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We have gathered here the proofs of a few selected results from [?].

1. A Lyapunov property for rough differential equations

We consider the general rough equation

dyt � bpytq dt� σpytq dxt , t P r0, 1s , y0 � a P Rd , (1.1)

where x is a given (deterministic) γ-rough path on r0, 1s, in the sense of [?,
Definition 2.1], for some fixed parameter γ P p 1

3 ,
1
2 q. In what follows, we will

write ‖x‖γ for ‖x‖γ;r0,1s. Let us also recall the two assumptions at the core of
our study:

Hypothesis (H1): b : Rd Ñ Rd, resp. σ : Rd Ñ LpRd,Rdq, is a C3, resp. C4,
vector field such that

sup
vPRd

‖pDp`qbqpvq‖   8 for ` P t1, 2, 3u ,

resp. sup
vPRd

‖pDp`qσqpvq‖   8 for ` P t0, . . . , 4u .
(1.2)

Hypothesis (H2): There exist C1, C2 ¡ 0 such that for every v P Rd, one has

xv, bpvqy ¤ C1 � C2‖v‖2 . (1.3)

This section is devoted to the proof of the following statement:

1
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Theorem 1.1. Under Hypothesis pH1q and for every initial condition y0 P Rd,
Equation (1.1) admits a unique solution y on r0, 1s, in the sense of [?, Definition
2.3]. Besides, if we assume in addition that Hypothesis pH2q holds true, then
there exists a constant C (which depends on b, σ, γ, C1, C2, but not on x) such
that

‖y1‖2 ¤ e�C2{2‖y0‖2 � C
 
1� ‖x‖µγ

(
, with µ :�

8

3γ � 1
. (1.4)

Under Hypothesis pH1q, the fact that there exists at most one solution to
(1.1) (in other words, the uniqueness part of our statement) is a standard result,
which can for instance be found in [?, Theorem 3.3]. On the opposite, due to the
unboundedness of b, it seems that the proof of existence of a global solution on
r0, 1s cannot be found as such in the literature, and we shall therefore provide
a few details below.

In brief, our strategy towards Theorem 1.1 is based on a careful analysis of
the natural discrete numerical scheme associated with (1.1), in the same spirit
as in [?]. Let us thus introduce the sequence of dyadic partitions Pn :� tti �
tni :� i

2n ; i � 0, . . . , 2nu of r0, 1s, and consider the discrete path yn defined on
Pn along the iterative formula

yn0 :� a , δyntiti�1
� bpyntiq δTtiti�1

� σpyntiq δxtiti�1
� pDσ � σqpyntiqx2

titi�1
,

(1.5)
where we recall that δTst � t � s. We shall also be led to handle the following
quantities associated with yn: for s, t P Pn,

Ly,nst :� δynst � σpyns q δxst � pDσ � σqpyns qx2
st

Ry,nst :� δynst � bpyns q δTst � σpyns q δxst � pDσ � σqpyns qx2
st

Qy,nst :� δynst � σpyns q δxst .

For every s   t P r0, 1s, we will write Js, tK � Js, tKn :� rs, ts X Pn, and set

N rf ; Cµ2 pJ`1, `2Kqs :� sup
s tPJ`1,`2K

‖fst‖
|t� s|µ

,

N rf ; Cµ1 pJ`1, `2Kqs :� N rδf ; Cµ2 pJ`1, `2Kqs .

The starting point of our analysis is the following local estimate for Ry,n,
which can be obtained as a straightforward application of the forthcoming
Proposition 2.7:

Proposition 1.2. Fix κ :� 1
2

�
1
3 � γ

�
. Then, under Hypothesis pH1q, there

exists a constant c0 (which depends only on b, σ, γ) such that if we set

T0 � T0p‖x‖q :� min
�

1,
�
c0t1� ‖x‖γu

��1{pγ�κq
	
,

one has, for every τ P Pn satisfying 0   τ ¤ T0 and every k ¤ 1{τ ,

N rRy,n; C3κ
2 pJkτ, pk � 1qτ ^ 1Kqs ¤ c0

 
1� }ynkτ }

(
. (1.6)
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Corollary 1.3. In the setting of Proposition 1.2, there exists a constant c1
(which depends only on b, σ, γ) such that for every τ P Pn satisfying 0   τ ¤ T0

and every k ¤ 1{τ , one has

N ryn; C0
1pJkτ, pk � 1qτ ^ 1Kqs ¤ c1t1� ‖ynkτ‖u , (1.7)

