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Abstract

This article deals with β-numeration systems, which are numeration systems with a
non-integral base β > 1. In this framework, there exist elements which naturally play
the role of integers, which are called β-integers. The set of non-negative β-integers,
denoted by Z+

β , has various equivalent definitions which arise from different points
of view. Nevertheless, these definitions may be generalized on negative real numbers
in a non-unique way, depending on the chosen framework.

We focus in this article on confluent Parry units. They are the positive roots of

the polynomials Xd −
d−1
∑

i=1
kXi − 1, where the integers d and k satisfy d > 2 and

k > 1. For any of these numbers, we prove that there exists a discrete subset of R,
that we denote by Zs

β, which is locally isomorphic to Z+
β , and such that Zs

β = −Zs
β.

Moreover, Zs
β is a model set and satisfies the inflation property: there exists λ > 1

such that λZs
β ⊂ Zs

β (λ is then called inflation factor for Zs
β). Finally, we compute

inflation factors for Zs
β of the form βi, i being a positive integer.

Key words: β-numeration, model set, substitution, inflation factor.

1 Introduction

The formalization and the study of aperiodic structures with a strong form
of ordering was performed during the twentieth century, especially concerning
subsets of Rk, where k is a positive integer. First, Delone (Delauney) intro-
duced the notion of a Delone set E as a set which is relatively dense in Rk and
uniformly discrete, that is, for which there are positive constants R and r such
that any ball of radius R contains at least one element of E, and any ball of
radius r contains at most one element of E [15]. Later, Meyer studied Meyer
sets [29], that is, sets E such that E and E−E are Delone sets, and model sets,
a stronger version of Meyer sets [31] which are defined by a cut-and-project
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scheme; roughly speaking, the elements of a model set are the images under a
projection of elements in Rk that both belong to a lattice of Rk and a cylinder
whose base is a subset of a linear subspace of Rk.

In this article, we consider discrete sets arising from certain numeration sys-
tems defined by a non-integral base β > 1, namely β-numeration systems,
introduced by Rényi [37] and Parry [33]. For any β > 1, one may define the
set of non-negative integers in base β, or set of non-negative β-integers, de-

noted by Z+
β . This set consists of non-negative real numbers x =

n
∑

i=0
v−iβ

i,

where for all indices i we have vi ∈ Aβ = {0, . . . , dβe − 1}, and such that
the word v = v−n . . . v0 satisfies an additional hypothesis known as the Parry
condition: any of the right truncation of v is lexicographically less than d∗

β(1),
defined as the lexicographically greatest expansion of 1 in base β among se-
quences taking values in Aβ that do not consist of finitely many non-zero
elements. Indeed, d∗

β(1) is an improper expansion which plays the same role
as 0.(b−1)∞ in standard numeration systems with integral bases b. The set of
β-integers, denoted by Zβ, is defined as the set of real numbers whose absolute
value is a β-integer, that is, Zβ = Z+

β ∪−Z+
β . It is clearly a discrete set which

is relatively dense in R. A natural question is to determine for which values
of β is Zβ a Delone set, a Meyer set or a model set.

For any β > 1, let Tβ be the map: [0, 1] → [0, 1], x 7−→ βx mod 1. Set Kβ as
the Tβ-orbit of 1 without 0. Then the set Kβ is the set of distances between
two consecutive β-integers (see for instance [3]). We deduce that a necessary
condition for Zβ being a Meyer set is that Kβ is a finite set, and that Zβ is
a Delone set if and only if the infimum of Kβ is positive. Actually, a better
relation between the algebraic properties of β and the structure of Zβ is given
in [12] and [30]: for any Pisot number, Zβ is a Meyer set, and Zβ cannot be a
Meyer set when β is neither Pisot nor Salem. Note that it is not yet known
for which algebraic numbers is Zβ a Delone set.

When Kβ is finite, β is said to be a Parry number, and a simple Parry number

if moreover T
(m)
β (1) = 0. Although the set of Parry numbers is not totally

classified from an algebraic point of view, it is known that Parry numbers are
Perron numbers [16,26], and that Pisot numbers are Parry numbers [11,39].
Obviously, when β is a Parry number, the set Zβ is a Delone set; moreover,
one may provide a combinatorial and a geometrical frameworks naturally as-
sociated with the number system, as follows. Let m denotes the number of
elements in Kβ. For any i ∈ {1, . . . , m}, set ti = T

(i−1)
β (1). The β-substitution

[42,18] associated with β, denoted by σβ, is defined on the m-letter alphabet
{1, . . . , m} by:

(1) σβ(i) = 1bβtic(i + 1) if i 6= m,
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(2) σβ(m) = 1bβtmc if T
(m)
β (1) = 0, or σβ(m) = 1bβtmc(i + 1) if there exists

i < m such that ti = tm.

Note that for any Parry number β, the substitution σβ has a unique right-
sided periodic point, which is a fixed point, that we denote by ωr. Since Z+

β is
a discrete set, we may consider the tiling of R+ defined by Z+

β , that is, such
that the boundaries of the tiles are the elements of Z+

β . If we code each interval
of length ti by the letter i for any i ∈ {1, . . . , m}, we see that ωr is a coding of
Z+

β . More precisely, thanks to the Dumont-Thomas algorithm [17], a natural
relation between Z+

β and ωr ensues from the formula:

nk =
m

∑

i=1

|prefk(ωr)|iT
(i−1)
β (1),

where for any positive integer k, nk denotes the k-th positive β-integer; the
word prefk(ωr) denotes the prefix of ωr of length k and |u|i denotes the number
of occurences of the letter i in the word u. For more details, see [42].

Suppose now that σβ is a Pisot substitution, that is, the characteristic poly-
nomial of its incidence matrix [Mσ]i,j = |σβ(j)|i is the minimal polynomial of
a Pisot number β. Then Rm can be expanded as the direct sum of two stable
subspaces for Mσ: an expanding line D associated with β, and a contractive
hyperplane H associated with the algebraic conjugates which differ from β.
There exists a geometrical representation for the substitutive dynamical sys-
tem associated with σβ known as the Rauzy fractal of this substitution, that
we denote by T , which is a compact subset of H obtained as the closure of
the projection along D onto H of the image of the prefixes of ωr under the
Parikh map f : A∗ → Zm, u 7−→ (|u|1, . . . , |u|m).

The elements which play the role of decimal numbers in base β define the set
Fin(β) = ∪

k∈N

β−kZβ. When Fin(β) has a ring structure, which holds exactly

when Fin(β) = Z[β−1], it is said that the finiteness property, denoted by (F),
holds. Introduced by Frougny and Solomyak in [21], the finiteness property
may hold only for bases among Pisot numbers and simple Parry numbers.
Whereas not yet fully characterized, classes of numbers satisfying the finiteness
property have already been extensively studied; see for instance [23,2,4]. It is
proven in [1] that, when β is a Pisot unit with property (F), 0 is an inner
point of the Rauzy fractal T .

