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Zusammenfassung

Diese Arbeit behandelt Existenzprobleme von holomorphen Vektorbündeln auf nichtalge-
braischen Flächen.

Zuerst wird in diesem Zusammenhang die Frage untersucht, welche topologischen kom-
plexen Vektorbündel auf einer vorgegebenen nichtalgebraischen Fläche X holomorphe
Strukturen besitzen.

Die topologischen komplexen Vektorbündel auf einer kompakten komplexen Fläche
X werden vollständig durch ihren Rang r und ihre Chernklassen (c1, c2) ∈ H2(X,Z) ×
H4(X,Z) bestimmt. Also beschränkt sich das Problem darauf holomorphe Vektorbündel
mit gegebenen topologischen Invarianten (r, c1, c2) zu konstruieren.

Für algebraische Flächen gab Schwarzenberger eine vollständige Antwort (vgl. I.2.
Theorem 1). In diesem Fall können alle holomorphen Vektorbündel als Extensionen
geeigneter kohärenter Garben von niedrigerem Rang konstruiert werden.

Dies stimmt jedoch nicht mehr für Vektorbündel über einer nichtalgebraischen Ba-
sis. Zuerst führen wir einige Definitionen ein. Ein holomorphes Vektorbündel E auf
einer kompakten komplexen Fläche X heißt reduzibel, wenn eine kohärente Untergarbe
F ⊂ E existiert mit 0 < RangF < RangE, andernfalls irreduzibel. Weiter heißt E
filtrierbar wenn es eine Filtration 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fr = E durch kohärente Un-
tergarben Fi mit RangFi = i gibt, sonst heißt E nichtfiltrierbar. Im Gegensatz zum
algebraischen Fall gibt es auf nichtalgebraischen Flächen nichtfiltrierbare und sogar irre-
duzible Vektorbündel. Dieses Phänomen wurde zuerst von G. Elencwajg und O. Forster
[EF] untersucht und weiter von C. Bănică und J. Le Potier studiert [BL]. Tatsächlich
können ihre Existenzsätze für irreduzible Vektorbündel [BL; §5] im Fall RangE = 2 auf
alle nichtalgebraische Flächen ausgedehnt werden (vgl. II.1.1.).

Durch die Anwendung von Extensionen gaben C. Bănică und J. Le Potier eine vollständige
Beschreibung von topologischen Vektorbündeln auf nicht-algebraischen Flächen, die fil-
trierbare holomorphe Strukturen ermöglichen (vgl. I.2., Theorem 3). Für manche Klassen
nicht-algebraischer Flächen wird damit das gestellte Problem gelöst. Im allgemeinen je-
doch gibt es topologische Vektorbündel, die holomorphe Strukturen besitzen aber keine
filtrierbare Struktur, nicht einmal eine reduzible. In Kapitel II §1 zeigen wir dies für den
Fall, daß die Basis ein nicht-algebraischer 2-dimensionaler Torus ist.

Eine weitere Frage ist die Existenz von holomorphen Strukturen mit zusätzlichen
analytischen Eigenschaften auf einem topologischen komplexen Vektorbündel über eine
Fläche.

In Kapitel II.§2. betrachten wir das Problem der Existenz von stark irreduziblen
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Vektorbündeln auf eine Fläche X. Dies sind holomorphe Vektorbündel E, die irreduzi-

bel bleiben nach einem Basiswechsel X ′
f−→X, wobei X ′ wieder eine kompakte komplexe

Fläche ist und f eine surjektive holomorphe Abbildung. Wenn E vom Rang 2 ist, passiert
das genau dann, wenn das zugehörige projektive Bündel P(E) keine ”horizontale” Divi-
soren besitzt. Wir zeigen die Existenz solcher Bündel in der versellen Deformation eines
irreduziblen Bündels, wenn X ein 2-Torus ohne Kurven oder eine K3-Fläche ohne Kurven
ist.

In Kapitel III betrachten wir schließlich einfache reduzible Vektorbündel von Rang 2
und nennen notwendige und hinreichende Bedingungen an die topologischen Invarianten
(r, c1, c2) für die Existenz solcher Vektorbündel auf Flächen der algebraischen Dimen-
sion null. Dabei heißt ein holomorphes Vektorbündel E einfach, wenn jeder von Null
verschiedene Endomorphismus von E ein Automorphismus ist. Die Bedeutung dieser
Vektorbündel liegt darin, daß sie Modulräume besitzen. Im letzten Abschnitt werden
einige Bemerkungen über die Trennungseigenschaften dieser Modulräume gemacht.
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Introduction

This paper is about existence problems for holomorphic vector bundles on non-algebraic
surfaces.

A first such problem to be considered is determining what topological complex vector
bundles on a given non-algebraic surface X admit holomorphic structures.

The topological complex vector bundles on a compact surface X are completely char-
acterized by their rank r and their Chern classes (c1, c2) ∈ H2(X,Z) × H4(X,Z). So
the problem comes to constructing holomorphic vector bundles with given topological
invariants (r, c1, c2).

When X is algebraic one has a complete answer due to Schwarzenberger (cf. I.2.
Theorem 1). In this case all holomorphic vector bundles can be constructed as extensions
of appropriate coherent sheaves of inferior ranks.

This however is no longer true over a non-algebraic base. Consider first the following
definitions. A holomorphic vector bundle E on a compact complex surface X is called
reducible if there exists a coherent subsheaf F ⊂ E with 0 < rankF < rankE, (and
irreducible otherwise). E is called filtrable if it admits a filtration 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂
Fr = E by coherent subsheaves Fi, with rankFi = i (and non-filtrable otherwise). In
contrast to the algebraic case there exist non-filtrable and even irreducible vector bundles
on non-algebraic surfaces. This phenomenon was brought forward by G. Elencwajg and
O. Forster [EF], and further studied by C. Bănică and J. Le Potier [BL]. In fact their
theorems of existence for irreducible vector bundles, [BL;§5], can be extended in order to
cover all non-algebraic surfaces (for rankE = 2) as in II.1.1..

Using the method of extensions C. Bănică and J. Le Potier gave a complete char-
acterization of topological vector bundles on non-algebraic surfaces admitting filtrable
holomorphic structures (see I.2. Theorem 3). For some classes of non-algebraic surfaces
this solves the given problem. In general, however, there exist topological vector bundles
admitting holomorphic structures but no filtrable structure, or even no reducible struc-
ture. We show this when the base is a non-algebraic 2-dimensional torus, in Chapter II
§1.

One can formulate further problems concerning the existence of holomorphic structures
together with some extra analytic properties for a topological vector bundle on a surface.

In Chapter II §2 we consider the problem of existence of strongly irreducible vector
bundles on a surface X. These are holomorphic vector bundles E which remain irreducible

after any base change X ′
f−→X, where X ′ is again a compact complex surface and f is
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a surjective morphism. When rankE = 2, this happens precisely when the associated
projective bundle P(E) has no ” horizontal” divisors. We show the existence of such
bundles in the versal deformation of reducible bundles when X is a 2-torus without curves
or a K3 surface without curves.

Finally in Chapter III we consider simple reducible rank 2 vector bundles and give
necessary and sufficient conditions, in terms of topological invariants, for their existence
on surfaces of algebraic dimension zero. Recall that a holomorphic vector bundle is called
simple if every non-zero endomorphism of it is an automorphism. Their importance stems
from the fact that they admit moduli spaces. Some remarks on non-separation phenomena
in these moduli spaces are made in the last paragraph.

This work wouldn’t have been possible without the constant guidance of late Professor
Constantin Bănică . I dedicate it as a small tribute to his memory. I also wish to thank
Professor M. Schneider for supervising the last stages of this work. These last stages also
profited from the kind hospitality of Bayreuth University and from the financial support
of its Graduiertenkolleg ”Komplexe Mannigfaltigkeiten”.
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Chapter I

Preliminaries

§1. Non-algebraic surfaces

1.1.

A 2-dimensional compact complex connected manifold will be simply called a surface,
and any 1-dimensional compact complex space - a curve. For general facts on surfaces we
refer to [BPV]. For X a surface, we denote its Picard group by Pic(X) := H1(X,O∗), its
Néron-Severi group by NS(X) := c1(Pic(X)) ⊂ H2(X,Z), while Pic0(X) ⊂ Pic(X) will
be the kernel of

c1 : Pic(X) −→ H2(X,Z).

The rank of NS(X) is called the Picard number of X and is denoted by ρ(X). The free
part of NS(X), i.e. its image in H2(X,C) through the natural morphism j : H2(X,Z)→
H2(X,C), is described by

Theorem 1 (Lefschetz’ theorem on (1,1)-classes)

j(NS(X)) = j(H2(X,Z)) ∩H1,1(X)

where H1,1(X) ⊂ H2(X,C) is the set of classes of closed differential forms of type (1, 1)
on X. In other words, an element of H2(X,C) is in the image of NS(X) if and only if it
is integral and can be represented by a real closed (1, 1)-form on X.

1.2.

The algebraic dimension of a surface X is the transcendence degree of its meromorphic
function field M(X) over C. This is finite and does not exceed dimX. We denote it by
a(X).

A surface X is called algebraic if it admits an algebraic variety structure compatible
with its complex-analytic one. Otherwise X is called non-algebraic.

In the special case of dimension 2 we have the following characterization:
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Theorem 2 (Kodaira) For a surface X the following statements are equivalent:

i) X is projective

ii) X is algebraic

iii) a(X)=2

iv) there exists an element L ∈ Pic(X) with L2 > 0.

Here L2 denotes self intersection L2 = c1(L)2 ∈ H4(X,Z) ∼= Z.

Corollary 1 If X is non-algebraic the intersection form on NS(X) is negative semidefi-
nite. In particular if a, b ∈ NS(X) then a2 = 0 ⇒ a · b = 0. (Just look at (na + b)2 ≤ 0
for n ∈ Z.)

Definition A connected holomorphic map f : X −→ S from a surface X onto a non-
singular curve S is called an elliptic fibration if the general fiber Xs, s ∈ S, is a smooth
elliptic curve. A surface X is called elliptic if it admits some elliptic fibration.

Corollary 2 Any connected holomorphic map from a non-algebraic surface X onto a
smooth curve S is an elliptic fibration. Moreover any irreducible curve on X is contained
in some fiber and thus the fibration is unique.

Proof. The general fibre C is non-singular and C2 = 0. Corollary 1 now gives KX ·C = 0
where KX denotes the class of the canonical bundle on X. By the adjunction formula

2g(C)− 2 = KX · C + C2

we get g(C) = 1, i.e. C is elliptic. Let now D be an irreducible curve contained in no
fiber. Then D intersects the generic fiber C in D · C > 0 points. This would contradict
Corollary 1. 2

The algebraic dimension of a surface X can be expressed in terms of ”number of
curves” on X. When a(X) = 2, X is projective hence through each point we have an
infinity of curves of X. By Corollary 2 this is no longer true when a(X) ≤ 1. The
following two theorems settle the cases a(X) = 1 and a(X) = 0 from this point of view.

Theorem 3 For X non-algebraic we have a(X) = 1 if and only if X is elliptic.

Proof. If a(X) = 1 there exists a non-constant meromorphic function f on X. If f had
indeterminacy points we would have D2 > 0 where D = (f) is the associated divisor of f .
But this cannot be, hence f defines a morphim f : X → P1. Its Stein factorization gives
a nosingular curve S and a connected morphism X −→ S which is an elliptic fibration by
Corollary 2.

Conversely if X admits an elliptic fibration over some curve S then there exist non-
constant meromorphic functions on X lifted from S. It follows that a(X) = 1, since X
was assumed non-algebraic. 2
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Theorem 4 If X is a surface having a(X) = 0 then the number of irreducible curves on
X is finite, not exceeding h1,1(X) + 2.

Proof. LetM1, Ω1 be the sheaves of germs of meromorphic, resp. holomorphic, 1-forms
on X and L := M1/Ω1. A curve on X of local equation f = 0 defines an element df

f
in

H0(X,L). One can see that different irreducible curves give linearly independent elements
in H0(X,L). One considers then the long cohomology sequence

. . .→ H0(X,M1)→ H0(X,L)→ H1(X,Ω1)→ . . .

and we only need to prove h0(X,M1) ≤ 2. Let ω1, ω2 ∈ H0(X,M1) linearly independent
over C. Locally on U ⊂ X they are linearly independent overM(U), otherwise ω1∧ω2 = 0
on U , hence on X and ω1

ω2
∈M(X) = C. Thus locally on U every third form ω ∈M1(X)

can be uniquely written as a linear combination in ω1, ω2 over M(U) which globalizes to
give ω = f1ω1 + f2ω2 with

f1, f2 ∈M(X) = C . 2

For the following Proposition we need a

Definition A coherent sheaf E on a complex, (connected) manifold X is called reducible
if it admits a coherent subsheaf F such that

0 < rankF < rank E ,

and irreducible otherwise.

Recall that any coherent sheaf is locally free on some open Zariski subset of X and its
rank can be defined as being the rank of the corresponding holomorphic vector bundle on
this open subset.

Proposition Let X be a surface having a(X) = 0 and E a coherent sheaf without torsion
on X. Then

h0(X, E) ≤ rank E

Proof. We use induction on r = rank E .

For r = 1, we can restrict ourselves to the locally free case by considering the inclusion
of E into its double dual E∨∨ which is invertible. Now if E had 2 linearly independent global
sections their quotient would give a non-constant meromorphic map on X contradicting
the hypothesis.