N ryn; Cγ1 pJkτ, pk � 1qτ ^ 1Kqs ¤ c1t1� ‖ynkτ‖ut1� ‖x‖γu (1.8)

and

N rQy,n; C2γ
2 pJkτ, pk � 1qτ ^ 1Kqs ¤ c1t1� ‖ynkτ‖ut1� ‖x‖γu . (1.9)

Proof. For every t P Jkτ, pk � 1qτ ^ 1K, write

ynt � ynkτ � bpynkτ q δTkτ,t � σpynkτ q δxkτ,t � pDσ � σqpynkτ qx2
kτ,t �Ry,nkτ,t ,

so that using (1.6), we get ‖ynt ‖ À 1 � ‖ynkτ‖ � ‖x‖γT γ0 , and (1.7) now follows
from the fact that ‖x‖γT γ0 ¤ ‖x‖γT γ�κ0 À 1.

Then, in a more general way, we have for every s   t P Jkτ, pk � 1qτ ^ 1K

δynst � bpyns q δTst � σpyns q δxst � pDσ � σqpyns qx2
st �Ry,nst

and
Qy,nst � bpyns q δTst � pDσ � σqpyns qx2

st �Ry,nst .

Injecting (1.6) and (1.7) into these expressions easily yields (1.8) and (1.9).

Corollary 1.4. Under Hypothesis pH1q, Equation (1.1) admits a unique global
solution y on r0, 1s. Besides, with the previous notations, there exists a subse-
quence of pynq, that we still denote by pynq, such that

max
i�0,...,2n

‖yti � ynti‖
nÑ8
ÝÑ 0 . (1.10)

Proof. Although the two local estimates (1.7)-(1.8) are not uniform as such
(that is, the right-hand side still depends on yn), they easily give rise, via an
obvious iterative procedure, to a uniform estimate for

N ryn; C0,γ
1 pJ0, 1Kqs :� N ryn; C0

1pJ0, 1Kqs �N ryn; Cγ1 pJ0, 1Kqs .

Still denoting by yn the continuous path obtained through the linear interpo-
lation of pyntiqi�0,...,2n , we thus get a uniform estimate for N ryn; C0,γ

1 pr0, 1sqs,
which, by a standard compactness argument, allows us to conclude about the
existence of a path y P Cγ1 pr0, 1sq, as well as a subsequence of yn (that we still

denote by yn), such that yn Ñ y in C0,γ1

1 pr0, 1sq for every 0   γ1   γ.

The fact that y actually defines a solution of (1.1) is then an easy consequence
of the bound (1.6). The details of the procedure can for instance be found at
the end of [?, Section 3.3]. Finally, and as we have already evoked it in the
beginning of the section, the uniqueness of this solution is a standard result
from the rough-path literature (see [?, Theorem 3.3]).

imsart-generic ver. 2014/10/16 file: rough-ergodicity-supplement-final.tex date: February 18, 2019



/ 4

Let us now turn to the proof of the second part of Theorem 1.1, that is to the
proof of (1.4) under Hypotheses pH1q and pH2q. To this end, we introduce, for
every n ¥ 0, the additional discrete path zn : Pn Ñ R defined for every t P Pn
as

znt :�
1

2
‖ynt ‖2 .

In the same vein as above, we will lean on the following quantities related to
zn: for every s, t P Pn,

Rz,nst :� δznst � xyns , bpy
n
s qy δTst � xyns , σpy

n
s qy δxst �Σpyns qx2

st

Lz,nst :� δznst � xyns , σpy
n
s qy δxst �Σpyns qx2

st

Qz,nst :� δznst � xyns , σpy
n
s qy δxst ,

where we have set

Σpyns q :� xσpyns q, σpy
n
s qy � xyns , pDσ � σqpy

n
s qy .

Just to be clear, the notation for the second-order term in Rz,n, Lz,n specifically
refers to the sum

Σpyns qx2
st �

 
xσjpy

n
s q, σkpy

n
s qy � xyns , pDσj � σkqpy

n
stqy

(
x2,jk
st .

Finally, along the same lines as in the subsequent Section 2, we set, if s � p
2n

and t � q
2n and G : J0, 1K Ñ Rd,

Mµ
�
G; Js, tK

�
:� sup

p¤i¤q

}Gtiti�1
}

|ti�1 � ti|µ
.