Suppose that σβ is a Pisot unimodular substitution, that is, such that |det
Mσ| = 1, and that the finiteness property holds. Let −→πD denotes the projection
along H onto D, and −→πH denotes the projection along D onto H. Set −→vD =
−→πD(−→e1 ), −→e1 being the first vector of the canonical basis of Rm, and set πD

as the coordinate map on D, that is, such that −→πD(X) = πD(X)−→vD for any
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X ∈ Rm. Then one has Z+
β = {πD(X)|X ∈ Zm,−→πH(X) ∈ T , πD(X) > 0}. In

other words, Z+
β may be (improperly) called a “semi-model” set, in the sense

that we use a semi-cylinder instead of a cylinder in these scheme. Note that
this property has various equivalent formulations; this is for instance Theorem
8 in [10].

In order to characterize the set Zβ = Z+
β ∪ −Z+

β as a model set, a necessary
condition is that the language Lσ associated with the substitution σβ, whose
words code the patterns of Zβ, is stable under the mirror image map. Sim-
ple Parry numbers for which this property holds are called confluent Parry
numbers, or confluent Pisot numbers, since such numbers are actually Pisot
numbers. Confluent Pisot numbers were introduced in [19] and studied in [20].
For such numbers, the β-expansion of 1 is of the form dβ(1) = 0.bβcd−1k,
where 1 6 k 6 bβc, and the algebraic degree d of β is equal to the number of
elements in Kβ.

We have proven in [9] that, for any confluent Pisot unit, the associated Rauzy
fractal T is stable under a central symmetry sc : H → H, z 7−→ 2c − z, with
c ∈ T ; however, the center of symmetry c differs from 0. As a consequence,
when the set Z+

β is a semi-model set whose acceptance window is T , the set
−Zβ is a semi-model set defined by the same cut-and-project set and whose
acceptance window is −T 6= T , and Zβ is not a model set. In some sense, this
is a consequence of the fact that 0 does not play a natural role for being the
center of symmetry of Zβ. This argument was already noticed by Hof, Knill
and Simon in [22]. However, the fact that the Rauzy fractal T may be stable
under a central symmetry on H for confluent Pisot units let us hope that, if
we consider the image of T under a translation vector adequately chosen, we
may obtain an acceptance window T s which satisfies T s = −T s, and which
defines a model set stable under the map x 7−→ −x.

The aim of this article is to construct and study such a set. We see that, under
the assumption that β is a confluent Pisot unit, we may define a set Zs

β such
that the following properties are satisfied:

(1) Zs
β is a model set,

(2) Zs
β = −Zs

β,
(3) Zs

β and Z+
β are locally isomorphic (indistinguishable),

(4) the two-sided word which codes Zs
β is the fixed-point of a substitution.

In Section 2, we introduce the basic definitions and notation needed for our
study, and the related frameworks. In Section 3, we define the set Zs

β. We prove
that Zs

β is locally isomorphic to Z+
β , and that Zs

β is included in a model set
whose acceptance window is T s, a compact subset of H obtained as the image
of T under a translation. We then study in Section 4 several arithmetical and
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geometrical properties related to Zs
β in the unit, non-quadratic case. Notably,

we prove the following assertions.

Theorem. Let β be a confluent Parry unit of degree d > 3, with bβc even.
Then T s is an acceptance window for the model set Zs

β if and only if bβc = 2
and d ∈ {3, 4}.

Theorem. Let β be a confluent Parry unit, with bβc odd. It is decidable
whether T s is an acceptance window for the model set Zs

β.

Section 5 is devoted to the search of inflation factors for Zs
β, that is, to the set

of real numbers {λ > 1|λZs
β ⊂ Zs

β} that are of the form βi, i being a positive
integer. The following proposition gathers Propositions 5.1 and 5.2.

Proposition. Let β be a confluent Parry unit of degree d, with bβc odd.
Then:

(1) β is not an inflation factor for Zs
β,

(2) βd+1 is an inflation factor for Zs
β,

(3) if 0 is an inner point of T s, there exists a positive integer N such that
for any n > N , βn is an inflation factor for Zs

β.

2 Definition and Notation

Starting from now on, we assume that β is a confluent Pisot unit.
This implies that β is a simple Parry number; σβ is a d-letter Pisot unimodular
substitution, where d is the algebraic degree of β, and the finiteness property
Fin(β) = Z[β−1] holds [21]; 0 is an inner point of the Rauzy fractal T , and, as
a consequence, T generates a periodic tiling of H, with (−→πH(−→ei −

−→e1 ))i∈{2,...,d}

as lattice basis. Furthermore, one has by construction πD(−→ei ) = ti for any
i ∈ {1, . . . , d}. We see in Section 2.2 that one may define as well a self-affine
aperiodic tiling with finitely many images of T under similarities. Some of
these properties allow us to introduce in the following several simplifications
with respect to standard definitions, for instance with those introduced in
[31,41]. See [10] for a general survey of related topics.

2.1 Generalities

In the following, {i, . . . , j} denotes the set {k ∈ Z|i 6 k 6 j} and N denotes
the set of non-negative integers.
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Words

We refer mainly to [27,34] for the following notation.

Let m be a positive integer. The finite set A = {1, . . . , m} is called alphabet;
it consists of letters. Endowed with the concatenation map, A generates a free
monoid A∗. The empty word is denoted by ε. A language L is a subset of A∗.

Let u1, . . . , un be letters in A. The length of the word u = u1 . . . un is |u| = n.
For any l ∈ A, we denote by |u|l the number of occurences of the letter l
in u. The mirror image of u is ũ = un . . . u1. When ũ = u, u is said to
be a palindrome; its center is ε if n is even, or the letter u n+1

2

if n is odd.

For all l ∈ A ∪ {ε}, we denote by Pl the set of palindromes of center l.
The shift map on AZ is the map S : (ui)i∈Z 7−→ (ui+1)i∈Z, which may be
naturally defined on AN. The circular shift map is the map defined on A∗ by
Sc : u1 . . . un 7−→ u2 . . . unu1.

Let wr be a right-sided sequence. For any n ∈ N, we denote by prefn(wr) the
prefix of wr of length n. When w = wl.wr is a two-sided sequence, prefn(w)
denotes the corresponding prefix of wr if n > 0; we set prefn(w) as the suffix
of wl of length −n when n < 0.