Let now r ≥ 2. When E is irreducible we have h0(X, E) = 0, since non-zero global
sections in E would generate rank 1 coherent subsheaves. For E reducible one can choose
F as in the definition above such that moreover E/F has no torsion. In order to see this
take an arbitrary F , p : E → E/F , and replace it by F ′ = p−1 (Tors E/F). Apply now
the induction hypothesis to the exact sequence

0→ F → E → E/F → 0 . 2
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1.3. Classification

Theorem 5 (Kodaira) Every non-algebraic surface has a unique minimal model in one
of the classes of the following table

Nr class of X kod(X) b1(X) order of KX in Pic(X) a(X)
1) minimal surfaces in class VII −∞ 1 0, 1
2) non-algebraic tori 0 4 1 0, 1
3) non-algebraic K3-surfaces 0 0 1 0, 1
4) primary Kodaira surfaces 0 3 1 1
5) secondary Kodaira surfaces 0 1 2, 3, 4, 6 1
6) properly elliptic minimal 1 1

non-algebraic surfaces

Definitions and examples

1) A surface X is in class VII when kod(X) = −∞ and b1(X) = 1 (we follow the
convention in [BPV]).

An important class of examples here consists of the Hopf surfaces. These are by
definition those surfaces admitting C2\{0} as universal covering space. They divide into
primary when π1(X) = Z and secondary if they appear as quotients of primary Hopf
surfaces through cyclic transformation groups. In the first situation the infinite cyclic
group acting on C2\{0} is generated by a contraction of the form

f(z1, z2) = (α1z1 + λzm2 , α2z2)

where (z1, z2) are suitable coordinates, m ∈ Z, m ≥ 1; λ, α1, α2 ∈ C, 0 < |α1| ≤ |α2| < 1
and (α1 − αm2 )λ = 0, whereas in the second case one has to consider also the action of a
cyclic group of order l generated by

e(z1, z2) = (ε1z1, ε2z2)

where ε1, ε2 are primitive l-roots of the unity and (ε1 − εm2 )λ = 0 (cf. [K]). Since primary
Hopf surfaces are diffeomorphic to S1 × S3, all Hopf surfaces have b1 = 1, b2 = 0. In par-
ticular they are minimal. Moreover they admit a global meromorphic 2-form (descending
from C2\{0}) of the form: 

1
z1 · z2

dz1 ∧ dz2 for λ = 0

1

zm+1
2

dz1 ∧ dz2 for λ 6= 0

which shows that

KX =

{
O(−C1 − C2) when λ = 0
O(−(m+ 1)C2) when λ 6= 0

hence kod(X) = −∞, where the curves Ci are the projections of the coordinate axes
(when λ 6= 0 only the axis {z2 = 0} is invariated by the covering group). Hence any Hopf
surface admits at least one irreducible curve.
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Theorem 6 (Kodaira)

a) Any minimal surface X with a(X) = 1 and kod(X) = −∞ is a Hopf surface.

b) Any surface X with a(X) = 0, b1(X) = 1, b2(X) = 0 and admitting at least
one curve is a Hopf surface.

For the fact that both values 0 and 1 are attained by the algebraic dimension of Hopf
surfaces we refer to [BPV,V.18].

There exist examples of surfaces in class VII with b2 = 0 and no curves, or with b2 > 0.
For b2 = 0 their classification is complete (cf.[I], [LYZ]).

2) We consider 2-dimensional complex tori X = C2/Γ, where Γ is a rank 4 lattice in C2.
According to Lefshetz’ theorem NS(X) = H1,1

R (X)∩H2(X,Z). Now H1,1
R (X) can be seen

as the space of harmonic real (1, 1)-forms, hence of the form

η =
i

2

2∑
α,β=1

hαβ dzα ∧ dzβ ,

where (z1, z2) are complex coordinates for C2, hαβ ∈ C and hαβ = hβα, α, β ∈ {1, 2}.
These give integral elements if and only if they get integral coeficients when expressed in
terms of a real basis of C2 consisting of generators for Γ (cf. [W;ch.VI]). Thus we obtain
a natural isomorphism

NS(X) ∼=
{
A | A hermitian 2× 2-matrix with Im(tΠAΠ) ∈M4(Z)

}
(1)

where Π := (γ1, · · · , γ4) is the period matrix of X (i.e. the column vectors γi of Π form a
set of generators for Γ), while Mn(Z) denotes the set of integer valued n× n matrices.

Using this, one computes the intersection form on NS(X) (through exterior product
of forms) as follows. For a in NS(X) consider its associated hermitian 2 × 2-matrix A
given by (1) and the matrices A1, A2, A3 ∈M2(Z) giving the decomposition(

A1 A2

−tA2 A3

)
= Im(tΠAΠ) .

Since Im(tΠAΠ) is skew-symmetric we get the above form and A1, A3 skew-symmetric.
Let

A1 =

(
0 θ
−θ 0

)
, A2 =

(
α β
γ δ

)
, A3 =

(
0 τ
−τ 0

)
.

Now a straightforward computation shows

a2 = 2(αδ − βγ − θτ) . (2)

The algebraic dimension of X can be expressed in the following way (cf.[W; VI, 8]):

a(X) = max{rankA | A positive semi-definite hermitian

2× 2-matrix with Im(tΠAΠ) ∈M4(Z)} . (3)
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For examples of 2-tori admitting various algebraic dimensions and Picard numbers we
refer to [EF; Appendix].

We give here the following two examples which will be used later:

A. For every positive integer n there exist complex 2-toriX having NS(X) cyclic generated
by a with a2 = −2n (they are automatically non-algebraic with a(X) = 0). Let Π =
(Π1,Π2) with

Π1,Π2 ∈M2(C), Π1 =

(
1 0
0 1

)
, Π2 = iP, P ∈M2(R),

detP =
1

n
, P =

(
p q
r s

)
, rankQ(p, q, r, s) = 4

and let X be the 2-torus having period matrix Π. Then using (1) one gets that NS(X) is
generated by an element a having the associated hermitian matrix

A =

(
0 in
−in 0

)

This and (2) gives a2 = −2n. By (3), a(X) = 0.

B. For every positive integer n there exist complex 2-tori X such that NS(X) is free with
two generators a, b such that a2 = −2n, b2 = 0. (In this case a(X) = 1).

Take Π as before but this time

P =

( 3√2
n
−1

0 3
√

2

)
.

Then an element in NS(X) has an associated hermitian matrix of the form

A(x, y) =

(
0 n

3√2
x

n
3√2
x n

3√2
x+ 1

3√2
y

)

for x, y ∈ Z.

Taking a, b in NS(X) corresponding to A(1, 0) and A(0, 1) respectively, one gets the
desired statement by direct computation as in example A. For a general criterion giving
a(X) in these examples see the end of this section.

3) X is by definition a K3 surface if q(X) = 0 and the canonical bundle is trivial
(KX

∼= OX), where q(X) := h0,1(X) := h1(OX).

Examples of such surfaces are provided by the Kummer surfaces. They are constructed
as follows. One starts with a complex 2-torus T and considers its involution i : T → T ,
i(x) = −x, an origin having been fixed. This has 16 fixed points giving 16 ordinary
double points for the quotient T/{id, i}. Resolving these sixteen singularities one obtains
a surface X, the Kummer surface associated to T . One obtains the same thing by
first blowing up the 16 fixed points of i on T and then taking the quotient through the
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induced involution. X is easily seen to be a K3 surface [BPV; V 16] and a(X) = a(T ).
The whole range for the algebraic dimension is thus attained.

For K3 surfaces H1(X,O) = 0, hence Pic(X) ∼= NS(X) ↪→ H2(X,Z). H2(X,Z) is
shown to be free and its intersection form to be even.

Remarks. Let X be a K3 surface with a(X) = 0.

i) If L ∈ Pic(X) is non-trivial then L2 ≤ −2 and equality holds if and only if
L ∼= O(±D) for some effective divisor D. (By abuse of notation we do not
distinguish between a vector bundle and its associated sheaf of holomorphic
sections). To see this we use the Riemann-Roch formula for a line bundle L
on a surface X:

χ(L) := h0(L)− h1(L) + h2(L) =
1

2
(L2 − L ·KX) + χ(OX). (4)

Now since a(X) = 0 and L non-trivial we have

h0(L) + h0(L∨) ≤ 1

by 1.2. (Proposition) and the fact that in this case O(D1) ∼= O(D2) implies
D1 = D2 for any two divisors D1,D2 on X.

The conclusion follows now immediately from (4) and Serre duality.

ii) Any irreducible curve C on X is smooth rational with C2 = −2. (Such curves
are called (−2)-curves). This is a direct consequence of i) and the adjunction
formula for C. (cf. [BPV; II 11]):

2g(C)− 2 = C2 + C ·KX .

iii) Any connected reduced curve C on X is an A-D-E curve (i.e. the intersection
form restricted to the group generated by the irreducible components of C
gives a root-lattice of type A, D or E; (cf. [BPV; p.74]).

This is a consequence of i) and ii) and of the classification of lattices of this
type.

For later use we mention here the existence for all g ∈ Z of special K3
surfaces of type g, X, i.e. such that NS(X) is freely generated by one
element L with L2 = 2g − 2, (see [L]), and also the existence of K3 surfaces
X with NS(X) = 0.

4 and 5) A primary Kodaira surface is a surface with b1 = 3 and admitting a locally
trivial elliptic fibration over an elliptic curve.

A surface which is not primary Kodaira but admits as an unramified cover a primary
Kodaira surface is called a secondary Kodaira surface. See [BPV; V 5] for examples.

6) A properly elliptic surface is an elliptic surface having Kodaira dimension 1. A
product of an elliptic curve and a curve of higher genus is properly elliptic. Non-algebraic
surfaces of this type can be obtained by applying logarithmic transformations to a product
of an elliptic curve with a rational curve; (cf.[BPV; V 13]).

One corollary of the classification is the following
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Theorem 7 For a surface X with a(X) = 0 the intersection form on NS(X) is negative
definite modulo torsion.

This is a direct consequence of the Signature theorem on H1,1
R (X) (cf. [BPV; IV 2.13])

in the case of class VII surfaces, it is part of Remark i) for K3-surfaces, and was proven
in [BF1] for tori using the description (1) of NS(X).

§2. Existence problem for holomorphic vector bun-

dles on surfaces

Let X be a compact complex surface. Consider the following question: which topological
complex vector bundles E on X admit holomorphic structures? When r := rankE = 1
the answer is given by the exponential sequences. Indeed considering the exponential
sequence for the sheaf C of germs of continuous complex functions

0 −→ Z −→ C e−→C∗ −→ 0 ,

e(f) := exp(2πif) , we get since C is a fine sheaf

H1(X, C∗)
c1∼−→H2(X,Z) ,

i.e. the isomorphism classes of complex topological line bundles on X are parametrized
by H2(X,Z),by taking the Chern class c1. Now using the long cohomology sequence of
the exponential sequence for O

0 −→ Z −→ O e−→O∗ −→ 0 ,

we get a commutative square

H1(X, C∗)
c1∼−→ H2(X,Z)

↑ ‖
H1(X,O∗) c1−→ H2(X,Z)

showing that a topological line bundle E admits a holomorphic structure if and only
if c1(E) ∈ NS(X). This remains a necessary condition also for r > 1, since if E has
a holomorphic structure then detE := ∧rE also admits one, hence c1(E) = c1(detE) ∈
NS(X).In the surface case the topological classification of vector bundles is known ([Wu]):
for every rank r > 1 and every pair (c1, c2) ∈ H2(X,Z)×H4(X,Z) there exists a unique
(up to isomorphism) topological complex vector bundle E of rank r with c1(E) = c1,
c2(E) = c2. Thus the problem comes to constructing holomorphic vector bundles having
prescribed rank and prescribed Chern classes.

A method of construction is the method of extensions. We present it for r = 2. Let
E be a reducible holomorphic rank 2 vector bundle (see 1.2). Then E admits a coherent

13



rank 1 subsheaf F such that E/F is torsion free. One deduces that F is invertible. Indeed
the bidual of the inclusion morphism is a monomorphism

F∨∨ −→ E

hence F∨∨/F ↪→ E/F . Since F∨∨/F is a torsion sheaf we get F∨∨ ∼= F . This and
rankF = 1 imply F is invertible.

E/F can be described as follows. The zero locus of the section in E⊗F∨ corresponding
to the inclusion morphism is a locally complete intersection 2-codimensional analytic
subspace Y of X.Hence E/F |X\Y is an invertible sheaf L extending to an invertible sheaf
on X (in fact L = (E/F)∨∨) and one has an exact sequence

0 −→ F −→ E −→ L⊗ JY −→ 0

to be named a devissage of E. JY denotes the ideal sheaf of Y .Thus E appears as an
extension of L⊗ JY through F .

Conversely, starting with L1, L2 in Pic(X) and Y a locally complete intersection 2-
codimensional analytic subspace of X one may ask when there exist extensions of L2⊗JY
through L1

0 −→ L1 −→ E −→ L2 ⊗ JY −→ 0 (5)

such that E be locally free. By Serre (cf.[OSS; I.5]) the central term of (5) is locally free if
and only if the image of the element θ ∈ Ext1(X;L2⊗JY , L1) associated to the extension
(5), through the canonical mapping

Ext1(X;L2 ⊗ JY , L1) −→ H0(X, Ext1(JY ⊗ L2, L1))

generates the sheaf Ext1(L2 ⊗ JY , L1).

