO and f? are epimorphisms, f* is a monomorphism, and X° — X! — X2
and Y' — Y2 = Y3 are exact. Then f! is an epimorphism.

§ 300. P. 182, proof of the equivalence (iii)<(iv) in Proposition 8.3.14. Here is the
statement of the proposition:
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Proposition 301 (Proposition 8.3.14 p. 182). Let 0 — X’ Lx % x50
be a short exact sequence in an abelian category C. Then the conditions below are
equivalent:

(i) there exits h : X" — X such that g o h = idxn,
(i) there exits k : X — X' such that ko f = idx,

(iii) there exits h: X" — X and k: X — X' such thatidx = fok+hog,

(iv) there exits o = (k,g) and p = (f, h) such that X 5 X'® X" and X' ® X" YX
are mutually inverse isomorphisms,

(v) for any Y in C, the map Home(Y, X) L5 Home (Y, X") is surjective,
(vi) for any Y in C, the map Home(X,Y) LN Home (X", Y) is surjective.

The authors say that the equivalence (iii)<(iv) is obvious. I agree, but here are
a few more details. Implication (iv)=-(iii) is indeed obvious in the strongest sense of
the word. Implication (iii)=-(iv) can be proved as follows.

Assume (iii), that is, we have morphisms h : X” — X and k : X — X' such that
fok+hog=idx. (114)
As go f =0, this implies
gohog=gofok+gohog=goidx =g.

Since ¢ is an epimorphism, this entails goh = idx». We prove similarly ko f = idx.
Let us record the two above equalities:

gOh:ian, kof:idX/. (115)
Now (1) and ([T3) imply
koh=ko(fok+hog)oh=kofokoh+kohogoh=koh+koh,

and thus
koh=0, (116)

and (iv) follows from (114]), (115) and (116). q.e.d.
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§ 302. P. 183. Here is an example showing that filtrant and cofiltrant small projective
limits of R-modules are not exact in general:

lim (Z — Z/2"Z — 0) = (Z — Zy — 0).

neN
§ 303. P. 184, Definitions 8.3.21 (v) and (vi). See §[11] p. [15]

10.3.5 Proof of Lemma 8.3.23 p. 184

In the book, the proofs of the two lemmas below are left to the reader.

Lemma 304. If

Yy —— Y > 0
cl lid
0 Y —— X —— Y > 0

is an exact commutative diagram in an abelian category, then' Y @'Y’ ﬂ X s an

epimorphism.

Proof. In this proof below we write ¢ for ¥ o ¢, and we tacitly use Lemma [292
p. [I7§

Let x : Z — X and let us show that the solid diagram

may be completed as indicated. We get a commutative square

V—f»Z

e

Y - Y//
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and then a commutative diagram

W —2L%V

y’l lefcy

Y’ s s X sy Y
a b *

Setting d := fg,e := (yg,y’) yields

(c,a)e = (c,a)(yg,y') = cyg+ay' = cyg+xfg—cyg = xfg = zd.

]
Lemma 305. If

0 0
7 —2 Y
b c

0 sy X —2 5 W —<5 VvV s 0
| 9

0 s X h>U Z>T > 0
0 0

15 an exact commutative diagram in an abelian category, then a is an isomorphism.

Proof. In this proof below we write ¢ for ¥ o p, and we tacitly use Lemma [292
p- 78
We claim
a is a monomorphism. (117)

Let 2z : S — Z satisfy az = 0, and let us show z = 0. We have ebz = 0, and the solid
diagram
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may be completed as indicated, yielding successively hx = fdx = fbzj =0, z = 0,
bzj =0, bz =0, z=0. This proves ((117)).

We claim
a is an epimorphism. (118)

Let y : S — Y and let us show that the solid diagram

may be completed as indicated. We get successively: a commutative square

Q—k»S

ol lcy

W —V;

equalities ¢ fw = gew = gcyk = 0; an exact commutative diagram

P—E»Q
| e
w h>V — 1}

equalities fdr = hx = fwl, f(wl — dx) = 0; an exact commutative diagram

R——% P

Zl wl—dx

A b>W f>U;

equalities caz = ebz = ewlm — edrm = ewlm = cyklm, az = ykfm; and it suffices
to set j := kfm. This proves (118)), and thus our lemma. ]

10.3.6 Brief comments
§ 306. On p. 185 we read:
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“Recall (see Proposition 5.2.4) that in an abelian category, the conditions below
are equivalent:

(i) G is a generator, that is, the functor o = Home (G, ) is conservative,

(ii) The functor ¢¢ is faithful.

Moreover, if C admits small inductive limits, the conditions above are equivalent
to:

(iii) for any X € C, there exist a small set I and an epimorphism GY — X.”

It would be better (I think) to refer to Proposition 2.2.3 p. 45 of the book for the
equivalence between (i) and (ii).

§ 307. P. 186, Definition 8.3.24 (definition of a Grothendieck category). The condi-
tion that small filtrant inductive limits are exact is not automatic. I know no entirely
elementary proof of this important fact. Here is a proof using a little bit of sheaf
theory. To show that there is an abelian category where small filtrant inductive
limits exist but are not exact, it suffices to prove that there is an abelian category
C where small filtrant projective limits exist but are not exact. It is even enough
to show that small products are not exact in C. Let X be a topological space, and
let Uy D Uy D --- be a decreasing sequence of open subsets whose intersection is
a non-open closed singleton {a}. We can take for C the category of small abelian
sheaves on X. To see this, let G be the abelian presheaf over X such that G(U) is
Z if a is in U and 0 otherwise, and, for each n in N, let F}, be the abelian presheaf
over X such that F,,(U) is Z if U C U,, and 0 otherwise. These presheaves are easily
seen to be sheaves. For each n in N and each open set U let F,,(U) — G(U) be the
identity if a is in U C U,, and 0 otherwise. This family of morphisms defines, when
U varies, an epimorphism ¢,, : F;, = G. Put

F=]]F., H=]]G ¢=]]v.:F—H.
neN neN neN

It suffices to show that the morphism ¢(a) : F(a) — H(a) between the stalks at
a induced by ¢ is not an epimorphism. This is clear because ¢(a) is the natural
morphism

q.e.d.
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§ 308. Recall the statement of Corollary 8.3.26 p. 186 of the book:

Let C be a Grothendieck category and let X € C. Then the set of quotients of X
and the the set of subobjects of X are small.

The proof is phrased as follows: “Apply Proposition 5.2.9”. One could add “. .. and
Proposition 5.2.3 (v)”.

§ 309. P. 186. Proposition 8.3.27 will be used to prove Corollary p. 238 below
(which is Corollary 9.6.6 p. 237 of the book), Corollary 14.4.6 (i) p. 361 and Corollary
14.4.9 p. 365 of the book. See also §310| below.

§ 310. P. 186. By Proposition 8.3.27 (i) and Lemma 3.3.9 p. 83 of the book, in
a Grothendieck U-category U-small (Definition [5| p. filtrant inductive limits are
stable by base change (see Section [4.6 p. [63).

10.4 About Section 8.4

This is about Proposition 8.4.7 p. 187. Let us just rewrite in a slightly less concise
way the part of the proof on p. 188 which starts with the sentence “Define YV :=
Yo xx G;” at the fifth line of the last paragraph of the proof, and goes to the end of
the proof.

It suffices to show that there is a morphism aq : G; — Y| satisfying [y o ag = ¢:

k I
— Yy —— X

e
F’\
N
go a0 s
Z G

g

Form the cartesian square

=

and the cocartesian square
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Let [; : Y7 — X be the morphism which makes the diagram

commutative. By Lemma (a) (i) p. 178} ¢ is a monomorphism, and, by Part
(b) (ii) of the same lemma, A is also a monomorphism. As Z is injective, there is a
morphism d : G; — Z satisfying d o c = gy o b:

y —t v,
1
GZ ___d__> Z.

By the definition of Y; there is a morphism ¢; : Y7 — Z such that

Yy — 5y,

1\

GlLYi

commutes. We get the commutative diagram

!
Y, 0 y X
!
X =25 Y, ==Y — X
hl go \T‘p
g1 ai
A d GIL

As ) is an isomorphism by maximality of (Yy, go, o), we can set ag := A™! o ay, and
we get
looa/o:loO)\_loa/l:llOAO)\_loal :lloalzgo.

q.e.d.
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10.5 About Section 8.5

10.5.1 Brief comments

§ 311. P. 190, Proposition 8.5.5. It might be worth writing explicitly the formulas
(for X, Y € Mod(R,C)):

Homgor (N, Home(X,Y)) ~ Home (N @ X,Y),
Hompg (M, Home (Y, X)) ~ Home (Y, Homg(M, X)),
R°P QR X ~ X,
Hompg(R, X) ~ X.
One could also mention explicitly the adjunctions

Mod(R°P) Mod(R)°P

—®RXlTHomc(X,—) HOmC(_:X)lTHomR(_vX)
C C,

where, we hope, the notation is self-explanatory.
§ 312. P. 191, proof of Theorem 8.5.8 (iii) (minor variant). Recall the statement:

Proposition 313 (Theorem 8.5.8 (iii) p. 191). Let C be a Grothendieck category, let
G be a generator, let R be the ring Ende(G)°P, put M := Mod(R), let ¢ : C - M
be the functor defined by ¢(X) := Home (G, X). Then ¢ is fully faithful.

Proof. Let ¢ : M — C be the functor defined by ¥(M) := G ®r M, let Cy be the
full subcategory of C whose objects are

0, G, GaoG, GGaGada, ...,
and let My be the full subcategory of M whose objects are

0,0, R, R®R, R®R®R,
Then ¢ and 1 induce mutually quasi-inverse equivalences

%o
Co T M,.
0
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We can assume that Cy and M, are small (Definition 5| p. [L0). If X : ¢ — (Co)" and
N i M — (Mp)" are the obvious functors, then the diagram

C —2— M

)| Js

(Co)" —— (Mo)"

0

quasi-commutes. The functors A and )\ are fully faithful by §310| p. and Theo-
rem p- above. As @, is an equivalence (a quasi-inverse being 1), see Propo-
sition 2.7.1 p. 62 in the book), the proof is complete. O

10.5.2 Theorem 8.5.8 (iv) p. 191
Here is a minor variant of Step (a) of the proof of Theorem 8.5.8 (iv). Recall the
statement:

Lemma 314. In the setting of Proposition assume that there is a finite set I,
an epimorphism RY — M in M, a small set S, and a monomorphism M — R®S.
Let ) : M — C be the functor defined by (M) := G @g M. Then (M) — (R®?)
s a monomorphism.
Proof. There is a finite subset F’ of S such that M ~— R®° factors as

M — R~ R®S.

As R is a direct summand of R®% the morphism ¢(R") — (R®%) is a mono-
morphism. In other words, we may assume S = F’, and it suffices to check that
(M) — (RF') is a monomorphism, or, more explicitly, that

f (M) — G is a monomorphism. (119)

Applying the right exact functor v to
RF — M — R™,

we get

K s GF 2 y(M) —1 GF,

\0_/
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where K := Ker(f op). Applying ¢ we obtain

/

(f) RF.

p(K) 2% RF 22 G (an)) 2L
V

The commutative diagram

o (K) - > RHF ’
gO(K) o(1) RF v(p) R (¢(M)) o(f) RF’
R —— M »——— R"

yields boao (i) = 0. As b is a monomorphism, we get a o (i) = 0, and thus
©(p) o p(i) = 0. Since ¢ is faithful by Proposition p. , this implies

poi=0. (120)
Let us prove (119). Let z : X — ¢(M) be a morphism in C satisfying f oz = 0.

It suffices to prove
x = 0. (121)

As p is an epimorphism, the diagram of solid arrows

G —5 (M)

can be completed, by Lemmam (b) () p. , to a commutative square as indicated,
¢ being an epimorphism. The commutative diagram of solid arrows

Yy ——— X

g
\ F A\ F
K —— G —» v(M) —— G
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can in turn be completed to a commutative diagram as indicated, and we get
roc=poioz=0

by (120). As ¢ is an epimorphism, this implies successively (121)), (119) and the

lemma. O]

10.6 About Section 8.6

§ 315. P. 193, second sentence of Section 8.6. The proof of the following statement
is straightforward.

Let C and C' be pre-additive categories, let C'° be the category of functors from C to
C', and let o : I — C° be a functor. Assume that a(i) is additive for all i in I, and
that the colimit colim o exists in C'°. Then colim« is additive. There is a similar
statement for limits.

§ 316. P. 193. Just before the statement of Proposition 8.6.2 it is claimed that the
inclusion

Ind(C) C ¢/edd

holds. This inclusion follows from Propositions 3.3.3 p. 82 (see Proposition m
p. , 6.1.7 p. 132, 8.2.13 p. 173 (see §286| p. [173) 8.2.15 p. 173 in the book.

§ 317. P. 194, Theorem 8.6.5 (ii). See §223|p. [140]
§ 318. Proof of Lemma 8.6.7 p. 195. The proof uses the following lemma:

Lemma 319. Let f : X — Y be a morphism in an abelian category, define f': X —
XY and f": XY =Y by [ = [H, f"=1[f —1] (obvious notation). Then

the sequence X i> XpY f—”> Y is exact.

Proof. 1t suffices to show that an arbitrary solid commutative diagram

may be completed as indicated. Let the above square be cartesian. Note that ¢ is of
the form [ fZ}h] with g : Z — X. It suffices to show that h is an epimorphism. Let
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j: Z — V be a morphism such that j o h = 0. It suffices to prove j = 0. The solid
commutative diagram

————— XoY
may be completed as indicated, yielding 0 = joho k = j. [

§ 320. P. 197, proof of Proposition 8.6.12. The existence of the epimorphism
X1 — Y follows from Proposition 8.6.9 in the book, and the statement “Since
the top square on the left is co-Cartesian, the middle row is exact” follows from the

Lemma p.

10.7 About Section 8.7
10.7.1 Lemma 8.7.3 p. 198

Let us spell out the proof of the fact that K («) is a monomorphism. Consider the
commutative diagram

7 -5y b y X
c d
W = s V

f x
g U i
|ER
T k>S z»R — Q,

where the five rectangles are cartesian, and the three sequences
T—-S—-R—->0 X=>V->QQ—-0, Z->W-=>U=0

are exact.
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We must check the j is a monomorphism.

(In the proof below we omit the composition symbols o and most of the paren-
thesis. We shall freely use the equivalence (a)«(b) in Lemma 292 p. [178])

Let u : P — U satisfy ju = 0, and let us show u = 0.

There is a commutative square

n

N —» P
w l
W—h»U.

As lgw = jhw = jun = 0, there is a commutative diagram
M —% N

el N
k>S €>R.

T

As tewp = mlgwp = mlkt = 0, there is a commutative diagram
L s M

l ewpl N

X Vi— Q.

\
7

d

As Z ~ T & X, we can introduce the coprojections ¢’ and f’ indicated below:

Z > Y > X
~ . )
W < SV
K x
g U i
I'—— S —>» R ——
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Define z : L — Z by z := f'tq+ a’x. We claim
caz = wpq. (122)

It suffices to verify
gcaz = qwpq, ecaz = ewpq.

The proof of the two above equalities is straightforward and left to the reader, so
that we consider that (122) has been proved. We get

unpq = hwpg = hcaz = 0.

As pq is an epimorphism, this implies u = 0, as desired. q.e.d.

10.7.2 Lemma 8.7.5 (i) p. 199

Let us spell out the proof of the fact that Coker(u) — Coker(v) is a monomorphism.
We shall use the same notation and arguments as in Section p. [193

In the commutative diagram

Y/
a
q
4 ——

w’ — VI/'7
the square ZY X X’ is cartesian and the sequences
Y - X—>W-—=0, VV=-X W =0

are exact.

We must show that e is an isomorphism. Clearly e is an epimorphism. It suffices
to prove that e is a monomorphism. Let w’: V — W' satisfy ew’ = 0. It suffices to
prove w’ = 0.
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Form the commutative square

U—L v

R

X' — w’.
As we have dbx’ = ect’ = ew’ f = 0, we can form the commutative diagram

T 9%

AN

0
Y > X d>W.

u

As we have bz’g = uy, we get a morphism z : T'— Z such that pz = 2/¢g and ¢z = v,
and we can form the commutative square

N

v |2

Y —» Z.
This yields w' fgh = cx’gh = c¢pzh = cpay’ = 0. As f, g and h are epimorphisms,
this implies w’ = 0, as desired. q.e.d.
Here is a second version:
P. 199, proof of Lemma 8.7.5 (i). As we have
Coker(Y xx X" — X') = Coker(u)

by Lemma p. we can assume X € J. Let b:Y’ — Y be an epimorphism
with Y € 7, and set v := ub, W := Coker(v), Z := Coker(u):

Y —— X S W > 0
S
Y » X y / > 0.

u d

(The above diagram commutes and the rows are exact.) We shall use Lemma
p. [I78] We must show that ¢ is an isomorphism. Clearly ¢ is an epimorphism. It
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suffices to prove that c is a monomorphism. Let w : T" — W satisty cw = 0. It suffices
to show w = 0. There are commutative diagrams with exact rows and equalities

R—»T
X —— W —0,
0 = cwt = caxr = dz,
Q —» R
|
Y —— X — 7,
P—1%Q
y’l ly
Y’ > Y > 0,

b
wtrq = arrq = auyq = auby’ = avy’ = 0.

As t,r and ¢ are epimorphisms, this implies w = 0, as desired. q.e.d.

10.7.3 Proof of (8.7.3) p. 200

Right after (8.7.4) we read

“The condition that K («) is an isomorphism is equivalent to the fact that the
sequence Y — X &Y' — X' — 0 is exact.”

It seems to me we get a counterexample by setting 0 ~ Y ~ X ~ X' 2 Y’ but
we can prove

(8.7.3) for @ : w — v in Mor(Dy), if K(«) is an isomorphism, then A’'(«) is an
isomorphism

as follows:
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Let av: u — v in Mor(Dy) be such that K («) is an isomorphism. By Proposition
8.3.18 p. 183, the diagram below commutes:

A”(‘u) Y@ aw)

Coker A(u) ke A®) , oker A(v)

Nl lw

A(K (u)) —2ED AR (v).

10.7.4 Proof of (8.7.2) p. 200

Let us spell out the proof of the claim
“The condition K («) = 0 implies that X Xy, Y’ — X is an epimorphism.”

(This is the third sentence of the last paragraph.)
We shall use the same notation and arguments as in Section p. [193]

We have the commutative square with exact columns

y — 2 5y

u v

2 ~

X 2 X/

u/ v’

Ku —25 Kv

L

S
L
S

Set Z := X Xx: Y and write p: Z — X and ¢ : Z — Y’ for the projections, so
that we must show that p is an epimorphism. Let x : W — X be given. It suffices

to complete the solid diagram

II/ Ly W
Z —— X
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as indicated. As v’z = 0, we get the commutative diagram

V —» W
al l\
Y’ > X' ;

v /

As ayza = vy we get the commutative diagram

V—/>Y’

| N T

X<—Z

10.7.5 Commutativity of the last diagram p. 200

I failed to prove that the triangle V1Y’ X, commutes, but it seems to me that this is

not needed.

10.7.6 Proof of Lemma 8.7.7 p. 201

The last sentence of the proof of Lemma 8.7.7 uses Exercise 8.19 p. 204 (see Section

p. below).

(In the rest of this section we omit the composition symbols o and most of the
parenthesis, we freely use Lemma 290 p. [I78 and Lemma [292] p. [I78] and we let the

setting of Lemma 8.7.7 of the book be in force.)

Lemma 321. If Z 5 Y L X =5 0 ds an evact sequence in C, then there is an exact

commutative diagram

~

h 7 J

f\ g\ \
|14 >y V >y U >
C d e
4 ——Y —/ X >
0 0 0

199
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with R, S, T,U,V,W in J.

Lemma 322. The solid diagram in C below can be completed as indicated to a com-
mutative diagram in C with Z in J :

Y
.|

- W

-~
@D
=
Q
> &

Proof of Lemma[323 Form the cartesian square

Vv sy

Note that h and i are epimorphisms. Let 2 7 %V bean epimorphism in C with
Z in J. We get the commutative diagram

Kerb —"— Z
ai X

V—Y
zi
Kerg » > X

h
le
f 7 N\

Set d :=ij. It only remains to check that c is an epimorphism. Let z : U — Kerg.
It suffices to complete the solid diagram

I

Kerb —— Kerg

as indicated. There is a morphism v : U — V such that

P

U v

—_—
N

200
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commutes, and there are morphisms & and 2z’ such that

T —*tsU
commutes. As we have bz’ = hjz’ = hvk = 0, there is a morphism z : T — Kerb
such that az = 2/, and we get fcz = ijaz = ij2’ = wk = fxk. Since f is a
monomorphism, this yields cz = xk, as desired. O]

The above proof shows that we have in fact:

Lemma 323. The solid diagram in C below can be completed as indicated to a com-
mutative diagram in C with Z in J :

Proof of Lemma[321. Let e : U — X be an epimorphism in C with U in J. A first
application of Lemma [323] gives a commutative diagram

Kerd —=% Kere
| |
Kerg » y V ! s U
| [k

7 — Kerb » > Y . » X

with V in J. A second application of Lemma [323] gives a commutative diagram

Kerd —% Kere
| |
U

W — Kerg » y V —L

S <L

7 — Kerb » s Y s X
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with W in J. Let R — Kere be an epimorphism in C with R in J. A third
application of Lemma [323| gives a commutative diagram

¢
Ker? ; s S S

l ¥ ¥

Kerm »—— Kerd — Kere

' '

~ ~

W —— Kerg »> >y V I s U
| d :
Z —» Kerb » > Y » X

b

with S'in J. Let Kerc « T » Ker/ be a diagram in C with T in J. We
finally get

¢
T —» Ker/ » > S »
Kerc Kerm —— Kerd —— Kere
g
W ——— Kerg » >V » U
¢ l d e
Z —» Kerb » > Y T X,
as required. O

10.8 About the exercises
10.8.1 Exercise 8.4 p. 202

Recall the statement:

Let C be an additive category and S a right multiplicative system. Prove that the
localization Cs is an additive category and ) : C — Cs is an additive functor.

It is easy to equip Cs with a pre-additive structure making () additive. Then the
result follows from Corollary [268] p. [I68
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The pre-additive structure on Cg is described in a very detailed way at the be-
ginning of the following text of Dragan Mili¢i¢:

http:/ /www.math.utah.edu/~milicic/Eprints/dercat.pdf

10.8.2 Exercise 8.17 p. 204

Preliminaries
Lemma 324. If
xLy %z (124)

are morphisms in an abelian category C (we do not assume go f = 0), then the
commutative diagram

Ker(g o f) > X > Im(go f) ——— 0
l )(//// l
0 » Im g > 7 > Coker g

of solid arrows, whose rows are exact sequences, can be completed as indicated. The
situation can also be represented as follows:

X !

> Y
Img ‘g
o
‘r// \
> 4.

Im(go f) >

In particular Im(g o f) — Im g is a monomorphism.

Proof. We claim that the diagram of solid arrows

X xz X X —% Coim(go f) —— 0
Y

//
f 7
7
b
7
7
gl //
K
Z

203

\
7
\
7

0 —— Img

)Z@yz,

C
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whose rows are exact sequences, can be completed as indicated. Indeed, the existence
of b follows from the equality go f o a = 0. To prove the lemma, it is enough to
check that b factors through Im g, or, equivalently, that cob = 0. As d is an
epimorphism, the vanishing of co b is equivalent to the vanishing of cobod. But we
have cobod=cogo f=00f =0. [

Lemma 325. If, in the setting of Lemma[326], f is an epimorphism, then
Im(go f) = Img

s an 1somorphism.

Proof. Consider the commutative square

x—1 .y

| |

Im(go f) —— Imy,

where a and b are the natural morphisms. As f and a are epimorphisms, so is b. [

Exercise 8.17 The exercise follows easily from Lemmas [326] and [327] below.

Let us denote the cokernel of any morphism h : Y — Z in any abelian category
by Z/Imh.

Recall that, by Proposition 8.3.18 p. 183 of the book, an additive functor between
abelian categories F': C — C’ is left exact if and only if

0— X' %5 X % X7 exact
= (125)

0= F(X) L px) M9 poxm) exact

!

Consider the condition

0 X' L X % X" 50 exact
= (126)
0— (X)L px) M9 p(x7Y exact

Lemma 326. We have <:).
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Proof. Implication = is clear. To prove <, let
0— X' 4 x & X"
be exact. We must check that
0— F(X') = F(X) = F(X")
is exact. Let I be the image of g. The sequence
0=-X'>X—>1-0

being exact, so is
0= F(X') = F(X)— F(I).

This implies that (127) is exact at F'(X’). The sequence
0=I—=X">X"/T=0

being exact, so is
0— F(I)— F(X"),

and we have

Ker (F(X) — F(I)) = Ker (F(X) — F(X")).
The exactness of (128)) implies

Im (F(X') = F(X)) = Ker (F(X) - F(I)),

and the exactness of (127 at F'(X) follows from ((129) and ((130]).