Substitutions

A substitution σ is a map: A → A∗ extended as a morphism for the concatena-
tion map. In this article, we consider Pisot substitutions; due to [14], they are
primitive: there exists a positive integer n such that, for all i, j ∈ {1, . . . , m},
the word σn(i) contains at least one occurence of the letter j. Any ω ∈ AZ is
said to be a σ-periodic point (of order k) when there exists a positive integer
k such that σk(ω) = ω. If σ(ω) = ω, ω is said to be a σ-fixed point. The
set of factors that occur in any periodic point of a primitive substitution σ is
the substitutive language, denoted by Lσ. The substitutive dynamical system
(Xσ, S) consists of Xσ, the subset of AZ whose elements have Lσ as set of
factors, and the natural S-action on AZ. If for any w ∈ Xσ, the S-orbit of w
is dense in Xσ, (Xσ, S) is said to be minimal. See [35] for more details.

The set of primitive substitutions which generate a language stable under the
mirror image map is introduced in [22] as the class (P). See [5] for a general
study of palindromic properties.

Tilings

Let d be a positive integer. A tile of Rd is a non-empty compact set T ⊂ Rd

such that
o

T = T . A tiling Λ of E ⊂ Rd is a collection of tiles such that any
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compact K ⊂ E can be covered by finitely many tiles of Λ, and such that
any intersection of distinct tiles has a zero-Lebesgue measure. A pattern is a
finite connected collection of tiles in a tiling. Two tilings are said to be locally
isomorphic (or locally indistinguishable, see [8]) if they have the same set of
patterns.

Let T and T ′ be two tiles. If there exists t ∈ Rd such that T + t = T ′, T and T ′

are said to be equivalent. The set of tiles which are equivalent to a given tile is
a class of equivalence, which is called the type of the tile. When there are only
finitely many different types of tiles in a tiling Λ, we define a coding of the
tiling as the map Λ → {1, . . . , m}, where each letter of {1, . . . , m} represents
a type of tile.

Remark 2.1 When the sequence of real numbers (xk)k∈Z is increasing and
such that {xk+1 − xk|k ∈ Z} takes d distinct values, the set E = {xk|k ∈ Z}
defines a tiling of R: the tiles are the intervals {[xk, xk+1]|k ∈ Z}, which may
be coded using a d-letter alphabet. Patterns of E are intervals as well, which
may be coded by words.

Geometrical representation

Let {αj}j∈{1,...,r+s} be the set of Galois conjugates which differ from β and have
a non-negative imaginary part, where r denotes the number of real conjugates
which differ from β and s denotes the number of non-real conjugates of β. For
convenience, let J denote {1, . . . , r + s}. For any j ∈ J , we denote by τj the
field morphism: Q(β) → Q(αj), β 7−→ αj if αj is a real conjugate, β 7−→ (Re
αj,Im αj) otherwise.

The set Rd may be expanded as the sum of the Mσ-stable subspaces D and
H = ⊕

j∈J
Hj, which are respectively associated with β and with the (direct)

sum of the eigenspaces whose eigenvalues are {αj}j∈J . For any j ∈ J , set −→πHj

as the projection along D ⊕
i6=j

Hi onto Hj. We set a basis (−→vi )i∈{1,...,r+2s} in H

which is defined by the relations:

(1) −→πHj
(−→e1 ) = −→vj for any j ∈ {1, . . . , r},

(2) −−−→πHr+j
(−→e1 ) = −−−−→vr+2j−1 and −−−→πHr+j

(Mσ
−→e1 ) =Re(αj)

−−−−→vr+2j−1+Im(αj)
−−→vr+2j for

any j ∈ {1, . . . , s}.

We denote by τ the map:

τ : Q(β) → H, x 7−→
r

∑

j=1

τj(x)−→vj +
s

∑

j=1

(Re τj(x)−−−−→vr+2j−1 + Im τj(x)−−→vr+2j).

Remark 2.2 By construction, one has −→πH(X) = τ(πD(X)) for any X ∈ Zd.
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Desubstitution and representation

The prefix-suffix automaton of the substitution σ, inspired by Rauzy [36] and
studied by Canterini and Siegel [13], is defined as (A, E), where E consists of
labelled edges (a, b, (p, l, s)) ∈ A×A× (A∗,A,A∗) whenever σ(b) = pas. The
desubstitution map θ is defined by:

θ : Xσ → Xσ, θ(w) = v if w = Skσ(v) and k ∈ {0, . . . , |σ(v0)| − 1}.

For any w ∈ Xσ, we set γ(w) = (p, w0, s) if σ((θ(w))0) = pw0s and w =
S |p|σ(θ(w)). The prefix-suffix expansion map Γ is defined as follows. For any
w ∈ Xσ, Γ(w) is defined as the sequence (pi, li, si)i∈N such that one has w =
. . . σn(pn) . . . σ(p1)p0.l0s0σ(s1) . . .. The maps θ, γ and Γ are well defined and
continuous due to [32].

Let ω ∈ Xσ, with Γ(ω) = (pi, li, si)i∈N. The representation map is defined

as the map Φ : Xσ → T , such that Φ(ω) =
r
∑

j=1
(
∑

i>0
|pi|α

i
j
−→vj ) +

s
∑

j=1

(

∑

i>0
|pi|(Re

αi
j
−−−−→vr+2j−1+Im αi

j
−−→vr+2j)

)

. Since Xσ is minimal and T is compact, Φ is onto.

Model sets

The general definition of a cut-and-project scheme requires:

(1) a locally compact topological abelian group G, the internal space,
(2) Rk, the physical space,
(3) a lattice L ⊂ Rk × G,
(4) −→π1 : Rk×G → Rk, the first canonical projection, such that the restriction

−→π1 |L is one-to-one,
(5) −→π2 : Rk × G → G, the second canonical projection, such that −→π2(L) is

dense in G.

Definition 2.3 Let U be a relatively compact set of G such that
o

U = U .
The model set defined by U , the window of acceptance of the model set, is
∆(U) = {−→π1(x)|x ∈ L,−→π2(x) ∈ U}. When ∂U ∩ π2(L) = ∅, ∆(U) is said to be
a regular model set.

Remark 2.4 Model sets may have a non-unique acceptance window. How-
ever, due to points 4. and 5. in the definition of a cut-and-project scheme,

two acceptance windows W1 and W2 of a model set satisfy
o

W1 =
o

W2, hence
W1 = W2. As a consequence, there exists at most one tile among the accep-
tance windows of a given model set.

In this article, we consider cut-and-project schemes associated with confluent
Pisot units. Therefore, for a given confluent Pisot unit β of degree d > 2, we
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Fig. 1. Cut-and-project scheme for the Fibonacci case

set k = 1, G = H and L = Zd, and we identify Rk × G and Rd. Using our
previous notation, one has −→π1 = −→πD and −→π2 = −→πH. Akiyama has proven in
[1] that the characteristic properties of a cut-and-project scheme are satisfied
in our framework, that is, the restriction πD : Zd → Z[β] is one-to-one, and
−→πH(Zd) is dense in H. Note that a model set is defined in our study as a subset
of D; by abuse of notation, and up to the identification D ' R, we may call
model set any subset E of R such that {λ−→vD|λ ∈ E} is the model set in the
associated cut-and-project scheme.