Let L := L∨2 ⊗ L1. Since in our case Hom(L2 ⊗ JY , L1) ∼= L∨2 ⊗ L1 = L the exact
sequence of the first terms of the Ext spectral sequence becomes:

0 −→ H1(X,L) −→ Ext1(JY , L) −→ H0(X; Ext1(JY , L)) −→ H2(X,L)

Let l(Y ) be the length of OY over C. Out of the preceeding facts we deduce the

Remarks

1. Serre’s condition is fulfilled for some θ in Ext1(X;L2⊗JY , L1) in the following cases:

i) Y locally complete intersection (hence Ext1(JY ;L) ∼= OY ) and
H2(X;L) = 0.

ii) a(X) = 0, Y locally complete intersection, L∨ ⊗ K ∼= O(D) with D an
effective divisor, and Y ⊂ D as analytic spaces.(By duality we get that
the map H0(X, Ext1(JY , L))→ H2(X,L) is zero).

iii) a(X) = 0, Y consists of simple points,l(Y ) > 1, H2(X,L) 6= 0, L∨⊗K =
O(D) and Y ∩ suppD = /0 (one can find sections in H0(X, Ext1(JY , L)) ∼=
H0(Y,OY ) mapped to zero in H2(X,L) = H0(X,O(D))∨ having non-zero
components in each fiber OY,y,y ∈ Y ).

14



2. Serre’s condition cannot be fulfilled when a(X) = 0, l(Y ) = 1 (hence Y is a simple
point on X), L∨ ⊗K = O(D), D effective and Y is not on supp D.

To see this note that the morphism H0(X, Ext1(JY , L))→ H2(X,L) is the dual of
the restriction

H0(X,L∨ ⊗K) −→ H0(Y, L∨ ⊗K |Y ).

Using Remark 1 i) one can answer completely the question of existence of holomorphic
structures for topological vector bundles over algebraic surfaces. We have:

Theorem 1 (Schwarzenberger) A complex topological vector bundle E over an alge-
braic surface X admits a holomorphic structure if and only if c1(E) ∈ NS(X).

Proof. To prove the theorem, we have to construct for given r > 1 and (c1, c2) ∈ NS(X)×
H4(X,Z), holomorphic vector bundles with rankE = r, c1(E) = c1, c2(E) = c2. In fact it
is enough to do this for r = 2 because then one can add a trivial vector bundle of suitable
rank.

One uses extensions. For E as in (5) we get:

c1(E) = c1(detE) = c1(L1 ⊗ L2) = c1(L1) + c1(L2)

c2(E) = c2(E ⊗ L−1
1 ⊗ L1) = c2(E ⊗ L−1

1 ) + c1(E ⊗ L−1
1 ) · c1(L1) + c1(L1)

2 =

= l(Y ) + c1(L1) · c1(L2) =

= l(Y ) + L1 · L2 ∈ Z ∼= H4(X,Z)

Thus {
c1(E) = c1(L1) + c1(L2)
c2(E) = l(Y ) + L1 · L2

(6)

Choose now an ample line bundle H on X ,L in Pic(X) such that c1(L) = c1(E), L1 =
H⊗n, L2 = L⊗H−n, and n big enough so that:

H2(X,L1 ⊗ L∨2 ) = 0, and

L1 · L2 = nL ·H − n2H2 ≤ c2.

Then for Y a set of c2−L1 ·L2 simple points on X, an extension (5) gives a holomorphic
vector bundle with the wanted invariants.

The conclusion of Theorem 1 is no longer true when X is non-algebraic. Indeed, letting

∆(E) := ∆ :=
1

r
(c2 −

r − 1

2r
c21)

be the discriminant of a vector bundle E over X having invariants (c1(E), c2(E)) =
(c1, c2) ∈ H2(X,Z)× Z and r = rankE, Bănică and Le Potier obtained the following

Theorem 2 ([BL]) Holomorphic vector bundles on non-algebraic surfaces have non-
negative discriminants (∆ ≥ 0).
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Before stating their existence theorem for holomorphic structures we give a

Definition A rank r holomorphic vector bundle E on a surface X is called filtrable if
its sheaf of sections (again denoted by E as before) admits a filtration

0 ⊂ F1 ⊂ · · · ⊂ Fr = E

by coherent subsheaves Fi such that

rankFi = i.

Remark 3 If X is algebraic all holomorphic vector bundles on it are filtrable. (A non-zero
section in E ⊗H⊗n, where H is an ample line bundle on X and n >> 0, yields a rank 1
coherent subsheaf of E. Take the quotient and repeat the procedure . . .).

For a non-algebraic surface X, a ∈ NS(X) and r a positive integer consider the
following rational number

m(r, a) = − 1

2r
max

{
r∑
i=1

(
a

r
− µi

)2

| µ1, . . . , µr ∈ NS(X) with
r∑
i=1

µi = a

}
.

From Kodaira’s theorem (§1.thm 2) we have

m(r, a) ≥ 0.

Theorem 3 ([BL]) A rank r topological complex vector bundle E on a non-algebraic
surface X admits a filtrable holomorphic structure if and only if{

c1(E) ∈ NS(X) and
∆(E) ≥ m(r, c1(E))

except when X is K3, a(X) = 0, c1(E) ∈ rNS(X) and ∆(E) = 1
r
. In this excepted case

E admits no holomorphic structure.

The idea of the proof is to construct like before holomorphic vector bundles with
given invariants as extensions, seeing that Serre’s condition is fulfilled for the different
cases given by the surface classification. In this way only filtrable bundles are obtained.

As a corollary, since c1(E) = 0 implies m(r, c1(E)) = 0, the existence problem is
completely settled for the case c1(E) = 0.
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Chapter II

Irreducible and strongly irreducible
vector bundles

§1. Irreducible vector bundles; a class of examples

on two-dimensional tori

1.1.

A holomorphic vector bundle E on a surface X is called irreducible if its associated sheaf
of sections is irreducible (cf.I.1.2). If E has rank 2, then this is equivalent to h0(E⊗L) = 0
for every L in Pic(X), the notion thus coinciding with non-filtrability; cf. the proof of the
Proposition in I.1.2. If rankE = 3, irreducibility amounts to h0(E⊗L) = h0(E∨⊗L) = 0
for every L in Pic(X).

On an algebraic surface every holomorphic vector bundle is filtrable (Remark 3 in I.2)
and a fortiori reducible. This is no longer true in the non-algebraic case and a first example
is provided by the holomorphic tangent bundle TX of a K3 surface X with NS(X) = 0,
as one can easily check. Moreover in this case its symmetric power S2TX is a rank 3
irreducible vector bundle as was remarked by I. Coandā. This follows out of the fact that
in this situation TX is simple i.e. any non-zero endomorphism of it is an automorphism.

More generally we have:

Remark 1. Irreducible vector bundles are simple.

To check it consider any non-zero endomorphism f : E → E. Since E is irreducible,
ker f = 0 and det f : detE → detE must be an isomorphism, hence also f .

In [EF] Elencwajg and Forster showed the existence of irreducible rank 2 vector bundles
on two-dimensional tori X with NS(X) = 0.

They did this by comparing the versal deformation of a filtrable rank 2 vector bundle
with the space parametrizing extensions producing filtrable vector bundles. In this way
they proved that in general the versal deformation is richer hence it must contain also
irreducible vector bundles.

17



Using the relative Douady space of quotients associated to the versal deformation of
a filtrable vector bundle, Bănică and Le Potier showed the existence of irreducible vector
bundles E in any rank on surfaces X such that a(X) = 0, covering a wide range of Chern
classes c1(E), c2(E); cf.[BL]. They also showed the existence of irreducible rank 2 vector
bundles on surfaces X with a(X) = 1 and trivial canonical bundles. Their proof can
actually be extended to any surface X with a(X) = 1, making use in [BL; (8)] of the
following simple

Proposition Let X be a minimal non-algebraic surface. Then there is a constant c
depending only on X, such that for any rank 1 torsion-free coherent sheaf F on X one
has:

h0(F ⊗KX)− h0(F) ≤ c.

Proof. For a(X) = 0 we can take c = 1 by I.1.2. Proposition. Let now a(X) = 1,
π : X → S, the unique elliptic fibration of X and Xs1 = m1F1, . . . , Xsk = mkFk its
multiple fibers. Then the canonical bundle formula gives ([BPV; V 12.3]):

KX = π∗(L)⊗OX(
k∑
i=1

(mi − 1)Fi)

where L is a line bundle of degree χ(OX)− 2χ(OS) on S. It follows that there exixts an
effective divisor D on S of degree d depending only on X such that

KX ↪→ π∗OS(D).

Then

h0(F ⊗KX)− h0(F) ≤ h0(F ⊗ π∗OS(D))− h0(F) = h0(S ; π∗F(D))− h0(S ; π∗F)

Now π∗F is torsion free on S hence locally free. Its rank equals h0(F|F ) where F is the
general fibre of π. But F|F is locally free for F general. Since F 2 = 0 we get by Corollary
1 in I 1.2.:

deg(F|F ) = deg(F∨∨|F ) = c1(F) · F = 0.

Hence
rank(π∗F) = h0(F|F ) ≤ 1.

For rank(π∗F) = 0 any positive c will do. Let now rank(π∗F) = 1. Out of the exact
sequence:

0→ π∗F → π∗F(D)→ π∗F(D)|D → 0

we get
h0(π∗F(D))− h0(π∗F) ≤ degD = d.

Hence
h0(F ⊗KX)− h0(F) ≤ d. 2

Thus there exist irreducible vector bundles(of rank 2) on any non-algebraic surface.
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One reason for investigating the existence of irreducible vector bundles is filling the
gap left in the range of Chern classes of holomorphic vector bundles on a non-algebraic
surface X. Indeed by the theorems 2 and 3 in I.2, for fixed rank r and first Chern class
c1 ∈ NS(X) the only unknown situations are for

∆ ∈ [0,m(r, c1)) (7)

When m(r, c1) 6= 0 this interval is non-empty and the canditates to “filling it” are non-
filtrable vector bundles by theorem 3 in I.2. But all the known examples of irreducible or
non-filtrable vector bundles admit also filtrable structures on their underlying topological
types.

The main result of this paragraph will show in particular that this is not necessarily
the case and values for discriminants of holomorphic vector bundles can appear also in
the interval (7).

Theorem Every complex topological vector bundle E on a two-dimensional complex torus
X having c1(E) ∈ NS(X) and ∆(E) = 0 admits some holomorphic structure.

1.2. Proof of the theorem

First a

Lemma Let X be a two-dimensional complex torus, a ∈ NS(X) and p a prime number
with p | 1

2
a2. Then there exists an unramified covering q : X ′ → X of degree p and

a′ ∈ NS(X ′) such that
pa′ = q∗(a).

Proof. Let Γ be a lattice generated by γ1, . . . , γ4 in C2 with X ∼= C2/Γ. We use the
notations of I.1.3. Recall the natural isomorphism (1):

NS(X) ∼= {A | A hermitian 2× 2 matrix with ImtΠAΠ ∈M4(Z)}
where Π := (γ1, . . . , γ4) is the period matrix of X.

Consider as before for a 2× 2 hermitian matrix A in NS(X) the decomposition(
A1 A2

−tA2 A3

)
= Im(tΠAΠ)

and let

A1 =

(
0 θ
−θ 0

)
, A2 =

(
α β
γ δ

)
, A3 =

(
0 τ
−τ 0

)
.

Then for the selfintersection of an element a in NS(X) represented by A as above we had
the formula (2):

a2 = 2(αδ − βγ − θτ).

The hypothesis of the Lemma becomes:

p|(αδ − βγ − θτ).

19



We shall consider tori X ′ appearing by factorizing C2 through lattices obtained by
multiplying by p one of Γ’s generators γi and preserving the others. The projection
q : X ′ → X will be an unramified covering of degree p. If Π̃ is the period matrix thus
obtained for X ′ we will need to get:

Im(tΠ̃AΠ̃) ∈M4(pZ)

The element 1
p
A ∈ NS(X ′) would be the looked for a′. We denote

(
Ã1 Ã2

−tÃ2 Ã3

)
= Im(tΠ̃AΠ̃) .

Notice that if Π̃ is obtained from Π multiplying by p column 1 or 2 (resp.3 or 4) then
Ã1 ∈ M2(pZ) (resp.Ã3 ∈ M2(pZ)) and line (resp.column) 1 or 2 of Ã2 will take values
in pZ. In order to reach our purpose (i.e. that Ai ∈ M2(pZ) for all i ∈ {1, 2, 3}) we
will make a suitable base change for Γ. Another base of Γ, (γ′i)i = 1, 4, is related to the
previous one by a matrix M ∈M4(Z) with detM = ±1:

γ′i =
∑
j

mjiγj

giving the corresponding period matrix

Π′ = ΠM

hence (
A′1 A′2
−tA′2 A′3

)
= Im(tΠ′AΠ

′
) = Im(tM tΠAΠM) = tM

(
A1 A2

t − A2 A3

)
M.

Writing M =

(
a b
c d

)
with a, b, c, d,∈M2(Z) we get

A′1 = taA1a− tctA2a+ taA2c+ tcA3c

A′2 = taA1b− tctA2b+ taA2d+ tcA3d

A′3 = tbA1b− tdtA2b+ tbA2d+ tdA3d

From now on we reduce all computations modulo p, all equalities taking place in Zp. By
assumption detA2 − τθ = 0. We distinguish two cases:

i) detA2 6= 0

ii) detA2 = 0

i) detA2 6= 0
Then θ 6= 0, τ 6= 0. It will be enough, considered the form of Ã, to find
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M giving one null line (say the first) of A′2 and A′3 = 0. Choose c = 0,

a = d = I :=

(
1 0
0 1

)
. Then

A′2 = A1b+ A2, (8)

A′3 = tbA1b− tA2b+ tbA2 + A3, (9)

A1b = θ

(
b3 b4
−b1 −b2

)
, where b =

(
b1 b2
b3 b4

)
.