Consider the conditions below on our additive functor F : C — C’:

0—>X’1>Xi>X”—>Oexact

=
0 F(x) ™ Py M9 p(x7) 0 exact

S

’i> X % X" exact
=

Fx) " px)y M9 pxmy exact

Lemma 327. We have = :
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Proof. Implication < is clear. To prove =, let
X 5Hx s xr
be exact. We must show that
F(X')— F(X) — F(X") (133)
is exact. Let K,, Ky and I, denote the indicated kernels and image. The sequence
0—1, - X"—X"/I, -0

being exact, so is

0— F(I,) —» F(X"),

and we get
° Ker (F(X) — F(I,)) = Ker (F(X) — F(X")). (134)

The sequence
0= Ky —=>X—=1,—0

being exact, so is

F(K,) = F(X) = F(Iy),

and we get
° Im (F(Kg) — F(X)) = Ker (F(X) — F([g)). (135)

The sequence
0> K> X - K,—0

being exact, so is

F(X') = F(K,) — 0,
and the isomorphism
Im (F(X’) — F(X)) = Im (F K,) = F(X ) (136)

results from Lemma p. 204 with F(X') — F(K,) — F(X) instead of (124)
p- 203, The exactness of (133|) follows from ([134)), (135)) and (136]). ]
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10.8.3 Exercise 8.19 p. 204

Let
0 0 0
0 Z “>i; b>)l(
c d l
0 WLy 9,y
h 7

be a commutative diagram in an abelian category. If the first two rows and the last
two columns are exact, then the first column is exact.

Proof. (In this proof we omit the composition symbols o and most of the parenthesis,

and we freely use Lemma p. and Lemma p. )

Exactness at Z: If z : R — Z satisfies cz = 0, we get daz = fcz = 0, and thus z = 0.
Exactness at W: Let w : Q — W satisfy hw = 0:

Q
wlx
— W —T

The equalities i fw = jhw = 0 yield the commutative diagram

Z

P—k»Q

Lo N
d>V i>S,

Y

and the equalities eby = gdy = gfwk = 0 and thus by = 0 yield the commutative
diagram
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This implies fcz = daz = dyl = fwkl, and thus cz = wkt:

N %40
N
Z —— W ——T

For the reader’s convenience we spell out the statement:

Let

U—-5 X s 0

g b

i ooy
S s V > Y > 0

jl f a
' — W —12Z > 0

0 0

be a commutative diagram in an abelian category. If the last two columns and the
first two rows are exact, then the last row is exact.

10.8.4 Exercise 8.37 p. 211

It will be convenient to denote the identity morphisms by 1 and the shift morphisms
by s. We shall often write fg for fog.
(i) We follow the hint and make the

Claim. There is a split exact sequence

m m+41
0 —— @Xn BN @Xn — X —— 0,
n=0 n=0
that is, there is a diagram
m s m—+1 a
o—>@XnT>@XnT>XmH—>o
n=0 n=0
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such that

a(l—s)=0, b(l—s)=1, ac=1, (I1—-s)b+ca=1.

We shall only define a, b, ¢ for m = 2, leaving the rest of the proof of the claim
to the reader. So we assume m = 2. The morphism 1 — s is given by the matrix

1 0 0
s 1 0
I=s= 0 —s 1]’
0 0 -—s
and we define a, b, ¢ by the matrices
1 00 0 8
a=(s* s s 1), b:=|s 1 00|, c:=

9 0
s s 10 1

Part (i) of the exercise follows clearly from the claim.

(ii) This part follows from the previous one together with Theorem 6.1.8 p. 132 and
Proposition 6.1.19 p. 137 in the book.

(iii) I haven’t been able to solve this part of the exercise.

11 About Chapter 9

I find Chapter 9 especially beautiful!

11.1 Brief comments

§ 328. P. 217, beginning of Section 9.2.

Proposition 329. Let 7 be an infinite cardinal. The following conditions on a small
category I (Definition @ . @) are equivalent:

(a) For any category J with card(Mor(J)) < m and any functor

a: I x J% — Set
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the natural map
c?éilm glen} ali,j) — £1€r51 C?EIHI a(i, )
15 bijective.
(b) For any category J with card(Mor(J)) < m and any functor
a: I x JP — Set

the natural map
lim i T I .
colim lim a(i, j) lim colim a(i, g)
1S surjective.
(¢) The following conditions hold:

(cl) for any A C Ob(I) such that card(A) < « there is a j in I such that for any
a i A there is a morphism a — j in I,

(c2) for anyi and j in I and for any B C Homy(7, j) such that card(B) < m there
is a morphism j — k in I such that the composition i = j — k does not depend on
s€B.

(d) For any category J such that card(Mor(J)) < 7 and any functor ¢ : J — I there
is an i in I such that lim Homy(yp, 1) # &.

Proof. Implications (c) < (d) = (a) are proved in Proposition 9.2.1 p. 217 and
Proposition 9.2.9 p. 219 of the book. Implication (a)=-(b) is obvious. The proof of
Implication (b)=-(d) is the same as the proof of Implication (b)=-(a) in Theorem
3.1.6 p. 74 of the book. [

Definition 330 (7-filtrant category). Let m be an infinite cardinal and I a category.
Then I is w-filtrant if (and only if ) the equivalent conditions of Proposition are
satisfied.

§ 331. P. 218. One can make the following observation after Definition 9.2.2:

If I admits inductive limits indexed by categories J such that card(Mor(J)) < ,
then I 1s m-filtrant.

Proof. For ¢ : J — I we have

lim Home (¢, colim ¢) <~ Home (colim ¢, colim ¢) # &.
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§ 332. P. 218, Example 9.2.3. See §12] p.
§ 333. P. 218, Lemma 9.2.5.

Lemma 334 (Lemma 9.2.5 p. 218). Let ¢ : J — I be a cofinal functor. If J is
w-filtrant, so is 1.

Clearly, I satisfies conditions (a) and (b) in Proposition [329 p. 209

§ 335. P. 219, proof of Remark 9.2.6. To prove that I’ is w-filtrant it is straightfor-
ward to check that I’ satisfies Conditions (c1) and (c2) in Proposition p. [209]

§ 336. Definition 9.2.7 p. 219. For the reader’s convenience we paste the definition
in question:

Definition 337. Let m be an infinite cardinal and let C be a category which admits
w-filtrant small inductive limits.

An object X € C is m-accessible if for any w-filtrant small category I and any
functor o : I — C the natural map

cqlilm Home (X, a(i)) — Home (X , colilrn a(i))
1€ S
15 bijective.

We denote by C, the full subcategory of C consisting of m-accessible objects.

§ 338. P. 220, proof of Proposition 9.2.9. We add a few details to the argument in
the book. Recall the statement:

Proposition 339. Let m be an infinite cardinal. Let J be a category such that
card(Mor(J)) < m and let I be a small (Definition [5 p. [10) w-filtrant category.
Consider a functor o : I x J° — Set, (i,7) — «;;. Then the natural map X below
15 bijective:
A @ colim lim a;; — lim colim ay;;.
7 J J 7

Proof. Let
. . A . .
colim lim cy;; > lim colim ;5
i i
Pz‘]\ lqgl
hjm Qi — Qi —— colilm Qj
ij
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be the obvious commutative diagram.

(i) Injectivity. Let ¢ be in I and let z,y € lim;ay; satisfy ¢;;z; = ¢;y; for all
j. (In this proof we omit almost all parenthesis.) It suffices to prove p;z = p;y.
For each j there is a morphism ¢ — i(j) in I such that a;;);2; = Qs Y-
Since [ is w-filtrant and card(J) < 7, there is an ¢’ in I and there are morphisms
i(j) — 4" in I such that the composition ¢ — i(j) — ¢’ does not depend on j. We get
Qi Tj = oy y; for all j, and thus p; x = p; y.

(i) Surjectivity. Let y be in lim; colim; a;;. Each y; is of the form ¢;; z;. A priori
¢ depends on j, but it is easy to see that we can assume that ¢ independent of j.
Let j — j' be a morphism in J°°. We have g;j 2y = ¢ij ; j—j %;, and there is a
morphism i — i(j — j') in I such that

Qimri(j—5")3" 25" = Qimi(j—=5").5" Yinj—i' %5

Since card(Mor(J)) < m, there are morphisms i(j — j') — 4’ in I such that the
composition i — i(j — j') — ¢ does not depend on j — j'. For each j set
Ty = Qi j 25 S Qi j.

We claim z € lim; a;;. Indeed, for any morphism j — j' in J° we have
Qijrj! Tj = Qi Qimsirj Zj = Qi(jmrj )it 5! Vimsi(j—i').5" i’ Zi
= Qi) =it Qimi(—j')g" 730 = Vit gl 250 = Lyl

We claim Ap;z = y. Let j be in J. It suffices to show ¢;; x; = ¢;; z;. We have
Qij Tj = Qirj QXisir j 25 = Gij Zj- u

§ 340. For the reader’s convenience we state and prove Proposition 9.2.10 p. 220.

Proposition 341 (Proposition 9.2.10 p. 220). IfC and J are categories, if C admits
small w-filtrant inductive limits, if J satisfies card(Mor(J)) <=, if f:J — Cr is a
functor and if colim 8 exists in C, then it belongs to C.

Proof. Let a : I — C be a functor with I small (Definition [5| p. and 7-filtrant,
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and consider the commutative diagram

colim; Home (colim; 3(5), (7)) —— Home/(colim; 3(j), colim «)
Nlb
colim; lim; Home (5(j), (i) ~le
lim, colim; Home(3(5), a(i)) —%— lim; Home(B(5), colim a).
The maps b and e are bijective for obvious reasons. The map c¢ is bijective because

of our assumptions on / and J. The map d is bijective because 5(7) is in C, for all
7. Thus, the map a is bijective. O]

§ 342. P. 220, proof of Corollary 9.2.11.

Corollary 343 (Corollary 9.2.11 p. 220). If C admits small inductive limits and if
X is an object of C, then C, and (C,)x are w-filtrant.

This follows from §331] p. 210} Note that it suffices to assume that C admits
inductive limits indexed by categories .J such that card(Mor(J)) < w. (For the case

of (Cx)x, see Lemma [34] p. [63])
§ 344. P. 222, Proposition 9.2.17.

e Proof of implication (ii)=-(i). I suspect that the argument of the book is better
than the one given here, but, unfortunately, I don’t understand it. Here is a less
concise wording:

Recall the setting: C is a category admitting inductive limits indexed by any
category J such that card(Mor(J)) < m, and A is in Ind(C). Conditions (i) and (ii)
are as follows:

(i) Cy4 is m-filtrant,

(ii) for any category J such that card(Mor(J)) < 7 and any functor ¢ : J — C, the
natural map A(colim @) — lim A(yp) is surjective.

To prove (ii)=-(i), let J be a category satisfying

card(Mor(J)) < ,
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and let ¢ : J — C4 be a functor. It suffices find a ¢ in C4 satisfying

lim Home , (¢, &) # @

(see Condition (d) in Proposition 329 p. [209). Let ¢ : J — C be the composition of
v with the forgetful functor C4 — C, and write

v6) = ($00)  #l) 2 4) €Ca.

In particular the family (y;) belongs to lim A(¢). Our assumption about C implies
that colim ¢ exists in C. Let p; : ¢(j) — colim ¢ be the coprojection. By surjectivity
of the map A(colim ) — lim A(p) in (ii), there is an z : colimy — A such that
x op; =y; for all j. Setting

¢ = (colimgp,colimgp 5 A) € Ca,

and letting f; : ¥(j) — £ be the obvious morphism, we get (f;) € lim Home, (¢, ).
q.e.d.

e Proof of implication (i)=-(iii). The proof of the book exhibits a bijection
A (c?gn 90(3)> — lim A(p(7))-

To prove that it coincides with the natural morphism, it suffices to check that the
obvious diagram

A(colimje s ¢(4)) y limje s A(e(J))

\ /

commutes for all j in J. The details are left to the reader.

11.2 Section 9.3 pp 223—-228

Here is a slightly different wording.

214



11.2  Section 9.3 pp 223-228 11 ABOUT CHAPTER 9

11.2.1 Conditions (9.3.1) p. 223

Recall Conditions (9.3.1) of the book: C is a category satisfying
(i) C admits small inductive limits,
ii) C admits finite projective limits,

iii) small filtrant inductive limits are exact,

(
(
(iv) there exists a generator G,
(

v) epimorphisms are strict.

11.2.2 Summary of Section 9.3

The main purpose of Section 9.3 of the book is to prove Corollaries 9.3.7 and 9.3.8
p. 228 of the book, and these corollaries could be stated immediately after Conditions
(9.3.1) above. For the reader’s convenience we recall the definition of a regular
cardinal and state Corollary 9.3.7:

Definition 345 (regular cardinal). A cardinal 7 is regular if for any family of sets
(By)ier we have

card(I) <m, card(B;) <mVi = card <|_| Bi> < .

Corollary 346 (Corollary 9.3.7 p. 228). Assume (9.3.1). Then for any small subset
S of Ob(C) there exists an infinite cardinal © such that S C Ob(Cy).

We make a few comments about Corollary 9.3.8. Firstly, it would be simpler (I
think) to replace & with C, in the statement, since in the first sentence of the proof
one sets S := C;. Secondly, in view of the way Theorem 9.6.1 p. 235 of the book
is phrased, it would be better, even if it is a repetition, to incorporate Part (iv) of
Corollary 9.3.5 (which says that C, is closed by finite projective limits) into Corollary
9.3.8. Then, Corollary 9.3.8 would read as follows:

Corollary 347 (Corollary 9.3.8 p. 227). Assume (9.3.1) and let Kk be a cardinal.
Then there exists an infinite reqular cardinal ™ > Kk such that

(i) Cy is essentially small,
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(ii) of X = Y is an epimorphism and X is in Cr, then Y is in C,

(iii) if X — Y is a monomorphism and Y in C, then X is in C,,

(iv) G is in Cy,

(v) for any epimorphism f : X — Y in C with Y in C,, there exists Z in C, and a
monomorphism g : Z — X such that fog:Z — Y is an epimorphism,

(vi) Cy is closed by inductive limits indexed by categories J which satisfy

card(Mor(J)) < m,
(vii) C, is closed by finite projective limits.

See also Theorem p. below.

11.2.3 Lemma 9.3.1 p. 224

For the reader’s convenience we state the lemma:

Lemma 348 (Lemma 9.3.1 p. 224). Assume that Conditions (9.3.1) p. 223 of the

book (see §11.2.1) p. hold, let ™ be an infinite reqular cardinal, let I be a m-filtrant
small category (Deﬁm'tion@ . @), let : I — C be a functor, and let colima — Y

be an epimorphism in C. Assume either card(Y (G)) < m orY € C,. Then there is
an ig in I such that the obvious morphism «(ig) — Y is an epimorphism.

The proof of Lemma [348]in the book uses twice the following lemma:

Lemma 349. Let C be a category, let ™ be an infinite cardinal, and let o : I — C
be a functor admitting an inductive limit X in C. Assume that the coprojections
pi : a(i) = X are monomorphisms, and consider the conditions below:

(a) I is w-filtrant and X is w-accessible,
(b) the identity of X factors through the coprojection p; for some i,
(c) the coprojection p; is an isomorphism for some 1,

(d) there is an i in I such that a(s) : a(i) — «(j) is an isomorphism for all morphism
s:i— 7 ml.

Then we have (a) = (b) < (¢) = (d).
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Proof. This follows immediately from Exercise 1.7 p. 31 of the book. [

We add a few details to the beginning of the proof of Lemma 9.3.1.

Set X; = a(i) and V; = Im(X; — V) = Ker(Y = Y Uy, V). In particular the
natural morphism Y; — Y is a monomorphism. Since small 7-filtrant inductive limits
are exact, we have

colimY; = Ker(Y = Y Uecotim, x, ¥Y) — Im(colim X; — Y) =Y, (137)

where, in view of the hypothesis that colim; X; — Y is an epimorphism, the last iso-
morphism follows from Proposition 5.1.2 (iv) p. 114 of the book. It is easy to see that
the chain of isomorphisms coincides with the natural morphism colim; Y; — Y,
and that the coprojections Y; — Y are monomorphisms. In particular the maps

Y;(G) — Y(G) are injective by Proposition p. and Proposition p.

This is easily seen to imply that colim; Y;(G) — Y(G) is also injective.

(a) Assume that card(Y(G)) < w. Then card(S) < m, where S := colim; Y;(G). By
Corollary 9.2.12 p. 221, S € Set, and this implies

colim Homget (S, Y;(G)) — Homget (S, S).

el

Hence, there exist i and a map S — Y;,(G) such that the composition S — Y, (G) —
S is the identity. Therefore Y; (G) = S and hence, Y; (G) — Y;(G) is bijective for
any i9 — ¢ by Lemma (349, Hence Y;, — Y; is an isomorphism, which implies, again
by Lemma [349] that Y;, — Y is an isomorphism. Applying Proposition 5.1.2 (iv),
we find that X;, — Y is an epimorphism.

11.2.4 Proposition 9.3.2 p. 224

Proposition 350 (Proposition 9.3.2 p. 224). Let C be a category satisfying Condi-
tions (9.3.1) of the book, conditions stated in Section|11.2.1] p. above. If w is an

infinite reqular cardinal, if A is in C, and if
card(A(G)) < 7, card (G 9(@)) <,
then A is in C,.

Here is a rewriting of the proof with a few more details:
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Proof of Proposition[350.

e Step 1. Note that Set > S — GY¥ € C is a well-defined covariant functor. Also
note that card(G"(G)) < 7 for any S C A(G). Indeed, there are maps

S — AG)— S
whose composition is the identity. Hence, the composition
GYS(G) = GHYA9(@) — GY5(@Q)

is the identity.

e Step 2. Let I be a small (Definition [5| p. m-filtrant category, let (X;);c; be an
inductive system in C, and let X be its inductive limit. Claim below will imply
Proposition [350

Claim 351. The map
Aa colijm Home (A, X;) — Home(A, X).
1€

is bijective.

Claim 352. The map A4 is injective.

Proof of Claim [353. (We shall only use card(A(G)) < m.) Suppose that f,g: A =
X, have same image in Hom¢(A, X). This just means that the two compositions

A= X’io — X
coincide. We must show that f and g have already same image in

colim Home (A, Xj;),

iel

that is, we must show that there is a morphism s; : i9 — ¢; in I such that the two
compositions A = X;, — X;, coincide. For each s : ig — 14, set

N, :=Ker(A = X,).

By Corollary 3.2.3 (i) p. 79 of the book, I is filtrant and the forgetful functor I*® — [
is cofinal. One of our assumptions, namely Condition (9.3.1) (iii) in Section |11.2.1
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p.[215] says that small filtrant inductive limits are exact in C. In particular, colimc i,
is exact in C, and we get

colim N ~ Ker (A = colim Xi) ~ Ker(A = X) ~ A

sel*o sel*o

As card(A(G)) < 7 by assumption, Lemma [348] p. [216] implies that there is a mor-
phism s; : 49 — 41 in [ such that Ny, — A is an epimorphism. Hence, the two com-
positions A = X;, — X;, coincide, as was to be shown. This proves Claim 352 O

It only remains, in order to prove Proposition to check that A4 is surjective.
Let f: A — X be a morphism. Claim below will imply the surjectivity of Ay,
and thus the truth of Proposition [350

Claim 353. There is an ¢ in [ and a morphism g : A — X; such that p;og = f,
where p; : X; — X is the coprojection.

e Step 3. Consider the following conditions:

(a) there is an ig in I such that the diagram of solid arrows

B ----- » A
| |1
+

Xio P—i0> X

can be completed to a commutative diagram as indicated (the morphism B — A
being an epimorphism),

(b) there is an i in I such that the diagram of solid arrows

C---%-» A

o! I (138)
\V

Xio p—ZO> X

can be completed to a commutative diagram as indicated, with card(C(G)) < = (the
morphism C' — A being an epimorphism).

We shall show that (a) holds, that (a) implies (b), and that (b) implies Claim
353 and thus Proposition p. 217
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e Step 4: (a) holds. For each ¢ in I define Y; := A xx X;. As colim; is exact in C,
we have colim; Y; ~ A. As card(A(G)) < m, Lemma 9.3.1 p. 224 of the book (stated
above as Lemma [348| p. 216)) implies that there is an iy in I such that B :=Y;, - A
is an epimorphism.

e Step 5: (a) implies (b). Assuming (a), we consider the commutative square

B
l lf (139)
X;

and we put S := Im(B(G) — A(G)) C A(G), so that B(G) - S — A(G) is the “epi-
mono” factorization of B(G) — A(G). Let S — B(G) be a section of B(G) — S.
By Step 1 we have card(C(G)) < 7. We set C' := G". The vertical arrows of the
commutative diagram

GUB(G) s O y GUAG)

| | (140)

B > A

being epimorphisms by Proposition 5.2.3 (iv) p. 118 of the book, so is C' — A. From
the commutative diagram

S

S
| |

S —— B(G) — S,

we get, by Step 1, the commutative diagram

C C
| | "

C —— GUBG 5 .
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Splicing ([39), (T40) and (A1) gives

This proves (b).

e Step 6: (b) implies Claim p. 219] and thus Proposition p. 217 Assuming
(b), form the cartesian square

P——C

Lk

CT)A

Epimorphisms in C being strict, the sequence P = C' % A is exact (see Proposition
5.1.5, (i), (a)=-(c), p. 115 of the book). As

P(G) < card(C(G))? < T,
Claim [352| implies that the natural map
Ap: C(Z)éilm Home¢ (P, X;) — Home(P, X)
is injective. Consider the commutative diagram
P—1C——A

L

X, — X.
Pig

As \p is injective, and as the compositions P = C' = Xio o, X are equal, there is

a morphism s : iy — ¢ such that the compositions P = C' = Xio RN X, are equal.
The exactness of P = C' % A implies the existence of a morphism g : A — X; such
that

Xsox=goa. (142)
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Proof of Claim[353, Tt suffices to show that the above morphism g satisfies f = p;og.
Consider the diagram

P —

X

i0 X.
10

AT
!

X

We have

foa=pjox by (138) p. 219

:pioXsox

—piogoa by (122) p. 221

As a is an epimorphism, this forces f = p; o g, and the proof of Claim [353| is
complete. O

As already indicated, Claim implies Proposition [350] p. 217} O

11.2.5 Definition of two infinite regular cardinals

(See (9.3.4) p. 226 of the book.) Let C be a category satisfying Conditions (9.3.1) in
Section [11.2.1] p. above. Let my be an infinite regular cardinal such that

card (G(G)) < mo, card (G"99(G)) < m.

Now choose a cardinal m; > mg such that we have card (X (G)) < m for all set A
with card(A) < m and all quotient X of GY4. (Since the set of quotients of G4
is small by Proposition 5.2.9 p. 121 of the book, such a cardinal 7 exists.) In the
sequel of Section [I1.2] we assume

Condition 354. Conditions (i)—(v) of Section |[11.2.1]|p. of the book hold; 7y and
m, are as above; and 7 is the successor of 27,

The cardinals m and 7 satisfy

(a) m and 7 are infinite regular cardinals,
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b) G is in Cpy,

d) if X is a quotient of G4 with card(A4) < m, then card (X(G)) <,

(

(c) 7™ < 7 for any 7’ < T,

(

(e) if A is a set with card(A) < m, then card (G"(G)) < .

Condition (a) holds because 7 is infinite regular by assumption, and 7 is infinite
regular by Statement (iv) p. 217 of the book. Condition (b) holds by Proposition
p. Condition (c) is proved as follows: if 7/ < 7, then 7/ < 2™ and

7' L (20 = 270 = 9™ < .

Conditions (d) and (e) are clear.

11.2.6 Lemma 9.3.3 p. 226

We state Lemma 9.3.3 for the reader’s convenience:

Lemma 355 (Lemma 9.3.3 p. 226). If Condition[354] holds, if A is a set of cardinal
<7, and if X is a quotient of G“4, then card(X(G)) < .

The beginning of the proof of Lemma 9.3.3 in the book uses implicitly the fol-
lowing two lemmas, which we prove for the sake of completeness.

Lemma 356. If a is a cardinal, then the cardinal of the set of those cardinals B such
that B < a does not exceed c.

Lemma 357. If my, ™ and A are as above, and if [ := {B C A| card(B) < m}, then
we have card(l) < 7.

Proof of Lemma[356. Recall that a subset S of an ordered set X is a segment if
X22rx<seS = uz€b

In particular X_, (obvious notation) is a segment of X for any x in X. We take for
granted the following well-known facts:

e every set can be well-ordered,
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e if T"is a set of two non-isomorphic well-ordered sets, then there is a unique triple
(W1, Wy, S) such that T'= {W;, Ws} and S is a proper segment of Wy isomorphic to
Wh

o if W is a well-ordered set, then the assignment w — W_,, is an isomorphism of
well-ordered sets from W onto the set of proper segments of .

Let A be a well-ordered set of cardinal «, and, for each cardinal § with g < «a,
let B be a well-ordered set of cardinal 8. Then B is isomorphic to A-, for a unique
a in A, and the map [+ a is injective. ]

Proof of Lemma[357 Putting o := card(A) we have
«Q Y
card(]) = Z (W/) < Z a™ <,
' <mg ' <mg

the last inequality following from Lemma [356] (c) and (a). O

11.2.7 Theorem 9.3.4 p. 227

Theorem 358 (Theorem 9.3.4 p. 227). Assume Condition [35) p. holds and let
X be an object of C. Then we have

X €C, & card(X(G)) < 7.