Example 2.5 Let σ be the Fibonacci substitution, defined on the alphabet
{1, 2} by σ(1) = 12 and σ(2) = 1. One has πD(−→e1 ) = 1 and −→πH(−→e1 ) = −→v1 ;
πD(−→e2 ) = φ−1 and −→πH(−→e2 ) = −φ−→v1 . As depicted in Figure 1, the set {X ∈
Z2, πD(X) > 0,−→πH(X) ∈ T } provides a discrete approximation of the semi-
line of equation y = φ−1x. One has −→πH(−−→e1 ) = −−→v1 and −→πH(−−→e2 ) = φ−→v1 ,
hence −→πH(−−→e1 ) and −→πH(−−→e2 ) belong to the boundary of T . As a consequence,
the model set ∆(T ) = {−→πD(X)|X ∈ Z2,−→πH(X) ∈ T } is not regular. The sets
{λ−→πH(−→e1 )|λ ∈ [−1, φ[} and {λ−→πH(−→e1 )|λ ∈]−1, φ]} are the respective acceptance
windows for the model sets {πD(X)|X ∈ Z2,−→πH(X) ∈ T , X 6= −−→e2} and
{πD(X)|X ∈ Z2,−→πH(X) ∈ T , X 6= −−→e1}. Each of these model sets may be
coded by a two-sided periodic point for the Fibonacci substitution, respectively
by (σ2)∞(1.1) and (σ2)∞(2.1).

Remark 2.6 In [25], regular model sets are introduced as generic model sets,
whereas regular model sets are defined as model sets such that ∂U ∩ π2(L) is
of (Haar) measure 0.

2.2 Parry numeration

Let x 6= 1 be a positive real number. The sequence (vi)i∈Z taking values
in Z is an expansion in base β of x if x =

∑

i∈Z

viβ
−i. The greatest for the
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lexicographical order of expansions in base β of x taking non-negative values
is called β-expansion of x and denoted by dβ(x); this expansion is computed by
the greedy algorithm and satisfies the Parry condition. The set of the factors
of the β-expansions of real numbers is a language denoted by Lβ. For any
x ∈ Fin(β)+ with dβ(x) = v−N . . . v0.v1 . . . vN ′, we define the β-integer part of

x as bxcβ =
N
∑

n=0
v−nβn, and the β-fractional part of x as {x}β =

N ′
∑

n=1
vnβ−n.

Let z ∈ H. The sequence u = . . . u0.u1 . . . uN0∞ taking values in Z with finitely
many non-zero values in its right-sided part is an expansion of x in base τ(β) if

x =
r
∑

j=1
(
∑

i∈Z

uiα
i
j
−→vj ) +

s
∑

j=1

(

∑

i∈Z

ui(Re αi
j
−−−−→vr+2j−1+Im αi

j
−−→vr+2s)

)

. Note that we may

omit the ending 0’s in the right-sided part. If moreover u satisfies the Parry
condition, u is called a τ(β)-expansion of z. The notion of τ(β)-expansion is
closely related to the notion of α-adic expansions, studied for instance in [6].
Note that, contrarily to the uniqueness of the β-expansion of real numbers,
there exist elements in H which may have distinct τ(β)-expansions.

We have proven in [9] that, for any confluent Parry unit β, there exists c ∈ H
such that the Rauzy fractal T is stable under the central symmetry on H of
center c. We have computed in [9] the following τ(β)-expansion for c:

c =∞ (
bβc

2
). when bβc is even, (1)

c =∞ (
bβc + 1

2
0d−1 bβc − 1

2
). when bβc is odd. (2)

For convenience, let L′
β denote the set of words in Lβ which do not end with

0. Let w = w−N . . . w0w1 . . . wN ′ ∈ L′
β. The tile Tw−N ...w0.w1...wN′ ⊂ H is defined

as the closure of
{

τ(x)|x ∈ Fin(β)+, {β−N−1x}β =
N+N ′+1

∑

i=1
wi−1−Nβ−i

}

. Then

∪
w∈L′

β

T.w is a tiling of H, and there are d types of tiles T.w in Λβ, see [1,42].

Remark 2.7 For any z ∈ T , one has either z ∈
o

T , or there exists w ∈ L′
β,

such that z ∈ ∂T ∩ ∂T.w.

Arithmetical automaton

The notion of arithmetical automaton G = (V, E) is introduced by Rauzy
in [36], and can be defined for any m-letter unimodular Pisot substitution.
Consider the set of states V ⊂ Zm, and the set of labelled edges (X, Y, k) ∈ V ×
V ×{−bβc, . . . , bβc} whenever there exist X, Y ∈ V such that Y = MσX+k−→e1 .

10



Then G, the strongly connected component of (V, E) which contains 0, is finite;
it is called arithmetical automaton. Note that, since the maps πD

|Zd
and dβ are

one-to-one, any X ∈ V can be labelled by dβ(πD(X)).

The arithmetical automaton enables a characterization of elements that belong
to ∂T (see [13]). In particular, thanks to Remark 2.7, the following property
holds.

Proposition 2.8 Let z ∈ T . Then z ∈ ∂T if and only if there exists a path
in G labelled by (uk − vk)k6N , where (uk)k6N and (vk)k6N are τ(β)-expansions
of z such that u1 . . . uN are 0’s.

Proof Let z ∈ T . Due to Remark 2.7, z ∈ ∂T if and only if there exists
w ∈ L′

β such that z belongs to ∂T and to ∂T.w. This is also equivalent to the
existence of two τ(β)-expansions . . . u−n . . . u0. and . . . v−n . . . v0.v1 . . . vN of z,
with w = v1 . . . vN . Since vi −ui ∈ {−bβc, . . . , bβc} for any i ∈ Z, (vi −ui)i6N

labels a path in G. On the other hand, if there exists a path labelled by
(vi − ui)i6N in G, where (ui)i6N and (vi)i6N are admissible sequences such
that u1 . . . uN = 0N , then there exists z ∈ H such that . . . u−n . . . u0. and
. . . v−n . . . v0.v1 . . . vN are τ(β)-expansions for z, hence z ∈ ∂T ∩ ∂T.w with
w = v1 . . . vN . 2

There exist modified versions of G which enable to determine the neighbour
tiles of a given tile, or topological properties like connectedness and simple
connectedness for T . See [40,38,24] for more details, and [28] for a detailed
study related to the Tribonacci numeration system, defined by the positive
root of the polynomial X3 − X2 − X − 1.