From (8) and the requirement that the first line of A′2 should be null we find:

b3 = −θ−1α, b4 = −θ−1β. (10)

If A′3 =

(
0 τ ′

−τ ′ 0

)
, (9), (10) and the hypothesis imply

τ ′ = θ(b1b4 − b2b3)− αb2 − γb4 + βb1 + δb3 + τ = 0

Hence b1, b2 can be arbitrarily chosen.

ii) detA2 = 0
Then θ = 0 or τ = 0. Assume θ = 0 (the case τ = 0 is similar) Choose
b = c = 0, a = I. Then A′1 = A1 = 0 and A′2 = A2d. It is enough to find d

such that A′2 has a null column, the first for instance. If d =

(
d1 d2

d3 d4

)
this

comes to

{
αd1 + βd3 = 0
γd1 + δd3 = 0

.

Since detA2 = 0 this system admits non-trivial solutions (d1, d3). Moreover,
one can find a solution with one coordinate equal to 1, say d1 = 1. Then we
choose d2 = 0 and d4 = 1 and get

d =

(
1 0
d3 1

)
.

Returning to integer values we can choose in both cases (i and ii) representatives M ∈
M4(Z) with detM = ±1 for the classes in M4(Zp) found above. One can take, for example
all integer representatives from {0, 1, . . . , p− 1}. The Lemma is proved.

Now we prove the theorem using induction on the number n of prime factors of r =
rankE:

r =
k∏
i=1

pnii , n =
k∑
i=1

ni.

For n = 0 we have r = 1 and the statement is true since c1(E) ∈ NS(X) by assumption.
Assume now the theorem is true for n. We shall prove it for n + 1. Let p be a prime
factor of r.

0 = ∆(E) =
1

r
(c2(E)− r − 1

2r
c1(E)2) implies
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p|1
2
c1(E)2 ( the intersection form on NS(X) is even). By the Lemma there exists some

unramified covering of degree p, q : X ′ → X and a′ ∈ NS(X ′) such that pa′ = q∗(c1(E)).
X ′ is again a torus. Consider on X ′ the topological vector bundle F having

rank(F ) =
r

p
, c1(F ) = a′, c2(F ) =

r
p
− 1

2 r
p

a′2 =
r
p
− 1

2r
c1(E)2 ∈ Z.

(q∗ : H4(X,Z) ∼= Z→ H4(X ′,Z) ∼= Z is the multiplication by p). Then ∆(F ) = 0 and F
admits holomorphic structures by the induction hypothesis.

Let G = {1, τ, · · · , τ p−1} be the deck-transformation group of X ′/X (these are trans-
lations of X ′) and E ′ = F

⊕
τ ∗(F )

⊕ · · ·⊕(τ p−1)∗(F ).

Then c1(E
′) = pc1(F ) = pa′ = q∗(c1(E)) (ci(τ

∗(F )) = ci(F ) since τ is homotopous

to 1), c2(E
′) = p(p−1)

2
c1(F )2 + pc2(F ) = p2 r−1

r
a′2, ∆(E ′) = 0.

One has canonical isomorphisms E ′ → (τm)∗(E ′) compatible with the action of G on
X ′ hence E ′ induces a holomorphic vector bundle E ′′ on X such that q∗E ′′ = E ′. It follows
that ∆(E ′′) = 0 and c1(E

′′) = c1(E), hence the underlying topological vector bundle of
E ′′ is E, which closes the proof of the theorem.

1.3. Corollaries and Remarks

Let X be a compact complex surface, a ∈ NS(X) and r a positive interger. We make the
following notations:

s(r, a) := −1

2
sup

µ∈NS(X)

(
a

r
− µ)2,

t(r, a) := inf

{
1

k(r − k)
s(r, ka)

∣∣∣ k = 1, r − 1

}
When X is non-algebraic these numbers are non-negative.

Remark 2. For X non-algebraic and E a filtrable bundle of rank r on it:

∆(E) ≥ s(r, c1(E)).

(This follows from Theorem 3 of I.2 and the inequality s(r, a) ≤ m(r, a).)

Remark 3. For X non-algebraic and E a reducible bundle of rank r on it:

∆(E) ≥ t(r, c1(E)).

Proof. Let 0 → E1 → E → E2 → 0 be an exact sequence with Ei coherent sheaves
without torsion of ranks ri and having c1(Ei) = ai, (i = 1, 2). Let a = c1(E). Then
a1 + a2 = a, r1 + r2 = r and by Riemann-Roch’s formula for E, E1 and E2 we find

∆(E) =
1

2r

(
a2

r
− a2

1

r1
− a2

2

r2

)
+
r1
r

∆(E1) +
r2
r

∆(E2).

Since ∆(Ei) ≥ 0 (see[BL]) we have

∆(E) ≥ 1

2r

(
a2

r
− a2

1

r1
− a2

2

r2

)
= − 1

2r1r2

(
r2a

r
− a2

)2

≥ 1

r2(r − r2)
s(r, r2a) ≥ t(r, c1(E)).
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Corollary 1 Let X be a non-algebraic 2-torus, r a positive integer a ∈ NS(X) such that
r|1

2
a2 and r2|/1

2
a2. Then there exists a topological vector bundle E on X having rank r,

c1(E) = a and ∆(E) = 0 admitting holomorphic structures but not filtrable holomorphic
structures.

Proof. We choose the topological vector bundle E having c1(E) = a, c2(E) = r−1
2r
a2.

Hence ∆(E) = 0 and E admits holomorphic structures by the theorem. Using Remark 2
it will be enough to prove that

s(r, a) > 0. If this were not so we’d have

s(r, a) = 0 i.e.

sup
µ∈NS(X)

(
a

r
− µ)2 = 0, hence (

a

r
− µ)2 = 0

for some µ in NS(X). This implies a = rµ + c with c ∈ NS(X) and c2 = 0. Then c
is orthogonal on NS(X) since X is non-algebraic (Corollary 1 to Theorem 2 in I.1). It
follows that a2 = r2µ2 and 2r2 | a2, a contradiction!

Corollary 2 If X is a complex 2-torus and n a positive integer as in the examples A
and B in I.1.3.,i.e. having NS(X) freely generated by a with a2 = −2n, or by a and
b with a2 = −2n and b2 = 0 respectively, then the topological vector bundle E on X of
rank n having c1(E) = a and ∆(E) = 0 admits holomorphic structures but not reducible
structures.

Proof. In this case t(r, a) > 0.

Remark 4. The vector bundles E contructed in the proof of the theorem are of the form
E = π∗L where π : X ′ → X is an unramified covering of degree r and L ∈ Pic(X ′). In
these terms we get the following criterion of reducibility:

Remark 5. Let X be a complex 2-torus with a(X) = 0, X ′
π→ X a covering of degree

r, G the covering transformation group, L ∈ Pic(X ′), G′ = {g ∈ G | g∗L ∼= L} and
E = π∗L. Then E is reducible if and only if G′ 6= id. If r is prime:

E reducible ⇔ E filtrable.

Proof. If G′ 6= {id} one considers π′ : X ′ → X ′/G′, π′′ : X ′/G′ → X.

Since π∗(L) = π′′∗π
′
∗L it is enough to check that π′∗L is reducible. We may assume that

G′ is cyclic. Then π′∗L = L′ ⊗ π′∗OX′ , where L′ ∈ Pic(X ′/G′) is such that π∗(L′) = L,
hence the assertion.

Conversely, let G′ = {id} and assume E reducible. Then take a torsion free quotient
C of E such that 0 < rankC < r, and the exact sequences

0→ K → E
p→ C → 0

0→ π∗K → π∗E → π∗C → 0.
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π∗E =
⊕
g∈G

g∗L.

Let ig : g∗L → π∗E, g ∈ G, denote the cononical indusion. Then ug := π∗p ◦ ig are
simultaneously (for g ∈ G) zero or non-zero, and they cannot be all zero since 0 6= π∗p =∑
g∈G ug. Take

H :=
⊕
g∈G
g 6=id

g∗L, v :=
∑
g 6=id

ug : H → π∗C, uid : L→ π∗C

and
p1 : π∗E → L, p2 : π∗E → H,

the projections. We get in the same way as before p1(π
∗K) 6= 0. Then uid ◦ p1(π

∗K) =
v ◦ p2(π

∗K) as subsheaves in π∗C, hence uid(p1(π
∗K)) ⊂ v(H).

Since a(X) = 0, this induces an inclusion L⊗JZ ↪→ v(H) where Z is a 2-codimensio-
nal subspace of X. We get thus on X \ Z a non-zero morphism L → H which extends
to the whole X and hence a non-trivial morphism L → g∗L for some g 6= id. This is a
contradiction.

I thank V. Br̂ınzănescu for pointing out a mistake in the initial version of the above
proof.

§2. Strongly irreducible vector bundles and associ-

ated threefolds without divisors

2.1.

Let X be a surface without curves and E a rank 2 holomorphic vector bundle on it. Then
the projective bundle P(E) is a threefold whose only curves are the vertical lines of the
fibering P(E) → X. But when does P(E) have no surface? It will turn out that this
happens if and only if E is ”strongly irreducible”.

Definition We call a vector bundle E on a surface X strongly irreducible if for every

”base change” X ′
f→ X, meaning by this a proper holomorphic surjective map between

surfaces, f ∗E is irreducible.

In this paragraph X, X ′ will always denote compact complex surfaces while E will be
a holomorphic vector bundle of rank 2 on X.

Lemma 1 Let X ′
f→ X, be a bimeromorphic mapping. Then E is irreducible (resp.

strongly irreducible) on X if and only if f ∗E is irreducible (resp. strongly irreducible) on
X ′.

Proof. If L ↪→ E for L in Pic(X), then f ∗L → f ∗E is injective on a Zariski open set
hence the image of this morphism is a coherent subsheaf or rank 1 in f ∗E.
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Conversely, let L ↪→ f ∗E, with L in Pic(X ′). Applying f∗ we get an injection

f∗L ↪→ f∗f
∗E

where rank f∗L = 1. The natural morphism

E → f∗f
∗E

is an isomorphism on a Zariski open set so the inverse image of f∗L through it is a coherent
subsheaf of rank 1 in E.

Coming now to the strong irreducibility, let X ′′
g→ X be a base change with g∗E

reducible and Y → X ′′ ×X X ′ a resolution of singularities. In the commutative diagram

Y σ

X ′′ ×X X ′ −→ X ′

τ ↓ ↓ f
X ′′

g−→ X

τ is bimeromorphic, hence τ ∗g∗E = σ∗f ∗E is reducible, and so f ∗E is not strongly
irreducible. The converse is obvious.

Consequently, the bimeromorphic mappings do not change the irreducibility of bun-
dles. But this is no longer true for arbitrary base changes. Indeed, the irreducible vector
bundles obtained in §1 (Corollary 2) are not strongly irreducible since they are direct
images of line bundles through finite covering maps and hence their pullbacks through
these maps will be decomposable.

The compact complex threefolds we study are projective bundles P(E) associated to
holomorphic vector bundles E of rank 2 on X. We denote by π : P(E)→ X the natural
projection and by OP(E)(−1) the tautological line subbundle in π∗E. In the sequel we
use the standard notation OP(E)(n), n ∈ Z, for its tensor powers. One has the following
exact sequence on P(E):

0→ OP(E) → π∗E ⊗OP(E)(1)→ TP(E) → π∗TX → 0 (11)

where the first morphism is induced by the inclusion OP(E)(−1) ↪→ π∗E. One also has
Pic(P(E)) ∼= Pic(X)

⊕
Z, any invertible sheaf on P(E) being of the form π∗L⊗OP(E)(n)

for some L in Pic(X) and n in Z. For n > 0 and F ∈ Coh(X) the following isomorphisms
are well known

π∗OP(E)(n) ∼= SnE∨

π∗(π
∗F ⊗OP(E)(n)) ∼= F ⊗ SnE∨

where SnE are the symmetric powers of E.

Definition A horizontal divisor of P(E) is an effective divisor in P(E) such that the
restriction of π to its support covers X.

Proposition For a non-singular compact complex surface X and a holomorphic vector
bundle E of rank 2 on X the following statements are equivalent:
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1. E is strongly irreducible.

2. P(E) does not admit horizontal divisors.

3. h0(L⊗ SnE) = 0 for all L in Pic(X) and all positive integers n.

In the proof we shall use the

Lemma 2 E is reducible if and only if P(E) admits a divisor whose projection on X is
bimeromorphic.

Proof. Let D be an irreducible divisor as above and v : D → D a resolution of singu-
larities. One has the diagram

D
v−→ D

i
↪→ P(E)

p = π|D ↘ ↓ π
X

Having OP(E)(−1) ↪→ π∗E and applying (i ◦ v)∗ we get an injective bundle morphism on
D

(i ◦ v)∗OP(E)(−1) ↪→ (i ◦ v)∗ ◦ π∗E

Hence (p ◦ v)∗E = (π ◦ i ◦ v)∗E is reducible and so E must be reducible according to
Lemma 1.

Conversely, if E is reducible there is an element L of PicX and a non-zero section
O ↪→ E ⊗ L−1, having Z as zero divisor. Then

O s
↪→ E ⊗ L−1 ⊗O(−Z)

is a section which vanishes on a finite or empty set A ⊂ X. On X \A, L⊗O(Z) is a line
subbundle of E, hence it induces a section

X \ A −→ P(E) \ π−1(A).

The closure in P(E) of the image of this section is an analytic set (cf.[GR, Prop. 10.6.3.])
which defines a horizontal divisor whose projection on X, is bimeromorphic.

Proof of the Proposition ”1 =⇒ 2” Suppose D is a horizontal divisor of P(E). Then
as in the proof of Lemma 2 one gets that (p◦v)∗E is reducible hence E cannot be strongly
irreducible.