Proof of Theorem[358

=>: We prove this implication as in the book. For the reader’s convenience we repro-
duce the argument: Set [ :={A C X(G) | card(A) < 7}. By Example 9.2.4 p. 218
of the book, I is m-filtrant. We get the morphisms

G = GO o x

for Ain I, and

colim GH4 = GPX(©@) 4 X
AET

Then we see that G"X(@) — X is an epimorphism by Proposition 5.2.3 (iv) p. 118 of
the book, that G"4 — X is an epimorphism for some A in I by Lemma m p. 216
and that card(X(G)) < 7 by Lemma 355 p. 223]

<: In view of Proposition [350| p. [217], it suffices to prove
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card (G"¥9(@)) < . (143)

To verify this inequality, we argue as in the proof of Lemma 9.3.3 p. 226 of the
book (stated on p. above as Lemma [355)). (Conditions (b), (¢) and (e) referred
to below are stated in Section [11.2.5|p. [222])

Let I be the ordered set of all subsets of X(G) of cardinal < my. Then [ is
mo-filtrant by Example 9.2.4 p. 218 of the book, and we have

GUX (@) ~ colim GYE.
Bel

As G is mp-accessible by (b), we get

GUXO(@) ~ colim GYB(@).
Bel
By Lemma [357] p. 223 we have card(I) < . Since card(G“5(G)) < « for all B in I
by (e), this implies (143]). O

11.2.8 Brief comments

« P. 227, Corollary 9.3.5. In the proof of (i) we use Propositions 5.2.3 (iv) p. 118
and 5.2.9 p. 121 of the book. As already pointed out, in the proof of (iv), C should
be C,.

x P. 228, Corollary 9.3.6. As already pointed out, lim in the statement should be o.
—)

As for the proof, Conditions (i), (ii) and (iii) of Proposition 9.2.19 p. 223 of the book
follow respectively from (9.3.1) (i) (see (i) at the beginning of Section p. 214),
(9.3.4) (b) (see (b) right after Condition p. 222)), and Corollary 9.3.5 (i) p. 227
of the book.

« P. 228, Corollary 9.3.7. As {card(X(G))| X € S} is a small set of cardinals, we
may assume in Condition p. that we have 7 > card(X(G)) for all X in S5,
and apply Theorem p. 224

x P. 228, Corollary 9.3.8. The proof uses implicitly Proposition 5.2.3 (iv) p. 118 of
the book and Example 9.2.4 p. 218 of the book.
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11.3 Quasi-Terminal Object Theorem

Recall the following result:

Theorem 359 (Zorn’s Lemma). If X is an ordered set such that each well-ordered
subset of X has an upper bound, then X has a maximal element.

The purpose of this section is to prove a common generalization of Theorem [359
above and of Theorem 9.4.2 p. 229 of the book, stated below as Theorem [361] We

start with a reminder:

Definition 360 (Definition 9.4.1 p. 228, quasi-terminal object). An object X of a
category C is quasi-terminal if any morphism u : X — Y admits a left inverse.

Theorem 361 (Theorem 9.4.2 p. 229). Any essentially small nonempty category
admitting small filtrant inductive limits has a quasi-terminal object.

Here is a weakening of the notion of inductive limit:

Definition 362 (small well-ordered upper bounds). Let I be a nonempty well-ordered
small set and o : I — C a functor. An upper bound for « is a morphism of functors
a:a — AX (see Notation |52 p. @) If C has the property that any such functor
admits some upper bound, we say that C admits small well-ordered upper bounds.

Definition 363 (special well-ordered small set). Let C be a category. A nonempty
well-ordered small set I is C-special if it has no largest element and if, for any functor
a: I — C, there is some upper bound (a; : a(i) — X);er and some element ig in I
such that a;, is an epimorphism.

Our goal is to prove:

Theorem 364 (Quasi-Terminal Object Theorem). If C is a nonempty essentially
small category (Definition[d p. [10) C admitting small well-ordered upper bounds and
a C-special well-ordered set, then C has a quasi-terminal object.

Theorem [364] clearly implies Zorn’s Lemma (Theorem [359). Lemma below
will show that Theorem B61] follows also from Theorem B64l Theorem B61] will be
used in the book to prove Theorem 9.5.5 p. 233.

The proof of Theorem [364] is essentially the same as the proof of Theorem [361
given in the book. For the reader’s convenience, we spell out the details.
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Lemma 365. If C is a nonempty small category (Definition E‘i] . @) admitting
small well-ordered upper bounds, then there is an X in C such that, for all morphism
X =Y, there is a morphism Y — X.

Proof. Let F be the set of well-ordered subcategories of C. For [ and J in F we
decree that I < J if and only if I is an initial segment of J. This order is clearly

inductive. Let S be a maximal element of 7. As S is small, it admits an upper
bound (ag: S — X)ges.

We shall prove that X satisfies the conditions in the statement. Let u : X — Y
be a morphism in C.

(i) The object Y is in §. Otherwise, we can form the well-ordered subcategory S
of C by appending the element Y to & and making it the largest element of S , the
morphism S — Y being u o ag. We have § € F and § < §, contradicting the
maximality of S.

(ii) As Y is in S, there is a morphism Y — X, namely ay. ]

Definition 366 (Property (P)). We say that a morphism a : A — B in a given
category has Property (P) if for any morphism b : B — C' there is a morphism
c:C — B satisfying coboa = a.

Lemma 367 (Sublemma 9.4.4 p. 229). IfC is a small (Definition[5 p.[10) nonempty
category admitting small well-ordered upper bounds, and if X is an object of C, then
there is a morphism f : X — 'Y having Property (P).

Proof. The category CX is again nonempty, small (Definition [5| p. , and admits
small well-ordered upper bounds, so that Lemma [365| applies to it. Let f : X —
Y be to C* what X is to C in Lemma . Then it is easy to see that f has
Property (P). O

We recall the notion of construction by transfinite induction.

Theorem 368 (Construction by Transfinite Induction). Let U be a universe, let
F:U—U be a map, and let I be a well-ordered U-set. Then there is a unique pair
(S, f) such that S is a U-set, f: I — S is a surjection, and we have

f@) = F(f(5)i<)

for all i in I, where f(j)j<i is viewed as a family of elements of {f(j)|j € I,j < i}
indexed by {j € I|j <i}.
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Proof. Uniqueness: Assume that (S, f) and (7', ¢g) have the indicated properties. It
suffices to prove f(i) = g(7) for all 7 in I. Suppose this is false, and let i be the least
element of I such that f(i) # g(i). We have

f(@) = F(f(j)j<i) = F(9(j)j<i) = 9(2),
a contradiction.

Existence: Recall that a subset J of [ is called a segmentif I 5 i < j € J implies
i € J. Let Z be the set of all triples (J, .Sy, f;), where J is a segment of I, where
f:J — Sy is a surjection, and where we have f;(j) = F(f;(k)k<;) for all j in J.
Decree that
Z > (85, f1) < (K, Sk, fx) € Z

if and only if J is a segment of K. By the uniqueness part, (Z,<) is inductive.
Let (J,Sy, f;) be a maximal element of Z. It suffices to assume that .J is a proper
segment of I and to derive a contradiction. Let k& be the minimum of I\ J, put

K :=Ju{k}, fx(j):=fs(j)vVjel

fr(k) = F(fr(j)j<k), Sk =957 U{fx(k)}.
Then (K, Sk, fx) contradicts the maximality if (J, Sy, f;). O

Proof of the Quasi-Terminal Object Theorem (Theorem . @ Let C be as in
the statement. We assume (as we may) that C is small (Definition [f p. [L0). Let us
choose a C-special well-ordered set I, and let us define an inductive system (X;);c; by
transfinite induction as follows: For the least element 0 of I we choose an arbitrary
object Xy of C. Let ¢ > 0 and assume that X; and u;, : X; — X have been
constructed for £ < 7 < i.

(a) If i = j + 1 for some j, take u;; : X; — X; with Property (P), and put w;, =
u;; o uji, for any k < j.
(b) If i =sup{j|j < i}, let (a; : X; = X;)j<; be some upper bound for (X;);<; and
put u;; == aj.

(Recall that, by Definition m p. ﬂ, the condition “u;; : X; — X; has Prop-

erty (P)” means that for any morphism b : X; — C there is a morphism ¢ : C' — X
satisfying c o b o u;; = u;;. Recall also that such a u;; exists by Lemma p.[227)

Then (X;)es is indeed an inductive system in C. As [ is C-special, there is
an upper bound (b; : X; — X);e; for (X;)ier, and there is an i in I such that
bi, : X, — X is an epimorphism.
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We claim that X is quasi-terminal. Let u : X — Y be a morphism. It suffices to
prove the claim below:

Claim 369. There is a morphism v : Y — X such that v o u = idx.

Consider the morphisms

Uig+1,ig uob;y+1

Xz' Xio-i-l Y.

As u;, 11,4, has Property (P), there is a morphism w : Y — X ;1 satisfying
W O U O bjyt1 0 Uigt1,ig = Wig+1,ig- (144)

Put
V= bi0+low Y - X, (145)

It suffices to show that v satisfies the equality v o u = idx in Claim p. We
have

vouob;, =bj,410wouob, by ([145)

= big4+1 0 W 0 U O bjp11 0 Ujg11,4

= bio+1 o Ui0+1’i0 by "
=b

= ldX Obio .

()

As b;, is an epimorphism, this implies v o u = idx, proving Claim p. and
thus the Quasi-Terminal Object Theorem (Theorem p. [226)). O

Here is a diagrammatic illustration of the above computation:

0
X, > X —— Y s y X
; > > Y X — X
Xlo WUig+1,i0 0+1 b10+1/ X YR w 10+1 bi0+1
Xig Uig+1,ig » Xig+1 m) X
Xio > X
by
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For the reader’s convenience we state and prove Sublemma 9.4.5 p. 229 of the

book.

Lemma 370 (Sublemma 9.4.5 p. 229). IfC is a small (Definition[3 p. [10) nonempty
category admitting small filtrant inductive limits, if ™ is an infinite reqular cardinal
such that card(Mor(C)) < , if I is a w-filtrant small category, and if (X;)icr is an
inductive system in C indexed by I, then there is an iy in I such that the coprojection
X, — colim; X; is an epimorphism.

Proof. Set X := colim; X; and let a; : X; — X be the coprojection. For any Y in C
let
by : Home (Y, X;) — colim Home (Y, X;)
J

be the coprojection, let F'(Y') be the image of the natural map

colim Home (Y, X;) — Home (Y, X),
J
and define ¥ by the commutative diagram

Y
colim; Home (Y, X;) —— F(Y) —— Home(Y, X)

bY
¢ T %ZO

Home (Y, X;).

Claim: There is an 4o in I such that ¢} = a;0 : Home(Y, X;,) — F(Y) is
surjective for all Y in C.

As card(Home(Y, X)) < m, we have F'(Y) € Set, by Corollary 9.2.12 p. 221 of
the book. By Lemma 9.3.1 p. 224 of the book (stated above as Lemma p. 216]),
there is an ¢y in [ such that

a;0: Home(Y, X, ) = F(Y)

is surjective. As card({iy |Y € Ob(C)}) < 7 and [ is 7-filtrant, there is an ig in [
such that, for any Y in C, there is a morphism iy — 7o. This implies the claim.

Let i be in I. In particular, a; = ;" (idy,) is in F(X;). As

805? = a;,0 : Home (X5, X3 ) — FI(X;)
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is surjective by the claim, there is a morphism h; : X; — X, such that a;, o h; = a;.

Let us show that a;, : X;, — X is an epimorphism. Let fi, fo : X = Y be a pair
of parallel arrows such that f; o a;, = f2 0 a;,. Then, for any ¢ in I, we have

floai:floaioohi:fZOaioohi:fQO@i-

This implies f; = fs. [

We give again a diagrammatic illustration of the above computation:

~

~

X, ai x .y

x Iy

~

~

Xi -y Xio

~

X, i X, —, x Ly

X; _ >y X > Y.
a; f2

11.4 Lemma 9.5.3 p. 231

We give more details about the proof, but first let us recall the setting:

Let C be a U-category (Definition {4 p. , let Cy be a subcategory of C, and
assume

(9.5.2) (i) Cy admits small filtrant inductive limits and Cy — C commutes with them.

(9.5.2) (ii) Any diagram of solid arrows

X Y

i 146
fl 19 (146)
X -+ > Y/,

with « in Mor(Cy) and f in Mor(C), can be completed to a commutative diagram
with dashed arrows «’ in Mor(Cy) and g in Mor(C).
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Lemma 371 (Lemma 9.5.3 p. 231). If X' is in Co, if I is a small set, and if
(wi: Xi = Yidier, (fi: Xi = X)ier

are families of morphisms in Cy and C respectively, then there is an object Y’ of Cy,
a morphism v’ : X' — Y’ in Cy, and a family (g; - Y; = Y')ier of morphisms in C
such that g; ou; = u' o f; for all i:

X; ——=Y;
le igz
X - » Y’

Proof. We assume, as we may, that I is nonempty, well-ordered, and admits a max-
imum m. Let 0 be the least element of /. We shall complete the following Task (77)
by transfinite induction on ¢ € I (see Theorem p. [227)):

[Beginning of the description of Task (7;).] Construct, for each j < in I, a commu-

tative diagram
U

Xj > Y}
I
fjl Lhy
+
X oy Y —mnn Y,

with v;,w; in Mor(Cy), and construct, for each (¢,7,k) in I? with ¢ > 7 > k, a
commutative diagram

~
AN

Uj wj
e
H ®s_ Pjk
N

X, Vi Y<,k‘ w—k> Yk:?
with pj; in Mor(Cp), in such a way that we have
Pij Owj o Pjk =Pk V1> >k, (147)

Wy = idyol . (148)

232



11.4 Lemma 9.5.3 p. 231 11 ABOUT CHAPTER 9

Here is a diagrammatic illustration of ((147)):

Y., Y!

<1

|[End of the description of Task (77).]

[Beginning of the accomplishment of Task (7;) for all i.] To handle Task (7p), we
define Y, vo and hg by (9.5.2) (ii):

Xo 25 Y,

I
fol L ho
+

and we define Y, and wy by the commutative diagram

Xo = > Yo
fol lho
T
/ NV NV
X oo Yy T Ys.

Let ¢ in I satisfy ¢ > 0, and let us tackle Task (7).

We assume (as we may) that Task (7)) has already been achieved for j < i, i.e.
that the Y., Y/, hj, v;, w; have already been constructed for j < i, that the p;;, have
already been constructed for £ < j < i, and that all these morphisms satisfy the

required conditions.

) T

required conditions are still satisfied.

It suffices to define Y.,, Y/, h;, v;, w;, and p;; for j < i, in such a way that the
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For k < j < we define uy, : Y] — Y] by
Ujp 1= W, O Djk. (149)
By (147) we have w;j o uge = wjp for all £ < k < j <. In particular,

(Y])j<:i is an inductive system in Cy. (150)

We denote its limit (which exists in Cy thanks to (9.5.2) (i)) by Y.,, and we write p;;
for the coprojection Y/ — YZ,. We also set

V; ‘= Pio © Vo, (151)

and we define
YL Y],

by (9.5.2) (ii):
X; ——Y;

I
viole Lhi
\l/

Vi - Y,
so that we have
h; o u; = w; ov; o f;. (152)
We must check
pik O w0V = v; ¥V k <1, (153)
Pij ©Wj © pir = pir ¥ k < j < i (154)

To prove ([153)), first note that we have
Uk = Pko © Wo © Vg

by induction hypothesis, wy = idy; by (148, and thus

Uk = Pko © Vo- (155)
We get
Dik © Wg © Vg = Pk © Wk © Pro © Vo by "

= Pio © Vo by (147)
= by (151)).
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This proves (153)). We have

Dij © Wj © Pjk = Dij © Ujk by (149)
= Dik by ([150).

This proves ({154]).

Task (7;) has been performed for the specific ¢ we have been considering, and
thus Task (7}) has been completed for all 7 in /. [End of the accomplishment of Task
(T;) for all i.]

In particular Task (7},), where, remember, m is the maximum of 7, has also been
achieved. Putting Y :=Y and

i ‘= Upioh; Vi<m, (156)
Gm = him, (157)
U 1= Wy, O Uy, (158)

we get

gi © U; = Um; © h; o by
= Uy O W; O V; O f; by
= Wy O Pmi © W; 0 V; O f; by
= Wy, O Uy © [ by
= o f; by

for i < m, and

gmoum:hmoum by "
:me’Umofm by "
=u'o fn by ([158).

11.5 Theorems 9.5.4 and 9.5.5 pp 232-234

The purpose of this section is to give a combined statement of Theorems 9.5.4 and
9.5.5.

235



11.5 Theorems 9.5.4 and 9.5.5 pp 232-234 11 ABOUT CHAPTER 9

Remark 372. In Definition 9.5.1 (i) p. 231 we read “Let F C Mor(C) be a family of
morphisms in C”. To be completely clear we mentally replace the above quote with
“Let F be a full subcategory of Mor(C)”.

Let C be a U-category (Definition {4 p. , let Cy be a subcategory of C, let F be
an essentially small full subcategory of Mor(Cy) (see Remark below), let 7 be an
infinite cardinal such that X is in C, for any X — Z in F, and assume

(9.5.2) (i) Cyp admits small filtrant inductive limits and Cy — C commutes with them;

(9.5.2) (ii) any diagram of solid arrows

X 25y
fl !
X' ----- > Y/,

with u in Mor(Cy) and f in Mor(C), can be completed as indicated to a commutative
diagram with dashed arrows u’ in Mor(Cy) and ¢ in Mor(C);

(9.5.6) for any X in Cp, the category (Cp)x is essentially small;

(9.5.7) any cartesian square
f

x Ly
in C with f, f" in Mor(Cy) decomposes into a commutative diagram
x Ly
X —— 7 — Y

such that the square (X', Y’ Z, X) is cocartesian, g and h are in Mor(Cp), and f =
hoyg;
(9.5.8) if a morphism f : X — Y in Cy is such that any cartesian square of solid

arrows
U—=>V

//
u g/ v
k/
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can be completed as indicated to a commutative diagram in C with the dashed arrow
&, then f is an isomorphism.

Theorem 373. If the above conditions hold, then, for any X in Cy, there is a
Mor(Cy)-injective object Y of C, and morphism f : X — Y in Cy. If (9.5.2) holds,
but (9.5.6), (9.5.7) and (9.5.8) do not necessarily hold, then there is an F-injective
object Y of C, and a morphism f: X — Y in Cy.

Remark 374. In the book F is supposed to be small, but the proof clearly works if
F is only essentially small. (See Remark p. above and §377| below.)

11.6 Brief comments

§ 375. P. 235, Theorem 9.6.1. In view of the comments made before Corollary
p. 215, Theorem 9.6.1 could be stated as follows:

Theorem 376 (Theorem 9.6.1 p. 235). Let C be a Grothendieck category. Then,
for any small subset E of Ob(C), there exists an infinite cardinal m such that

) Ob(C,) contains E,
ii) Cr is a fully abelian subcategory of C,
iii) C is essentially small,

(i

(

(

(iv) C, contains a generator of C,

(v) Cy is closed by subobjects and quotients in C,
(

vi) for any epimorphism f: X — Y in C with Y in C,, there exists Z in C, and a
monomorphism g : Z — X such that fog:Z —Y is an epimorphism,

(vii) C, is closed by countable direct sums.

§ 377. P. 236, proof of Theorem 9.6.2.

Line 3: One could change “Let F C Mor(Cy) be the set of monomorphisms
N — G. This is a small set by Corollary 8.3.26” to “Let F be the full subcategory
of Mor(Cy) whose objects are the monomorphisms N ~— G. Then F is essentially

small by Corollary 8.3.26” (see Remark p. 236). In view of Remark we can
still apply Theorem 9.5.4.

Line 6: Condition (9.5.2) (i) (see Section [L1.5] p. 235 above) follows from
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Lemma 378. Let C be a category. Assume that small filtrant inductive limits exist
in C and are exact. Let o : I — C be a functor such that I is small and filtrant, and
a(s) = a(i) — «a(j) is a monomorphism for all morphism s : i — j in 1. Then the
coprojection p; : (i) — colim «v is a monomorphism.

Proof. By Corollary 3.2.3 p. 79 of the book, I’ is filtrant and the forgetful functor
@ : I' — I is cofinal. Define the morphism of functors
0 € Hompcy(ri o) (Aa(i), a0 @)
(see Notation |52/ p. |46 by
O (s:imsj) = (a(s) ca(i) — a(j)).

As 0 is a monomorphism, Proposition [I65] p. [[06] implies that colim @ is also a mono-
morphism. Then the conclusion follows from the commutativity of the diagram

colim 6

colim Aa(i) ————— colima o ¢

% f

a(1) - > colim a.

[

§ 379. Pp 237-239. For the reader’s convenience we first reproduce (with minor
changes) two corollaries with their proof.

Corollary 380 (Corollary 9.6.5 p. 237). If C is a small (Definition[J p.[1(]) abelian
category, then Ind(C) admits an injective cogenerator.

Proof. Apply Theorem 8.6.5 (vi) p. 194 and Theorem 9.6.3 p. 236 of the book. [

Corollary 381 (Corollary 9.6.6 p. 237). Let C be a Grothendieck category. Denote
by L the full additive subcategory of C consisting of injective objects, and by v:Z — C
the inclusion functor. Then there exist a (not necessarily additive) functor W :C — T
and a morphism of functors ide — o W such that X — V(X)) is a monomorphism
for any X in C.

Proof. The category C admits an injective cogenerator K by Theorem 9.6.3 p. 236
of the book, and admits small products by Proposition 8.3.27 (i) p. 186 of the book.
Consider the (non additive) functor

U:C—7ZI, X KHomeXNE),
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The identity of
Homge (Home (X, K), Home (X, K)) ~ Home (X, KHome(X:K))

defines a morphism X — ((¥(X)) = KHome(X.5) "and this morphism is a monomor-
phism by Proposition 5.2.3 (iv) p. 118 of the book. ]

The first sentence of the proof of Lemma 9.6.8 p. 238 of the book follows from
Proposition 5.2.3 (iv) p. 118 of the book.

The third sentence of the proof of Lemma 9.6.9 p. 238 of the book follows from
Proposition 5.2.3 (i) p. 118 of the book (the assumption that C admits small coprod-
ucts is not used in the proof of Proposition 5.2.3 (i)).

In the proof of Theorem 9.6.10 p. 238 of the book, the exactness of C — Pro(C)
follows from Theorem 8.6.5 (ii) p. 194 of the book (see also §223| p. [140)).

12 About Chapter 10

12.1 Definition of a triangulated category

The purpose of this Section is to spell out the observation made by J. P. May that,
in the definition of a triangulated category, Axiom TR4 of the book (p. 243) follows
from the other axioms. See Section 1 of The axioms for triangulated categories by J.
P. May:

http://www.math.uchicago.edu/~may/MISC/Triangulate.pdf

Various related links are given in the document http://goo.gl/df2Xw.

To make things as clear as possible, we remove TR4 from the definition of a
triangulated category and prove that any triangulated category satisfies TR4:

Definition 382 (triangulated category). A triangulated category is an additive cat-
egory (D, T) with translation endowed with a set of triangles satisfying Axioms TRO,
TR1, TR2, TR3 and TR5 on p. 248 of the book.

Let (D, T) be a triangulated category. In the book the theorem below is stated

as Exercise 10.6 p. 266 and is used at the top of p. 251 within the proof of Theorem
10.2.3 p. 249.
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Theorem 383. Let

X0 2 5 Xt 2 5 X2 2 5 T7X0
1| | [
Yo > Y1 >y Y? » TYO
A > L1 e > 42 —mmemd > TZ°
h i ~Th

be a diagram of solid arrows in D. Assume that the first two rows and columns are
distinguished triangles, and the top left square commutesﬂ Then the dotted arrows
may be completed in order that the bottom right square anti-commutes, the eight other
squares commute, and all rows and columns are distinguished triangles.

Corollary 384. Any category which is triangulated in the sense of Definition
satisfies TR4.

Recall Axiom TRb5: If the diagram

U > V > W’ > TU
XH/ > W > U’ > TV
U >I/U/ > V7 > TU

commutes, and if the rows are distinguished triangles, then there is a distinguished

T think the assumption that the top left square commutes is implicit in the book.
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triangle W’ — V' — U’ — TW’ such that the diagram

U >V > W/ >y TU
[ T H
U > W o > TU
[
V > W > > TV

RN

w’ s V7 N s TW'

commutes.

Proof of Theorem |384. From

XV > X1 > X2 > TXO

X! y Y1 A sy TX!

X0 s YL s W s TXY,

where the last row is obtained by TR2, we get by TR5

X! > X2 s TXO

w

RN

s Yl s W —4 s TXO

R o

~

X! sy Y » 71 s TX!
L |
X W —— 2! —— TX?
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From

XY > YO A s TXO
Yo y Y1 > Y2 s TY?O

X° s YL s W s TXY,

we get by TR5

|1
N (160

Yo > Y1 y Y2 y TY?O

s TZ0.