Let us start with a few estimates on Rz,n, for which Hypothesis pH2q is still
not required:

Lemma 1.5. Under Hypothesis pH1q and with the above notations, there exists
a constant c2 (which depends only on b, σ, γ) such that for every s   t P Pn,
one has

M3γ
�
Rz,n; Js, tK

�
¤ c2t1� ‖x‖2

γut1�N ryn; C0
1pJs, tKqs

2u . (1.11)

Proof. We have

δzntiti�1
� xynti , δy

n
titi�1

y �
1

2
xδyntiti�1

, δyntiti�1
y ,

and so, injecting (1.5) into the first term gives

Rz,ntiti�1
�

1

2
xδyntiti�1

, δyntiti�1
y � xσpyntiq, σpy

n
tiqyx

2
titi�1

� xσpyntiq δxtiti�1
�

1

2
Qy,ntiti�1

, Qy,ntiti�1
y

�

"
1

2
xσpyntiqδxtiti�1

, σpyntiqδxtiti�1
y � xσpyntiq, σpy

n
tiqyx

2
titi�1

*
� xσpyntiq δxtiti�1

�
1

2
Qy,ntiti�1

, Qy,ntiti�1
y , (1.12)
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where we have used the basic identity

x2;ij
st � x2;ji

st � δxist δx
j
st .

Finally, since Qy,ntiti�1
� bpyntiq δTtiti�1

�pDσ �σqpyntiqx2
titi�1

, it is immediate that

‖Qy,ntiti�1
‖ À |ti�1 � ti|t1� ‖ynti‖u � |ti�1 � ti|

2γ‖x‖γ .

Going back to (1.12), we get the conclusion.

Proposition 1.6. Assume Hypothesis pH1q holds true and let T0 � T0p‖x‖γq
be the time defined in Proposition 1.2. Then there exists a constant c3 (which
depends only on b, σ, γ) such that for every τ P Pn satisfying 0   τ ¤ T0 and
every k ¤ 1{τ , one has

N rRz,n; C3γ
2 pJkτ, pk � 1qτ ^ 1Kqs ¤ c3t1� ‖x‖3

γut1� znkτu .

Proof. Thanks to the forthcoming Lemma 2.4, we can rely on the estimate

N rRz,n; C3γ
2 pJkτ, pk � 1qτ ^ 1Kqs

ÀM3γ
�
Rz,n; Jkτ, pk � 1qτ ^ 1K

�
�N rδRz,n; C3γ

3 pJkτ, pk � 1qτ ^ 1Kqs .

As far as the first term is concerned, combining (1.11) and (1.7) allows us to
assert that

M3γ
�
Rz,n; Jkτ, pk � 1qτ ^ 1K

�
À t1� ‖x‖2

γut1� znkτu .

Then, for every s   u   t P Jkτ, pk � 1qτ ^ 1K, decompose δRz,nsut as

δRz,nsut � �δpxyn, bpynqyqsu δTut � δLz,nsut .

On the one hand, one has, by (1.7) and (1.8),��δpxyn, bpynqyqsu�� ¤
��xδynsu, bpynuqy��� ��xyns , δbpynqsuy��

À |u� s|γt1� ‖x‖γut1� znkτu .

On the other hand, combining Chen’s identity with elementary Taylor expan-
sions easily leads us to the decomposition

δLz,nsut �
 
Iisu � IIisu � IIIisu � IV isu

(
δxiut � δΣijpy

nqsu x2,ij
ut ,

with
Σijpy

nq :� xσipy
nq, σjpy

nqy � xyn, pDσi � σjqpy
nqy ,

Iisu :� xδynsu, δσipy
nqsuy , IIisu :� xσipy

n
s q, Q

y,n
su y ,

IIIisu :�

» 1

0

dξ xyns , Dσipy
n
s � ξ δynsuqQ

y,n
su y,
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and finally

IV isu :�

» 1

0

dξ xyns ,
�
Dσipy

n
s � ξ δynsuq �Dσipy

n
s q
�
pσjpy

n
s qqy δx

j
su .

With the above expressions in mind and using the three estimates (1.7), (1.8)
and (1.9), it is not hard to check that��δLz,nsut�� À |t� s|3γt1� ‖x‖3

γut1� znkτu ,

which achieves the proof of our assertion.

Let us finally involve Hypothesis pH2q into the picture:

Corollary 1.7. Assume Hypotheses pH1q and pH2q hold true and let T0 �
T0p‖x‖γq be the time defined in Proposition 1.2. Then there exist constants
c4, c5 (both depending only on b, σ, γ, C1, C2) such that if we set

T1 � T1p‖x‖γq :� min

�
T0,

2

C2
,

�
1

c4t1� ‖x‖3
γu


1{p3γ�1q

,

one has, for every τ P Pn satisfying 0   τ ¤ T1 and every k ¤ 1{τ ,

znpk�1qτ^1 ¤
�

1�
C2

2
τ
	
znkτ � c5t1� ‖x‖2

γuτ
2γ�1 , (1.13)

where we recall that the two parameters C1, C2 have been introduced in Hypoth-
esis (H2).