”2 =⇒ 1” Suppose now there is base change X ′
f→ X such that f ∗E is reducible. One

has the commutative diagram

P(E)×X X ′ ∼= P(f ∗E)
f−→ P(E)

π′ ↓ ↓ π
X ′

f−→ X
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where f is induced by the projection. By Lemma 2 there is a horizontal divisor D′ in
P(f ∗E). Since f ◦ π′(D′) = X it follows by commutativity, that π|f(D′) : f(D′)→ X is
surjective hence f(D′) is a horizontal divisor of P(E).

”1 ⇔ 3” E is not strongly irreducible ⇔ E∨ is not strongly irreducible ⇔ P(E∨)
admits horizontal divisors.

For a horizontal divisor D in P(E∨)

O(D) ∼= π∗L⊗OP(E∨)(n)

with L in Pic(X) and n > 0. On the other side

H0(P(E∨), π∗L⊗OP(E∨)(n)) ∼= H0(X, π∗(π
∗L⊗OP(E∨)(n)))

∼= H0(X,L⊗ SnE∨∨)
∼= H0(X,L⊗ SnE)

and the wanted equivalence follows.

Remark. E strongly irreducible ⇒ S2E strongly irreducible.

Proof. Since f ∗(S2E) ∼= S2(f ∗E) it will be enough to prove that the strongly irreducibil-
ity of E implies the irreducibility of S2E. For this we have to show that h0(S2E ⊗ L) =
h0((S2E)∨⊗L) = 0 for all L in Pic(X). But (S2E)∨ ∼= S2(E∨) and the conclusion follows
using the Proposition for both E and E∨.

For later use we make another

Remark. An indecomposable reducible rank 2 vector bundle E on a surface X without
divisors admits exactly one devissage (up to multiplying the morphisms by constants)

0 −→ L1
α−→E β−→L2 ⊗ JY −→ 0 (∗)

where L1, L2 are in Pic(X) and Y is a 2-codimensional locally complete intersection
subspace of X.

Proof. The existence was proven in I.2. Let L
γ−→E be any non-trivial morphism from

a line bundle into E (it induces a devissage of E). Then β ◦ γ = 0, otherwise we’d get
L1
∼= L2 (no divisors!) and a splitting of (∗). There exists then a non-zero morphism

ε : L→ L1 such that α ◦ ε = γ.
L1

α−→ E
ε↖ ↑ γ

L

Now ε must be the multiplication by some constant hence the quotients E/L1, E/L (and
the devissages) are the same.

2.2. On the existence of strongly irreducible bundles

According to the proposition the existence of the compact analytic threefolds of type
P(E) without divisors is ensured if and only if the base X has no curves and E is strongly
irreducible. The following theorem gives an answer to the problem of existence of such
bundles.
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Theorem 4 Let X be a K3-surface without divisors or a 2-dimensional torus without
divisors. Then there exist strongly irreducible holomorphic vector bundles of rank 2 on X.
More precisely:

• on K3-surfaces without curves every irreducible 2-bundle is strongly irreducible and
for every pair (c1, c2) ∈ NS(X)× Z verifying

∆(c1, c2) ≥ max (m(2, c1), 2−m(2, c1))

there exist such bundles E with ci(E) = ci,

• on tori without curves there exist strongly irreducible bundles E with Chern classes
(c1, c2) ∈ NS(X)× Z as soon as

∆(c1, c2) ≥ sup (m(2, c1), 1−m(2, c1)) .

Proof. Any base change X ′ → X has a factorization X ′
g−→X̃ h−→X where X̃ is normal,

g has connected fibers and h is finite. Since the branch locus of h on X̃ is purely 1-
codimensional [F,p.170], if X has no curves it follows that h is a finite unramified covering,
X̃ nonsingular and g bimeromorphic. By lemma 1 we can restrict ourselves to the study
of base changes which are finite unramified coverings. When X is K3, hence simply
connected, these are trivial and the statement of the theorem follows (for existence see
[BL,§5.10]).

Let now X be a 2-torus without curves with X = C2/Γ, Γ a lattice in C2, C2 → X
the universal covering. Every finite unramified covering f : X ′ → X is obtained from the
universal covering factorizing through a sublattice Γ′ ⊂ Γ, where X ′ ∼= C2/Γ′. Hence X ′

is a complex torus without curves. The condition ∆ ≥ m(2, c1) ensures the existence of
an extension on X

0→ L1 → E → L2 ⊗ JZ → 0

where L1, L2 ∈ Pic(X), Z is a 2-codimensional subspace in X and E a locally free sheaf
of rank 2 having Chern classes c1, c2 by theorem 3 of I.2.

We want f ∗E to be simple (i.e. End(f ∗E) ∼= C) for any base change f : X ′ → X as
above. Since X ′ has no curves this happens if and only if in the extension

0→ f ∗L1 → f ∗E → f ∗L2 ⊗ Jf∗Z → 0 (12)

one has f ∗L1 6∼= f ∗L2 (this is easily verified; see however Lemma 1 of Ch. III). It is
necessary, therefore, to have for every sublattice Γ′ ⊂ Γ:

f ∗
(
L−1

2 ⊗ L1

)
6∼= OX′

where f : X ′ → X is the associated covering. If this doesn’t happen we modify firstly L1

by tensorizing it with a suitable bundle L0 in Pic(X). There exists such an L0 because
we can choose, for example L−1

2 ⊗ L1 ⊗ L0 ∈ Pic0(X) ∼= Hom(Γ, {z ∈ C | |z| = 1}) to
correspond to an injective morphism α : Γ → {z ∈ C | |z| = 1} (it will remain injective
hence non-zero on any sublattice), cf. [M], th. Appell-Humbert. Then we remark that
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after modifying L1 as shown, H2(X,L−1
2 ⊗ L1) ∼= H0(X,L2 ⊗ L−1

1 ) = 0 (L1 6∼= L2 and
we have no curves), and this ensures the existence of a new extension with the required
property.

The base (S, 0) of the universal deformation E → S ×X, of E = E0 (simple) will be
smooth (see [EF],§3.6). Moreover, shrinking if necessary S around 0, we can assume that
all bundles Es, s ∈ S, are simple. It follows by Serre duality

dim Ext 2(Es, Es) = dim Ext 0(Es, Es) = 1

for s ∈ S, and by Riemann-Roch one gets dim Ext1(Es, Es) constant on S, hence equal to
dim Ext1(E0, E0). This entails that the deformation E → S ×X is versal at each s ∈ S.
Therefore the conditions for S required in the proof of theorem 5.1. of [BL] are fulfilled
(without having to leave the center 0 ∈ S).

Let D(E) be the relative Douady space of E , D ⊂ D(E) the open subset corresponding
to the torsion-free quotients of rank 1 of Es, s ∈ S, and π : D → S the projection. Let
s ∈ S, and E ′′ in D quotient of ES through a coherent subsheaf E ′ (E ′ will be a line
bundle). One has the following exact sequence

0→ Hom(E ′, E ′′)→ TE′′D
TE′′π−→TsS

ω+−→Ext 1(E ′, E ′′)

where ω+ is the composition

TsS
ω−→ Ext 1(Es, Es)

ω+ ↘ ↓
Ext 1(E ′, E ′′)

and ω the Kodaira-Spencer morphism (see [BL;§5.5]). Moreover, in the chosen situation
for S and ∆ one shows that TE′′π isn’t surjective for any E ′′, fact which entails the
existence of irreducible bundles on X (see [BL;§5.1]).

We fix a covering f : X ′ → X and consider the deformation

f ∗E → X ′ × S .

Since f ∗E0 is simple, we can choose a neighbourhood S ′ of 0 in S, such that f ∗Es are
simple for s ∈ S ′, S ′ is Stein and H2(S ′,Z) = 0. These conditions will be necessary later
in order to apply a result of [EF]. Let Df be the open set corresponding to the torsion-free
quotients of rank 1 in the relative Douady space associated to the restriction of f ∗E to S ′

and πf : Df → S ′ the projection. We denote E ′ = L1, E
′′ = L2 ⊗JZ and we derive from

(12), as above, an exact sequence

Tf∗E′′Df

Tf∗E′′π
f

−→ T0S
ωf+−→Ext 1(f ∗E ′, f ∗E ′′) .

We shall show that Tf∗E′′π
f isn’t surjective or, equivalently, that ωf+ 6= 0. Using the

natural commutative diagram

T0S
ω−→ H1(X,E∨ ⊗ E)

f∗−→ H1(X ′, f ∗(E∨ ⊗ E))
ω+ ↘ ↓ ↓

H1(X,E ′∨ ⊗ E ′′) f∗−→ H1(X ′, f ∗(E ′∨ ⊗ E ′′))
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and the definitions through the double point (0,C[ε]), one easily gets

ωf = f ∗ ◦ ω and ωf+ = f ∗ ◦ ω+ .

Since ω+ 6= 0 it is enough to prove that

f ∗ : H1(X,E ′ ⊗ E ′′)→ H1(X ′, f ∗(E ′ ⊗ E ′′))

is injective. Let F = E ′∗ ⊗ E ′′. f ∗ is obtained by composition in the diagram

H1(X,F) f ∗

↓ ↘
H1(X, f∗f

∗F)
∼−→ H1(X ′, f ∗F)

hence we must only show that the vertical arrow is injective. Since the natural mapping
F → f∗f

∗F has a section tr : f∗f
∗F → F there exists a section at H1-level too, hence

the wanted injectivity.

Tf∗E′′π
f not being surjective we deduce now that the morphism Df

πf−→S ′ is not sur-
jective in the following way. Assuming its surjectivity we would have f ∗Es reducible
and indecomposable for all s in S ′. Then there would exist L, M in Pic(X ′ × S ′), Y a
2-codimensional subspace in X ′ × S ′, flat over S ′ and an extension

0→ L→ f ∗E →M ⊗ JY → 0 (13)

whose restriction to each fiber X ′×{s} is the uniquely determined devissage of Es. This
follows from [EF;th.2.3] (in order to have the morphism q biholomorphic on loc. cit. one
needs Pic0X to be compact, which is the case in our situation). The sheaf M ⊗ JY is
S ′-flat hence there exists an S ′-morphism λ : S ′ → Df such that (13) is the pull-back of
the universal extension. In particular

πf ◦ λ = idS′ . (14)

f ∗Es being indecomposable, they have at most one devissage, hence πf is injective (even
bijective in the hypothesis we made) and passing in (14) to the tangent morphism in 0
we get a contradiction.

Df
πf−→S ′ not being surjective, there exist elements s in S such that f ∗Es is irreducible.

We want to show that the set Nf of elements of S which do not have this property is a
countable union of proper analytic subsets of S. Let

Rf =
{

(ξ, s) ∈ Pic(X ′)× S|H0(X ′,Pξ ⊗ f ∗Es) 6= 0
}

where Pξ is the fiber in ξ of the Poincaré bundle P of X ′. By Grauert’s semi-continuity
theorem, it follows that Rf is an analytic subset in Pic(X ′) × S. Let p : Rf → S be the
morphism induced by projection. We have

Nf = p(Rf ) .

Thus p isn’t surjective, by the above fact.
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Pic(X ′) is a countable union of connected components each isomorphic to Pic0(X ′)
which in its turn is a 2-dimensinal complex torus and therefore compact. The restriction
of p to each such compact is proper, hence its image is a closed analytic set. It follows
that Nf is a countable union of proper closed analytic subsets of S.

This closes the proof of the theorem because making the union of all Nf after all finite
coverings f : X ′ → X (which form a countable set, up to isomorphisms) we find that the
complementary set consisting of those s in S for which Es is strongly irreducible is dense
in S.

2.3. Remarks

1. The Chern numbers c31, c1c2, c3 of P(E) can be computed using (11) and one finds:

c31 = 2
[
c1(E)2 − 4c2(E) + 3c1(X)2

]
c1c2 = 2

[
c1(X)2 + c2(X)

]
c3 = 2c2(X)

Letting now X be either a torus as in example A of I.1.3. with n = 1, 2, or a
special K3-surface of type g, g = −2,−3 (cf. I.1.3), and letting c1(E) be in all
cases a generator for NS(X), we obtain from the theorem the following region in
the “geography” of threefolds without divisors:

c31 c1c2 c3
X a torus −4k, k integer ≥ 2 0 0
X K3 −4k, k integer ≥ 4 48 48

2. If E is as in the theorem then h0(SnE) = 0 for all n > 0. In particular, for X a
K3-surface with NS(X) = 0, since TX is irreducible, hence strongly irreducible, we
have

h0(SnTX) = 0, for all n > 0 .

3. We couldn’t obtain examples of strongly irreducible bundles on any compact com-
plex surface without curves. Indeed, the only case left, that of the surfaces of class
VII, doesn’t admit an analogous proof, because here Pic0X ∼= C∗ isn’t compact.

4. It is easy to get examples of strongly irreducible bundles on some surfaces having
divisors (for all surfaces whose minimal model is as in the theorem, K3 or torus
without curves, by lemma 1).
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Chapter III

Simple reducible vector bundles

§1. Existence theorem for simple reducible rank 2

vector bundles

Simple holomorphic vector bundles admit coarse moduli spaces which are only locally
Hausdorff in general; cf.[N2],[N1]. A question which arises is to decide when these moduli
spaces are not empty, hence the question of existence of simple vector bundles.

Unlike irreducible vector bundles which are always simple (cf. Remark 1 in II. 1.1.),
reducible ones may have many endomorphisms in general.

In this paragraph we determine the range of Chern classes c1, c2 of reducible simple
rank 2 vector bundles on minimal surfaces of algebraic dimension zero, extending the
results for surfaces without divisors of [BF2]. Apart from some precise exceptions this
range will be the same as that of filtrable rank 2 vector bundles given by Theorem 3 of
I.2.. Determining the above range is equivalent to determining which topological rank 2
vector bundles admit simple reducible holomorphic structures as was pointed out in I.2..