=
S
S

From

70 5 W y Y2 s T 70

—Ta

s TX? —— TW

-

f=p
~

Zl
!

A 3

y 72 d SAS

where the second row is obtained from X2 % W & 2! 5 TX?in (159) by TR3 and
TRO, and
the last row is obtained by TR2, (161)
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we get by TR5

Z0° s W e s TZ0
R H

Z° s 71 Sk — TZ°
w7t <, rx? I TW

LD |

Y? —— 72 s TX?2 — TY?,
J k T4

where

X252 L 722 5 px?isa distinguished triangle.

We want to prove that the bottom right square of

X0 LIRS ¢ v s X2 Y 5 TX0

~

f i Tf
Yo » V! > Y? >y TY
g i Tg
A y 7! » 72— T2
h k —Th

TXO T) TXl T) TX2 f—Tw) T2X0

(162)

(163)

(164)

anti-commutes, that the eight other squares commute, and that all rows and columns

are distinguished triangles.

We list the nine squares of each of the diagrams (159)), (160)), (162, (164) as

follows:
1 2 3
4 5 6
7 8 9
and we denote the j-th square of Diagram (i) by ().

The commutativity of (159)2 and (160)5 implies that of (164))2.
The commutativity of (159)3 and (160))6 implies that of (164)3.
The commutativity of (160)7 and (162))1 implies that of (164))4.
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The commutativity of (160)8 and (162))2 implies that of (164)5.
The commutativity of (160)9 and ((162))3 implies that of (164))6.
The commutativity of (160)3 and (159)6 implies that of (164])7.

The commutativity of (159)9 and (162)8 implies that of (164)8.
To prove the anti-commutativity of the bottom right square of (164)), note

Thol=TdoTeol by (160))
=-TdoTaok by (162))
=-Twok by (159)).

The third row and column are distinguished triangles by (161]) and (163 respec-
tively. It is easy to check that the other rows and columns are distinguished triangles
too. O]

12.2 Brief comments

§ 385. Definition 10.1.9 (i) p. 244. It is written:

“A triangulated functor of triangulated categories F' : (D,T) — (D',T") is a
functor of additive categories with translation sending distinguished triangles to dis-
tinguished triangles. If moreover F' is an equivalence of categories, F' is called an
equivalence of triangulated categories.”

This terminology is justified by the fact that, in the above setting, any quasi-
inverse to F' is triangulated. This point is implicit in the proof of Proposition 10.3.3
p. 253 of the book. Here are more details:

Lemma 386. If (D,T) is an additive category with translation, if A and A’ are
two sets of triangles in (D,T) such that (D,T,A) and (D,T,A’) are triangulated
categories, and if A C A', then A = A,

Proof. Left to the reader. O

Lemma 387. If (D, T,A) and (D', T', A") are two triangulated categories, if F': D —
D' and G : D' — D are two quasi-inverse equivalences, and if F' is triangulated, then
so is G.
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Proof. Tt is easy to see that the functor G is additive and commutes with the trans-
lations (up to isomorphism). Let GA’ be the set of those triangles in D which
are isomorphic to the image under G of some d.t. in D'. It is straightforward to
check that (D, T, GA’) is triangulated, that A C GA’, and that Lemma implies
GA" = A, that is, G is triangulated. ]

§ 388. P. 248, Lemma 10.2.1. The proof shows also the following: If D is a trian-
gulated category and N is a full saturated triangulated subcategory of D, then a
triangle in N is a d.t. in D if and only if it is a d.t. in N.

§ 389. P. 249, Theorem 10.2.3 (v). After “Then F' factors uniquely through @” one
could add “and the induced functor D/N — D’ is triangulated”.

§ 390. P. 250, proof of Theorem 10.2.3 (iii). In view of Corollary p. 240} it is
not necessary to prove TRA4.

§ 391. P. 253, Definition 10.3.1. The definition is stated as follows:

We say that a triangulated functor F : D — D’ is right (resp. left) localizable with
respect to (N, N') if Q' o F : D — D' /N is universally right (resp. left) localizable
with respect to the multiplicative system N'Q (see Definition 7.3.1). Recall that it
means that, for any X € D,

“colim” Q'F(Y),
(X%Y)ENQXQ ( )

respectively

LLl' W /F Y
(Y—>Xl)r£NQX QEY),

is representable in D'/N'. If there is no risk of confusion, we simply say that F is
right (resp. left) localizable or that RF' exists.

It is implicitly assumed that the underlying universe U has been chosen so that
D is U-small (Definition [5| p. [L0). The second sentence in the above quote is justified
by Theorem [95| p. [68| (the “Universal Kan Extension Theorem”).

§ 392. P. 254. The fact that the morphism R%/F in the commutative diagram is
triangulated follows from Lemma p. [244]

§ 393. P. 254, Display (10.3.1). Write sx : X — Yy for the morphism in N'Q with
Yx in Z which exists by assumption. Then Display (10.3.1) can be written as

RN F(Q(X)) == Q'(F(Yx)).

Moreover, the structural morphism Q' o F — RF o () is given by Q'(F (X))
Q' (F(Yx)) = RF(Q(X)). (See §254(e).)
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1

§ 394. P. 254, Proposition 10.3.5 (ii). Write R for RN/,RN and Rﬁ/[:l; write sy :
X — Yx for the morphism in N'Q with Yy in Z which exists by assumption; write
tx: : X' = Yy, for the morphism in N'Q" with Yy in Z which exists by assumption;
and define RF, RF' and R(F'o F) is in §393|above. We may suppose that tx, = idx-
whenever X' is already in Z’'. Then we have

R(F'o F)(Q(X)) = Q"(F'(F(Yx))),
RF'(RF(Q(X))) = RF(Q'(F(Yx))) = Q"(F'(Yeqyy)) = Q"(F'(F(Yx))).

(It is crucial that the above displays are chains of equalities, as opposed to chains of
isomorphisms.)

§ 395. Proof of Theorem 10.4.1 p. 257. The fact that “the canonical functor 7x, x
Tx, — Tx, (i=1,2) is cofinal” follows from Lemma p. [136]

We rewrite the first display on page 257 of the book as

~

TEVX,® X,) = 1i F(Y) < li F(Y, @ Y-
(<,0 )( 1@ 2> YE%)(llég%’XQ ( ) (a) (Y1,Y2(;(é71‘;r(111><7’x2 (169 2)

~ colim F(Y))® F(Ys)
(b) (Y1,Y2)€Tx; XTx,

~( colim F(Yl))@(( colim F(Yg))

(©) (Y1,Y2)€Tx; XTx, Y1,Y2)€Tx; XTxy
~ . . _ 1
=5 (gotim 00 ) @ (golim F03) ) = (9'F)(X0) @ (1P (o).
Isomorphism (a) follows from the cofinality of &, Isomorphism (b) follows from the
additivity of F, Isomorphism (c) is straightforward, Isomorphism (d) follows from
the cofinality of Tx, x Tx, — Tx, for i =1, 2.

For i =1,2 let
f: colim F(Y)— colim F(Y;)

P(Y)>X18Xo o(Ys)—=X;

be the morphism defined by the above display.
For i = 1,2 define

g: colim F(Y)— colim F(Y;)
p(Y)=>X18X2 w(Y:)—X;

as follows: If

plp(Y) > X1 Xs): F(Y) — QO(Y()EE};(I?EBXQ F(Y)
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is the coprojection corresponding to ¢(Y) — X; & Xs, and

Y)—= X\ Xy F(Y) — li F(Y
ple(Y) 1@ Xo] : F(Y) o $olim (Y)

is the coprojection corresponding to ¢(Y;) — X, then g is defined by the commuta-
tive diagrams

colim  F(Y) —2— colim F(Y;)

e(Y)=X18X e(Yi) =X
P[SD(Y)—>X1€BX2}T Tq[w(Y)eXl@XgaXi]
F(Y) F(Y).

We must show f = g. It suffices to check that the diagrams

colim F(Y) L colim F(Y;)

P(Y)=>X18X2 oY) —X;
plp(Y)—=X I@XQ}T Tq[w(Y)aXI@Xﬁxi]
F(Y) F(Y).

commute. This verification is left to the reader.

The fact that Tx is cofinally small follows from Proposition 3.4.5 (iii) p. 89 of the
book.

12.3 Brown’s Representability Theorem

§ 396. P. 260, Remark 10.5.4, phrase “it is easy to see that (iii) implies (ii)”. For
the reader’s convenience we spell out the argument.

Let us define S as in Remark 10.5.4. We have a family (X; — Y;) of morphisms
in D and a morphism C — &X; in D with C' in F, we assume that the obvious
maps Homp(C, X;) — Homp(C,Y;) vanish, and we must show that the composition
C — X, — @Y, vanishes. By hypothesis there is a morphism C' — &C; with C; in
S such that the composition C' — ®&C; — X, coincides with the above morphism
C — @X;, so that it suffices to prove that the composition &C; — ®X,;, — @Y;
vanishes, or even to prove that the composition C;, = ®X; — @Y; vanishes for all
ip in I. But this follows from (ii) and the definition of F.
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§ 397. P. 260, Remark 10.5.4. We also spell out the proof of the implication
(il)" =(iii).

Let f: C — @X; be given. We must find a family of morphisms (u; : C; — X})
in D with C; in § and a morphism g : C' — @C; such that

= @ ¢

CeF C—X;

Set

let p;|C,C — X;] : C — C; be the coprojections and let u; be the unique morphism
C; — X, such that u; o p;[C,C — X;] = (C — X;) for all C' and all C — X;. Then

(ii)" implies that the obvious map
HOHlD(O, @Oz) — HOIIlD(O, @XI)
is surjective, and it suffices to let g be a pre-image of f.

§ 398. P. 261, proof of Lemma 10.5.6. Let us adhere to the notation of Lemma
10.5.6 and its proof.

(a) Let F be in SProd | set
ve=P DC
CceSy C—F

where C' — F runs over Homgn,proa(C, F), write p[C,C — F] : C' — X for the
coprojections and let ep : V@ — F be the unique morphism from Vi to F' in S"\#red
which satisfies ep o p[C,C — F] = (C' — F) for all C — F' in Homgn.prea(C, F).

We claim that ep : Vg — F'is an epimorphism.

To prove the claim it suffices to let C' be in Sy and to verify that ep(C) : Ve(C) —
F(C) is surjective. But this is clear because we have ep(C)(p[C,C — F]) = (C —

(b) Define ¢ : D — 8§74 by ¢(X)(C) := Homp(C, X) and let X be in D. Then
we have a canonical bijection Homgnproa(C, @(X)) ~ Homp(C, X). Abusing the
notation we identify these two sets. Let ex : V3x) — X be the unique morphism
from V(x) to X in D which satisfies ex o p[C,C — X]| = (C — X) for all C — X
in Homp(C, X). Then we have

Plex) = egx)- (165)
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(c) Let H be in D"Pro? and let Hy, € 8P be the restriction of H to S. Then
en, € Ho(Vu,) = H(Vi,) >~ Hompnprea(9(Va, ), H), that is, eg, can be viewed as a
morphism ey : Vi, — H in DMPred,

§ 399. P. 262, proof of Lemma 10.5.7 (i). Here is the implicit commutative diagram:

F(©:X;) = > 11, H(p X, F)

T -

— T

where we have written H for Homgna»ra to save space.

§ 400. P. 261, Lemma 10.5.7 (ii). The proof shows that the direct sum in S of
a small family of objects of S”*7°¢ helongs to S/\Prod,

More precisely, if ¢ : SMPred — SNadd g the natural functor, then the proof
of Lemma 10.5.7 (ii) in the book shows, in the notation used there, that &;(F; is
isomorphic to ¢ Coker(p(®;X;) = ¢(@;Y;)).

In view of Lemma 10.5.5 p. 260 of the book, this implies that the limit of a small
inductive system in S"P"°? exists in "% and lies in S"*?"°?. Moreover, §315|p.
entails that small filtrant inductive limits exist and are exact in S and S"\Pro?,

The exactness of small filtrant inductive limits in S"?"°? will be used in §403(p. [251

Right after the proof of Lemma 10.5.7 it is written: “Note that, for a small family
(F;); of objects in S™°4 and X € S, the map @®;(F;(X)) — (&;F)(X) may be
not bijective”. I think this is not true, that is, I think that the map &;(F;(X)) —
(@®:F;)(X) is always bijective. (If 'm wrong on this, then the present part of this
text is incorrect.)

Let us insist on the main point:

‘Small filtrant colimits exist in $"P"°? and are exact.
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§ 401. P. 263, proof of Lemma 10.5.8 (ii).

e In the notation of §398(b) p. 248 we set Y; := V5(x,) and (Y; = X;) := ex, and we
get P(ex,) = ez(x,) by (165)) p. 248
e The fact that &;W; — ®,;Y; — &;X; — T(®;W;) is a d.t. follows from Proposition
10.1.19 p. 247 of the book.

e Last sentence.

Variant 1: Consider the commutative diagram

Di

Dip

whose rows are complexes. We already know that the bottom row is exact. The

exactness of the top row follows (as in the proof of Lemma 10.5.7 (ii) p. 261 of the
book) from the isomorphisms

|

(Z) — ®ipYs) — @ p(X;) —— 0
(Zi) — @ip(Y)) — p(®: X;) —— 0,

Coker(; p(Z;) — @i p(Y;)) = @; Coker(p(Z;) — ¢(Y3)) =~ @i p(X;).

Variant 2: Apply the Five Lemma to the commutative diagram

®ip(Z;) — Dip(Y;) — ©:9(X;) —— 0
o(®iZ;) — o(®Y;) — ¢(®:iX;) —— 0.

§ 402. P. 263, proof of Lemma 10.5.9.

By §398(c) p. [248) the morphism X, — Hy in S extends to a morphism
Xo — H in DMProd,

Vanishing of Z, — X,, — H: Let 0 = F — X,, — H be exact in D% in the
notation of §398(a) p. set Z,, .= Vg and

(Zy —— X)) = (Z, L F » Xn).

The vanishing of Z,, — X,, — H is then clear.
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Before the sentence “Since Z,, and X,, belong to K, X, also belongs to K7, one
could add “We may, and do, assume that C is saturated”.

Recall the Yoneda isomorphisms
Homgn,proa ((X), Hy) ~ H(X) ~ Hompn (X, H)
for X in S.
Note that Convention p. can be applied.
§ 403. P. 264, proof of Lemma 10.5.11. As observed in p. small filtrant

inductive limits exist and are exact in S"Pro?,

12.4 Exercise 10.3 p. 265

It suffices to prove:

If L : D — D is a triangulated functor of triangulated categories and R : D' — D is
right adjoint to L, then R is triangulated.

The following argument is taken from Tag 0A8D in the Stacks Project:

http://stacks.math.columbia.edu/tag/0A8D

Proof. Let X be an object of D and X’ an object of D’. Since L is triangulated we
have isomorphisms functorial in X and X’

By Yoneda’s lemma we obtain an isomorphism T'(R(X’)) ~ T(R(X")) functorial in
X'. Let
X =Y -7 - T(X)

be a distinguished triangle in D’. Choose a distinguished triangle

R(X") - RY') = Z = T(R(X"))
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in D. Then
L(R(X')) = L(R(Y")) = L(Z) = T(L(R(X")))

is a distinguished triangle in D’. By TR4 we can choose a morphism of distinguished
triangles

L(R(X")) —= L(R(Y")) L(Z) —=T(L(R(X")))

l L |

X' Y’ 7' X'[1]

Since R is right adjoint to L the morphism L(Z) — Z’ determines a morphism
Z — R(Z') such that the diagram

R(X') — R(Y") Z T(R(X"))

N

R(X') —= R(Y') — R(Z') — T(R(X))

commutes. Applying the cohomological functor Homp (W, ) for an object W of D,
we get a commutative diagram of abelian groups of the form

g

>U0 )Ul >U2 >U3

I

> Vo > V1 > Vs > Vs

The top row is an exact complex for obvious reasons, whereas the bottom row is an
exact complex because of the isomorphism Homp (W, R( )) ~ Homp/ (L(W), ). We
deduce from the 5 lemma that Homp(W, Z) — Homp(W, R(Z')) is bijective, and
using the Yoneda lemma once more we conclude that Z — R(Z’) is an isomorphism.
Hence we conclude that R(X') — R(Y') — R(Z') — T(R(X’)) is a distinguished
triangle, which is what we wanted to show. ]

12.5 Exercise 10.11 p. 266

Recall the statement:

(i) Let N be a null system in a triangulated category D, let Q : D — D/N be the
localization functor, and let f : X — Y be a morphism in D satisfying Q(f) = 0.
Then f factors through some object of N.
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(ii) The following conditions on X in D are equivalent:

(a) Q(X)~0, (b) X®Y eN forsomeY €D, (¢c) X®TX eN.

Proof.

(i) The definition of D/N and the assumption Q(f) = 0 imply the existence of a
morphism s : Y — Z in N@Q such that so f = 0 (see (7.1.5) p. 155 of the book), and
thus, in view of the definition of N'@Q (see (10.2.1) p. 249 of the book), the existence
ofadt. W —=Y — Z — TW with W in N, and the conclusion follows from the
fact that Homp (X, ) is cohomological (see Proposition 10.1.13 p. 245 of the book).

(i)
(a)=(b): As Q(idx) = 0, the first part of the exercise implies that idyx factors as
X L 7 % X with Z in M. By TR2 there is a d.t.

xLhzhybrx
Since go f = idx, the morphism f is a monomorphism, and sois T'f. AsTfok =0

by Proposition 10.1.11 p. 245 of the book, this implies & = 0. Hence we have a
morphism of d.t.

X1 sz oy _ 0, px
| Jon | |
X — XY s Y TX

(the bottom is a d.t. by Corollary 10.1.20 (ii) p. 248 of the book) and Proposition
10.1.15 p. 246 of the book implies that (g, k) is an isomorphism.
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(b)=(c): Let Ay,...,As be the triangles

X > 0 y TX 4, TX
Y d_ Ly > 0 > TY
XaY > Y > T'X »y TX BTY
0 > X id >y X > 0

XY — XY — XpTX — TXDTY,

with Az := Ay & Ay and Ay := Az d Ay It is easy to see that Ay, Ay and Ay are
distinguished. Then Aj and Aj are distinguished by Proposition 10.1.19 p. 247 of
the book, and, as X &Y is in A/, Condition N’3 of Lemma 10.2.1 (b) p. 249 of the
book implies that X @ T'X is in N.

(¢c)=(a): Follows from Theorem 10.2.3 (iv) p. 249 of the book. O

13 About Chapter 11

13.1 Brief comments

§ 404. P. 270. Recall that (A, T) is an additive category with translation. Let
(dxi: Xi = TXi)ier (166)

be an inductive system in A4,;. Assume that X := colim; X; exists in A. Then the
natural morphism colim; dx; : X — T'X is an inductive limit of (166|) in A,. There
are analogous statements with “projective” instead of “inductive” and A, instead of

Ag.

§ 405. P. 270, Definition 11.1.3. Here is a “picture” of the mapping cone of f : X —
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Y:
Tx 1) ey
T
o I
Y ————— TV.
Y
§ 406. P. 271, Remark 11.1.5. We have:
dr2x 0 dr2x 0
die(1(f)) = ) , o drue(ry) = ) ,
T*(f) dry =T*(f) dry

and
<_1 O>
T(Mc(f)) =T?X & TY A0 Y ey & TY = Mc(T(f))

is a differential isomorphism.

13.2 Theorem 11.2.6 p 273

Here is a minor comment about the verification of Axiom TR5 in the proof of The-
orem 11.2.6. We stated Axiom TR5 right after Corollary [384] p. 240] above. For the

reader’s convenience we restate it.

If the diagram

U > V s W' s TU

%

~

%74 s U’ s TV

U s W s V! s TU

commutes, and if the rows are distinguished triangles, then there is a distinguished
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triangle W’ — V' — U’ — TW’ such that the diagram below commutes:

U > V » W — TU
L H
U > W >V’ > TU

N

Vv > W > U’ > TV
L |
U

%% s V! S s TW.

Going back to the proof of TR5 on p. 275, we consider the commutative diagram

x Loy Y rxey 20 rx
y —2 7z s ryez 29, 1y
X 5of s 7 a(gof) > TXEBZ W TX.
The goal of the proof is then to construct a commutative diagram
x—7t sy Y srxey 2, rx
| | [+ |
X gof N a(gof) TX a7 B(gof) TX
1 T
Y ¢ 79 sryez 9 7y

a(f)l a(QOf)l H lT(a(f))

TX®Y —TX®Z ——TYDZ —— T*°XaTY.

13.3 Brief comments

§ 407. P. 280, Example 11.3.5 (i). It is written “Let f : X — Y be a morphism in
C. We identify f with a morphism in C(C). Then Mc(f) is the complex

0o XLy S0
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where Y stands in degree 0.”
I would have said something slightly different, namely:

Let U*® (resp. V*) be the complex having X (resp. Y) in degree 0 and 0 in the
other degrees, let g : U®* — V*® the morphism whose zeroth component is f, and
let W* be the complex Mc(g). Then we have W* = Ut* @ V*, that is, W* has
X in degree —1, Y in degree 0, and 0 elsewhere, and the differentials of W* are all
equal to 0. The shifted object W'*® has X in degree —2, Y in degree —1, and 0
elsewhere, and the differentials of W!** are all equal to 0. The —1 component of
dyye : W — Wite is f.

« P. 282, Definition 11.3.12: see §15] p. [18]

§ 408. P. 286, Notation 11.5.1. Here is a minor variant: Define the functor F7 :
C*(C) — C(C(C)) by the formulas

(Fr(X)")™ = X", d%(X)” = dxn’mv ( %[(X))m = d)?’m-

§ 409. P. 289, beginning of Section 11.6. The key formula in the definition of
C(F):C(C) x C(C") = C(C") is

dyisity) = (—1)™ F(X™, ).

§ 410. P. 290, Example 11.6.2 (i) (see §16| p. [L9). Writing F/(U, V) for Home(U, V),
the differential dp(x vy is given, in the notation right before Proposition 11.5.5 p. 287
of the book, by the diagram

F(X_m, Yn—l)
lF(X’”%d?’l)

F(X1=m y™) s F(XT™ Y.
(—1) (Y ™)

Here is another way of writing the same formula:
(2 ) = A0 fumtmm - ()™ frt 0 dy™

§ 411. P. 290, Example 11.6.2 (i). (As already stated, there is a typo; see §16]p. [19])
Let C,C" and C” be additive categories with translation. If F : C x C' — C" is a
bifunctor of additive categories with translation and if C” admits countable direct
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sums, then, as explained in the book, F' induces a bifunctor of additive categories
with translation

Fs : C(C) x C(C') — C(C").

If C" admits countable products instead of direct sums, then F' induces a bifunctor
of additive categories with translation

F,:C(C) x C(C") — C(C").

The precise formulas are given in the book. If F': C x C'°* — (" is a bifunctor
of additive categories with translation and if C” admits countable products, then F
induces again a bifunctor of additive categories with translation

F, - C(C) x C(C)*P — C(C").

The formulas defining F) in this setting are almost the same as in the previous
setting, and we give them without further comments:

E(Y, X))V = F(Y", X™™),
™" = F(dy, X™™),
A" = ()" R(Y" dYT,
Oy x : Fo(TY,X) = TF,(Y, X),
Oy x : Fr(Y,T7'X) = TF.(Y, X),
0y %« Fe(TY, X)) — (TFL(Y, X)),
0yt Fr(TY)', X77) = F(Y™ X)) = Fo(Y, X)) = (TF(Y, X))V,
OV Fe(Y. T7X)™ = (TFL(Y, X)),
0V Fe(Y'(T7'X) ) = F(Y', X771 = Fo (Y, X)™H = (TF.(Y, X)),
the morphism 6’ ’YJX being (—1)¢ times the canonical embedding.

§ 412. P. 296, Exercise 11.12, partial solution. Let f : X — Y be a morphism in
C(C), where C is an additive category. One of the sub-exercises asks for a proof of
the existence of a distinguished triangle

Mc(o”f) — Mc(f) — Mc(a=*f) — Mc(a”f)[1]
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in K(C), which is equivalent to the existence of a distinguished triangle
Mc(a="f)[~1] = Mc(a”f) — Mc(f) — Mc(a="f) (167)

in K(C). We claim that there is a morphism ¢ : Mc(o=?f)[—1] — Mc(c”%f) in
C(C) and an isomorphism Mc(g) ~ Mc(f) in C(C). Clearly, the claim implies the
existence of a distinguished triangle . We shall define the morphism ¢ and leave
the verification of the claim to the reader.

We define g : Mc(o=?f)[—1] — Mc(c>f) as follows:

Firstly we define g, : Mc(o0=%f)[—1]* — Mc(c”*f)* as follows: We identify
Mc(o=ef)[-1]* to X* & Y ! and Mc(c”?f)* to X! and decree that g, : X* @
Yol — XaFl is the obvious morphism induced by d%.

Secondly we define g1 : Mc(o=ef)[—1]*T' — Mc(o”ef)*"! as follows: We
identify Mc(o=¢f)[—1]*™ to Y and Mc(c”%f)* to X" @ Y™ and decree that
Gar1: Y — X2 & Y+ is the obvious morphism induced by d¢.