Proof. Using Hypothesis pH2q, we get that for every τ P Pn and every such
that k ¤ 1{τ ,

znpk�1qτ^1

� znkτ � xynkτ , bpy
n
kτ qy δTkτ,pk�1qτ^1

�xynkτ , σpy
n
kτ qy δxkτ,pk�1qτ^1 �Σpynkτ qx2

kτ,pk�1qτ^1 �Rz,nkτ,pk�1qτ^1

¤ p1� C2τqz
n
kτ � C1τ

�xynkτ , σpy
n
kτ qy δxkτ,pk�1qτ^1 �Σpynkτ qx2

kτ,pk�1qτ^1 �Rz,nkτ,pk�1qτ^1 ,

and so, thanks to Proposition 1.6, we can conclude that for every 0   τ ¤
min

�
T0,

2
C2

�
and every k ¤ 1{τ , one has

znpk�1qτ^1 ¤ p1� C2τqz
n
kτ � C1τ

� c4

�
‖x‖γτγ

 
1� pznkτ q

1
2

(
�
C2

4
τ3γt1� ‖x‖3

γut1� znkτu
�
, (1.14)

for some constant c4 � c4pb, σ, γ, C2q. Now, by the very definition of T1, we
know that if 0   τ ¤ T1, then

c4τ
3γt1� ‖x‖3

γu ¤ τ
�
c4τ

3γ�1t1� ‖x‖3
γu
�
¤ τ ,
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and thus we can recast relation (1.14) into:

znpk�1qτ^1 ¤

�
1�

3C2

4
τ



znkτ � C1τ � c4‖x‖γτγ

 
1� pznkτ q

1
2

(
To achieve the proof, it now suffices to use the basic inequality

c4‖x‖γτγpznkτ q
1
2 ¤

C2

4
τznkτ �

c24
C2

‖x‖2
γτ

2γ�1 .

At this point, we are very close to (1.4). With the notations of Corollary 1.7,
consider n large enough such that we can exhibit τ0 P Pn satisfying 1

2T1 ¤ τ0 ¤
T1, and then let K be the integer such that pK � 1qτ0 ¤ 1   Kτ0. Iterating the
bound (1.13) with τ � τ0 yields that

zn1 ¤
�

1�
C2

2
τ0

	K
zn0 � c5Kt1� ‖x‖2

γuτ
2γ�1
0

¤
�

1�
C2

2
τ0

	 1
τ0
zn0 � c5Kt1� ‖x‖2

γuτ
2γ�1
0

¤ e�C2{2zn0 � c5Kt1� ‖x‖2
γuτ

2γ�1
0 .

Thanks to (1.10), the conclusion is now immediate, by noting that Kτ2γ�1
0 À

T 2γ�2
1 and then using the explicit description of T1, T0 in terms of ‖x‖γ .

2. Singular rough equations

We fix two parameters for the whole section: γ P p 1
3 ,

1
2 q (for the general Hölder

roughness) and β P rγ, 1s (encoding the singularity at time 0).

2.1. Singular rough solutions and well-posedness results

We define singular extensions of the usual Hölder spaces through the following
seminorms: given a Banach space V , an interval I � r0, 1s and two parameters
α P p0, 1s, µ ¥ α, set, for any map f : I2 Ñ V , resp. f : I3 Ñ V ,

N rf ; Cα,µ2;β pI;V qs :� max

�
sup
s tPI

}fst}V
|t� s|

α , sup
0 s tPI

}fst}V
|t� s|

µ
sβ�1



, (2.1)

resp.

N rf ; Cα,µ3;β pI;V qs :� max

�
sup

s u tPI

}fsut}V
|t� s|

α , sup
0 s u tPI

}fsut}V
|t� s|

µ
sβ�1



, (2.2)

and then
Cα,µ1;β pI;V q :�

 
f P C1pI;V q : δf P Cα,µ2;β pI;V q

(
. (2.3)

imsart-generic ver. 2014/10/16 file: rough-ergodicity-supplement-final.tex date: February 18, 2019



/ 8

Of course, it holds that Cα,µi;β pI;V q � Cαi pI;V q and Cα,µi;1 pI;V q � Cµi pI;V q.