According to the classification a minimal surface X of algebraic dimension zero can
only belong to one of the classes:

1. tori

2. class VII surfaces

3. K3 surfaces.

We recall the notations of I.2. and add some more. First, we shall denote m(2, a)
shortly by m(a), for a in NS(X). Note that

m(a) = inf M(a)

where M(a) := {−1
2
(a

2
− µ)2 : µ ∈ NS(X)}. Next, we set

m′(a) :=

{
inf(M(a) \ {m(a)}), if M(a) 6= {m(a)}
∞, if M(a) = {m(a)}
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Let now E denote a holomorphic rank 2 vector bundle on a surface X, henceforth
called simply ”bundle”. For a bundle E one has 2(∆(E) − m(c1(E))) ∈ Z. One can
immediately see that M(c1) = 0 for c1 ∈ 2NS(X) and m′(0) = ∞ when NS(X) = 0.
(For more examples see Remark 2 in this paragraph). We can now state our result.

Theorem If X is a minimal surface with a(X) = 0 there exists a simple reducible rank
2 vector bundle on X having Chern classes c1 ∈ NS(X), c2 ∈ Z, if and only if

∆(c1, c2) ≥ m(c1),

excepting exactly the following cases:

1. if X is a torus
∆(c1, c2) = m(c1) = 0,

2. if X is in class VII
∆(c1, c2) = m(c1) = 0,

unless b2(X) = 0, X without divisors and c1 ∈ 2NS(X),

3. if X is a K3 surface

m(c1) = 0 and 0 ≤ ∆(c1, c2) < sup{m′(c1), 2},

∆(c1, c2) = m(c1) =
1

4
,

∆(c1, c2) = m(c1) =
1

2

The proof will be given in the following paragraph. We end this one by making some
remarks about the statement.

Remark. 1 Since for tori X with a(X) = 0 the intersection form on NS(X) is negative
definite (Theorem 6 in I.1.), we have m(c1) = 0 if and only if c1 ∈ 2NS(X). Thus the
only topological rank 2 vector bundles admitting reducible but not simple reducible holo-
morphic structures are the twistings of the trivial rank 2 bundle by elements in NS(X).

Remark. 2 Using the remarks on K3 sufaces made in I.1.3., one derives the following
consequences for X in this class.

If m(c1) = 1
4

then X admits divisors.

When m(c1) = 0 it follows c1 ∈ 2NS(X) and m′(c1) < 2 if and only if there are curves
on X (in this case m′(c1) = 1).

When X is a special K3 surface of type g (see I.1.3.), and g < 0, one gets

sup{m′(0), 2} = m′(0) = 1− g

and m(c1(L)) = (1−g)
4

.

One can get an even wider domain of exceptions when NS(X) = 0. Since in this case
m′(0) =∞, there are no simple reducible bundles (this can also be seen directly).
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Remark. 3 Comparing our result with the range of Chern classes given by the exis-
tence theorem for irreducible bundles of [BL;§5](see also the theorem in II.2.2.), we find
that there exist topological vector bundles admitting simple holomorphic structures and
reducible holomorphic structures but no simple reducible holomorphic structures. This
happens for instance, on special K3 -surfaces of type g with g < −1, for c1 = 0 and
2 ≤ ∆ < 1− g. It never happens if X is a torus with a(X) = 0 (use also [BL] Prop. 4.7.).

Remark. 4 On the other hand there exist topological vector bundles admitting simple
reducible holomorphic structures but not irreducible structures, on tori and K3-surfaces
of zero algebraic dimension.

This can be seen using Prop. 4.3. and 4.7. in [BL] and our theorem. The simplest
examples one gets are on tori for c1 = 0, c2 = 1 and on K3-surfaces with curves for c1 =
the class of a (-2)-curve and c2 = 1 or 2.

§2. Proof of the theorem

2.1.

A rank 2 holomorphic vector bundle E on surface X is reducible if and only if it admits
a devissage

0 −→ L1
α−→E β−→L2 ⊗ JY −→ 0 (∗)

where L1, L2 ∈ Pic(X) and Y is a 2-codimensional subspace of X or empty, as we have
seen in I.2.. To construct simple reducible bundles we will use the method of extensions
described in I.2.. We want to decide when a reducible bundle given by an extension (∗)
is simple. A first criterion is

Lemma 1 i) If E is simple then H0(L∨2 ⊗ L1) = 0.

ii) If H0(L∨2 ⊗ L1) = H0(L∨1 ⊗ L2 ⊗ JY ) = 0 and (∗) doesn’t split then E is
simple. In particular if X has no divisors E is simple if and only if L1 6∼= L2

and (∗) doesn’t split.

Proof.

i) For a non-zero section ϕ in H0(L∨2 ⊗ L1) the composition

E
β−→L2 ⊗ JY ↪→ L2

ϕ−→L1
α−→E

would give a non-constant endomorphism of E.

ii) It is enough to show that there are no non-zero non-invertible elements in
End(E).
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Assume now ε ∈ End(E) is such an element. Since β◦ε◦α = 0 we have a commutative
diagram

0 −→ L1
α−→E β−→ L2 ⊗ JY −→ 0

γ ↓ ↓ ε ↓ δ
0 −→ L1

α−→E β−→ L2 ⊗ JY −→ 0

where γ and δ are homotheties or zero. Using the Ker-Coker Lemma one finds that γ and
δ cannot be simultaneously isomorphisms nor simultaneously zero.

If δ = 0, γ 6= 0 there exists ψ : E → L1 such that α◦ψ = ε. Hence α◦γ = ε◦α = α◦ψ◦α
which gives γ = ψ ◦ α and (∗) splits. In the same way we exclude the case γ = 0, δ 6= 0.

Remark. The tensor product of a devissage of E with a line bundle L gives a devissage
of E ⊗ L = E ′ and one has

∆(E ′) = ∆(E)

c1(E
′) = c1(E) + 2c1(L)

m(c1(E
′)) = m(c1(E))

m′(c1(E
′)) = m′(c1(E))

so we have to consider only the classes c1 + 2NS(X) of c1 modulo 2NS(X). In particular
it will be enough for our problem to consider devissages with L2 trivial:

0 −→ L −→ E −→ JY −→ 0 (15)

More precisely, a topological rank 2-vector bundle characterized by (c1,∆) admits sim-
ple reducible holomorphic structures if and only if there exists some simple holomorphic
bundle given by an extension of type (15) having the same discriminant ∆, and first Chern
class congruent modulo 2NS(X) with c1.

From (15) and (6) one derives

c1(E) = c1(L)

c2(E) = l(Y ).

Finally note that if E is given by (15) and ∆(E) = m(c1(E)), then Y = ∅ and
L2 = −8m(c1). Indeed ∆(E) = 1

2
(l(Y )− 1

4
L2) ≥ −1

8
L2 ≥ m(c1(E)).

2.2. Proof of the case: X a torus

Let X be a 2-torus of algebraic dimension zero. Then X has no divisors by theorem 3 of
I.1. and the fact that X is homogeneous.

Consider first c1 ∈ NS(X), c2 ∈ Z, such that

∆(c1, c2) ≥ m(c1) > 0.

Let L in Pic(X) be such that

c1(L) ∈ c1 + 2NS(X), and
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m(c1) = −1

2

(
1

2
c1(L)

)2

.

Since L is non-trivial and X has no divisors we have H2(L) ∼= H2(L−1) = 0 and
there exist extensions (15) with E locally free having the needed Chern classes if Y is
a union of 2(∆ − m(c1)) distinct simple points (cf. Remark 1 in I.2.). Moreover, by
Riemann-Roch,(4)

h1(L) = −1

2
L2 = 4m(c1) > 0,

hence also in the case Y = ∅ one has non-trivial extensions (15).

By Lemma 1 in these situations we get the middle term E simple.

By Theorems 2 and 3 of I.2. all that is left is to show that for c1 ∈ NS(X), c2 ∈ Z
such that

∆(c1, c2) = m(c1) = 0

there exist no simple reducible bundles with these Chern classes.

But now Remark 1 from §1 shows that c1 ∈ 2NS(X) and by the Remark in 2.1. we
need only to verify that if E is given by an extension

0 −→ L −→ E −→ O −→ 0

with L in Pic0(X), then E is not simple. This is obvious when L is trivial, whereas in the
other case all such extensions split since h1(L) = 0 by Riemann-Roch.

2.3. Proof of the case X in class VII

Let now X be in class VII, c1 ∈ NS(X), c2 ∈ Z. Let ∆ = ∆(c1, c2).

a) If ∆ > m(c1) choose L1 in Pic(X) such that c1(L1) ∈ c1 + 2NS(X) and
m(c1) = −1

2
(1

2
c1(L1))

2. Twist L1 by L0 in Pic0(X) in order to have for L =
L1 ⊗ L0:

H0(L∨ ⊗K) = H0(L) = H0(L∨) = 0.

This is possible since Pic0(X) ∼= C\{0} and the elements in Pic(X) admitting
non-trivial sections form a countable subset. As we have said, we can assume
c1 = c1(L). The assumption ∆ > m(c1) implies c2 > 0. The condition
H0(L∨⊗K) = 0 ensures the existence of an extension (15) with E locally free
having the wanted Chern classes if Y is the union of c2 distinct simple points.
The other two vanishings ensure the simplicity of E by Lemma 1.

b) If ∆ = m(c1) > 0 take L as before, and Y = ∅. One has ∆ = −1
8
c1(L)2 =

m(c1). Then, by Riemann-Roch’s formula

h1(L) = 4∆ +
1

2
L ·K

h1(L∨) = 4∆− 1

2
L ·K + h0(L⊗K)
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and at least one of these numbers is positive. Consider a corresponding non-
trivial extension

0 −→ L −→ E −→ O −→ 0 or

0 −→ L∨ −→ E −→ O −→ 0

which will give a bundle E of the wanted type.

c) Let now ∆ = m(c1) = 0.

First we shall show that if E is a simple reducible vector bundle of rank 2
having these Chern classes, then necessarily b2(X) = 0, X has no divisors
and c1 ∈ 2NS(X). We can assume that E has a devissage of type (15). The
hypothesis implies Y = ∅ and c1(L)2 = 0. Thus E is the middle term of a
non-trivial extension

0 −→ L −→ E −→ O −→ 0 (16)

with L2 = 0,h0(L) = 0 (as E is simple) and h0(L∨ ⊗ K) = 1. For this last
fact, first deduce L ·K = 0 from L2 = 0 (examine (K + mL)2, n ∈ Z), then
apply Riemann-Roch for L.

Thus K = L(
∑k
i=i riCi) with ri non-negative integers and Ci irreducible curves

on X. If K · Ci < 0 then C2
i < 0 (examine again (K + nCi)

2) hence Ci is
exceptional which is absurd. It follows that K2 = K · L +

∑k
i=1 riK · Ci ≥

0. But using Noether’s formula, X (OX) = 1
12

(c1(X)2 + c2(X)) and the fact
that b1(X) = 1 implies h1(OX) = 1,([BPV; IV.2.6.]), we get for our surfaces
b2(X) = −K2, hence b2(X) = 0.

If X has no curves it must be an Inoue surface ([LYZ]), and one can see in
this case using the explicit universal coverings that c1(X) = 0. Now K = L
(since h0(K∨ ⊗ L) = 1 !), hence c1 = c1(X) = 0 and the statement is proved.

Assume now X admits divisors. We’ll show that this leads to a contradiction.

Since a(X) = 0, b1(X) = 1, b2(X) = 0, X must be a Hopf surface by theorem
5 in I.1.3.. Hence one has the following form for the canonical bundle:

K =

{
O(−C1 − C2), if X admits two irreducible curves C1,C2,
O(−(m+ 1)C), if X admits only one irreducible curve C

where m is a positive integer depending on the transformation group on C2 \
{0} giving X. Denote D1 =

∑k
i=1 riCi ≥ 0, so that L = K(−D1). There are

divisors D2 > 0, D3 > 0 such that K = O(−D2−D3). We have a commutative
diagram

L −→ O
↘ ↗
O(−D2)

where all the arrows are natural inclusions. Passing to cohomology in dimen-
sion one , since H1(O(−D2)) = 0 by Riemann-Roch (recall b2(X) = 0), one
finds that the natural map

H1(L) −→ H1(O)
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is zero.

Since (16) is non-trivial the connecting homomorphism in

0 −→ H0(L) −→ H0(E) −→ H0(O)
δ−→H1(L) −→ H1(E) (17)

is non-trivial and H0(E) = H0(L) = 0. Twisting (16) by L∨ one finds

0 −→ L −→ E −→ O −→ 0
↓ ↓ ↓

0 −→ O −→ E∨ −→ L∨ −→ 0

with vertical arrows given by functoriality by the natural inclusion O ↪→ L∨ =
O(D1 +D2 +D3). Hence

H0(LO)
δ−→∼ H1(L)

↓ o ↓
0 −→ H0(O) −→ H0(E∨) −→ H0(L∨) −→ H1(O)

is commutative. (Counting dimensions shows that δ and the first vertical map
are isomorphisms). Since the second vertical map is zero we obtain

h0(E∨) = h0(O) + h0(L∨) = 2

Any element in H0(E∨) induces twisting (16) by E∨ a commutative diagram

0 −→ L −→ E −→ O −→ 0
↓ ↓ ↓

0 −→ E −→ E ⊗ E∨ −→ E∨ −→ 0

Hence

H0(O)
δ−→ H1(L)

↓ ↓
0 −→ H0(E ⊗ E∨) −→ H0(E∨) −→ H1(E)

(18)

is commutative. We want to prove that the arrow H0(E∨) → H1(E) in (18)
is zero thus finding h0(E ⊗ E∨) = 2, a contradiction.