Thirdly we set g, := 0 for n # a,a + 1.

We leave it to the reader to check g is indeed a morphism of complexes, and that
we have Mc(g) ~ Mc(f) in C(C).

14 About Chapter 12

14.1 Avoiding the Snake Lemma p. 297

This is about Sections 12.1 and 12.2 of the book. I think the Snake Lemma can be
avoided as follows:

Let A be an abelian category.
Lemma 413. If

X1 ! > X2 J > X3 > 0
b ]
0 > Y] — Y5 — Y3
f g
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is a commutative diagram in A with exact rows, then the sequence

0
Keru; — Keruy — Kerus — Coker u; — Coker uy — Coker us

is exact at Keruy and Cokeruy. If in addition usg is a monomorphism or uy is an
epimorphism, then the whole sequence is exact.

The proof of the above lemma is slightly easier than that of the Snake Lemma.
Of course one can argue that the Snake Lemma has an intrinsic interest, and, as
it can be proved with only a modest additional effort, it is worth proving it. The
limited purpose of this section is to describe an alternative, not to claim that this
alternative is better.

Proof. The exactness at Kerus, and Coker uy is straightforward. Assume u; is an
epimorphism (the case when wu3 is a monomorphism being ). It suffices to show that
the morphism gy defined by the commutative square

go
Keruy —— Kerus

aQI Ias

X2 T) Xg,

where as and asz are the natural morphisms, is an epimorphism. Let b3 : Z3 — Ker ug
be a morphism. It suffices to complete the commutative square

ZQ ----- b - Zg

I
ba | lb:s
*

Ker us —5 Ker us.

Completing successively the commutative squares

Wy --“-» Keruz

|
co | lag,
\l/

X2 T} X3
and
|
dz: le
\l/
W2 — Ker us,
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we get the commutative diagram

Vo —S Zy

V c2 as
g

X1 f>

ull U2 us3

Y; T .

We complete the commutative square

o
e

Zy 53 Vy
b
hi W2

and define b : Zy — Z3 by

(In this proof we write zy for x o y.)

It remains to define by : Zo — Kerus and to prove bsb = gobs.

To define b, it suffices to define a morphism b, : Z, — X, such that uyb, = 0.

This will give us a morphism by satisfying asby = b,.

We set b)) := codoe — fh. We have
UQCQdQ@ = f/ddge = f’ulh = Uth,

and thus usb, = 0. We also have

asbsb = agbsc’e = gcadae = geadre — gfh = gblz = gasby = azgoba,

and thus bsb = gobs since agz is a monomorphism.
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Let (A, T) be an abelian category with translation.

Lemma 414 (see Theorem 12.2.4 p. 301). If 0 — X LY % 7250 is an exact
sequence in A., then the sequence H(X) — H(Y) — H(Z) is exact. If, in addition,
H(T"X) ~ 0 (respectively H(T"Z) ~ 0) for all n, then T"Y — T"Z (respectively
T"X — T"Y ) is a qis for all n.

Proof. Taking into account Display (12.2.1) p. 300 of the book, apply Lemma to
the commutative diagram

Coker T 'dy SN Coker T~'dy —2— CokerT"'d; —— 0

I b lo

0 —— KerTdyx f) Ker T'dy — KerTdy.
O
Proposition 415 (Corollary 12.2.5 p. 301). The functor
H: K., (A) — A
is cohomological.
Proof. Let X - Y — Z — TX be ad.t. in K.(A). It is isomorphic to
V2 Me(u) 2 U TV
for some morphism u : U — V. Since the sequence
00—V — Mc(u) > TU — 0
in A, is exact, it follows from Lemma that the sequence
H(V)— H(Mc(u)) - H(TU)
is exact. [

Proposition 416 (Corollary 12.2.6 p. 302). To each short an exact sequence 0 —
xLy%z 0 A, is attached in a natural way a d.t. X Ly % 7 5TX in
K.(A). More precisely, let 0 — X LY % 7 550 be an exact sequence in A, and
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define ¢ : Mc(f) = Z by ¢ := (0,g9). Then ¢ is a morphism in A., this morphism
is a qis, and it satisfies p o a(f) = g. In particular, there are natural morphisms
H(T"Z) — H(T™'X) such that the sequence

o> HX)—>HY)—>HZ)—>HTX)—---

15 exact.

Proof. The commutative diagram in A, with exact rows

0 s X 2 x » 0 » 0
ol b
0 y X > Y > Z > 0

7 g
yields the exact sequence
0 — Mc(idx) — Mc(f) S Mc(0 = Z) = 0
in A.. As H(Mc(idx)) =~ 0, a homotopy Mc(idx) — T~ Mc(idy) being given by

the matrix
0 idx
o o0 )’

the morphism ¢ is a qis by Lemma [414] O]

14.2 Brief comments

§ 417. Pp. 300-301, the cohomology functor. In the paragraph just before Lemma
12.2.2 p. 300 it is written:

“We have obtained an additive functor: H : A, — A”,

and in the paragraph just before Definition 12.2.3 p. 301 it is written:

“Hence the functor H defines a functor (denoted by the same symbol) H : K.(A) —
A”.

In fact we have additive functors

H:(A,T)— (AT) and H:(K.(A),T)— (AT).
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In Corollary 12.2.5 p. 301 the display H : K.(A) — A can also be replaced with
H: (K.(A),T) — (A,T), and the display

o> HX)—>HY)—>HZ)—> HTX)—---
can be written
o> HX)—>HY)—>HZ)—>THX) — ---

§ 418. P. 303, Display (12.3.3). The morphisms 7="X — 7="X — X induce
isomorphisms in the degree < n cohomology. The morphisms X — 72X — 72X
induce isomorphisms in the degree > n cohomology.

§ 419. P. 313, beginning of Section 12.5. Defining H; : C*(C) — C*(C) by H; :=
F’I_loHoFI7 we get

Hy(X)™™ = H"(X*™,dy™),  digx) =0, dyxy=H"(X*",d5™).
The functor H} : C*(C) — C(C) is defined by H} := H" o Fy.
§ 420. P. 314, proof of Lemma 12.5.2. Define Y € C(C(C)) by
V= Imdg, v [—q—1]

(see §408| p. [257)), that is:

o Imdg™ ifn=q+1

(Y™)™ = o
0 ifn£q+1,

dy = 0 and df’,,, is induced by d;}qﬂ’m. Then we have the exact sequence
0 — 759 (X) — T5UFp(X) — Mc(idy) — 0 (168)

in C(C(C)). Define Z € C(C) by Z™ := (Y*™)™ and d := d%,,,. Applying tot oF; "
to (168) we get the exact sequence

0 — tot 7 Fy(X) — tot 7 9F(X) — Mc(idy) — 0

in C?(C). As observed at the end of the proof of Proposition p. , the complex
Mec(idy) is exact.

§ 421. P. 315, Corollary 12.5.5 (ii).

Statement. If the columns X*7 of X are are exact for all j # p, then tot(X) is qis
to X*P[—p).

Proof. Apply Theorem 12.5.4 to the morphisms 077077 X + o7 X — X.
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15 About Chapter 13

15.1 Brief comments

§ 422. Beginning of Section 13.1 p. 319. Recall that N'Q is defined in (10.2.1) p. 249
of the book. Then §417]p.[263]implies that, in the context of the beginning of Section
13.1, we have f € NQ & [ is a gis.

§ 423. P. 319, Display (13.1.1). This display reads: H : K.(A) — A. As observed
in §417 p. 263| we have in fact H : (K.(A),T) — (A, T). (See also §422)

§ 424. P. 319. Sentence “One shall be aware that the category D.(A) may be a big
category” after Definition 13.1.1. See §427] p. 265] and §458| p. 274] below.

§ 425. P. 320, Display (13.1.2). It might be worth stating explicitly the equality

N"(C)Q = Qis (169)
(see p. [265).

§ 426. P. 320, Parts (i) and (ii) of Proposition 13.1.5. Part (i): the argument showing
that the cohomology functor H : K(C) — C(C) factors through @ : K(C) — D(C) is
implicit in §417 §422|and (169). Part (ii): the statement that, in the notation of the
proposition, f is an isomorphism if H(f) is, also follows from the argument implicit
in §417, §422 and (169). To be slightly more explicit, one considers the long exact
sequence

o= HX)—>HY)—>HZ) - HTX)— ---

attached toa d.t. X - Y — Z — TX in D(C). The fact that H commutes with T’
implies H(Z) ~ 0, Remark 13.1.4 (i) implies Z ~ 0, and Exercise 10.1 p. 265 implies
that f is an isomorphism.

§ 427. P. 322, Notation 13.1.9, sentence “Remark that the set Ext(X,Y) is not
necessarily U-small”. See §424] p. above and §458| p. below.

15.2 Lemma 13.2.1 p. 325

§ 428. P. 325. Lemma 13.2.1 will be used to prove Proposition 13.2.2 p. 326, Propo-
sition 13.2.6 p. 327, Theorem 13.2.8 p. 329, Proposition 13.3.5 p. 330 and Lemma
14.4.1 p. 358 of the book.
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§ 429. P. 325. Just before the last display it is written “There is a monomorphism
ZP »— WP This results from the following fact, whose proof is left to the reader:

Let

Z > Y > X
I
W > V >y U

be a commutative diagram in C. If ZXUW is cocartesian, then so is Y XUV

We apply this to the commutative diagram

Coker &% ' —— Kerdy' —— XPt!

| | |

Coker d%" > 7P > WP

and we use Lemma (b) (ii) p. 178
§ 430. P. 325, exactness of
0 — HP(X) — Cokerdy ' — Kerdy' — HP*1(X) = 0:
e Exactness at H?(X): apply the Five Lemma (Theorem p. to

p—1

xXrt % Kerdy, —— HP(X) —— 0

J l

Xr! > XP » Coker dy ' —— 0.

p—1
dX

e Exactness at Coker dg(_l: It suffices to complete the commutative diagram

H?(X) —— Coker d% ' —— Kerd*!.
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Consider the commutative diagrams

p—1

XU 5 Kerdl, —<— HP(X)

o b,k

P G — » Coker db; !
Ker dgjl
and
w—"r sz

| |

XP — Coker dg{l.

The equalities d%j = bfj = bgh = 0 yield commutative diagram
w
S
J
Kerdf, —— XP.

(In this Section we write uv for uowv.) Setting i := ck we get ai = ack = fek = fj =
gh.

dp+1

e Exactness at Ker It suffices to complete the commutative diagram

Coker &%, ' —— KerdPt! —— H"(X).
Forming the commutative diagram

W ———sZ

i >

XP d—p> Kerde —b> HP+1(X)
X
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and setting f := hg, where h : X? — Coker dz))(_1 is the natural morphism, yields
af = ahg = d5g = ce.

e Exactness at HP™!(X): Obvious.
§ 431. P. 325, exactness of
0 — HP(X) — Cokerd? " — 2P — HP*H(X) = 0 :

e Exactness at H?(X): As mentioned in the book, the exactness at H?(X) holds by
assumption.

e Exactness at Cokerd? ': This is an immediate consequence of Lemma (b)
p- [180

e Exactness at H?*1(X): The morphism Z? — HP*1(X) is an epimorphism because
the composition Kerdy'' — ZP — HP*'(X) is an epimorphism.

§ 432. P. 325, claim that Z? € J. We have
Ker(ZP — HP™(X)) ~ Coker(H?(X) — Cokerd? ).

§ 433. P. 325, morphism fP™! : XP*1 — YP*l  This morphism is defined as the
composition XPTt — WP — Yr+L,

434. P. 325, morphism d%. : Y? — YP*! This morphism is defined as the compo-
Y
sition Y? — Coker db " — ZP — YP+1,

§ 435. P. 326, first display. Consider the commutative diagram
Ker ba

Kera

(\
! N2

yr-l Xy » Coker &' «—— HP(X)

yrrl,

The precise claim is that the morphism c¢ is an isomorphism. The key point is the
fact that b is a monomorphism.
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§ 436. P. 326, second display. The morphism HP*'(X) — HP*(Y.,;1) in the
commutative diagram

Coker &% ' —— Kerdyt! —— HP*H(X) —— 0

! | |

Coker d?! >y ZP » HPPH(X) ——— 0

| I !

Coker V! ——— YP+l 5 HPHU(Y_ ) — 0

is a monomorphism by the Five Lemma (Theorem m p. [180)).

§ 437. P. 326. The first isomorphism in the third display follows from the fact that
@ YP? — YPH! factors as Y? — Cokerd) ' — ZP — YP*! by definition of d¥,.

15.3 Brief comments

§ 438. P. 326, proof of Proposition 13.2.2 (ii). See §41§p.
§ 439. P. 328, proof of Proposition 13.2.6, Step (a). We write fg for fog.
o H" 1(X) = H"Y(Z). Tt suffices to show

Kerdy ' = Ker f"dy *.

Let
a:Ker fr'dvt — X" b:Kerdy — X", c: X" ! — Kerdy
be the natural morphisms. It suffices to show that the composition

n—1

d
Ker frdy ' % X"t X X7
vanishes. By assumption the composition

f”’L

Kerd? »2— X7 s Y™
X
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is @ monomorphism. Consider the commutative diagram

Ker frdy !
I
-1 X X7
cl / lf ’
Kerd%y »——— Y.

The equalities f"bca = f"ds 'a = 0 imply ca = 0 and thus 0 = bca = d’y ‘a.
e H"(X) — H™(Z). Let

1% b s W
X\i—l (d}il)/ l n
— X 5 Kerdy

be a diagram, where (g)" denotes the morphism induced by g. The bottom square
commutes, and it suffices to show that the commutativity of the big rectangle implies
that if the top square, which is clear.

e H*(X) — H™(Z). Even if this is unsatisfactory, let us use the Freyd-Mitchell
Theorem (Theorem 9.6.10. p. 238 of the book). In other words we may assume that
our abelian category C is Mod(R) for some ring R. We omit the o symbol and most
of the parenthesis. Let y" € Kerdy.. It suffices to show that there is an 2" in Ker d’
and an 2" in X"~! such that y" = fma" + f*d% '2""'. By assumption there is an
2" in Kerd% and a y"~! in Y"~! such that y" = f"z" + dny_lynfl. We can replace
y" with y" — di'y" ! and take 2”71 := 0.

§ 440. P. 327, Lemma 13.2.4. As noticed C*(Z¢) should be C*(Z¢). Using Definition
14.1.4 (i) p. 348 of the book, one can say that any X in C"(Z¢) is homotopically
injective.

§ 441. P. 327, Proposition 13.2.46. As noticed A should be N(C). Here is a corollary:
If C has enough injectives and J = L¢ (and (13.1.2) holds), then K(J) = D(C).
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Proof. It suffices to show that any exact X in K(J) is homotopic to zero, that is,
it suffices to show that Ker d% is injective for all n. But this follows from the exact
sequence

Xnmd oy xrmdtl s X s Ker dy — 0.

§ 442. P. 328, proof of Proposition 13.2.6, Step (b), Isomorphism Coker d,* ~
X' ®xi1 Cokerdi?. Let

a:Y"' — Cokerdiy?, b:X'@Y" ! — Cokerd},?
c: X' ® Cokerdi > — X' @xi-1 Coker di?
be the canonical morphisms. One checks that there is a unique morphism
f: Cokerdy,* — X' ®xi-1 Coker dy 2
such that f ob = co (id®a), and a unique morphism
g: X' ®xi1 Cokerdi? — Coker di,?
such that g o co (id ®a) = b, and that f and g are mutual inverses.
§ 443. P. 328, proof of Proposition 13.2.6, Step (b), Isomorphism
Kerd, ~ Ker diy' Xyt Y7
Let
a:Kerdy' — X b:Kerd), — X x Y,
c: Ker dé}” Xyi+1 Y — Ker dg‘{l x Y
be the canonical morphisms. One checks that there is a unique morphism
f:Kerdy, — Kerdiy' xyi1 Y*
such that (id xa) o co f = b, and a unique morphism
g: Kerd{' xyi1 Y' — Kerd},

such that bo g = (id xa) o ¢, and that f and ¢g are mutual inverses.

§ 444. P. 328, proof of Proposition 13.2.6, Step (c), proof of H(X) = H(Z) for
t=a+1,a,a—1.

e i = a + 1: the isomorphism Im d% ~ Imd% is induced by X — Z,

e i = a: the isomorphism Ker d% ~ Ker d§ is induced by Z — Y,

e i = a— 1: the isomorphism Kerd} ' ~ Kerd; ' is induced by X — Z.
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§ 445. P. 330. Right after Definition 13.3.1 it is written:

By the definition, the functor F' admits a right derived functor on K*(C) [by the
way | think the authors meant D*(C)]| if

“ 1 9 ! K F X/
xS iy @ KE)XD)

exists in D*(C’) for all X € K*(C). In such a case, this object is isomorphic to
R*F(X).

It is implicitly assumed that the underlying universe ¢ has been chosen so that C
is U-small (Definition [5| p. [L0)). This is justified by Theorem [95] p. [68] (the “Universal
Kan Extension Theorem”).

§ 446. P. 330, phrase “ R*F' is a triangulated functor from D*(C) to D*(C’) if it exists”
just before Notation 13.3.2. Here is a proof:

Consider the (non-commutative) diagram

K(C) 2 k(e

o| |@

D(C) — D(C)).

We have
RF(X) ~ (%;)li)n(q K(F)(Y),

where Y — X runs over the morphisms from Y to X in D(C). Using this expression
for RF(X) it is easy to see that RF' commutes with finite products. By Proposition
8.2.15 p. 173 of the book, this implies that RF' is additive.

As RF commutes with finite products, it commutes with mapping cones, and is
thus triangulated.

(We have implicitly used the fact that K(C) and D(C) have the same set of objects,
that @ acts on this set as the identity, and that the same holds for C'.)

§ 447. P. 330, Corollary 13.3.3. More generally: Let X be in D*(C). Then RF(X)
exists if and only if RTF(X) exists.

§ 448. P. 330. It is observed in the book just before the statement of Proposition
13.3.5:
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A full additive subcategory J of C is F-injective if and only if
(A) For all X in K*(C) there is a qis X — Y with Y in K*(J),
(B) F(Y) is exact whenever Y is an exact complex in K™(7).

Part “(a) = (b) (2)” of the proof of Proposition 13.3.5 p. 331 shows that (A)
above implies that 7 is cogenerating in C.

§ 449. P. 331, Part “(a) = (b) (2)” of the proof of Proposition 13.3.5. We have
Im(F(X) = F(X")) = Im(F(X) = F(Z°))
= Ker(F(Z2%) — F(ZY)) & F(X"),
the first isomorphism following from the fact that F(X”) — F(Z°) is a monomor-
phism.
§ 450. P. 331, Remark 13.3.6 (i). See p. 272 (I think that, in view of the

context, the implicit assumptions are that F'is an additive functor and that there is
an F-injective subcategory J of C.)

§ 451. P. 331, Remark 13.3.6 (iii). Lemma 13.2.1 p. 325 of the book is also used.

§ 452. P. 332. One can derive Corollary 13.3.8 from Theorem 13.8.7 as follows. Let
J be a full additive cogenerating subcategory of C, and consider the condition

(CO)If0— X' — X - X" > 0isexact in C, and if X', X € 7, then X" € J and
0— F(X') = F(X)— F(X") — 0 is exact.

We assume that (C) holds, and we must show that J is F-injective. Let Y/ — X
be a monomorphism in C with Y’ in 7, let X — Y be a monomorphism in C with
YinJ,andlet 0 - Y — Y — Y” — 0 be an exact sequence in C. Then (C)
implies that Y” is in J and that 0 — F(X') — F(X) — F(X"”) — 0 is exact. Now
Theorem 13.8.7 entails that J is F-injective.

§ 453. P. 332, first two sentences of the proof of Lemma 13.3.10. We get the com-
mutative diagram of complexes

0 s Y/ s X s X" s 0
0 s Y’ s 7 s X s 0
0 s Y’ s Y s Y s 0.
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The square (Z, X”)Y,Y") is cartesian, and the top and bottom rows are exact. The
middle row is exact by Lemma p. 179, and X — Z is an isomorphism by the
Five Lemma.

§ 454. P. 334, Lemma 13.3.12. We add the assumption that J is cogenerating. (See
also §484] p. 284 below. The notion of cogenerating full subcategory is defined on

p. 184 of the book, and the notion of F-injective full subcategory is defined on pages
253 and 330 of the book.)

§ 455. P. 334, proof of Lemma 13.3.12. The existence of an exact sequence R?F(X)
— RIF(X") — RIT'F(X') attached to a given exact sequence 0 — X' — X —
X" — 0 in C follows from Proposition [416] p. [262]

Unsolved Problem 456. P. 334, phrase “even if F' is right derivable, there may
not exist an F-injective subcategory”. I failed to prove this.

§ 457. P. 335, Display (13.3.4). The existence of m¢ follows from Proposition 6.3.1
p. 139 of the book.

§ 458. P. 337, Theorem 13.4.1. (See p. 20]) Here is a corollary. Consider the

following “pathological conditions” on an abelian /-category C:

(a) there is an n in Z and there are X and Y in C such that Ext"(X,Y) is not
equipotent to any U-set,

(b) D*(C) is not equivalent to a U-category,
(¢) R*Home does not exist.

Then (a) = (b) = (c). (See §424| p. 265 and §427| p. 265| above.)

Here is an abelian U-category C satisfying (a). Let U be a universe, let k be a
field belonging to U, let V' be a k-vector space whose dimension is larger than the
cardinal of U, let A be the tensor algebra of V', let C be the category of A-modules
belonging to U/, and denote again by k the field £ regarded as an A-module on which
the vectors of V act by zero. Then we have Extg(k, k) ~ V* ¢ U.

§ 459. P. 337, Theorem 13.4.1. (See §17] p. [20]) The natural morphism

(X’HXS%}E]Y')GQE OmK(C)( Y) OmD(C)( Y)

an isomorphism by Remark 7.1.18 (ii) p. 156 of the book. See also Theorem 10.2.3
(i) p. 249.
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§ 460. P. 337. (See p. ) In view of §261] p. [164] above and Theorem 13.4.1
p. 337 of the book, the functors

Hom? : K(C) x K(C)°* — K(Mod(Z))

and

HomK(c) : K(C) X K(C)Op — MOd(Z)
give rise to the commutative diagram

ROH2(X, )(Y) —— R°H.(X,Y) +—— R°H:( ,Y)(X)

! ! !

RHge)(X, )(Y) —— RHg)(X,Y) +—— RHge( ,Y)(X) (170)

where we have written H for Hom to save space, and where the horizontal arrows are
the natural maps and the other arrows are the natural bijections, and where

R(HOIHK(C) (X, )) (Y), R HOIHK(C) (X, Y), R(HOIHK(C)( s Y)) (X)

are defined by Notation 10.3.8 p. 255 of the book. Then (170) commutes, and all its
arrows are bijective. This implies

RHom((X,Y) ~ R(Homg(X, ))(Y)~ R(Homg( ,Y))(X).

15.4 Exercise 13.15 p. 342

Here is a partial solution. Let C be an abelian category, let X and Y be in C, let £
be the set of short exact sequences

0—-Y —->272—-X—=0,
and let ~ be the following equivalence relation on E: the exact sequences

0—-Y—->272—-X—>0
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and
0—-Y —->W-—-=>X—0

are equivalent if and only if there is a commutative diagram

0 y Y y / y X > 0
L
0 » Y > W >y X > 0.

(This is easily seen to be indeed an equivalence relation.) To the element
0=-Y—>2—-X—=0
of E we attach the morphism in
Hompc)(X, Y[1]) = Ext;(X,Y)
suggested by the diagram
X
Y —— l
|
Y,
where each row is a complex (viewed as an object of D(C)), with the convention that
only the possibly nonzero terms are indicated (the top morphism being a qis).
We claim:
(a) this process induces a map from E/~ to Ext:(X,Y),
(b) this map (a) is bijective.

Claim (a) is left to the reader. To prove (b) we construct the inverse map. To this
end, we start with a complex W*, a qis f : W* — X, and a morphism g : W* — Y[1]
representing our given element of Ext}(X,Y). The natural morphism 7<0W* — W*
being a qis, we can replace W* with 7<CW*, or, in other words, we may, and will,
assume W™ ~ 0 for n > 0. We have the commutative diagram

—2 —1
{EEIATAN i SRLTANS U6

x}/g

f

s X > 0
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whose top row is an exact complex. It gives rise to the commutative diagram

0 —— Ker f > WO

bl

0 > Y y Z > X > 0,

where the top row is an exact complex, where ¢’ is induced by g and where the
square (Ker f,W° Y, Z7) is cocartesian. Then Lemma p. implies that the
bottom row is an exact complex. It is easy to see that this process defines a map
from Exté (X,Y) to E/~, and that this map is inverse to the map constructed before.
q.e.d.

16 About Chapter 14

16.1 Brief comments

§ 461. P. 348, paragraph before Lemma 14.1.2. Define u : M(X) — T-1M(X) by

. (0 idp-1y

0 " ):X@T—1X—>T—1X@T—2X.