Let us now introduce the related notion of a singular rough solution. In the
sequel, given two Banach spaces V,W and a smooth map F : V Ñ W , we will
denote by Dp`qF : V Ñ LpV b`;W q the `-th derivative of F , understood in the
usual Fréchet sense.

Definition 2.1. Consider a path h P Cγ,11;β pr0, 1s;Rmq and a γ-rough path z �

pz, z2q, in the sense of [?, Definition 2.1]. Then, for any fixed Banach space
V , any interval I � rt0, t1s � r0, 1s, any v0 P V and any continuous, resp.
differentiable, vector field

B : V Ñ LpRm;V q , resp. Σ : V Ñ LpRn;V q ,

we call y P Cγ1 pI;V q a solution (on I) of the equation

dyt � Bpytq dht �Σpytq dzt , yt0 � v0 , (2.4)

if the two-parameter path Ry defined as

Ryst :� pδyqst �Bipysq pδh
iqst �Σjpysq pδz

jqst � pDΣj �Σkqpysq z2,jkst

belongs to Cγ,µ2;β pI;V q, for some parameter µ ¡ 1. Here, the notation DΣj � Σk
stands for

pDΣj �Σkqpvq :� pDΣjqpvqpΣkpvqq , for every v P V .

Let us now turn to the presentation of our main results about existence and
uniqueness of a solution for the rough singular equation (2.4). We will either
be concerned with the classical situation of bounded vector fields (Hypothesis
(VF1)) or the more general possibility of linear growth (Hypothesis (VF2)).

Hypothesis (VF1). The vector field B, resp. Σ, is C2, resp. C3, and

sup
vPV

}Dp`qBpvq}   8 for ` P t1, 2u

resp. sup
vPV

}Dp`qΣpvq}   8 for ` P t0, . . . , 3u .

Hypothesis (VF2). The vector field B, resp. Σ, is C2, resp. C3, and the fol-
lowing bounds hold true: for all ` P t0, 1, 2u,m P t0, . . . , 3u,

}pDp`qBqpvq} À 1� }v} , }pDpmqΣqpvq} À 1� }v} , (2.5)

and also, for every v, w P V ,

}pDΣ �Σqpvq} À 1�}v} , }pDΣ �Σqpvq � pDΣ �Σqpwq} À }v�w}t1�}v}u .
(2.6)
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Theorem 2.2 ((VF1)-situation). Under Hypothesis (VF1), and for any v0 P V ,
Equation (2.4) admits a unique solution on r0, 1s with initial condition v0, in
the sense of Definition 2.1.

Theorem 2.3 ((VF2)-situation). Under Hypothesis (VF2), the following as-
sertions hold true:

piq For any v0 P V , Equation (2.4) admits at most one solution on r0, 1s with
initial condition v0, in the sense of Definition 2.1.

piiq For every K ¥ 1, there exists MK ¡ 0 such that if

}v0} ¤ K , N rδh; Cγ,12;β pr0, 1sqs ¤ K and }z}γ;r0,1s ¤MK ,

then Equation (2.4) admits a unique solution y on r0, 1s with initial condition
v0, in the sense of Definition 2.1. Besides,

N ry; C0
1pr0, 1s;V qs �N ry; Cγ1 pr0, 1s;V qs ¤ CpKq , (2.7)

for some growing function C : R� Ñ R�.

Just as in the above Section 1, and in the same spirit as in [?], our proof for
both Theorem 2.2 and Theorem 2.3 relies on the examination of the discrete
scheme associated with the equation. Set ti � tni :� i

2n , Pn :� tti : i �
0, . . . , 2nu and define yn along the iterative formula: yn0 � v0 and

pδynqtiti�1
� Bpyntiq pδhqtiti�1

�Σpyntiq pδzqtiti�1
� pDΣ �Σqpyntiq z2titi�1

.

Then, for every s, t P Pn, set

Rnst :� pδynqst �Bpyns q pδhqst �Σpyns q pδzqst � pDΣ �Σqpyns q z2st ,

noting in particular that Rntiti�1
� 0. We will also consider the paths

Lnst :� pδynqst �Σpyns q pδzqst � pDΣ �Σqpyns q z2st
�
� Rnst �Bpyns qpδhqst

�
and

Qnst :� pδynqst �Σpyns q pδzqst .