Let α1, α2 linearly independent in H0(E∨) with α1 induced by the morphism

L → E of (16). By (17) the morphism H1(L)
H1(α1)−→ H1(E) is zero. Denote by

β1 the morphism E → O appearing in (16). Then β1 ◦ α2 6= 0 henceβ1 ◦ α2

must be proportional to the natural inclusion L→ O. We denoted also by α2

the morphism L→ E inducing α2 ∈ H0(E∨). Thus H1(β1◦α2) = 0 as we have

already seen. Since by (17), H1(β1) is injective we find that H1(L)
H1(α2)−→ H1(E)

is zero.

As α1, α2 generate H0(E∨), it follows from (18) that the arrow H0(E∨) →
H1(E) must be null and E is not be simple: a contradiction.
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d) When ∆ = m(c1) = 0, X in class VII without divisors, b2(X) = 0 and c1 ∈
2NS(X) one derives the existence of simple reducible holomorphic structures
out of a non-trivial extension

0 −→ K −→ E −→ O −→ 0

(use h1(K) = 1, Lemma 1 and the fact we already mentioned that for these
surfaces c1(X) = 0).

2.4. Proof of the case: X a K3 surface

For X a K3 surface with a(X) = 0 we shall use the properties already mentioned in the
Remarks of I.1.3. We also use the fact that in this case (a(X) = 0) an isomorphism
O(D1) ∼= O(D2) implies D1 = D2 for two divisors D1,D2.

Let c1 ∈ NS(X), c2 ∈ Z and ∆ = ∆(c1, c2). One sees that 4m(c1), 4∆ and 2(∆−m(c1))
are integers. We shall subdivide the proof into cases depending on the values of m(c1)
and ∆. These cases cover the interesting range in the following way:

0 1
4

1
2

> 1
2

0 c c c c
1
2

e d b b

1 and 3
2

f and g a a or b a or b

≥ 2 h a a or b a or b

a) m(c1) > 0, ∆ ≥ m(c1) + 1.

We can choose L ∈ Pic(X) such that c1(L) ∈ c1+2NS(X) and L2 = −8m(c1).
Then L is not trivial hence at least one of H0(L), H0(L∨) must be zero.
Assume H0(L) = 0, otherwise replace L by L∨. Take Y a set of 2(∆−m(c1))
simple points on X. If H0(L∨) 6= 0 one has L∨ = O(D) for some divisor
D > 0 and we can assume the points of Y do not belong to suppD. When
H0(L∨) 6= 0 we have no more restrictions on the choice of Y .

In both cases an extension of type (15) produces a locally free sheaf E by
Remark 1 in I.2. (note that H2(L) ∼= H0(L∨) by duality).

Moreover E has the wanted Chern classes and it is simple by Lemma 1.

b) ∆ > m(c1) >
1
4

We choose L in Pic(X) such that c1(L) ∈ c1 + 2NS(X) and L2 = −8m(c1).
We shall show that this choice can be made such that H0(L) = H0(L∨) = 0;
this is clearly true when L is not divisorial. Then taking Y the union of
2(∆−m(c1)) simple points on X, the extension (15) produces a simple locally
free sheaf E with the requested Chern classes by Remark 1 in I.2. and Lemma
1.

The existence of an element L in Pic(X) with the properties we need is a
consequence of the following facts:
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Lemma 2 Let R be a reduced irreducible root system in the R-vector space
V , of type A,D or E, let B = (αi)i be a basis for R and Q(R) the subgroup
of V generated by the vectors in R. Then for any x ∈ Q(R) there is some
y ∈ x + 2Q(R) such that if y =

∑
i yiαi with yi ∈ Z the following conditions

are satisfied:

i) < y, y > ≤ < x, x >

ii) y is a root or one of its coordinates yi is zero.

Corollary If D is a divisor on X with D2 = −8m(D) < −2 then there exists
some divisor C on X with C ∈ D + 2NS(X), C2 = D2 and H0(O(C)) =
H0(O(−C)) = 0 (i.e. C is neither positive nor negative).

Proof of the corollary One can assume suppD connected and D positive
otherwise it’s easy. For example if D = D1 + D2 with D1 · D2 = 0, D1 > 0,
D2 > 0 we can choose C = D − 2D2 = D1 −D2.

Since the intersection form on Div(X) is negative definite suppD is an A-D-E
curve (cf. Remark iii in I.1.3). Let RD be the root system of the type given by
suppD, the roots corresponding to the irreducible components of D forming
a basis B, with the opposite of the intersection form as scalar product.

Now Lemma 2 produces some divisor D′ ∈ D + 2NS(X) with D′2 ≥ D2,
such that D′ is a root or suppD′ is strictly contained in suppD. The equality
D2 = −8m(D) and the definition of m(D) imply D′2 = D2. It follows that D′

is not a root (in the A-D-E case all roots have the same length), hence suppD′

is strictly contained in suppD.

If suppD′ is not connected we are over. If it is , one repeats the same argument
starting with D′ and so on. Finally we get a divisor with a non-connected
support. (Otherwise we get a divisor of the form kC with C a (-2)-curve
which implies m(D) = 0 or 1

4
).

Proof of Lemma 2 First we can assume that x is minimal in the following
sense: for every x′ ∈ x+ 2Q(R), < x′, x′ > ≥< x, x >.

Let x =
∑
xiαi. Assume also that all xi are non-zero and x is not a root,

otherwise one can take y = x.

In particular suppx is connected (suppx has the meaning which can be adapted
to divisors as above) and x or −x is positive (i.e. all its coordinates are
positive). Indeed, if x = x+ − x−, where x+ (resp x−) are its positive (resp.
negative) part, then

< x+ + x−, x+ + x− >=< x+ − x−, x+ − x− > +4 < x+, x− >

But < x+, x− >≤ 0 and we have even equality by the minimality of x. Then
x+ or x− must be null by connectedness.

We shall use the following modulo 2 reduction:
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(R): replace the coordinates of x by 0 or 1 according to their parity.

If R is of type An the reduction (R) solves our problem. Indeed, in this case

< x, x >= x2
1 + (x1 − x2)

2 + · · ·+ (xn−1 − xn)2 + x2
n

and one immediately sees that by (R) we obtain at most 1
2
< x, x > connected

components, each such component being a root.

Let now R be of type Dn:

m m
m

m
�
�
��

Q
Q
QQ

α1 α2

· · ·
αn−2

αn−1

αn

m

< x, x > = x2
1 + (x1 − x2)

2 + · · ·+ (xn−3 − xn−2)
2+

+ (xn−1 + xn − xn−2)
2 + (xn−1 − xn)2.

If xn−2 is odd or one of xn−1, xn are even one applies (R) and reasons as above.

If xn−2 is even and xn−1, xn are odd apply the following reduction:

(R′): replace all odd xi by 1 and all even ones by zero excepting xn−2 and all
chains of even coordinates connected to xn−2 which are replaced by 2.

For example

m m m m m m
m

m
�
�
��

Q
Q
QQ

1 2 2 1 2 2
1

1

is reduced in this way to

m m m m m m
m

m
�
�
��

Q
Q
QQ

1 0 0 1 2 2
1

1

Looking at the quadratic form < x, x > one sees that (R′) solves the problem
in this case since it doesn’t increase < x, x > and all the connected components
obtained will be roots.
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The E6-case

m m m m m
m

α1 α3 α4 α5 α6

α2

Since after (R) one obtains at most 3 connected components the only difficult
case is < x, x >= 4. Noting that

< x, x > = (1
2
x1 + x2 − x3)

2 + (−1
2
x1 + x2 + x3 − x4)

2+

+(−1
2
x1 + x4 − x5)

2 + (−1
2
x1 + x5 − x6)

2+

+(−1
2
x1 + x6)

2 + 3
4
x2

1

one can verify that (R) solves the problem in this case too. We omit the
computations. In order to make them shorter one can also assume that

Si ∈ [2xi − 1, 2xi + 2]

where Si is the sum of the neighbouring coordinates of xi on the Dynkin
diagram of R, otherwise one can contradict the minimality replacing xi by
some x′i of the same parity and leaving all the other coordinates unchanged.

The E7-case:

m m m m m m
m

α1 α3 α4 α5 α6 α7

α2

This time the difficult cases are < x, x >∈ {4, 6}.

< x, x > = (
1

2
x1 + x2 − x3)

2 + (−1

2
x1 + x2 + x3 − x4)

2 +

+ (−1

2
x1 + x4 − x5)

2 + (
1

2
x1 + x5 − x6)

2 +

+ (−1

2
x1 + x6 − x7)

2 + (−1

2
x1 + x7)

2 +
1

2
x2

1

If x6 = x7 one gets the same quadratic form as for E6 and in this case we know
the Lemma is true. Similarly one can reduce the cases x5 = x6 and x5 = x4.
The remaining situations can be solved by (R) or (R′) relative to x4 instead
of xn−2.

The E8-case
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As before we can restrict ourselves to the cases < x, x >∈ 4, 6 and x8 6= x7 6=
x6 6= x5 6= x4. This time beside the situations solved by (R) or (R′) we obtain
the following solutions

m m m m m m m m
m

1 2 3 2 2 1 0 1

1 or 2

c) ∆ = m(c1) In this case any extension (15) giving a bundle E with the corre-
sponding Chern classes, must have Y = ∅ and L2 = −8m(c1).

When m(c1) >
1
2

we can choose as in case b) an element L ∈ Pic(X) such
that L2 = −8m(c1), H

0(L) = H0(L∨) = 0 and c1(L) ∈ c1 + 2NS(X).

Hence L2 ≤ −6 and by Riemann-Roch’s formula h1(L) ≥ −2− 1
2
L2 ≥ 1. Thus

there exist non-trivial extensions (16):

0 −→ L −→ E −→ O −→ 0.

Moreover the middle term E is simple by Lemma 1.

When m(c1) ≤ 1
2

we show that all extensions (16) with L2 = −8m(c1) give a
non simple bundle E. Indeed, from Riemann-Roch’s formula for End(E)

χ(X, End(E)) = 4χ(X,OX)− 8∆(E)

we get
2h0(End(E)) ≥ 8− 4 = 4, and E cannot be simple.

d) m(c1) = 1
4
, ∆ = 3

4

First we state:

Lemma 3 If
0 −→ L −→ E −→ JY −→ 0

is an extension with L = O(−D), D an effective divisor, Y a simple point
belonging to suppD and E locally free, then:

i) Y ∈ RegD ⇒ E is simple

ii) D2 = −8 and D ∈ 2NS(X)⇒ E is not simple.

Before the proof we’ll show the existence of simple reducible bundles with
corresponding Chern classes.

Choose L ∈ c1 + 2NS(X) such that L2 = −2.
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If some irreducible component of D appears with multiplicity 1 in D then
RegD 6= ∅. Taking Y a simple point on RegD and using Remark1 in I.2.
and Lemma 3, one obtains the simple reducible bundles we’re after out of
extensions of the type

0 −→ O(−D) −→ E −→ JY −→ 0.

Since D can be seen as a root in the A, D, E root system corresponding to
suppD one easily sees that D admits an irreducible component of multiplicity
1 in the cases An,Dn, E6, E7, n ≥ 1 (just look at the highest roots! ; [H] p.
66). This is also true in the E8-case unless D corresponds to the highest root:

m m m m m m m
m

2 4 6 5 4 3 2

C1 C3 C4 C5 C6 C7 C8

3 C2

(it is the only root having both C1 and C8 of multiplicity 2). Here Ci denote
the irreducible components of D.

In this case (D the highest root in E8) we consider D′ = C2 − C5 − C7 ∈
D + 2NS(X). D′2 = −6 and by Lemma 1, a non-trivial extension

0 −→ O(D′) −→ E −→ O −→ 0

provides a simple holomorphic bundleE admitting corresponding Chern classes.

Proof of Lemma 3

i) The long cohomology sequence of

0 −→ JY −→ O −→ OY −→ 0

gives h1(JY ) = 0, h2(JY ) = 1.

Using this in the long cohomology sequence of

0 −→ L −→ E −→ JY −→ 0

one finds h0(E) = 0, h1(E) = h1(L), h2(E) = 2.

Passing to sections in

0 −→ E −→ E ⊗ E∨ −→ E∨ ⊗ JY −→ 0

we obtain
h0(E ⊗ E∨) ≤ h0(E∨ ⊗ JY ).
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We want to show that the subspace of h0(E∨) of sections vanishing
on Y is one-dimensional; in fact we’ll show that this subspace is the
image of ι in the exact sequence (19) below. Let Y = {p}.
From

0 −→ O −→ E∨ −→ JY (D) −→ 0

one derives the exact sequences

0 −→ H0(O)
ι−→H0(E∨) −→ H0(JY (D)) −→ 0 (19)

0 −→ Op
t(−z1,z2)−→ O2

p

(z2,z1)−→ JY,p −→ 0 (20)

A non-zero section α in H0(JY (D)) can be seen as a section in
H0(O(D)) since we have the natural inclusions O ↪→ JY (D) ↪→
O(D). Thus α vanishes of order exactly one on Reg(D), hence a
lifting of it to H0(E∨) cannot vanish in p, otherwise from (20) we’d
get that α vanishes twice in p ∈ Reg(D).

ii) D > 0, D2 = −8, D ∈ 2NS(X) imply there exists some divisor C
such that D = 2C. Then taking sections in

0 −→ O(−C) −→ E(C) −→ JY (C) −→ 0

one finds that h0(E(C)) = 1.