Then u is a homotopy between 0 and idys(x). In particular any morphism M (X) —
M(Y) is a gis.
§ 462. P. 348, proof of Lemma 14.1.5. We define a map

H X, I):= li H X', I)—H X, 1 171

omp, (4)(X, 1) Ot omg, () (X', I) omg,(4)(X, 1) (171)

by inverting the bijection Homy, 4)(X,I) — Homg, 4)(X', I) described in the proof

given in the book. It is easy to see that (171]) is the inverse of the natural map
HOHIKC(A)<X, [) — HOIHDC(A) (X, I)

§ 463. P. 348, Lemma 14.1.5. The following corollary to Lemma 14.1.5 is almost
obvious, but its importance might warrant an explicit statement and an explicit
proof.
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Corollary 464. Let (A,T) be an abelian category with translation such that for all
X in A, thereis a gis X — I with I in K.;(A), let D be a triangulated category and
F : K.(A) = D a triangulated functor. Then RF : D.(A) — D exists and satisfies
RF(X) ~ F(I) in the above notation.

Proof. This follows from Lemma 14.1.5 and Proposition 7.3.2 p. 160 of the book. []

§ 465. P. 349, Display (14.1.2), definition of QM. To be consistent with Remark
p. we define QM as the full subcategory of Mor(A.) whose objects are the

morphisms which are qis and monomorphisms.

§ 466. P. 349, proof of Proposition 14.1.6, Step (i) (b), claim “M (v) belongs to QM
see §461] p. 277

16.2 Proposition 14.1.6 p. 349

Here are some additional details about Step (ii) of the proof of Proposition 14.1.6.
The fact that Z is gis to 0 follows from Proposition p. 262

We refer the reader to the book for a precise description of the setting. The
following facts can be easily verified:

We have morphisms
f:X=Y, ¢:X—=1I ¢:Y—=I h:TY>I
in A which satisfy

p=1vof, (172)
h=T"'dioT ' —oT 'dy, (173)
h=T"dioT " +1odpiy, (174)

f and ¢ are in fact morphisms in A.. (175)

It is straightforward to check that h is also a morphism in A.. To prove hoT~!f = 0,
we note:

hoT 'f =T 'doT "poT ' f+podpiyoT ' f by
=T 'dioT 'o+podpayoT 'f by
=T 'doT'o+ofodpy by
=T 'dioT '+ podpix by
=0 by .
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We also have morphisms

Y = Z, h:T'Z—=I, €21 ¢:Y 1

in A with
g is in fact a morphism in A,
h=ho T 'y,
h=T"'dioT ¢ —¢toT "dy,
V=1 —Cog.

To prove that J is a morphism in A., we note:

dloqz—TQZody:dlow—djofog—Tz/Jody—l—Tfngody
=(drotp =Tody)—(djofog—TEoTgody)
=Th—(djofog—TEoTgody)
=Th—(djofog—TEodzoyg)
:Th—TEog
=0

16.3 Brief comments

by ([L79)

by (L73)
by (L76)
by (178

by .

§ 467. P. 350, last paragraph. In view of the comments made about Corollary
p. and Theorem p. [237], one could replace “there exists an essentially small
full subcategory S of A, such that ...” with “there exists an infinite cardinal 7 such
that (A.) is essentially small and satisfies . ..”, and replace S with (A.), in (14.1.4)

p. 351 of the book.

§ 468. As pointed out to me by Olaf Schniirer, one should also assume in (14.1.4)
that the category § is closed under translation. It is used in the proof of Lemma

14.1.9 p. 351.
§ 469. P. 351, proof of (14.1.4) (iii). Given

X —
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with YV in § we get
Y
X — X
by Lemma (a) (ii) p. and then

Y/

|

J ——Y

X — X
with Y in § and Y’ — Z — Y an epimorphism by Theorem (vi) p.

§ 470. P. 351, definition of ' and F. To be consistent with Remark p.
we define F' and F as follows: F’ is the full subcategory of QM whose objects are
are the objects u : X — Y of QM such that X and Y are in S, and F is the full
subcategory of F’ obtained collecting a representative of each isomorphism class of
objects of F.

§ 471. P. 352, proof of Lemma 14.1.10. I think
Ker(H(V,—1) = H(X)) = Ker(H(V,)) — H(X))

should be
Ker(H(V,—1) = H(X)) = H(V,).

By taking the colimit over n we see that
Ker(H(V') —» H(X)) —» H(V")
vanishes, which means that H(V’) — H(X) is indeed a monomorphism.

§ 472. P. 352, Corollary 14.1.12. Part (i) implies:

Let Uy C U be universes, let (A, T) be a Grothendieck U-category with transla-
tion, and let Ay C A be a fully abelian subcategory with translation. Assume that
Ay is a Grothendieck Up-category. Then the natural functor D.(Ag) — D.(A) is fully
faithful.
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Part (iii). I would change

“the functor @ : K.(A) — D.(A) admits a right adjoint R, : D.(A) — K.(A),Q o
Ry ~ idp,(4), and R, is the composition of ¢ : K. 5;(A) = K.(A) and a quasi-inverse
of Qo

to

“the functor R, : D.(A) = K.(A) defined by R, :=t0(Qo¢)~t, where ¢ : K. pi(A) —
K.(A) is the natural functor and (Q o t)™! is a quasi-inverse of Q o ¢, is a right
localization of the identity functor K.(A) — K.(A) and satisfies @ o Ry ~ idp,_(a)".

This follows from Proposition 7.3.2 p. 160 of the book, together with its proof.

§ 473. P. 355, Theorem 14.3.1:
(i) follows from Lemma 14.1.5 p. 348 of the book,
(ii) follows from Corollary 14.1.8 p. 350 of the book,
(iii) follows from Corollary 14.1.12 (i) p. 352 of the book,
(iv) follows from Corollary 14.1.12 (ii) p. 352 of the book,

(v) follows (with the change suggested in §472|p. [280)) from Corollary 14.1.12 (iii)
p. 352 of the book,

(vi) follows from Corollary 14.1.12 (vi) p. 352 of the book,
(vii) follows from Theorem 14.2.1 p. 353 of the book,
(viii) follows from Corollary 14.2.2 p. 353 of the book,

(ix) follows from Corollary 14.2.3 p. 353 of the book.

§ 474. Corollary 14.3.2 p. 356. Let us add one sentence to the statement:

Corollary 475. Let k be a commutative ring and let C be a Grothendieck k-abelian
category. Then (Ky;(C), K(C)°P) is Home-injective, and the functor Home admits a
right derived functor

RHome : D(C) x D(C)® — D(k).

If X and Y are in K(C), then for any qis Y — I with I in Ky;(C) (such exist) we
have
RHOIHC (X, Y) :> HOII]K(C) (X, [) l) HomD(c) (X, ])

Moreover, H*(RHome(X,Y')) ~ Hompc)(X,Y) for X, Y in D(C).
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§ 476. P. 358. Lemma 14.4.1 will be used to prove Theorems 14.4.3 and 14.4.5 p. 359
of the book.

§ 477. P. 358, proof of Lemma 14.4.1.

e We have a commutative diagram

Qn » P, y TS X

N

Popy —— 75X — X

in K(C).

e We have the following chain of isomorphisms in D(C):
Qn = Mc(P, @ Poyy — =" X)[~1] & Mc(Pyy1 — Py @ Poy1)
= Mc(0 — P) @ Mc(Poyy — Post) 5 P @0 P,

e Here is a rewriting of the last four lines:

Hence, ¢; and ¢;11 are monomorphisms by Exercise 8.37. Note that id —sh in

Exercise 8.37 corresponds to ¢; and Xq — X; — --- corresponds to H*(X) i,
H(X) N (B straightforward to check that the obvious diagram with exact
rOws

0 —— H(Q) —=— HY(P) — H'(R) —— 0

[ [-
0 — PHQ) — PH(P)

n>t n>t

00— PHX) = PHX) — H"\(’X) — 0

n>t n>t

commutes. This implies that H*(R) — H*(X) is an isomorphism.

§ 478. P. 359, proof of Lemma 14.4.2. The fact that the full subcategory Kp,(C)
of K(C) consisting of homotopically projective objects contains K™ (P) follows from
Lemma 13.2.4 p. 327 of the book.
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§ 479. P. 359. In the setting of Theorem 14.4.3, the functor RHom, exists.
§ 480. P. 359, Theorem 14.4.5.

We add the assumption that RHom¢ exists.

Theorem 14.3.1 (vi) p. 355 implies that RF' exists. This fact is implicit in the
statement and the proof of Theorem 14.4.5.

Let us denote by (bl) the statement “the left derived functor LG : D(C) — D(C’)
exists”, and by (b2) the statement “(LG, RF) is a pair of adjoint functors”.

The proof proves successively (a), (bl), (c), (b2). More precisely:

e The second sentence of Step (v) of the proof is “Hence P is K(G)-projective and
LG exists”. Thus, (a) and (b1) have been proved at this point.

e The penultimate sentence of the proof is “Hence we obtain (c)”.

e The last sentence of the proof is “By taking the cohomologies, we obtain (b)”, but
what is really meant is “By taking the cohomologies, we obtain (b2)”.

§ 481. P. 360, Step (ii) of the proof of Theorem 14.4.5: the fact that Qisy NK™(P)
is co-cofinal to Qisy follows from Proposition 3.2.4 p. 79 of the book.

§ 482. P. 360, Theorem 14.4.5 (¢). Here is the implicit underlying lemma:
Lemma 483. In the setting described by the diagram

F
E —
A—>BGC,

where E is an equivalence, the map
HomFCt(B,c)(F, G) — HOIIlFCt(Aﬁ)(F o E, Go E), 0— 0xE
(see Definition [33 p.[39) is bijective.

(Note that the above lemma is a particular case of Lemma 7.1.3 p. 150 of the
book.)

The statement of Theorem 14.4.5 (c) is

We have an isomorphism in D(k), functorial with respect to X € D(C) and Y €
D(C"):
RHome (X, RF(Y)) ~ RHome/ (LG(X), Y),

and the above lemma enables us to assume that X is in P and Y in Kp;(C').
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§ 484. P. 361, Corollary 14.4.6. We add the assumption that P is generating. (See
also p. above. The notion of generating full subcategory is defined on p. 184
of the book, and the notion of F-projective full subcategory is defined on pages 253
and 330 of the book.)

§ 485. P. 361, proof of Corollary 14.4.6. The last display can be written
colim H"(LG(a)) = colim H"(G(p.)) — H™(G(colimp,)) = H"(LG(colim a)).

§ 486. P. 361, Theorem 14.4.8. We add the assumption that RHom¢, and RHomg,
exist.

§ 487. P. 362, Line 8: as already indicated K(G)-projective should be G-projective
(see Definition 13.4.2 p. 338 of the book).

§ 488. P. 364, proof of Theorem 14.4.8. I don’t understand Step (f). Here is another
argument. We must prove that there is a functorial isomorphism

];{I‘IOIDC3 (LG(Xl, Xz), Xg) ~ ];{:[‘IOH’IC1 (Xl, RF(XQ, Xg))

fgr X1 € K(Gh), Xy € K(C), X5 € K(C3). We can assume that X; € 751,X2 €
Ps, X3 € Kpi(C3) (see §482. p. [283). We have

R,I‘IOH’IC3 (LG(Xl, XQ), Xg) ~ I‘IOH]E3 (K(G) (Xl, XQ), Xg)

~ I’IOHIE1 (Xl, K(F1>(X27X3)) ~ ];{I‘IOIDC1 (Xl, RF(XQ,XE;))

17 About Chapter 16

17.1 Sieves and local epimorphisms

This section is about the beginning of Section 16.1 p. 389 of the book. Let C be a
category whose hom-sets are disjoint, let M be the set of morphisms in C, and for
each U in C let My C M be the set of morphisms whose target is U. A subset S
of My is a sieve over U if it is a right ideal of M, in the sense that S contains all
morphism of the form so f with sin S. If Sis a sieve over U and f:V — U is a
morphism, we put

SxyV={W-=>V|(W-=V-=>U)eS} (180)
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One easily checks that this is a sieve over V.

To a sieve S over U we attach the subobject Ag of U in C”" by the formula
As(V) :== SN Home(V,U).
Conversely, to an object A — U of (C")y we attach the sieve Sa_,y over U by putting
Sasv ={V AU}

In particular we get a natural bijection between the sieves over U and the subobjects
of U in C", and this bijection is compatible with p. We may sometimes
tacitly identify these two sets, so that, given a sieve S over U, the datum of a
morphism (V' — U) € S is equivalent to that of a morphism V' — S in C"*. (We say
that A € C" is a subobject of B € C" if A(U) C B(U) for all U.)

Let ¥y be the set of sieves over U. Let (J(U))yec be a subfamily of the family
(Xv)vec and consider the following conditions:
Condition 489.
GT1: for all U in C we have: My € J(U),
GT2: for all U in C we have: J({U)> S C S €¥Xy = S € J(U),
GT3: for all U in C we have: S € J(U), (V -U)e M = SxyV e J(V),
GT4: for all U in C we have:

SeJU), ey, S xpyVeJV)V(IV-U)eS = S eJ).

The membres of J(U) are called covering sieves of U.

Proposition 490. Aziom GT2 follows from GT}.

Proof. In the notation of GT2, if (V — U) be in S, then we have S’ xy V =
S XU V. O]

Consider the following conditions on a set £ of morphisms in C”:
LE1: idy isin &€ for all U in C,

LE2: if the composition of two elements of £ exists, it belongs to &,
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LE3: if the composition v o u of two morphisms of C" exists and is in &, then v is in

£,

LE4: a morphism A — B in C" is in &£ if and only if, for any morphism U — B in
C" with U in C, the projection A xg U — U is in £.

As proved in the book,

& contains all epimorphisms. (181)

For the reader’s convenience we paste the proof of (181)) (see p. 391 in the book):

Assume that v : A — B is an epimorphism in C*. If w : U — B is a morphism
with U in C, there exists v : U — A such that w = uw o v by Proposition p.
and Exercise 3.4 (i) p. 90 of the book, stated above as Proposition [165] p.[106] Hence,
idy : U — U factors as U — A xg U — U. Therefore A xg U — U is in £ by LE1
and LE3, and this implies that A — B is in £ by LE4. q.e.d.

The elements of £ are called local epimorphisms.

Let J = (J(U))vuec be a subfamily of the family (X¢)pec satisfying GT1-GT4,
let U be a universe such that C is U-small (Definition [5| p. , and let

£=E(U) (182)

be the set of those morphisms A — B in C” such that, for any morphism U — B in
C" with U in C, the sieve Sax vy is in J(U).

Lemma 491. A morphism A — U in C" with U in C is in € if and only if Sa_y is
in J(U).

Proof. Observe first that, in the setting
A=U<+V
(obvious notation), we have

Saxyvov = Sasu xu V. (183)

Let A — U be a morphism in C" with U in C. Consider the conditions (with obvious

notation)
(A—=U)e€é, (184)
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SAXyV—)V c J(V) vV V> U, (185)
Suso xuVeEIJVIV ¥V VU, (186)
Suu € J(U). (187)

We have - - 185]) by definition of £, and - - 186|) by Lemma E -
- 187) by GT1 and GT4, and - - 186|) by GT3.

Let us check that & satisfies LE1-LEA4:
LE1 follows immediately from GT1.

LE2: Let A — B — C be a diagram in C", and assume that the two arrows are in
&. Consider the diagram of solid arrows with cartesian squares

oV
i i
D y B > U
L]
A > B > '

in C" (with U in C). We have that Sg_,y is in J(U) (because B — C'is in £) and we
must prove that Sp_p isin J(U). Let V' — U be in Sg_,y, and let us complete the
diagram with cartesian squares as indicated. By GT4 it suffices to check that Sg_,y
is in J(V'). But this follows from the assumption that A — B is in £ (together with
a transitivity property of cartesian squares which has already been tacitly used).

LE3 follows immediately from GT2.
LE4 follows immediately from Lemma [491]

Conversely, given an object U of C and a set £ of morphisms in C" satisfying
LE1-LE4, put
J(U) = {S € Xy | (AS — U) S 5}

Recall that we have attached to a sieve S over U the subobject Ag of U in C" defined
by
Ag(V) := SN Home(V,U).

Let us check that Jg := (J(U))yec satisfies GT1-GT4.
GT1 follows from LE1 and the equality (A, — U) = idy.
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GT?2 follows from GT4 (Proposition p. [285)).

To prove GT3, note that if S is a sieve over U and V' — U is a morphism in C,
then we have the equality

(Asrxyv = V) = (As xg V= V), (188)
in (C")y. In view of LE4, this implies GT3.
The lemma below will helps us verify GT4.
Lemma 492. For any sieve S over U we have
Sagou = S.
For any morphism A — U (obvious notation) there is a canonical isomorphism

As, v~ Im(4 = U).

Proof. The proof of the second sentence is straightforward and left to the reader. To
prove the first sentence let s : V' — U be a morphism in C and S a sieve over U. It
suffices to show that s is in S if and only if s factors through the natural morphism
1 AS — U.

By the Yoneda Lemma (Lemma 36| p. , there is a bijection
S N Home(V,U) & Homen (V, Ag)

such that ¢(s)y = so for all W in C.

Assume that s is in S and let us show that there is a morphism v : V' — Ag
satisfying i o v = s. It suffices to prove i o ¢(s) = s and to put v := ¢(s). We have
for all Win C

(1o @(s))w =iw o p(S)w = iw o (s0) = so = sy .

Conversely, assuming that v is in Homen (V) Ag), it suffices to prove that i o v is
in S. We have

10V = (Z o U) O ldV = (Z o U)V(idv) = iv(vv(idv)) = Uv(idv) S AS(V) CS.
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Lemma 493. Condition GT} holds.

Proof. Let us assume

SeJU), §eSy, S'xyVeJV)V (VU eS. (189)
It suffices to check S” € J(U), or, equivalently,
(Ags = U) € €. (190)

Form the cartesian square
B —— Ag
|
Ag —— %
As Ag — U is in £ by assumption, it suffices, by LE2 and LE3, to check
(B — Ag) € €. (191)
Let V — Ag be a morphism in C”* with V in C, and let

C ——V

|

B —— Ag
be a cartesian square. By LE4 it is enough to verify
(C—V)e&. (192)
The morphism V' — U being in S by the first sentence of Lemma [92] the sieve
S"xyVisin J(V) by , and Ag«, v — V isin & by definition of J(V'). We have
ED (Asgxyv = V)= (Ag xgV=V)x (C—=V).
Indeed, the equality holds by p. , and the isomorphism holds because the

rectangle
C —V

|

B — Ag

L

AS/—>U

is cartesian. This proves successively (192)), (191), (190) and the lemma. O
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We have proved that (J(U))yec satisfies GT1-GT4.
It is now easy, thanks to Lemma p. 288 to prove

Theorem 494. If C is a U-small category (Deﬁmtion@ D. @), if J is a subfamily
of (Xv)vec satisfying GT1-GT4, and if € is a set of morphisms in C; satisfying
LE1-LEJ, then the equalities € = E(J,U) and J = Jg¢ are equivalent.

Corollary 495. Let U C U be universes, let C be a U-small category, let J be a

subfamily of (Sv)vec satisfying GT1-GT4 (see Conditions[{89 p.[285), letu: A — B
be a morphism in C}), and let v’ : A" — B’ be the corresponding morphism in CJ),.

Then w is in E(J,U) (see (182)) p. if and only if u' is in E(J,U").

17.2 Brief comments

§ 496. P. 390, Display (16.1.1). Note that Ag is not a subobject of U in C" in the
sense of Definition 1.2.18 (i) p. 18 of the book. See §27| p. 27}

§ 497. P. 390, Axioms LE1-LE4. The set of local epimorphisms attached to the
natural Grothendieck topology associated with a small topological space X can be
described as follows.

Let f: A — B be a morphism in C”, where C is the category of open subsets of
X. For each pair (U,b) with U in C and b in B(U) let 3(U, b) be the set of those V' in
Cu such that there is an a in A(V') satisfying fi(a) = by, where by is the restriction
of b to V. Then f is a local epimorphism if and only if

v= J v
)

vVex(Ub

for all (U, b) as above.

Moreover, a morphism u : A — U in (Opy)”" with U in Opy is a local epi-
morphism if and only if for all  in U there is a V' in Opy such that x € V and
A(V) #£ o.

§ 498. For any universe U, any U-small category (Definition |5 p. C and any sub-
family J of (Xy)vec satisfying GT1-GT4 (see Conditions p. [285)), let M(J,U)
and Z(J,U) denote respectively the set of local monomorphisms and local isomor-

phisms attached to £(J,U) (see (182)) p. [286)). Corollary p. implies:
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Let U C U' be universes, let C be a U-small category, let J be a subfamily
of (Xp)vec satisfying GT1-GT4, let v : A — B be a morphism in (j}, and let
u' : A" — B’ be the corresponding morphism in C/},. Then u is in M(J,U) (resp. in
Z(J,U)) if and only if o’ is in M(J,U’) (resp. in Z(J,U')).

§ 499. P. 395, proof of Lemma 16.2.3 (iii), sentence:

“Notice first that a morphism U — A xp A is nothing but a diagram U =% A — B
such that the two compositions coincide, and then any diagram S — U = A such
that the two compositions coincide factorizes as S - A x U — U.”
AXBA
Let us prove the factorization statement, even if it is straightforward. Consider
the commutative diagram with cartesian squares

S
k/// \fz
D——U
l y
A——C—"5 A
A —— B.
We have
wir = idy = wex (193)
and
WYz = WYz (194)

by assumption (we omit the composition symbol o), and it suffices to show zw,yz =
yz, that is
W TUNYZ = WiY2 (1=1,2). (195)

But ((195)) follows immediately from (193] and (194)).

§ 500. P. 395, Lemma 16.2.3 (iii). Consider the conditions

(b) for any diagram C' = A — B such that C is in C and the two compositions
coincide, there exists a local epimorphism D — ' such that the two compositions
D — C = A coincide,
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(c) for any diagram C' = A — B such that C' is in C" and the two compositions
coincide, there exists a local epimorphism D — C' such that the two compositions
D — C = A coincide,

(d) for any diagram C' = A — B such that C' is in C and the two compositions
coincide, there exists a local isomorphism D — C' such that the two compositions
D — C' = A coincide,

(e) for any diagram C' = A — B such that C' is in C" and the two compositions
coincide, there exists a local isomorphism D — C' such that the two compositions
D — C' = A coincide.

Recall that (a) is the condition that A — B is a local monomorphism. Lemma
16.2.3 p. 395 of the book implies

Conditions (a), (b), (c), (d), (e) are equivalent. (196)

Indeed, Part (iii) of the lemma says that (a), (b) and (c) are equivalent. Clearly
(e) implies (c¢) and (d), and (d) implies (b). It suffices to check that (c) implies (e).
Let C = A — B be as in the assumption (c), let D — C' be the local epimorphism
furnished by (c), and let I be its image. The two compositions I — C' = A coincide
because D — I is an epimorphism, and I — C'is a local isomorphism by Part (ii) of
the lemma. q.e.d.

§ 501. P. 395, Lemma 16.2.4 (i). The statement says that local monomorphisms
are stable by base change. The last sentence of Step (a) in the proof follows from

the fact that local epimorphisms are stable by base change (Proposition 16.1.11 (i)
p. 394 of the book).

§ 502. P. 396, Step (a) in the proof of Lemma 16.2.4 (i). Starting with the cartesian
square

D——C
L
A —— B,
we form the cartesian squares
E— A F—— D G——C
L
A—— B D——C EFE—— B
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we define a morphism F — E as suggested by the commutative diagram

F—— D

NN

D——C A

NN

A—— B

and we check that there is an obvious morphism F' — G suggested by the commu-
tative diagram

We claim that F' — (G is an isomorphism.

To prove this, we can assume that the above commutative diagrams take place
in Set. We leave it to the reader to verify that the formula

((ala a2)> C) = ((ala C)’ (aQa C))
defines a (unique) map G — F', and that this map is inverse to F' — G.

§ 503. P. 396, proof of Lemma 16.2.4 (ii). The fact that h is a local epimorphism
follows from Proposition 16.1.11 (i) p. 394 of the book.

§ 504. P. 397, Notation 16.2.5 (ii). The fact that

such a w is necessarily a local isomorphism (197)
follows from Lemma 16.2.4 (vii) p. 396.
§ 505. P. 398, proof of Lemma 16.2.7: see p.

§ 506. Right after Display (16.3.1) p. 399 of the book, in view of the natural iso-
morphism

A%(U) = Homen . (Q(U), Q(A)),
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the map A*(U’) — A%(U) induced by a morphism U — U’ can also be described by
the diagram

Q) = Q(U') = Q(A).
Similarly, the map A(U) — A*(U) at the top of p. 400 of the book can also be
described by the diagram
A(U) ~ Homen (U, A) = Homeny,., (Q(U), Q(A)) ~ A*(U).
Then Lemma 16.3.1 can be stated as follows.
If
U< B5 A
is a diagram in C" with U in C and s a local isomorphism, and if
v=Q(u)oQ(s)™ € A(U) = Homen)(Q(U), Q(A)),

then
vos=c¢c(A)ou. (198)

Indeed, ((198)) is equivalent to v o Q(s) = Q(u).
§ 507. P. 400, Step (ii) in the proof of Lemma 16.3.2 (additional details):

We want to prove that A — A is a local monomorphism. In view of (196]) p.
it suffices to check that Condition (b) of §500| p. holds.