3 Construction and study of Zs
β

In this section, we are interested in the construction of a discrete subset of
R that may be seen as a tiling (see Remark 2.1), which is stable under the
map x 7−→ −x, and whose patterns are coded by a language generated by a
β-substitution. As noticed in the introduction, we need to assume that β is a
confluent Pisot number to construct such a set. Additionally, we assume that β
is a unit, since this hypothesis provides additional geometric characterizations.

For any confluent Pisot unit, the following property is satisfied: for any positive
integer n, there exists a unique palindrome of length 2n in Lσ [7]. Hence there
exists a unique two-sided sequence ω′ ∈ Xσ whose left-sided part is the mirror
image of its right-sided part, that is, we set ω′ = . . . u−n . . . u0.u1 . . . un . . . such
that, for any positive integer n, the word u−n−1 . . . u0.u1 . . . un is a palindrome.

11



We define the set of symmetrized β-integers, that we denote by Zs
β, as the

discrete set coded by ω′, where for any i ∈ {1, . . . , d}, the letter i codes an

interval of length T
(i−1)
β (1), that is:

Zs
β = {

m
∑

i=1

|prefn(ω′)|iT
(i−1)
β (1)|n ∈ Z}. (3)

3.1 Basic properties of Zs
β

Let us remind that c denotes the element in H such that T is stable under
the symmetry map sc : z 7−→ 2c − z defined on H. By definition, one has
dβ(T

(i−1)
β (1)) = 0.bβcd−i1 for any i ∈ {1, . . . , d}. Hence any x ∈ Zs

β is a finite
sum of elements of Fin(β) due to (3). As recalled in the beginning of Section
2, the finiteness property (F) holds, hence Zs

β ⊂ Fin(β). Moreover, since 0 is
an inner point of T , and since the restriction of Mσ on H is contractive, there
exists a positive integer k such that M k

σ (T − c) ⊂ T . Hence T − c is covered
by finitely many tiles in the self-affine aperiodic tiling generated by T , and
there exists a positive integer k such that βkZs

β ⊂ Zβ.

Proposition 3.1 For any confluent Parry unit β, the tilings generated by Z+
β

and Zs
β are locally isomorphic.

Proof The tiles coded by a given letter in the tilings associated with Z+
β and

Zs
β coincide up to translation. Hence an equivalent statement for Z+

β and Zs
β

being locally isomorphic is that the sets of words which code their patterns
are equal.

Since ω′ is defined as the limit of words which belong to Lσ, any word which
codes a pattern of Zs

β occurs in Lσ. On the other hand, since the language
Lσ is generated by a primitive substitution, ωr is uniformly recurrent; for any
positive integer k, there exists a positive integer n such that any word of length
n in Lσ contains all the factors in L whose length is at most k. Hence any
word in Lσ codes a pattern of Zs

β. 2

The local isomorphism implies that the geometrical characterization of Zs
β and

Z+
β coincide up to translation, that is:

Corollary 3.2 One has τ(Zs
β) = T − c.

Proof Due to Proposition 3.1, the S-orbit of ω′ is dense in Xσ. As a conse-
quence, and since T is the closure of τ(Z+

β ), there exists z ∈ H such that T −z
is the closure of τ(Zs

β).

12



Let s0 denote the map on H defined by s(z) = −z. Since T satisfies T =
sc(T ) = 2c−T , one has s0(T −c) = −T +c = (2c−T )−c = sc(T )−c = T −c.
Suppose that z 6= c. Since τ(−Zs

β) = −T + z, T would be stable under sc and
sz; as a consequence, T would be stable under the translation map sc ◦ sz,
which is absurd since T is bounded. Hence z = c and the closure of τ(Zs

β) is
T − c. 2

Notation 3.3 We set T s = τ(Zs
β).

Note that, as a consequence of Corollary 3.2, one has Φ(ω ′) = c.

3.2 Characterization of regular model sets

In this section, we are interested in determining whether T s is an acceptance
window for the set {λ−→vD|λ ∈ Zs

β}. Corollary 3.2 means that one has {λ−→vD|λ ∈
Zs

β} ⊂ ∆(T s), with ∆(T s) = {−→πD(X)|X ∈ Zd,−→πH(X) ∈ T s}. Remind that,
as noticed in Remark 2.4, there may exist distinct acceptance windows for

Zs
β; however, if W is an acceptance window for Zs

β, one has
o

W =
o

T s. As a

consequence, any acceptance window W for Zs
β satisfies

o

T s ⊂ W ⊂ T s, hence

∆(
o

T s) ⊂ {λ−→vD|λ ∈ Zs
β} ⊂ ∆(T s).

The inequality ∆(
o

T s) 6= ∆(T s) corresponds to the case where the boundary of
T s intersects −→πH(Zd), which means that {λ−→vD|λ ∈ Zs

β} is not a regular model
set. In this case, setting T ′ as T s minus ∂T s∩−→πH(Zd), the acceptance window
T ′′ of the model set Zs

β satisfies T ′ ⊂ T ′′ ⊂ T s. The following proposition
provides a characterization to decide whether the model set {λ−→vD|λ ∈ Zs

β} is
regular.

Proposition 3.4 Let β be a confluent Parry unit. The following assertions
are equivalent:

(1) {λ−→vD|λ ∈ Zs
β} = ∆(T s),

(2) for any x ∈ Zs
β, τ(x) is an inner point of T s.

Proof Let us prove that (1) implies (2). Suppose that (2) does not hold,
that is, there exists z ∈ Zs

β such that τ(z) ∈ ∂T s. Since T s has non-empty
interior, there exists x ∈ Zs

β such that τ(x) is an inner point of T s. Without
loss of generality, one may choose z > 0 such that z ′ = max

x∈Zs
β

{x < z} satisfies

τ(z′) ∈
o

T s. There exists i ∈ {1, . . . , d} such that z = z′ + πD(−→ei ), that is,
τ(z) = τ(z′) + −→πH(−→ei ). However, as seen in the beginning of Section 2, T
generates a periodic tiling on H, with (−→πH(−→ei −

−→e1 ))i∈{2,...,d} as a lattice basis.
Since T s is the image of T under a translation map, (−→πH(−→ei − −→e1 ))i∈{2,...,d}
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is a lattice basis for the periodic tiling generated by T s. We deduce that
there exists j ∈ {1, . . . , d}, j 6= i, such that τ(z′) + −→πH(−→ej ) belongs to ∂T s

as well, that is, the model set whose acceptance window is T contains z and
z+πD(−→ej −

−→ei ). Finally, remind that for any i ∈ {1, . . . , d} one has πD(−→ei ) = ti
as seen in the beginning of Section 2. Since the elements {ti}i∈{1,...,d} are Q-
independent, x−ti +tj does not belong to Zs

β, that is, {λ−→vD|λ ∈ Zs
β} 6= ∆(T s).