Finally, for every s   t P r0, 1s, we will write Js, tK � Js, tKn :� rs, ts X Pn, and
we extend (or rather restrict) the norms (2.1)-(2.3) to discrete paths as

N rf ; Cα,µ2;β pJs, tK;V qs :� max

�
sup

u vPJs,tK

}fuv}V
|v � u|

α , sup
0 u vPJs,tK

||fuv}V
|v � u|

µ
uβ�1



,

with a similar definition for N rf ; Cα,µi;β pJs, tK;V qs, i P t1, 3u.

The whole key towards the desired estimates lies in the following “singular
sewing lemma”:
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Lemma 2.4. Let 0   α ¤ λ ¤ 1, µ1 ¥ 1 and µ2 ¡ 1. Then there exists a
constant cα,λ,µ1,µ2

¡ 0 such that for every path G : P2
n Ñ V and all s ¤ t P Pn,

one has

N rG; Cα,µ1^µ2

2;λ pJs, tK;V qs

¤ cα,λ,µ1,µ2

 
Mα,µ1

λ

�
G; Js, tK

�
�N rδG; Cα,µ2

3;λ pJs, tK;V qs
(
,

where we have set, if s � p
2n and t � q

2n ,

Mα,µ1

λ

�
G; Js, tK

�
:� max

�
sup
p¤i¤q

}Gtiti�1}

|ti�1 � ti|α
, sup
p�1¤i¤q

}Gtiti�1
}

|ti�1 � ti|µ1tλ�1
i



.

Proof. See Appendix 4.

2.2. Existence of a solution in the (VF2)-situation

Proposition 2.5. Let Hypothesis (VF2) prevail and assume additionally that

N rδh; Cγ,12;β pr0, 1s;V qs ¤ K , for some K ¥ 1 .

Then there exists a constant c0 (which depends only on B, Σ, γ and β) such
that if we set T0 � T0pKq :� min

�
1, pc0Kq

�6{p3γ�1q
�
, the following assertion

holds true for every k ¤ 1{T0: if }z}γ;r0,1s ¤
�
1� }ynkT0

}
��1

, then

N rLn; Cγ,12;β pJkT0, pk � 1qT0 ^ 1K;V qs ¤ c0K
 
1� }ynkT0

}
(
. (2.8)

Proof. The strategy consists in an iteration procedure over the points of the
partition. So, assume that (2.8) holds true on an interval J0, tqK, with tq ¤ T0

(for some time T0 to be determined along the proof). In other words, assume
that

N rLn; Cγ,12;β pJ0, tqK;V qs ¤ cK
 
1� }yn0 }

(
, (2.9)

where we denote from now on cK :� c0K (for some constant c0 to be fixed later
on). Due to (2.5) and (2.6), it is then easy to check that the following bounds
hold true as well:

N ryn; C0
1pJ0, tqKqs À t1� }yn0 }ut1� cKT

γ
0 u , (2.10)

and

max
�
N ryn; Cγ1 pJ0, tqKqs,N rQn; Cγ,2γ2;β pJ0, tqKqs

�
À t1� }yn0 }ut1� cKu . (2.11)

Now, in order to extend (2.9) on J0, tq�1K (assuming that tq�1 ¤ T0), let us first
apply Lemma 2.4 to Ln and assert that

N rLn; Cγ,12;β pJ0, tq�1Kqs ÀMγ,1
β

�
Ln; J0, tq�1Kqs �N rδLn; Cγ,3κ3;β pJ0, tq�1Kqs ,

(2.12)
where we set from now on κ :� 1

2

�
1
3 � γ

�
, so that 1   3κ   3γ.
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As far as the first term is concerned, we can use the fact that Rntiti�1
� 0,

and then (2.5) and (2.10), to deduce that

Mγ,1
β

�
Ln; J0, tq�1Kqs � N rBpynq δh; Cγ,12;β pJ0, tq�1Kqs

¤ K �N rBpynq; C0
1pJ0, tqKs À Kt1� }yn0 }ut1� cKT

γ
0 u .

In order to estimate N rδLn; Cγ,3κ3;β pJ0, tq�1Kqs, let us first rely on Chen relation

and decompose the increments of Ln as δLn � Ii δzi�IIi δzi�IIIij z2,ij , where
we have set

Iist :�

» 1

0

dλ pDΣiqpy
n
s � λpδynqstqQ

n
st , (2.13)

IIist :�

» 1

0

dλ
�
pDΣiqpy

n
s � λpδynqstq � pDΣiqpy

n
s q
�
Σjpy

n
s q pδz

jqst , (2.14)

IIIijst :� δpDΣi �Σjqpy
nqst . (2.15)

For Ii δzi, we can combine (2.5), (2.10) and (2.11) to get that

N rIi δzi; Cγ,3κ3;β pJ0, tq�1Kqs

À T
3pγ�κq
0

�
t1� }yn0 }ut1� cKu

�2
}z}γ;r0,1s

À t1� }yn0 }ut1� T
3pγ�κq
0 c2Ku �

�
t1� }yn0 }u}z}γ;r0,1s

	
À t1� }yn0 }ut1� T

3pγ�κq
0 c2Ku ,

where we have used the assumption t1 � }yn0 }u}z}γ;r0,1s ¤ 1 to derive the third
inequality.