Recall that the functor
a: (LIy)® — Set, (B> U) > Homen(B, A)

satisfies colima ~ A%(U) (see (16.3.1) p. 399 of the book). Let i(s) : a(s) —
A%(U) be the coprojection, and let fi, fo : U = A be two morphisms such that the
compositions U = A — A® coincide. By definition of the natural morphism A — A%,
we have
i(idp)(f1) = i(idp)(f2)-

By the fact that £Zy is cofiltrant, and by Proposition 3.1.3 p. 73 of the book, there
is a morphism

p: (BSU)— (UL U)
in £Zy such that a(¢)(f1) = a(p)(f2). This means that the compositions B — U =
A coincide. q.e.d.

§ 508. P. 401, Step (i) of the proof of Proposition 16.3.3. See (196)) p. [292and (197
p. 293} (As already mentioned, B” — B should be B” — B'.)
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18 About Chapter 17

18.1 Brief comments

§ 509. P. 405, Chapter 17. It seems to me it would be more convenient to denote
by f* the functor from (Cy)° to (Cx)°P (and not the functor from Cy to Cx) which
defines f. To avoid confusion, we shall adopt here the following convention:

If f: X — Y is a morphism of presites, then we keep the notation f* for the
functor from Cy to Cx, and we designate by f7 the functor from (Cy)°P to (Cx)°P:

ft : CY — C)(, fT . (Cy)0p — (C)()Op. (199)

In other words, we set

=)
We keep the same definition of left exactness (based on f*) of f: X — Y as in the
book.

The motivation for introducing the functor f7 can be described as follows: The

diagram
J ‘ > 1
C,

representing the general setting of Section 2.3 p. 50 of the book, is now replaced by
the commutative diagram

op

(

Cy )P I » (Cx)
\ . /

(See also §510| p. [295| and §512| p. [296] )

§ 510. P. 406. Recall that, in the first line of the second display, (Cy )" should be
Cy (twice). In notation (199)), Formula p. [91] gives, for B in C{ and U in Cy,

H(B)(U)~ colim Hom U, f{(V)) ~ colim B(V). 200
() (B)U) (V=B)e(Cy)p el (V) (U= fH(V))E(Cy )V V) (200

For the sake of emphasis, we state:
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Proposition 511. The functor (f*)” commutes with small inductive limits (Propo-
sition 2.7.1 p. 62 of the book, Remarkp. @ above). Moreover, if f is left exact,
then (f*)" is exact (Corollary 3.3.19 p. 87 of the book).

If f:X — Y is a continuous map of small topological spaces, if B is in (Opy )"
and U in Opy, then (200) gives

() (B)U) =~ [ Colim B(V). (201)

§ 512. P. 407. Let f : X — Y be a morphism of presites and let A be a category
admitting small inductive and projective limits. In the notation of (199)) p. , we
set

fo=UNs o =1 =00

yielding

f1 £ PSh(XA) — PSh(Y, A).
Then (17.1.3) and (17.1.4) follow respectively from (2.3.6) and (2.3.7) p. 52 of the
book. For the sake of completeness, let us rewrite (17.1.3) and (17.1.4) (in the

notation of ((199))):
"G)U) = colim G(V), 202
fe)w (fT(V)=U)e((Cy)°P)u V) (202)

with G in PSh(Y, . A),U in Cx, f7(V) — U being a morphism in (Cx)° (correspond-
ing to a morphism U — f*(V) in Cx),

HAU) = lim G(V), (203)

(U=fm(V))e((Cy)or)Y

with G in PSh(Y,A),U in Cx, U — f7(V) being a morphism in (Cx)°? (correspond-
ing to a morphism f*(V) — U in Cx).

§ 513. P. 408, comment preceding Convention 17.1.6. Let us recall the comment:

We extend presheaves over X to presheaves over X using the functor h_iX associ-
ated with the Yoneda embedding h’; = h¢,. Hence, for F' in PSh(X,.A) and A in
C%, we have

bl F)(A)=  lim  F(U).
(b F)(A) = T F(U)
By Corollary 2.7.4 p. 63 of the book, the functor

hi : PSh(X, A) — PSh(X, A)
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induces an equivalence of categories between PSh(X,.4) and the full subcategory of
PSh(X,.A) whose objects are the A-valued presheaves over X which commute with
small projective limits.

One can add that a quasi-inverse is given by
hx, : PSh(X, A) = PSh(X, A).

§ 514. P. 408, Convention 17.1.6. Recall the convention: If F'is an .A-valued presheaf
over X and A is a presheaf of sets over X, then we put

F(A) == (bl F)(A) = . }li)rer%CX)A F(U). (204)

(Note that the same comment is made at the beginning of Section 17.3 p. 414.) This
convention of extending each presheaf F' over X to a presheaf, still denoted by £,
over X which commutes with small projective limits implies that we have, for A, B

in C",
B(A) ~ Homgy (A, B).
In the notation of §I19|p. 90, Convention 17.1.6 can be described as follows:

If X is a site, if C is the corresponding category, if h : C — C” is the Yoneda
embedding, if ' is an A valued sheaf over X, and if A is an object of C", then
Convention 17.1.6 consists in putting

F(A) = (hP) (F)(A).

§ 515. P. 409, Proposition 17.1.9 follows immediately from p- , p-
and p. 38

§ 516. P. 410, Display (17.1.15): As already indicated in {18 Display (17.1.15)
p. 410 should read

HomPSh(X,A) (F, G) ~ Uhercn HompSh(X,A)(F, G)(U)
D'e

§ 517. P. 412, proof of Lemma 17.2.2 (ii), (b)=(a), Step (1): (f*)” is right exact

by Proposition [I61] p. [105] and Proposition [511] p. [296]

§ 518. P. 412, proof of Lemma 17.2.2 (ii), (b)=-(a), Step (3). See p. . This is
essentially a copy and paste of the book.
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Claim: if a local isomorphism u : A — B in C} is either a monomorphism or an
epimorphism, then (f*)™(u) is a local isomorphism in C%-.

Proof of the claim: Let V' — B be a morphism in Cp with V in Cy. Then
uy : AxpV — V is either a monomorphism or an epimorphism by Proposition [160]
p.[L05] and Proposition [L65] p. Let us show that (f*)"(uy) is a local isomorphism.

If uy is @ monomorphism, (f*)”(uy) is a local isomorphism by assumption.

If uy is an epimorphism, then uy has a section s : V. — A xg V. Since uy is a
local isomorphism by Lemma 16.2.4 (i) p. 395 of the book, s is a local isomorphism.
Since

(f) " () o (f1)7(s) = id gy,
is a local monomorphism, and (f*)7(s) is a local epimorphism by Step (2), Lemma
16.2.4 (vi) p. 396 of the book implies that (f*)” (uy) is a local monomorphism.
Since (f*)” (uy) is an epimorphism by Step (2), we see that (f*)” (uy) is a local
isomorphism. This proves the claim.

Taking the inductive limit with respect to V' € (Cy)p, we conclude by Proposition
16.3.4 p. 401 of the book that (f*)™(u) is a local isomorphism.

§ 519. P. 413, Definition 17.2.4 (ii): see Remark [I18p. [90]

§ 520. P. 413. Lemma 17.2.5 (ii) and Exercise 2.12 (ii) p. 66 of the book imply: If
f: X — Y is weakly left exact, then (f*)” : C — C% commutes with projective
limits indexed by small connected categories (Definition || p. .

§ 521. P. 413, Lemma 17.2.5 (ii). Here is a corollary:

Let f: X — Y be a weekly left exact morphism of sites such that (f*)”(u) is a
local epimorphism if and only if u is a local epimorphism. Then (f*)”(u) is a local
monomorphism if and only if u is a local monomorphism, and (f*)” (u) is a local
isomorphism if and only if u is a local isomorphism.

§ 522. P. 413, Example 17.2.7 (i). Recall that f : X — Y is a continuous map of
small topological spaces. As explained in the book, to see that f is a morphism of
sites, it suffices to check that, if u : B — V is a local epimorphism in (Opy )" with
V in Opy, then (f)7(B) — f~(V) is a local epimorphism in (Opy)”". This follows

immediately from §497 p. and (201) p. [296]

§ 523. P. 414, Definition 17.2.8 (minor variant):
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Definition 524 (Definition 17.2.8 p. 414, Grothendieck topology). Let X be a small
presite. We assume, as we may, that the hom-sets of Cx are disjoint. A Grothendieck
topology on X s a set T of morphisms of Cx which satisfies Axioms LE1-LE4 p. 390.
Let T and T be Grothendieck topologies. We say that T is stronger than T, or that
T’ is weaker than T, if T C T.

Let (7;) be a family of Grothendieck topologies. We observe that (]7; is a
Grothendieck topology, and we denote by \/ 7; the intersection of all Grothendieck
topologies containing | J 7.

18.2 Definition of a sheaf (page 414)

Here is Definition 17.3.1(ii) of the book:

Definition 525. A presheaf F' € PSh(X, . A) is a sheaf if for any local isomorphism
A — U such that U € Cx and A € (Cx)", the morphism F(U) — F(A) is an

1somorphism.

(Here A is a category admitting small projective limits.)
To simplify we assume A = Set.

In SGA4.11.2.1 Verdier defines a sheaf of sets by

Definition 526. A presheaf of sets F' € PSh(X) is a sheaf if for any local isomor-
phism A — U n Cx such that A — U 1is a monomorphism and U is in Cx, the
morphism F(U) — F(A) is an isomorphism.

See http:/ /www.normalesup.org/~forgogozo/SGA4,/02/02.pdf

A “KS-sheaf” is obviously a “Verdier sheaf”. By implication “(i) = (ii bis)”
in Proposition 5.3 of Verdier’s SGA4.I1 Exposé linked to above, the converse is also
true.

In https://mathoverflow.net/a/283271/461 Dylan Wilson proved this fact using
only the beginning of Verdier’s Exposé, up to Proposition 4.2. In the next section
(Section p- we prove these results. In the sequel of this section we describe
Dylan Wilson’s argument. Our purpose was that this text, together with Categories
and Sheaves, offer a self-contained proof of the equivalence of the two definitions.
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Proposition 527. A “Verdier sheaf” is a “KS-sheaf”.

Proof. For the duration of the proof, Sh(X) will denote the category of “ Verdier-

sheaves”. By Theorem 3.4 in SGA4.II (Theorem p.[307), the inclusion Sh(X) C
PSh(X) admits an exact left adjoint a. We will also use tacitly the fact that Sh(X)
admits finite limits and colimits (Theorem 4.1 in SGA4.II, Theorem p. 308)).

Claim 1: If A — U, with U in Cx, is a monomorphism and a local isomorphism in
PSh(X), then aA — aU is an isomorphism in Sh(X).

Proof of Claim 1: Let F' be in Sh(X). We must show that the map
Homgp(x)(al, F') — Homgp(x) (a4, F')

is bijective, that is, that the map
Hompgn(x) (U, F) = Hompgn(x) (A, F)

is bijective, which is clear.

Claim 2: If A — B is a monomorphism and a local isomorphism in PSh(X), then
aA — aB is an isomorphism in Sh(X).

Proof of Claim 2: Let f : A — B be a monomorphism and a local isomorphism
in PSh(X). By Proposmon 4.2 in SGA4.1T (Proposition |536| p. [309) and (the dual
of) Proposition [165| p. |106| above, it suffices to show that af is an epimorphism in
Sh(X). Let z,y: B= F be two morphisms in PSh(X) with £ in Sh(X) and = # y.
It suffices to prove z o f # yo f. As we have

colimU = B
U—B

(the colimit being taken in PSh(X)) by p. , there is a morphism v : U — B
in PSh(X) such that z o u # y o u. Consider the commutative diagram

AU—>U

L
AT>B$F

in PSh(X), where the square is cartesian. As fy is a monomorphism by Exercise
2.22 p. 68 of the book, and a local isomorphism by Lemma 16.2.4 (i) p. 395 of the
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book, we have x ouo fy # yowuo fy by Claim 1. This implies x o f # yo f, as
desired.

Claim 3: a maps local epimorphisms to epimorphisms.

Proof of Claim 3: Let A — B be a local epimorphism in PSh(X). Then we see that
Im(A— B)— B

is a local epimorphism and a monomorphism (Lemma 16.2.3 (ii) p. 395 of the book),
that
alm(A — B) — aB

is an isomorphism by Claim 2, that
Im(aA — aB) — aB

is an isomorphism by exactness of a, and that aA — aB is an epimorphism by
Proposition 5.1.2 (iv) p. 114 of the book. This proves Claim 3.

Claim 4: a maps local isomorphisms to isomorphisms.

Proof of Claim 4: Claim 4 follows from Claim 3 and the exactness of a.

Let us show that a “Verdier sheaf” is a “KS-sheaf”. Let F' be a “Verdier sheaf”
and let A — U be a local isomorphism in PSh(X) such that U is in Cx. It suffices
to prove that the map FU — F'A is bijective, that is, that the map

HOmpSh(X)(U, F) — HomPSh(X) (A, F)
is bijective, that is, that the map
HomSh(X)(aU, F) — Homgh(X) (aA, F)

is bijective. But this follows from Claim 4. ]

18.3 Proof of some results of SGA4I1

In this section we prove the results contained in the beginning of Verdier’s Exposé

http://www.normalesup.org/~forgogozo/SGA4/02/02.pdf
up to Proposition 4.2, results used in Section p. above.

Let C be a site and U a universe such that C € U, and write C" for C.
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Lemma 528 (1.1.1). Let S and S’ be covering sieves of some object U of C. Then
the intersection S NS’ is again a covering sieve of U. In particular, the ordered set

J(U) is cofiltrant.

Proof. Let V' — S’ be a morphism in C". It suffices to show that S x;V is a covering
sieve of V. There is a commutative diagram

SxyV e——DV ==V
SNS e > S'—— U

where the two small squares are cartesian. This implies that S x; V' is a covering
sieve of V', as desired. O

18.3.1 Sheaf associated to a presheaf

Recall that C is a site and U a universe such that C € U, and that we write C"
for C/}. The set J(U) of covering sieves of U, ordered by inclusion, is cofiltrant by
Lemma [528

For all U-presheaf F', the “canonical” colimit

colim Homen (S, F')
SeJ(U)

is a member U. (By “canonical” colimit we mean the set given by Proposition 2.4.1
p. 54 of Categories and Sheaves.) Let g : V' — U be a morphism in C. The base
change functor ¢g* : J(U) — J(V') defines a map

LF(g) : LF(U) — LF(V),

making U +— LF(U) is a presheaf over C.

The morphism idy : U — U being a member of J(U), we have, for all object U

of C, a map
(F)U): F(U)— LFU),

defining a morphism of functors

(F): F— LF.
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It is clear moreover that F' — LF is a functor in F', and that the morphisms ¢(F')
define a morphism

¢:id — L.

Finally let S < U be a covering sieve of U, and let
ZS : HOch (S, F) — HOHIC/\ (U, LF)

be the coprojection. For all morphism V' 2% U in C, the definition of the functor LF
shows that the diagram

Zs

Homen (S, F) Homen (U, LF)

2 | |

Homen (S xy V, F) Homen (V, LF)

SxyV
commutes. (The vertical arrows are the obvious ones.)

Lemma 529 (Lemme 3.1).

1. For all covering sieve ig : S < U and all a : S — F, the diagram

U(F)
F LF

(**) a Zg(a)

is
commutes.

2. For all morphism b: U — LF, there is a covering sieve S of U and a morphism
a:S — F such that Zs(a) = b.

3. Let U be an object of C and a,b:V =3 F two morphisms such that {(F) oa =
((F) ob. Then the kernel of the couple (a,b) is a covering sieve of U.

4. Let S and S’ be two covering sieves of U, and leta : S — F anda’ : S" — F be
two morphisms. Then we have Zs(a) = Zg/(a') if and only if a and a' coincide
on a covering sieve S” — S xy S’.
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Proof. The only nontrivial assertion is Assertion [[ We must check that
Zs(a)oig =U(F)oa.

It suffices to show that the compositions of these morphisms with a morphism g :
V — S (V object of C) are equal. Consider the morphism f := ig o g and the fiber
product S xy V:

o(F)
F LF
a Zs(a)
Sc s U
g
g f
Sxy V¢ V.

,L'/

As the inclusion i’ is admits a section, we have S xy V' =V and ¢’ is the identity of
V', so that we get the commutative diagram

F LF
a Zs(a)
S ¢ . U
is
g’ !
g
Vv %

with ¢ = g. We have
l(F)oaog=Zy(aoyg') = Zs(a)oisog,

the equalities following respectively from the by definition of the ¢(F') and the com-
mutativity of the diagram (*). O

Proposition 530 (Proposition 3.2).

1. The functor L is left exact.

2. For all presheaf F', LF' is a separated presheaf.
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3. The presheaf F is separated if and only if the morphism ((F) : F — LF is a
monomorphism. The presheaf LF' is then a sheaf.

4. The following properties are equivalent:

(a) L(F): F — LF is an isomorphism.
(b) F is a sheaf.

Proof. Part 1. Tt suffices to show (Proposition p- that for all object U of
C, the functor F' — LF(U) commutes with finite limits. But, by definition of the
limit, for S € J(U), the functor F' — Homen (S, F') commutes with limits, and the
colimit colim j(;y commutes with finite limits because J(U) is a cofiltrant ordered set

(Proposition p. .

Part 2. Let U be an object of C and f, g : U = LF two morphisms which coincide on
a covering sieve S — U of U. By Part 2 of Lemma[529|p. [303], there is a covering sieve
S’ < U, which we can assume to be contained in S, and there are two morphisms
a,b: 8" = F such that Zg (a) = f and Zg(b) = g. By Part [1] of Lemma [529] p. [303
we then have {(F)oa = ((F)ob. Thus (Part [ of Lemma 529 p.[303)) a and b coincide
on a covering sieve S” < S’. Letting w be the restriction of a to S” yields

f=2Zs(a) = Zsn(w) = Zs () = g,

and thus f = g. Hence the presheaf LF is separated.

Part 3. Assume that F' is separated and let us show that ¢(F') is a monomorphism.
Let U be an object of C and let a,b : U =2 F satisfy ¢(F) o a = {(F) o b, that is
Zy(a) = Zy(b). 1t suffices to prove a = b. By Part [4] of Lemma [529] p. [303] a and b

coincide in some covering sieve of U. Since F' is separated, this implies a = b.

If ¢(F) is a monomorphism, the presheaf F', being a sub-presheaf of a separated
presheaf, is separated.

To show that LF is then a sheaf, let ¢ : S < U be a covering sieve of an object
UofC,and a: S — LF a morphism. It suffices to show that a factors through U:

T r\b\ (205)
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We may, and will, view F' as a subobject of LF. Form the cartesian square

Claim 1: For all morphism V' — LF', where V' be an object of C, the sieve F' X p V
is a covering sieve of V.

Proof of Claim 1: By Part [I] of Lemma p. there is a commutative diagram

r9 p

[

SQ‘—>V

e

S3

where the small square is cartesian and S3 is a covering sieve of V. We conclude that
S, is also a covering sieve of V. This proves Claim 1.

Claim 2: 5] is a covering sieve of U.

Proof of Claim 2: Let W be an object of C and W — S a morphism. There is a

commutative diagram

r9 p

AT

; .
Sy < S ——

[

54;>W

where the squares (51,5, W, Sy) and (S1,U, W, Sy) are cartesian. It suffices to check
that Sy is a covering sieve of W. As (F, LF, S, S;) is cartesian too, sois (F, LEF, W, S,),
and Sy is a covering sieve of W by Claim 1. This proves Claim 2.

By Claim 2, we may define b in (205) by b := Zg,(a’). We must show boi = a.
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Let again W be an object of C and W — S a morphism, and let

rf9,

S ——U

J
Sl‘ >

S4T>W

be the commutative diagram obtained in the obvious way from the previous. Proving
bo i = a reduces to proving boioc = aoc, which, LF being separated, reduces in
turn to proving boiocok =aocok, thatisboiojocd =aojocd. But we have

boioj=Zg(a)oioj=Ll(F)oad =aoj

by Part [I] of Lemma p. [303]
Part 4. Clear. ]

Theorem 531 (Théoréme 3.4). Let C € U be a site. The inclusion functor i :
C~ < C" of the sheaves into the presheaves admits a left exact left adjoint functor a

(Propositon p.[106):

o~ - o

7

The functor i o a is canonically isomorphic to the functor L o L. For all presheaf F
the adjonction morphism F — i o a(F) is obtained, via the previous isomorphism,
from the morphism {(LF) o l(F): F — (Lo L)(F).

Definition 532 (Définition 3.5). The sheaf aF is called the sheaf associated to the
presheaf F.

Theorem [531] results immediately from Proposition [530] p. [304]

Proposition 533 (Proposition 3.6). Let C € U be a site and V D U a universe.
Wrrite C; and CJ; (resp. C{y and Cj}) for the categories of U-presheaves and of U-
sheaves (resp. of V-presheaves and of V-sheaves) and ay : C; — C{; (resp. ay :
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Cp — C{y) for the corresponding “associated sheaves” functors. The diagram

A ay ~
gIU AIM

A ay ~
CV Vo

where the vertical functors are the canonical inclusions, commutes up to canonical
1somorphism.

Proof. This follows from the construction of the functors a;; and ay (Theorem [531)).
]

18.3.2 Exactness properties of the category of sheaves

The exactness properties of the category of sheaves follow from the exactness prop-
erties of the category of presheaves via Theorem (31} The present section spells out
this philosophy by giving some of the most useful standard statements.

Theorem 534 (Théoréme 4.1). Let C € U be a site, C™ the calegory of sheaves,
a:C" — C™ the associated sheaf functor, i : C~ — C" the inclusion functor.

1. The functor a commutes with colimits and is exact.

2. The U-colimits in C~ are representable. For all category I € U and for all
functor E : I — C~, the canonical morphism

colim E — a (colimz’ o E)
I I
s an isomorphism.

3. The U-limits in C~ are representable. For all object U of C, the functor C~ —
U-Set, F — F(U) commutes with limits, i.e. the inclusion functori:C~ — C~
commutes with limits.

Proof. These properties follow essentially from Theorem [531] and from Corollary

p. p6l O
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So, in the category of sheaves, the products indexed by a member of U/, the
fibered products, the coproducts indexed by a member of U, the fibered coproducts,
the kernels, the cokernels, the images, and the coimages are representable.

Corollary 535 (Corollaire 4.1.1). Let C € U be a site and F' a sheaf of U-sets over
C. The canonical morphism

“colim” a(U) — F
(U—)F)ECF

1S an isomorphism.

Proof. Results from p. (81 and from the fact that a commutes with colimits. [

Proposition 536 (Proposition 4.2). A morphism in C~, which is both an epimor-
phism and a monomorphism, is an isomorphism.

Proof. Let f: G — H be a morphism in C~ which is an epimorphism and a mono-
morphism. First note that the morphism f is a presheaf monomorphism (Part [1] of
Theorem |34} and Proposition p. [106]). Form the cocartesian square

G H
f 12
H n K

in the category of presheaves. As f is a presheaf monomorphism, the above square
is cartesian (Lemma (b) p. |[178). Applying the “associated sheaf” functor, we
hence get a cartesian and cocartesian square in the category of sheaves (Part (1| of
Theorem [534)):

G ! H

f a(iz)
a(i1)

H a(K).

As f is a sheaf epimorphism, a(i;) is an isomorphism, and as the above square is
cartesian, f is an isomorphism. O]
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18.4 Brief comments

§ 537. P. 415, Isomorphism (17.3.1). Recall briefly the setting. We have
FePSh(X, A), MecA UEeCy,

and we claim

’HompSh(X’A)(M, F)(U) ~ HOH’IA(M, F(U)) (206)

Here and in the sequel, we denote again by M the constant presheaves over X and
U attached to the object M of A. Note that, by §513| p. [296] this isomorphism can
be written

Hom 4(M, F) ~ Homy (M, F()).
To prove (206)), observe that we have

HOmPSh(X,A)<M> F)(U) = HOHlPSh(U,A) (jU—>X>k M, Ju—x+ F)

~ Hompspw,4) (M, ji—x. F),

the two isomorphisms following respectively from the definition of Hompgn(x, 4) given
in (17.1.14) p. 410 of the book, and from the definition of the functor j,;_, x,, so that
we must show

Hompgh(u,4) (M, ji_x+ F) ~ Hom (M, F(U)).

We define maps
%)
HOHlPSh(U7A)(M7J'U—>X* F) <T HomA(M, F<U))

as follows: If p : M — j,_ x, F' is a morphism in PSh(U, A), given by morphisms
p(V =-U): M — F(V)in A, then we put ¢(p) := p(U v, U);ifa: M — F(U) is
a morphism in A, then we put ¥(a)(V = U) := F(c) o a; and we check that ¢ and
1 are mutually inverse bijections.