A non-zero morphism O(−C)→ E induces a devissage

0 −→ O(−C + C ′) −→ E −→ JZ(−C ′ − C) −→ 0

with C ′ effective and Lemma 1 tells us that E is not simple.

e) m(c1) = 0, ∆ = 1
2

In this case not even holomorphic bundles can be found with these Chern
classes by Theorem 3 in I.2..

f) m(c1) = 0, ∆ = 1.

m(c1) = 0 implies c1 ∈ 2NS(X). Then m′(c1) is an integer ≥ 1 with equality
exactly when X admits divisors. Two kinds of extensions (15) can appear:
either L = O and l(Y ) = 2 or L2 = −8 and l(Y ) = 0. As usual L is taken
in 2NS(X). Lemma 1 and an argument parallel to case ii) of Lemma 3 show
that both cases give only non-simple bundles.

g) m(c1) = 0, ∆ = 3
2
.

As before two kinds of extensions can appear: either with L = O and l(Y ) = 3
or with L2 = −8 and l(Y ) = 1. The first gives only non-simple bundles by
Lemma 1. For the second we remark that L ∼= O(±2C) with C effective hence
we must choose the situation L = O(−2C), otherwise E is not simple by
Lemma 1. Then by Remark 2 in I.2., Y must be a simple point lying on C
and case ii) of Lemma 3 shows that also in this case E is not simple.
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h) m(c1) = 0, ∆ ≥ 2.

When X admits divisors one can choose an irreducible curve C, Y a union of
2(∆− 1) simple points on X \ C,and the extensions

0 −→ O(−2C) −→ E −→ JY −→ 0

which give simple holomorphic bundles E with the expected Chern numbers
by Remark 1 in I.2. and Lemma 1.

When X admits no divisors one can show as before that there are no simple
bundles E with c1(E) ∈ 2NS(X) and ∆(E) < m′(0) (in (15) we should have
L = O). When ∆(E) ≥ m′(0) we can choose a holomorphic line bundle L in
2NS(X), with L2 = −8m′(0), Y a union of 2(∆ −m′(0)) simple points and
extensions

0 −→ L −→ E −→ JY −→ 0

give simple holomorphic bundles admitting the expected Chern classes by
Remark 1 in I.2. and Lemma 1.

The Theorem is proved.

§3. Reducible vector bundles and non-separation phe-

nomena in the moduli space of simple vector bun-

dles

In this paragraph we make some remarks about the non-separation of the moduli space of
simple vector bundles on surfaces in connection to the notion of reducible vector bundle.

Let X be a surface and Sr = Sr(X) the coarse moduli space of simple vector bundles
of rank r on X, (it is a possibly non-reduced analytic space).

The following separation criterion is well known.

Remark 1. If E1, E2 represent distinct non-separated classes of isomorphism of simple
vector bundles in Sr, then there exist two non-trivial morphisms ε1 : E1 → E2, ε2 : E2 →
E1, such that

ε1 ◦ ε2 = ε2 ◦ ε1 = 0.

Proof. There is a sequence of points s(n) in Sr converging both to < E1 > and to < E2 >,
where < Ei > denotes the class of Ei in Sr, i = 1, 2.

In the local families around < Ei > we get vector bundles E
(n)
i representing s(n) and

isomorphisms E
(n)
1
∼= E

(n)
2 . By semi-continuity Hom(E1, E2) 6= 0 and Hom(E2, E1) 6= 0,

hence there exist non-trivial morphisms ε1 : E1 → E2, ε2 : E2 → E1. Moreover since E1,
E2 are simple and non-isomorphic we must have

ε1 ◦ ε2 = ε2 ◦ ε1 = 0.
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Consequence If E1, E2 are simple vector bundles representing non-separated classes in
Sr, (r > 1), then they must be both reducible.

We restrict ourselves from now on to the case of simple vector bundles of rank 2 on a
surface X.

Remark 2. If X is a Kähler surface with a(X) = 0 then the points of S2 represented
by reducible vector bundles form a closed analytic subset R2 in S2. If moreover X has no
divisors then R2 is separated.

Proof. Take a point s0 in S2. There is an open connected neighbourhood S of s0 in S2

and a holomorphic vector bundle E on X ×S whose fibers Es represent the isomorphism
classes of vector bundles given by the points s of S.

Es is reducible if and only if there exists an element L in Pic(X) such thatH0(L⊗Es) 6=
0.

Consider as in the proof of the Theorem in II.2.2.,

R := {(ξ, s) ∈ Pic(X)× S : H0(X,Pξ ⊗ Es) 6= 0}

where Pξ denotes the fibre in ξ of the Poincaré bundle P of X. R is an analytic subset
of Pic(X)× S and its image through the projection

p : Pic(X)× S −→ S

is R2 ∩ S. p is proper on every connected component of Pic(X)× S by hypothesis.

We shall show that the restriction of p to the trace of R on a finite number of such
components gives the same image p(R). We may assume c1(Es), c2(Es) constant on S,
shrinking S if necessary.

Es is reducible if and only if it has a devissage

0 −→ L1 −→ Es −→ L2 ⊗ JY −→ 0 (∗)

with L1, L2 in Pic(X) and Y a 2-codimensional locally complete intersection subspace of
X. If L∨ ∼= L1 we say that L ”gives a devissage“ of Es. We restrict p to those components
of Pic(X) containing elements which give devissages of Es, for s ∈ S.

Consider now a devissage (∗). Then by (6)

c1(Es) = c1(L1) + c1(L2)

c2(Es) = L1L2 + l(Y ).

Hence
L2

1 = [c1(L1) + c1(L2)]
2 − L2

2 − 2L1 · L2 =

= c1(Es)
2 − 2c2(Es)− L2

2 + 2l(Y ) ≥
≥ c1(Es)

2 − 2c2(Es)

Since the intersection form is negative definite on NS(X) modulo torsion (I.1. Theorem
6) and NS(X) is finitely generated, it follows that c(L1) can reach only a finite number
of values in NS(X). Thus we see that R2 is a closed analytic subset of S2.
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Let now X have no divisors and E1, E2 give non-separated classes in R2. There exists
then a sequence (E(n))n of reducible simple bundles whose corresponding isomorphism
classes converge in R2 both to < E1 > and to < E2 >. Consider devissages for E(n)

0 −→ L(n) −→ E(n) −→M (n) ⊗ JY (n) −→ 0

Since Pic0(X) is compact and c1(L
(n)) is bounded we can choose a subsequence (denoted in

the same way) such than L(n) converge in Pic(X) to an element L. Then H0(L−1⊗Ei) 6= 0
for i = 1, 2.

Now (detE(n))n converges to detEi, i = 1, 2, hence detE1 = detE2, (S1 is separated
by Remark 1) and we have unique devissages (II.2.1.) of the form

0 −→ L
αi−→Ei

βi−→M ⊗ JZi −→ 0 , i = 1, 2,

where L 6∼= M by §2 Lemma 1.

Considering morphisms ε1 : E1 → E2, ε2 : E2 → E1 with ε1 ◦ ε2 = ε2 ◦ ε1 = 0 one gets
β2 ◦ ε1 ◦ α1 = 0 and morphisms γ,δ closing the diagram:

0 −→ L
α1−→ E1

β1−→ M ⊗ JZ1 −→ 0

γ ↓ ↓ ε1 ↓ δ
0 −→ L

α2−→ E2
β2−→ M ⊗ JZ2 −→ 0

If γ were zero we’d get a non-trivial morphism M ⊗ JZ1 → E2 contradicting the unicity
of the devissage. Thus γ must be an isomorphism and similary δ is an isomorphism. This
implies ε1 -an isomorphism, which is contradiction.

Remark 3 Let X be a surface admitting an effective divisor D such that O(D) generates
Pic(X). Then S2(X) is Hausdorff.

Examples of surfaces fulfilling this hypothesis are: P2, special K3 surfaces of type g
for g ≥ 0 (they are algebraic for g ≥ 2, elliptic when g = 1, and have algebraic dimension
zero for g = 0; cf. I.1.3. and use Riemann-Roch to verify that D is effective), K3 surfaces
X with NS(X) = 0 blown-up in one point.

Proof. Assume S2(X) is not Hausdorff and let E1, E2 be simple vector bundles giving
non-separated elements in S2. There exist then non-trivial morphisms

ε1 : E1 −→ E2 , ε2 : E2 −→ E1 with ε2 ◦ ε1 = ε1 ◦ ε2 = 0

We consider devissages

0 −→ O(niD)
αi−→Ei

βi−→JYi(miD) −→ 0

of Ei, ni, mi ∈ Z, i = 1, 2, which we shall modify in order to make them compatible with
the εi − s, namely we want them to verify εi ◦ αi = 0 for i = 1, 2. If ε1 ◦ α1 6= 0 then
O(n1D)

ε1◦α1−→E2 induces a devissage with kernel

O(n′2D)
α′2
↪→ E2 and 0 = ε2 ◦ ε1 ◦ α1 = ε2 ◦ α′2 ◦ j,
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where j : O(n1D)→ O(n′2D) is the inclusion. Hence ε2 ◦ α′2 = 0.

Leaving the primes aside we have now a new devissage for E2 with ε2 ◦ α2 = 0. Since
ε2 6= 0 there exists a non-zero morphism

ψ : JY2(m2D)→ E1

such that ε2 = ψ ◦ β2. ψ induces a devissage of E1 with kernel O(n′1D)
α′1−→E1.

0 = ε1 ◦ ψ ◦ β2 implies 0 = ε1 ◦ ψ = ε1 ◦ α′1 ◦ j where as before j denotes the inclusion

JY2(m2D)
j−→O(n′1D)

Hence ε1 ◦ α′1 = 0.

Leaving again the primes aside and considering the latter j we get ε1 ◦ α1 = 0 and
ε2 = α1 ◦ j ◦β2. Then 0 = α1 ◦ j ◦β2 ◦ ε1 implies β2 ◦ ε1 = 0. Thus there exists a non-trivial
morphism

χ : E1 −→ O(n2D)

such that ε1 = α2 ◦ χ.

Now α2 ◦ χ ◦ α1 = 0 gives χ ◦ α1 = 0 and there is a non-zero morphism

η : JY1(m1D) −→ O(n2D) with ε1 = α2 ◦ η ◦ β1

Putting everything together we find the inequalities (the strict ones due to the sim-
plicity of the Ei − s and the two others to j and η)

m2 ≤ n1 < m1 ≤ n2 < m2,

hence the wanted contradicton.

In general Sr will not be separated. In [N1] Norton gave a criterion of non-separation
in Sr and used it to study the case when the base X is a Riemann surface. One can get
examples of non-separation in higher dimensions considering, for instance, fibrations over
a curve B and lifting non-separate elements in Sr(B).

Using Norton’s criterion one obtains in some cases examples of non-separation in
S2(X) also for X a surface with a(X) = 0 as the one presently shown.

Example

If X is a surface with a(X) = 0 and C1, C2 two irreducible curves on it such that

H0(KX) = H0(KX(C1 − C2)) = H0(KX(C2 − C1)) = 0

H1(O(C2 − C1)) 6= 0 and

H1(O(C1 − C2)) 6= 0,

then any two non-trivial extensions

0 −→ O(C1)
α1−→E1

β1−→O(C2) −→ 0
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0 −→ O(C2)
α2−→E2

β2−→O(C1) −→ 0

produce simple vector bundles E1, E2 having non-separated classes in S2(X).

Note first that there exist surfaces in class VIII satisfying the avove conditions on

C1, C2 and KX . Moreover also the condition ∆(Ei) + m(c1(Ei) + c1(X)) < −K2
X

8
can be

fullfilled (see for instance [D; p.80, Ex.2.2.]). By [BL; Lemma 4.4.] this extracondition
insures that no irreducible rank 2 vector bundle is continuosly isomorphic to the Ei-s and
thus the non-separation will take place on R2(X).

Remark next that the Ei-s are simple by 2.1. Lemma 1. To show now that they have
non-separated classes in S2(X) we only need to verify Norton’s criterion. We refer to [N1]
for the facts and notations used below.

Choosing a sufficiently fine open cover U = (Uα)α of X and f iα = 0 defining equations
for Ci on Uα we get corresponding representative cocycles of the form

ϕαβ =

 f 1
α \ f 1

β ∗
0 f 2

α \ f 2
β


for E1 and

ψαβ =

 f 2
α \ f 2

β ∗
0 f 1

α \ f 1
β


for E2.

Then the morphisms h := α2 ◦ β1, k := α1 ◦ β2 are defined in terms of (ϕαβ), (ψαβ) by
the matrices

hα = kα =

 0 1

0 0

 .
h and k have complementary ranks and are “compatible” i.e. there exist analytic defor-
mations hα(t), kα(t), for a small complex parameter t, with hα(0) = hα, kα(0) = k and
hα(t) = u(t) · I2 for a scalar analytic function u 6= 0. In our case one can choose

hα(t) = kα(t) =

 −t 1

0 t

 .
Let S be the kernel of the morphism

f : End(E1)⊗ End(E2) −→ Hom(E1, E2)⊗Hom(E2, E1)

defined by f(x, y) = (h ◦ x− y ◦ h, k ◦ y − x ◦ k)

S is a locally free sheaf since it is a reflexive sheaf on a surface and its representative
cocycle is easily verified to be of the form

f 1
αf

2
β \ f 1

βf
2
α 0 ∗ ∗

0 f 1
βf

2
α \ f 1

αf
2
β ∗ ∗

0 0 1 0

0 0 0 1

 .
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Hence an exact sequence

0 −→ O(C1 − C2)⊕O(C2 − C1) −→ S −→ O ⊕O −→ 0

from which one derives
H2(S) = H0(S∨ ⊗KX) = 0.

Thus since all the hypotheses of Theorem 1 in [N1] are fulfilled, < E1 > and < E2 >
are non-separated in S2(X).
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