With similar arguments, we can show that

N rIIi δzi; Cγ,3κ3;β pJ0, tq�1Kqs

À t1� }yn0 }ut1� T
3pγ�κq
0 c3Ku �

�
t1� }yn0 }u

2}z}2γ;r0,1s

	
À t1� }yn0 }ut1� T

3pγ�κq
0 c3Ku .

Finally, thanks to the second estimate in (2.6), we obtain that

N rIIIij z2,ij ; Cγ,3κ3;β pJ0, tq�1Kqs À t1� }yn0 }ut1� T
3pγ�κq
0 c2Ku .

Going back to (2.12), we have shown that, for some constant c1 depending
only on B, Σ and pγ, κ, βq,

N rLn; Cγ,12;β pJ0, tq�1Kqs ¤ t1� }yn0 }u �
�
c1Kt1� T

3pγ�κq
0 c3Ku

�
.

Let us now set c0 :� 2c1, cK :� c0K and T0 :� minp1, p2c1Kq
�1{pγ�κqq, in such

a way that

c1Kt1� T
3pγ�κq
0 c3Ku ¤ cK ,
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and accordingly N rLn; Cγ,12;β pJ0, tq�1Kqs ¤ cKt1� }yn0 }u as desired.

This iteration procedure allows us to extend the bound (2.9) over the interval
J0, T0K. Then it is easy to see that the very same arguments can be used for any
interval JkT0, pk � 1qT0K, which completes the proof.

Corollary 2.6. Let Hypothesis (VF2) prevail and assume additionally that

N rδh; Cγ,12;β pr0, 1s;V qs ¤ K and }v0} ¤ K , for some K ¥ 1 .

Then there exists MK ¡ 0 such that if }z}γ;r0,1s ¤MK , one has

sup
n¥0

max
�
N ryn; C0

1pJ0, 1Kqs,N ryn; Cγ1 pJ0, 1Kqs,

N rQn; Cγ,2γ2;β pJ0, 1Kqs,N rLn; Cγ,12;β pJ0, 1Kqs
	
¤ CpKq ,

(2.16)

for some growing function C : R� Ñ R�. As a result, under the same assump-
tions and if }z}γ;r0,1s ¤MK , it holds that

sup
n¥0

N rRn; Cγ,3γ2;β pJ0, 1Kqs ¤ DpKq , (2.17)

for some growing function D : R� Ñ R�.

Proof. Using (2.8) as well as its spin-offs (2.10) and (2.11), it is not hard to
exhibit a growing sequence pckq that depends only on pB,Σ, γ, βq (and not on
K) such that the following property holds true: for every k ¥ 0, if }z}γ;r0,1s ¤
p1� ckt1�Kuq�1, then one has both

N ryn; C0
1pIkqs ¤ ck�1t1�Ku (2.18)

and

max
�
N ryn; Cγ1 pIkqs,N rQn; Cγ,2γ2;β pIkqs,N rLn; Cγ,12;β pIkqs

�
¤ ck�1t1�K2u ,

(2.19)
where we have set Ik :� JkT0, pk � 1qT0K. As a result, if we denote by NK
the smallest integer such that T0NK ¥ 1 and assume that }z}γ;r0,1s ¤ MK :�
p1 � cNK p1 � Kqq�1, then both bounds (2.18) and (2.19) hold true for k �
0, . . . , NK � 1. The extension of these local bounds into global ones (that is, on
the interval J0, 1K) is then a matter of standard arguments, which achieves the
proof of (2.16).

As far as (2.17) is concerned, apply first Lemma 2.4 to the path Rn, which,
since Rntiti�1

� 0, entails that

N rRn; Cγ,3γ2;β pJ0, 1K;V qs À N rδRn; Cγ,3γ3;β pJ0, 1K;V qs
(
.
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Then, just as in the proof of Proposition 2.5, observe that we can decompose
the increments of Rn as

pδRnqsut � δBpynqsupδhqut

� pδLnqsut � δBpynqsupδhqut � Iisuδz
i
ut � IIisuδz

i
ut � IIIijsuz

2,ij
ut ,

(2.20)

where the paths pI, II, IIIq have been defined through (2.13)-(2.15). The con-
clusion is now easy to derive from the bound (2.16).