§ 538. P. 418, proof of Lemma 17.4.2 (minor variant): Consider the natural mor-
phisms

colim a £ colim av o 1S 0 A% 2y colim av o P 2y colima.
We must show that go f is an isomorphism. The equality hogo f = idcoim« 1S easily

checked. Being a right adjoint, poP is left exact, hence cofinal by Lemma 3.3.10 p. 84
of the book, and h is an isomorphism. q.e.d.
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§ 539. P. 419, proof of Proposition 17.4.4:
First sentence of the proof: see p. [64]

Step (i), Line 4: The fact that K°P is filtrant results from Lemma 16.2.7 p. 398 and
Proposition 3.2.1 (iii) p. 78 of the book.

The key ingredient to prove that K°P is cofinally small is Lemma 16.2.8 p. 398
which says that K°P is a product of cofinally small categories. To prove that K°P is
cofinally small one must prove that a certain product [] P; of connected categories
is connected, but, as a product of connected categories is not connected in general,
some caution is needed. Going through the proof of Lemma 16.2.8, we see that each
P; is filtrant. This implies that [] P; is filtrant, and thus that it is connected.

Step (i), additional details about the chain of isomorphisms at the bottom of p. 419
of the book: The chain reads

—~~

[T P 2] | colim FB)Y colim [ F(B)

(Bi—A;)ELT 4, (Bi—Ai)ic1€K

—

~  colim  F (“ |_|”Bi> < colim F(B) o F(A),

(Bi—)Ai)iE[GK (B—)A)GﬁZA

N2

and the isomorphisms can be justified as follows:
(a) definition of F?,

(b) A satisfies IPC,

(¢) F commutes with small projective limits,

d)

(d) an inductive limit of local isomorphisms is a local isomorphism by Proposition
16.3.4 p. 401 of the book,

(e) definition of F?.

§ 540. P. 419, proof of Proposition 17.4.4, Step (ii). More details: The morphism
eo(F?)(A) : F*(A) — F*(A) is obtained as the composition

F*(A) 4 colim F*(A) % colim  F®(B).
(B—A)ELT 4 (B—A)ELT 4

Moreover, f is an isomorphism by Lemma 2.1.12 p. 41 of the book, and ¢ is an
isomorphism by Lemma 17.4.2 p. 418 of the book.
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18.5 Proposition 17.4.4 p. 420

We draw a few diagrams with the hope of helping the reader visualize the argument
in Step (ii) of the proof of Proposition 17.4.4.

An object of the category

M[J = K + M[I - K « K]]

can be represented by a diagram

B B xp AL o WO oA C’
7| | J- | P
B A A A

and it is clear that this category is equivalent to £°P.
Recall that D := B ‘04 C, let E be one of the objects A, B, C, or D, and consider
the “obvious” functors

A e
Cx
(pp is defined in the book, jg is the forgetful functor, and ¢g is the composition).
We also define rg : LZr — £ by mapping the object E” — E of LZg to the object

BxpPB'+— AxpB" —— C xgp E”

| | |

B < A s C

of £ One checks that (pg,rg) is a pair of adjoint functors. In particular pg is
cocofinal. We have

() )
F/(D) = colim F(jp(y)) = colim Fqp(x))

© d @
~ colim F" { qp() I_(I)cm(x) ~ colim(F(qp(z)) X pga(@) Flge(2))
qgalx
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(e) . .
2 ((colim Flan(2)) ) Xeotm,ce o (colim Flac(e) )

) ) . . )
= (COhm F(]B(y))) Xcolimyeng F(ja(y)) (COhmF(]C(y)))

yeLlp yeLZlc

(8)
= FY(B) X ) FY(O).

Indeed, the isomorphisms can be justified as follows:
a) definition of F°,

b) cocofinality of pp,

¢) definition of pg,

e) exactness of filtrant inductive limits in A,

)
f)
g) definition of F°.

(

(

(

(d) left exactness of F,
(

(f) cocofinality of pp,
(

18.6 Brief comments

§ 541. P. 421, first display:
FY(U)~ colim F(A).

(U—)A)GL‘,IU

Lemma 16.2.8 p. 398 of the book and its proof, show that F'* does not depend on the
universe such that C is a small category (Definition [5] p. [10) and A satisfies (17.4.1)
p. 417 of the book.

§ 542. P. 421, proof of Lemma 17.4.6 (i): The category LZy is cofiltrant by Lemma
16.2.7 p. 398 of the book, small filtrant inductive limits are exact in A by Display
(17.4.1) p. 417 of the book, exact functors preserve monomorphisms by Proposi-

tion [169] p. [L06]
§ 543. P. 422. The first sentence of the proof of Theorem 17.4.7 (iv) follows from
Corollary p. [I05} One could add:

If A is abelian, then PSh(X,.A) and Sh(X,.A) are abelian, and ¢ : Sh(X,A) —
PSh(X,.A) and ( )*: PSh(X,.A) — Sh(X, A) are additive
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§ 544. P. 423, end of the proof of Theorem 17.4.9 (iv): the functor ( ) is exact by
Theorem 17.4.7 (iv) p. 421 of the book.

§ 545. P. 424, proof of Theorem 17.5.2 (i). With the convention that a diagram of
the form
Ci
| Tn
Ca

means: “(L, R) is a pair of adjoint functors”, the proof of Theorem 17.5.2 (i) in the
book can be visualized by the diagram

PShL(Y; A)

| s

PSh(X, .A)
o}
(X, A)
§ 546. P. 424, proof of Theorem 17.5.2 (iv). As already mentioned, there is a typo:

“The functor f is left exact” should be “The functor fT is exact”.

§ 547. P. 424, Definition 17.6.1. By Lemma 17.1.8 p. 409 of the book, a morphism

C’\A/B

in C is a local epimorphism if and only if C'— B is a local epimorphism in C%.

§ 548. P. 424, sentence following Definition 17.6.1: “It is easily checked that we
obtain a Grothendieck topology on C4”. The verification of LE1, LE2 and LE3 is

straightforward. Axiom LE4 follows from Parts (iii) and (ii) of Lemma 17.2.5 p. 413
of the book.

§ 549. P. 424, Definition 17.6.1. Here is an observation which follows from §521
p. and Lemma 17.2.5 (iii) p. 413 of the book:

In the setting of Definition 17.6.1, let B — A be a morphism in C%, let u : C'— B
be a morphism in C%, and let v : (C — A) — (B — A) be the corresponding
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morphism in C%. Then w is a local epimorphism if and only if v is a local epimorphism,
u is a local monomorphism if and only if v is a local monomorphism, and w is a local
isomorphism if and only if v is a local isomorphism.

§ 550. P. 425, proof of Proposition 17.6.3:

Step (i): ja_,x is weakly left exact by Lemma 17.2.5 (iii) p. 413 of the book, and
(-)*is exact by Theorem 17.4.7 (iv) p. 421 of the book.

Step (ii): “f factors as X JAX, A % ¥ see Definition 17.2.4 (i) p. 413 of
the book and Remark p. . The isomorphism f~! ~ j;1_> v og~ ! follows from
Proposition 17.5.3 p. 424 of the book.

§ 551. P. 425, Display (17.6.1): Putting j :=j,_, x, we have the adjunctions

Sh(A, A)

AL b

Sh(X, A).

For the functor j. : Sh(X,.A) — Sh(A,.A), see Proposition 17.5.1 p. 423 of the
book.

For the functor j71 : Sh(A4,.A) — Sh(X, A), see last display of p. 423 of the book.

For the functor j* : Sh(A,.A) — Sh(X,A), see Proposition 17.6.2 p. 425 of the
book.

§ 552. P. 426, proof of Proposition 17.6.7 (i). The isomorphism
(f)"(V x B) = f{(V) x (f)"(B) (207)
follows from Proposition p. 296 and we have

iy (f(G)(V)) = f5.(G)(V x B — B) by (17.1.12) p. 409

~G((f")"(VxB)—= (f)(B)) by (17.1.6) p. 408

~ G(fI(V) x A— A) by (207),
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as well as

F(Fx (@) = 55 (@)

~G(f'(V)x A— A) by (17.1.12) p. 409.

§ 553. P. 427, proof of Proposition 17.6.8, Step (i). The isomorphism

Fox (asx (G)U) = jasx.(G)(U x A= A)

follows from (17.1.12) p. 409 of the book. The fact that p: A x U — U is a local
isomorphism follows from the fact that the obvious square

AxU —— U

! !

A —— pty

is cartesian and the bottom arrow is a local isomorphism by assumption.

§ 554. P. 427, proof of Proposition 17.6.8, Step (ii). Let v: V — A be a morphism
in C%. Here is a proof of the fact that

(idv,v)

Vv s Vx A

\ / (208)

is a local isomorphism in C}.

AsV x A — V is a local isomorphism in C§ by §653 and V' — V x A — V is the
identity of V', Lemma 16.2.4 (vii) p. 396 of the book implies that V' — V x A is a
local isomorphism in C%, and thus, by §549|p. [314} that (208)) is a local isomorphism
in Cj.

§ 555. P. 428, just after Definition 17.6.10: (( )a,'a()) is a pair of adjoint functors:
this follows from Theorem 17.5.2 (i) p. 424 of the book.

§ 556. P. 429, top. By p. and Corollary p. [106] the functor T'(A; )

commutes with small projective limits.
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§ 557. P. 430, first sentence of the proof of Proposition 17.7.1 (i). Let us make a
general observation.

Let X be a site. In this §, for any A in C%, we denote the corresponding site
by A’ instead of A. We also identify C%, to (C%)a (see Lemma 17.1.8 p. 409 of the

book). In particular, we get pt, ~ (A 1da, A) el
Let A — B be a local isomorphism in C%, and let us write w for “the” terminal
object ptg ~ (B s, B) of C3,. We claim that
(A= B) s w (209)

is a local isomorphism in Cj,.

Proof: (209) is a local epimorphism by p. It remains to check that
(A->B)— (A= B)x,(A— B)~(AxgA— B) (210)
is a local epimorphism. But this follows again from §547 p. 314} O

Consider the morphism of presites B’ — A’ induced by A — B and note that the
square

J
X A—X A/

commutes.

§ 558. P. 430, proof of Proposition 17.7.3. The third isomorphism follows, as indi-
cated, from Proposition 17.6.7 (ii) p. 426 of the book. The fifth isomorphism follows
from (17.6.2) (ii) p. 426 of the book.

§ 559. P. 431, Exercise 17.5 (i). Put PX := PSh(X, A), SX := Sh(X,A), and
define PY and SY similarly. Let
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be the obvious diagram of adjoint functors. We must show
axo flow oay ~ayo fI.
Let F be in SX and G be in PY. We have (omitting most of the parenthesis)
Homsx(axfTLy(lyG, F) ~ Home(fTLyayG, txF) ~ Hompy (tyayG, fix F)

g) Hompy (tyay G, tyay fux F) ~ Homgy (aytyay G, ay fix F)

(b) (c)
~ Homsy(ayG, ayf*bxF> ~ HOIIlpy(G, Ly(lyf*LXF) ~ I‘IOHlpy(G7 f*LxF)

~ Hompx<fTG, LxF> ~ Homsx(axfTG, F)
where (a) and (c) follow from the fact that the presheaf f.ixF' is actually a sheaf
(Proposition 17.5.1 p. 423 of the book), (b) follows from the isomorphism

ay O ly O ay = ay,

which holds by Lemma 17.4.6 (ii) p. 421 of the book, and the other isomorphisms
hold by adjunction.

§ 560. P. 431, Exercise 17.5 (ii). By §549 p. [314] we have, for U in Cx and U — A
in C4, an isomorphism
EIU%A ~ ﬁIU

Exercise 17.5 (ii) follows immediately.

19 About Chapter 18

19.1 Brief comments

§ 561. P. 437, Theorem 18.1.6 (v). If X is a site, if R aring, if F' and G are complexes
of R-modules, then the complex of abelian groups RHompg(F, G) (see Corollary 14.3.2
p. 356 of the book) does not depend on the universe chosen to define it (the universe

in question being subject to the obvious conditions). This follows from §472| p.
and §511] p. BT3,
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§ 562. P. 436, Lemma 18.1.4. Note that PSh(R) is abelian, that Mod(R) is an
additive subcategory of PSh(R), and that the functors

Mod(R) ‘—>() PSh(R)

are additive.

§ 563. P. 437, proof of Theorem 18.1.6 (v). We prove
Homg (Ry, F) ~ F(U).
As
Homg (Ry, F) ~ Homg (%, 5. (R|U), F) ~ Homgy(R|U, F|U),

we only need to verify
Homg iy (R|U, F|U) ~ F(U).

We shall define maps
©
Homg |y (R|U, F|U) — F(U)
P

and leave it to the reader to check that they are mutually inverse.

Definition of : Let  be in Homg i (R|U, F|U). In particular, for each morphism
f:V = UinCx we have amap 0(f) : R(V) — F(V), and we put ¢(0) := 0(idy)(1).

Definition of ¢: Let x be in F(U). For each morphism f : V — U in Cx we
define ¢ (z)(f) : R(V) = F(V) by ¢ (x)(f)(A) := AF(f)(x).

§ 564. P. 438, end of Section 18.1: T, is left exact by §555 p. BI6] Moreover,
['(A; ) commutes with small projective limits by §556] p. [316] and is thus left exact

by Proposition p.

§ 565. P. 438, bottom: One can add that we have Homg (R, F) ~ F for all F in
PSh(R).

§ 566. P. 439, after Definition 18.2.2: One can add that we have
psh

for F' in PSh(R) and
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for F' in Mod(R°P), as well as
F&rR~F

for F'in PSh(R°P) and
ForR~F

for F' in Mod(RP).
§ 567. P. 441. The proof of Proposition 18.2.5 uses Display (17.1.11) p. 409 of the

book and §559 p.

§ 568. P. 441. In the notation of Remark 18.2.6 we have
Homg, (sMs @, 2 M1, 3My) ~ Homp, (2 My, Homp, (3M2, 3My)),
HOWRs( M ®r, 2M173M4) = HOmRz( M1,H0mR3(3M273M4))7
Hompger (1 M2 @r, 2M3, 4M3) =~ Homger (1M, Homper (2M3, 4M3)),
Hompor (1 My @R, oMz, 4M3) ~ Hompse (1 My, Homper (o M3, 4 M3)).

More generally, if R,S,7T are Ox-algebras, if F'is a (T ®p, R°?)-module, if G is an
(R ®o, S)-module, and if H is an (S ®p, T)-module, then we have

Hom5®OXT(F ®Qr G, H) ~ HomR®OX5(G, Hom+(F, H)),
Homsge 7(F @r G, H) ~ Homge, s(G, Homy(F, H)). (211)
§ 569. P. 442, proof of Proposition 18.2.7. Here are additional details.
Proof of (18.2.12): We must show
Fia~Rpo@r F ~kxaQp, F. (212)

We have

(a) (d)
Fy =~ JA—>X(F|A) JA—>X(R|A QR4 F|A) (JA—)X(R|A)) Or F =~ Ry®r F.

Indeed, (a) and (d) hold by Definition 17.6.10 (i) and Display (17.6.5) p. 428 of
the book, (b) follows from §566, (c) follows from (18.2.6) p. 441 of the book. The
isomorphism F4 >~ kx4 ®y, I is a particular case of the isomorphism Fy ~ R4 Qg F
just proved.

Proof of (18.2.13): We must show
FA(F) zHomR(RA,F) ZHoka(k’XA,F). (213)
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We have “
HomR(RA, F) >~ 'HomR(R ®kx kXA, F)
(b) (c)
>~ HOka (k?XA, HomR(R, F)) ~ HOka (kXA, F),

where (a) follows from (212)), (b) follows from Display (18.2.4) p. 439 of the book
(which is a particular case of (211))), and (c) follows from §565, Let us record the
isomorphism

Homp(Ra, F) ~ Homy, (kxa, F). (214)
We also have for G in Mod(R)

(a) (b) . .
Homg (G, Homy, (kxa, F)) =~ Homg (G ®p, kxa, F) ~ HOH]R(JALXJA_)X* G,F)

(0) . . (d)
= HomR(Gh]ileXJAaX* F) = HomR<G’FA(F>)7

where (a) follows from (211]) with
(kx, kx, R, kx, kXA) G, F)

instead of

(OX;Ra‘SaT;F?GaH)>

(b) follows from (212)), Definition 17.6.10 (i) and Display (17.6.5) p. 428 of the book,
(c) follows by adjunction, and (d) by Definition 17.6.10 (ii) p. 428 of the book.

19.2 Lemma 18.5.3 p. 447

We give additional details about the proof of Lemma 18.5.3 of the book (stated below
as Lemma p. [324)) with the hope of helping the reader. We start with a technical
lemma.

Lemma 570. Let R be a ring, let A be a right R-module, let B be a left R-module,
let n be a positive integer, and let

(@i)icy,  (bi)i

be two families of elements belonging respectively to A and B. Then Conditions (i)
and (ii) below are equivalent:

(i) We have Y1, a; @ b; =0 in AQg B.
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(ii) There are positive integers £ and m with £ > n, and there are three families

(ai)f:n+1a (A2])1<'L<f 1<5<m (b;);nZI

Pl i e

of elements belonging respectively to A, R and B, such that, if we set b; = 0 for
n <1</, we have:

Z Ay =b; (V1<i<o), (215)
Z a; Ay =0 (V1I<j<m) (216)
=1

Proof. Implication (ii)=-(i) is clear. To prove Implication (i)=-(ii), we assume (i), and
we choose a set I containing {1,..., ¢}, where ¢ is an integer > n to be determined
later, such that there is a family (a;);e; which completes the family (a;)1<i<, and
generates A. We write C' for the kernel of the epimorphism

FiR¥ AL ()= aip

el
In particular we have exact sequences
CHRITL A0 CceprBL B L AwgB o0,

with

9 ((1:) ®0)) = (uib), (7)) Zaz ® b

el

Put b; := 0 foriin I\ {1,...,¢}. The family (b;);c; is in Ker f’, and thus in Im ¢’
The condition (b;) € Im ¢’ means that there is a positive integer m, a family

(Aij)iEI,lngm

of elements of R such that
(AIJ)Z eC C R@]

for 1 < j < m, and a family (b;')lgjgm of elements of B, such that

_q (Z(AM)@@) (ZAU J> .
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As (N\); is in R®! for all j, the set of those ¢ in I for which there is a j such that
Aij # 0 is finite, and we can arrange the notation so that this set is contained in
{1,...,0} with £ > n, and we get (215)). As (\;;); is in C for all j, we also have
(216]). O

Here is another technical lemma:

Lemma 571. Let R be a ring, let ¢ : A — A be a morphism of right R-modules,
let B be a left R-module, and let s be an element of Ker(A'@r B — A®pr B). Then
there exist

e o commutative diagram

= F
f
F”L}W 0
Nt
AN A—— A

of right R-modules such that F, F' and F" are free of finite rank,

o clementst € F' Q@ B, u € F" ®r B such that the commutative diagram

F'r B>t

!
P

weEF'"@r B —— FQrB

ol Jn

SEA/®RB T) A®RB
satisfies g1(u) = s and 1 (u) = fi(t).
Proof. Write
5= Z a; @ b;
i=1

with a} in A" and b; in B, and put a; := ¢(a;) € A, so that we have
i=1
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By Lemma p. there are positive integers ¢, m with ¢ > n, and there are three
families
(@)icar1,  Nghciceigiem,  (B5)7

of elements belonging respectively to A, R and B, such that, if we set b; = 0 for

n <i</{, we get (215) and (216) p.[322] We have a commutative diagram of right
R-modules

Rm
|7
R Y R (217)

|

A/T>A

with E
fa)i= Njzy, gla) =) dim, hlz)=)
j=1 i=1 i=1
In particular, (216 p. implies ho f = 0. O

Lemma 572. If F' and F' are two R-modules of finite rank, then the natural map
Homg (F, F') — Homp(x z)(I'(X, F),T'(X, F"))

is bijective. (Recall that T'(X, F) is defined just before Proposition 17.6.14 p. 429 of

the book.)

Proof. 1t suffices to prove the statement when F' = F' = R, which is easy. O]

Let us turn to the proof of Lemma 18.5.3 p. 447. [As already pointed out,
there are two typos in the proof: in (18.5.3) M’'|y and M|y should be M'(U) and
M(U), and, after the second display on p. 448, s; € ((R°?)®™ @% P)(U) should be
s1 € (R®)*" @r P)(U).]

For the reader’s convenience we state (in a slightly different form) Lemma 18.5.3
(see Notation 17.6.13 p. 428 of the book):

Lemma 573 (Lemma 18.5.3 p. 447). Let P be an R-module. Assume that for all
U in Cx, all free right R-module F', F" of finite rank, and all R|y-linear morphism
u: F'ly — F"|y, the sequence

0 — Ker(u) ®z|, Plv — F'luv ®r), Plv = F"|v ®r}, Plu
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1s exact. Then P is a flat R-module.

(Recall that the notation ?|y is defined in Notation 17.6.13 (ii) p. 428 of the
book.)

Proof. Consider a monomorphism M’ — M of right R-modules. It suffices to prove
that the sheaf
K :=Ker(M' ®r P — M ®g P)

of kx-modules over X vanishes. Let K, be the presheaf of kx-modules over X defined
by

Ko(U) := Ker (M’(U) ®rwy P(U) = M(U) ®ry) P(U)),
let U be an object of Cx, let s be an element of K((U), and let 5 be the image of s
in K(U). We shall prove 5 = 0. By §562] p. above, Definition 18.2.2 p. 439 and
Theorem 17.4.7 (iv) p. 421 of the book, K is the sheaf associated to K,. Hence, as
U and s are arbitrary, Equality s = 0 will imply that the natural morphism Ky — K

vanishes. By (17.4.12) p. 421 of the book, this vanishing will entail K ~ 0, and thus,
the lemma. Let us record this observation:

Equality 5 = 0 implies the lemma. (218)

By Lemma p. there exist

e a commutative diagram

F'(U) —— F'(U)
lf
F'(U) —2— F(U) 0
M'(U) —— M(U) == M(U)

of right R(U)-modules such that F,F’ and F" are free right R-modules of finite
rank,

o elements t € F'(U) @) P(U), v € F"(U) @gwy P(U) such that the commutative
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diagram

F'(U) @rw) P(U) > t

s
1

u € F'(U) @rw) P(U) —— FU) @rw) P(U) (219)

] Jn

s € M'(U) @rw) P(U) —5— M(U) ®rw) P(U)
satisfies g1 (u) = s and ¥y (u) = f1(¢).

By Lemma p. the commutative diagram (217)) also induces the commu-

tative diagram
.

N—— Fly

q

A = F//|U 2 F|U

J e

M/|U T M|U7

\
the top square being cartesian. Then s is a monomorphism by Proposition 17.6.6
p. 425 and Notation 17.6.13 p. 428 of the book (recall that M’ — M is a monomor-
phism by assumption). This implies g5 0 ko = 0. Hence A is a commutative diagram
of compleres. The condition that the top square is cartesian is equivalent to the
exactness of

5 = (o SN S Flya Py — F|U>.

The sequence ¥ ®g|,, P|v being exact thanks to the assumption in Lemma p.1324
we see that the commutative diagram of complexes A ®|, P|y has a cartesian top

square, and that, by left exactness of ['(U; —) (see p. [319)), the commutative
diagram of complexes I'(U; A ®g),, P|v), that is (see Notation 17.6.13 p. 428 of the
book),

(N ®@g), Plu)(U) —— (F'@r P)(U) >t

| Js

we (F"@r P)(U) —2— (F ®@r P)(U)

" i

s€ (M @g P)(U) —— (M @g P)(U)

1
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(see (219))) has also a cartesian top square, and satisfies g3(u) =5 and
bi(w) = (), (220)
We have used the isomorphisms
L (U; M|y ®gy, Plu) = T(U; (M @z P)|y) =~ (M ®r P)(U), (221)

and similarly with M’ instead of M. Indeed, the first isomorphism in (221)) is a
particular case of (18.2.5) p. 441 of the book, and the second isomorphism in (221))
results from the last two displays on p. 428 of the book. In other words, we have

(N ®gy, Plu)(U) = (F' @r P)U) X (Ferpyv) (F" @ P)(U). (222)
Note that (220]) implies
x = (t,u) € (F" ®@r P)(U) X(rerp)w) (F" @r P)(U).

If y is the element of (N ®x|, P|v)(U) corresponding to = under Isomorphism (222,
then we get ki (y) = u, and thus 5 = g3(u) = g3(k1(y)) = 0. By (218)), this completes
the proof. O

19.3 Brief comments

§ 574. P. 452, Part (i) (a) of the proof of Lemma 18.6.7. As already mentioned,
Oy and Oy stand presumably for Ox|y and Oy|y (and it would be better, in the
penultimate display of the page, to write Oy instead of Oy|y), and, a few lines
before the penultimate display of the page, fi; o N OF™ should be (I think)
for 1 O — OF".

Also, one may refer to (199) p. 295 and §512| p. [296| to describe the morphism
of sites fyy : W — V. More precisely, we define, in the notation (199)), the functor

(fw)" : ((Cy)v)® = ((Cx)w )P by
(Bl (V> V) = (V) = (V) > W).

Finally, let us rewrite explicitly one of the key equalities (see p- [296)):

O™y (W) = colim oL (V)
FOy™W) (Fr (V)= W)E((Cy)oP)w V)

where f7(V) — W is a morphism in (Cx)° (corresponding to a morphism W —
ft(V) in CX)
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