Now, let us prove that (2) implies (1). Suppose that for any z ∈ Zs
β, τ(z) is

an inner point of T s. Then {λ−→vD|λ ∈ Zs
β} = ∆(

o

T s) and −→πH(Zd) ∩ ∂T s = ∅.
Hence {λ−→vD|λ ∈ Zs

β} = ∆(T s). 2

Remark 3.5 In section 4, we state with Conjecture 4.13 that, if β is a con-
fluent Parry unit such that bβc is odd, then, for any x ∈ Zs

β, τ(x) is an inner
point of T s. Note that, due to Theorem 2 in [1], if 0 is an inner point of T

and if the finiteness property holds, then for any x ∈ Z+
β , τ(x) ∈

o

T ; we do not
know whether this result could be used to prove Conjecture 4.13.

Example 3.6 Let us consider the case of quadratic Pisot units, studied in
[12]. In this case, β and α, the algebraic conjugate of β, are roots of X 2 −
bβcX − 1. One has H ' R; T = [−1, β]−→v1 and −→πH(c) = β−1

2
−→v1 , hence T s =

[−β+1
2

, β+1
2

]−→v1 . The Lebesgue measure of the tiles coded by 1 and 2 are µ(1) =
1 and µ(2) = β − bβc, which belong to Z[β−1]. As a consequence, one has
τ(x) ∈] − β+1

2
, β+1

2
[−→v1 for any x ∈ Zs

β, hence {λ−→vD|λ ∈ Zs
β} = ∆(T s) due to

Proposition 3.4. Since β is a Pisot number, αT s ⊂ T s and βZs
β ⊂ Zs

β. See
also [7] for more details.

4 Non-quadratic case

Starting from now on, we assume that β is not a quadratic number. We still
suppose that β is a confluent Parry unit, that is, dβ(1) = 0.bβcd−11, with d > 2.
We prove in this section that the two-sided sequence ω ′ introduced in Section
3 is the fixed point of a substitution σ′, which may be explicitly obtained
thanks to the β-substitution σβ and the center of symmetry c, depending on
the parity of bβc. This result and the following folklore lemma will allow us
to study in Section 5 inflation factors for Zs

β of the form βi, i being a positive
integer.

Lemma 4.1 Let σ be a m-letter primitive substitution whose dominant eigen-
value is λ. Let v be a left Mσ-eigenvector associated with λ, with positive co-
ordinates. Let ω ∈ Xσ be a σ-fixed point. Then λ is an inflation factor for

E = {
m
∑

i=1
|prefn(ω)|ivi| n ∈ Z}.
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Remark 4.2 Under the hypotheses of Lemma 4.1, λ is a Perron number,
which implies that v may be chosen with positive coordinates. In the framework
of β-substitutions, and with the notation defined in the introduction, we set
vi = ti for any i ∈ {1, . . . , d}.

The following notation is useful for the next sections.

Notation 4.3 Let u and v be two-sided sequences taking values in Z. We
denote by u ⊕d v the digit-by-digit addition of u and v. We denote by −u the
sequence such that u⊕d(−u) takes only the value 0. When u has infinitely many
consecutive occurences of zeros, we may omit these consecutive occurences, and
denote it as a one-sided sequence or a word.

4.1 Case bβc even

Suppose that bβc is even. Let σ′
β = S

bβc
2

c ◦ σβ, that is, σ′
β(i) = 1

bβc
2 (i + 1)1

bβc
2

for all i ∈ {1, . . . , d − 1} and σβ(d) = 1. Then, for any i ∈ {1, . . . , d}, the
word σ′

β(i) is a palindrome of center i+1; since the set of palindromes of even
length is stable under σ′

β, we deduce that ω′ = σ′∞
β (1.1). As a consequence of

Lemma 4.1, β is an inflation factor for Zs
β.

Example 4.4 Let β be the positive root of X3 − 2X2 − 2X − 1. Then Zs
β

is coded by σ′∞
β (1.1), with σ′

β(1) = 121, σ′
β(2) = 131, σ′

β(3) = 1; one has
βZs

β ⊂ Zs
β.

The following theorem characterizes the sets Zs
β for which {λ−→vD|λ ∈ Zs

β} =
∆(T s) holds.

Theorem 4.5 Let β be a confluent Parry unit of degree d > 3, with bβc even.
Then {λ−→vD|λ ∈ Zs

β} = ∆(T s) if and only if bβc = 2 and d ∈ {3, 4}.

Proof Let us recall that (ui)i∈Z =∞ ( bβc
2

). is a τ(β)-expansion of c, see
(1). First, assume bβc > 4. Then w = (−1)bβcd−11 is an expansion of 0
in base β. Let w′ = (−w)0 ⊕d w = 1(−bβc − 1)0d−2(bβc − 1)1. Set w′′ =
⊕d
i∈N

(w′)0i(d−1). Then w′′ is an expansion of 0 in base τ(β), and one has w′′ =∞

(1(−2)10d−4)0(bβc − 1)1. if d > 4, or w′′ =∞ (2(−2))1(bβc − 1)1. if d = 3. In
the first case, (vi)i∈Z =∞ (1(−2)10d−4).0(bβc−1)1 is an expansion of 0 in base
τ(β), and (ui +vi)i∈Z is an expansion of c in base τ(β). Moreover, for any non-

negative integer i, one has bβc >
bβc
2

+1 > ui+vi >
bβc
2
−2 > 0. Hence ui+vi ∈

Aβ and (ui +vi)i∈Z satisfies the admissibility condition, that is, (ui +vi)i∈Z is a
τ(β)-expansion of c. This means that c belongs to the tile T.0(bβc−1)1. According

to Remark 2.7, we deduce that c /∈
o

T , hence {λ−→vD|λ ∈ Zs
β} 6= ∆(T s) due to

Proposition 3.4. If d = 3, then (vi)i∈Z =∞ (2(−2)).1(bβc− 1)1 is an expansion

15



Fig. 2. Rauzy fractal for the numeration system defined by dβ(1) = 0.441

of 0 in base τ(β); we prove similarly that (ui + vi)i∈Z is a τ(β)-expansion of c,

hence c ∈ T.1(bβc−1)1 and c /∈
o

T .

Now, suppose that bβc = 2 and d > 4. Let w = (−1)2d−11 and w′ = (−w)00⊕d

w = 1(−2)(−3)0d−3121, which is an expansion of 0 in base τ(β). Then w′′ =
⊕d
i∈N

w′0i(d−1) =∞ (1(−1)(−1)10d−4)0121 and (vi)i∈Z =∞ (1(−1)(−1)10d−4).0121

are expansions of 0 in base τ(β). Since (ui)i∈Z =∞ 1., we deduce that (ui +
vi)i∈Z =∞ (20021d−4).0121 is a τ(β)-expansion of c, that is, c ∈ T.0121; one has

c /∈
o

T and {λ−→vD|λ ∈ Zs
β} 6= ∆(T s) using the same arguments as in the case

bβc > 4.

Finally, we explicitly compute the arithmetic automaton for the numeration
systems defined by dβ(1) = 0.221 and dβ(1) = 0.2221. In both cases, we
check by pure computation that there does not exist a path in the arithmetic
automaton which satisfies the hypothesis of Proposition 2.8. This implies that
for any z ∈ T s, τ(z) is an inner point of T s, hence {λ−→vD|λ ∈ Zs

β} = ∆(T s). 2

Example 4.6 Let us consider the numeration system defined by dβ(1) =
0.441, depicted in Figure 2. The sequence ∞(2(−2)).131 is an expansion of
0 in base τ(β). There are three distincts τ(β)-expansions of c, namely ∞2.,
∞(40).131 and ∞(40)3.31. Hence c belongs to the tiles T , T.131 and T.31, which

implies 0 ∈ ∂T s. The smallest positive element x ∈ Zs
β such that τ(x) ∈

o

T
satisfies dβ(x) = 103.41; the unique τ(β)-expansion of τ(x) is ∞2331.

4.2 Case bβc odd

Let β be a confluent Parry unit of degree d > 3, such that bβc is odd. We set
the integer N and the substitution σ′

β as:

N =
bβc + 1

2
|σd(1)| +

bβc − 1

2
, (4)
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σ′
β = SN

c ◦ σd+1
β . (5)

Let us recall that, when l is a letter or the empty word, Pl denotes the set of
palindromes whose center is l. For convenience, we set P0 = Pd+1 = Pε. Let
h : A∗ → A∗, v 7−→ σβ(v)abβc. The following lemma is proven in [7,9].

Lemma 4.7 Let x ∈ Pi, where i ∈ {0, . . . , d}. Then h(x) ∈ Pi+1.

Proof By definition, the image under h of any letter is a palindrome. Let x
be a palindrome of center i. There exists v ∈ A∗ such that x = ṽiv. Since
|h(ṽ)| = |h(v)|, the center of h(x) is the center of h(i) = 1bβc(i + 1)1bβc, which
is i + 1. 2

Lemma 4.8 One has Lσ′ = Lσ.

Proof Let l ∈ Lσ. If l 6= d, then 1bβc is a prefix of σβ(l), hence σd
β(1bβc)

is a prefix of σd+1
β (l). Moreover, since σβ(d) = 1, then σd+1

β (d) = σd
β(1). As

a consequence, for any letter l, σd−1
β (1) is a prefix of (S

|σd
β
(1)|

c )
bβc+1

2 ◦ σd+1
β (l),

hence 1
bβc−1

2 is a prefix of (S
|σd

β
(1)|

c )
bβc+1

2 as well. Since the images of the letters
of A under σd+1

β have a common prefix of length N , the substitutions σβ and

SN
c ◦ σd+1

β generate the same language Lσ. 2

Proposition 4.9 One has ω′ = σ′
β(1.1).

Proof This is exactly Lemma 8.2 in [7]. This can also be seen as a consequence
of Proposition 2.3 in [14]. Indeed, the sequence of prefixes in Γ(ω) is pi = ε for

all non-negative integer i. Since a τ(β)-expansion of c is ∞( bβc+1
2

0d−1 bβc−1
2

). as
computed in (2), the sequence (p′

i)i∈N of prefixes in Γ(ω′) is periodic of period

d + 1 with |p′d| . . . |p
′
0| = bβc+1

2
0d−1 bβc−1

2
. 2

Remark 4.10 It is stated as a conjecture in [22] that, for any substitutive lan-
guage Lσ defined on {1, . . . , d} and stable under mirror image, there exist d+1
palindromes {pi}i∈{0,...,d} and a substitution σ defined for any i ∈ {1, . . . , d} by
σ(i) = p0pi such that Lσ = L. In the case of β-substitutions, σ′

β satisfies these
properties, with p0 = ε.

Example 4.11 Let β be the Tribonacci number. Remind that this number
is the positive root of the polynomial X3 − X2 − X − 1; σβ is then the 3-
letter substitution defined by σβ(1) = 12, σβ(2) = 13 and σβ(3) = 1. With
our notation, one has d = 3 and n = 7; σ′

β(1) = 1213121213121, σ′
β(2) =

12131213121 and σ′
β(3) = 1213121.

Theorem 4.12 Let β be a non-quadratic confluent Parry unit such that bβc is
odd. It is effectively computable to determine whether {λ−→vD|λ ∈ Zs

β} = ∆(T s)
holds.

17



Proof Due to Proposition 3.4, the relation {λ−→vD|λ ∈ Zs
β} = ∆(T s) holds if

and only if the image of any element in Zs
β under τ is an inner point of T s.

Due to Proposition 2.8, we may check this condition by looking at paths in
the associated arithmetical automaton, as follows.

Let us recall that ωr and ω′
r denote the right-sided sequences that are re-

spectively fixed point of σβ and σ′
β. The sequence ω′

r does not belong to the
S-orbit of ωr. Hence, due to [13], the prefix-suffix expansions of ω′ and Sk(ω′)
differ in only finitely many elements for any k ∈ Z. Moreover, since c has an
ultimately periodic τ(β)-expansion, ω′ has an ultimately periodic prefix-suffix
expansion; the periodic parts of ω′ and Sk(ω′) coincide. As a consequence, we
have to check whether there exists a path of the form (wn − vn)n∈N in the as-
sociated automaton, where (vn)n∈N is an τ(β)-expansion whose periodic part
coincide with the periodic part of the τ(β)-expansion of c, and (wn)n∈N is an
τ(β)-expansion.

Since the arithmetical automaton is finite, (wn − vn)n∈N may be chosen as a
loop, that is, (wn)n∈N may be chosen as periodic; the length of the periodic
part of (wn − vn)n∈N divides the length of the periodic part of (vn)n∈N, which
is d + 1 due to (2). The arithmetical automaton contains finitely many loops
whose length is less or equal to d + 1, hence we may compute all such loops
and determine whether one has {λ−→vD|λ ∈ Zs

β} = ∆(T s). 2

At the moment, we do not know any example of a confluent Parry unit β
with bβc odd and for which {λ−→vD|λ ∈ Zs

β} = ∆(T s) does not hold. Hence the
following conjecture:

Conjecture 4.13 One has {λ−→vD|λ ∈ Zs
β} = ∆(T s) for any confluent Parry

unit β such that bβc is odd.

5 Inflation factors for Zs
β

The inflation property is characteristic of fractal structures, and naturally
appears in substitutive dynamical systems. This is why we are interested in
this section in the set of inflation factors for Zβ. Note that the set of inflation
factors for Zs

β is obviously a monoid for the multiplication. In particular, we are
interested in the set of integers i for which β iZs

β ⊂ Zs
β holds. As seen in Section

3.1, there exists a positive integer k such that βkZs
β ⊂ Zβ; as a consequence,

if 0 is an inner point of πH(T s), then there exist a positive integer n such that
βiZs

β ⊂ Zs
β for any integer i > n.

When bβc is even, one has σ′
β = S

bβc
2

c ◦σβ as computed in (1). As a consequence,
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and due to Lemma 4.1, if bβc is even, then for any positive integer i, β i is an
inflation factor for Zβ.

5.1 Case bβc odd

In this section, we assume that β is a confluent Parry unit of degree d, such
that bβc is odd. Then, one has the following results.

Proposition 5.1 The real number βd+1 is an inflation factor for Zs
β.

Proof When bβc is odd, σ′
β is defined as SN

c ◦ σd+1
β (5). Hence the dominant

eigenvalue of σ′
β is βd+1. Due to Lemma 4.1, this implies βd+1Zs

β ⊂ Zs
β. 2

Proposition 5.2 Let bβc be odd and d > 3. Then β is not an inflation factor
for Zs

β.

Proof Let bβc be odd and d > 3. First, suppose that bβc > 3. Let l = bβc+1
2

.
One has σ(d1) = 11bβc2. Hence the palindrome of length bβc+1 in Lσ is 1bβc+1.
Note also that σβ(d1) occurs as a factor of σ2

β((d − 1)1). As a consequence,

the word p = 1l2(1bβc2)bβc−11bβc3 = (1l21l−1)bβc1l3 is a prefix of ω′
r.

Let us recall that the Lebesgue measure of the tiles in the tiling associated with
Z+

β , or Zs
β satisfy the following relations: µ(1) = 1, µ(2) = Tβ(1) = β−bβc and

µ(3) = T
(2)
β (1) = β2 − bβcβ − bβc. Let p′ = 1l2. Since the word p′ is a prefix

of ω′
r, the real number x = lµ(1) + µ(2) = β − bβc−1

2
belongs to Zs

β. Moreover,

since p is a prefix of ω′
r as well, y1 = µ((1l21l−1)bβc1l) = bβcβ + bβc+1

2
and

y2 = µ((1l21l−1)bβc1l3) = bβcβ+ bβc+1
2

+β2−bβcβ−bβc = β2− bβc−1
2

belong to
Zs

β. Hence y1 and y2 belong to Zs
β, with |y2−y1| < 1 and y1 < βx < y2. Finally,

one checks that Lσ does not contain any word of the form {ij|i 6= 1, j 6= 1}.

Since intervals coded by the letter k are of length T
(k−1)
β (1), we obtain that

the distance between two β-integers that are not consecutive is stricty greater
than 1. Since Zs

β is locally isomorphic to Z+
β (Proposition 3.1), the distance

between two elements in Zs
β that are not consecutive is also greater than 1.

This implies that βx /∈ Zs
β.

Now, suppose that bβc = 1. Let p = σd
β(1)2. For any i ∈ {1, . . . , d − 1}, one

has σβ(i) = 1(i + 1) and σ′
β(i) = S |σd(1)|

c ◦ σd+1
β (i) = S |σd(1)|

c ◦ σd
β(1(i + 1)) =

σd
β((i + 1)1) due to (5).

One checks that σd(2)12 is a prefix of ω′
r, hence x = βd+1−βd+β = βd+β−1 ∈

Zs
β. On the other hand, σd(213) is a prefix of ω′

r, hence y1 = βd+1 + 1 and
y2 = βd+1+β belong to Zs

β, with y2−y1 = β−1 < 1. Since βx = β(βd+β−1),
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one has y1 < βx < y2, and the same argument as in the case bβc > 3 proves
that βx /∈ Zs

β. 2

5.2 The particular case of Tribonacci

We obtain the following result for the particular case of the Tribonacci nu-
meration system, introduced in Example 4.11.

Proposition 5.3 For the Tribonacci numeration system, one has βkZs
β ⊂ Zs

β

if and only if k 6= 1.

Proof As a consequence of Proposition 5.2, βZs
β * Zs

β. Let us prove that β2

and β3 are inflation factors for Zs
β. Since the set of inflation factors for Zs

β is
a monoid for the multiplication, this will imply that for any integer k > 2, βk

is an inflation factor for Zs
β.

The Tribonacci case is introduced in Example 4.11. The associated substi-
tution σ′ is defined by σ′(1) = 1213121213121, σ′(2) = 12131213121 and
σ′(3) = 1213121. Let us remind that f denotes the Parikh map, that is, for
any word u, f(u) = (|u|1, |u|2, |u|3). The images of the letters 1, 2 and 3 under
σ′ are of the form ABA′C, ABA′′ and AB respectively, where A, A′, A′′, B and
C are words such that f(A) = f(A′) = f(A′′) = f(σ2(1)), f(B) = f(σ2(2))
and f(C) = f(σ2(3)). As a consequence, β2 is an inflation factor for Zs

β. Simi-
larly, the images of 1, 2 and 3 under σ′ are of the form AB, AC and A, where
A, B and C are words such that f(A) = f(σ3(1)), f(B) = f(σ3(2)) and
f(C) = f(σ3(3)), hence β3 is an inflation factor for Zs

β. 2

Open questions

We believe that a closer study of the arithmetical automaton generated by a
confluent Parry unit β such that bβc is odd may provide a proof or a counter-
example to Conjecture 4.13.

We do not know whether, for a given confluent Parry unit, there exists N ∈ N
such that the set of powers of β which are inflation factors for Zs

β is {βi, i > N}.
If not the case, it is possible to compute the set of inflation factors that are of
the form βi, i positive integer ?

As a consequence of a study performed by Thuswaldner in [43], T is disk-
like for cubic confluent unit Parry numbers. However, we do not know for
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which confluent unit Parry numbers of higher degree
o

T is ball-like, and if this
property is equivalent to ∂T being homeomorphic to Sd−1.
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[7] P. Ambrož, Z. Masáková, E. Pelantová and C. Frougny. Palindromic complexity
of infinite words associated with simple Parry numbers. Ann. Inst. Fourier
(Grenoble), 56(7):2131–2160, 2006. Numération, pavages, substitutions.

[8] M. Baake. A note on palindromicity. Lett. Math. Phys., 49(3):217–227, 1999.

[9] J. Bernat. Computation of L⊕ for several cases of cubic Pisot numbers. Discr.
Math. Theor. Comp. Sci., to appear. 2005.

[10] V. Berthé and A. Siegel. Tilings associated with β-numeration and
substitutions. INTEGERS (Electronic Journal of Combinatorial Number Theory),
5(3):1–46, 2005. pp. A02, (Proceedings of the 2004 Number Theoretic Algorithms
and Related Topics Workshop).

21
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Théor. Nombres Bordeaux, to appear., 2006.

23