Proof of Theorem 2.3, point piiq. Consider the sequence (still denoted by yn)
of continuous paths on r0, 1s defined through the linear interpolation of the
points of the previous (discrete) sequence yn. Define MK as in Corollary 2.6
and assume that }z}γ;r0,1s ¤ MK . Then it is readily checked that (2.16) gives
rise to a uniform bound for N ryn; Cγ1 pr0, 1s;V qs, and we can therefore conclude
about the existence of a path y P Cγ1 pr0, 1s;V q, as well as a subsequence of
yn (that we still denote by yn), such that yn Ñ y in Cκ1 pr0, 1s;V q for every
0   κ   γ.

The fact that y actually defines a solution of (2.4) is essentially obtained by
passing to the limit in the uniform estimate (2.17). The details of this (easy)
procedure can for instance be found at the end of [?, Section 3.3]. As for the
bound (2.7), it is a straightforward consequence of (2.16).

2.3. Existence of a solution in the (VF1)-situation

Under Hypothesis (VF1), the exhibition of a uniform bound for

N rRn; Cγ,µ2;β pJ0, 1Kqs (with µ ¡ 1)

essentially follows the same general procedure as in the classical (’non-singular’)
situation treated in [?] or [?]. As we here consider slightly more specific topolo-
gies, let us briefly review the result at the core of this procedure.

Proposition 2.7. Let Hypothesis (VF1) prevail and assume additionally that

N rδh; Cγ,12;β pr0, 1s;R
mqs ¤ K , for some K ¥ 1 .

Also, fix a parameter κ such that 1   3κ   3γ. Then there exists a a constant
c0 (which depends only on B, Σ, γ, β and κ) such that if we set

T0 � T0p‖z‖γ ,Kq :� min
�

1,
�
c0
 
1� ‖z‖γ

(
K
	�1{pγ�κq	

,

the following property holds true: for every 0   T1   T0 and every k ¤ 1{T1,

N rRn; Cγ,3κ2;β pJkT1, pk � 1qT1 ^ 1Kqs ¤ c0K
 
1� }ynkT1

}
(
. (2.21)
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Proof. Just as in the proof of Proposition 2.5, the strategy consists in an itera-
tion procedure over the points of Pn. The argument actually relies on the follow-
ing two readily-checked assertions: piq If N rRn; Cγ,3κ2;β pJs, tKqs ¤ c0K

 
1� }yns }

(
,

then one has

max
�
N ryn; Cγ1 pJs, tKqs,N rQn; Cγ,2γ2;β pJs, tKqs

�
¤ c1K

�
‖z‖γ �

 
1� ‖yns ‖

( 
1� c0

( 
1�K|t� s|γ

(�
for some constant c1 that depends only on pB,Σq; piiq With decomposition
(2.20) in mind, one has

N rδRn; Cγ,3κ3;β pJs, tKqs

¤ c2 |t� s|
3pγ�κq �N ryn; Cγ1 pJs, tKqst1�K � ‖z‖2

γu �N rQn; Cγ,2γ2;β pJs, tKqs‖z‖γ
�

for some constant c2 that depends only on pB,Σq.

It is now easy to inject piq and piiq into the iteration scheme exhibited in the
previous section for Ln (note that we can additionally use the fact that Rntiti�1

�
0 here). The details of the procedure are therefore left to the reader.

Proof of the existence statement in Theorem 2.2. Starting from (2.21) and us-
ing the same steps as in the proof of Corollary 2.6, one easily gets uniform
estimates for both N ryn; Cγ1 pJ0, 1Kqs and N rRn; Cγ,3κ2;β pJ0, 1Kqs. The derivation of
a solution then follows from the same convergence argument as in the above
proof of Theorem 2.3, point piiq.

2.4. Uniqueness of the solution

It is a well-known fact that uniqueness statements are usually less demanding
than existence statements as far as global boundedness of the vector fields is
concerned. Accordingly, in opposition with the previous existence proof (where
specific sharp estimates had to be displayed), the strategy towards uniqueness
essentially follows the same lines as in the standard situation. We briefly review
the transposition of the main arguments in this singular setting.

Assume here that either Hypothesis (VF1) or Hypothesis (VF2) prevails and

consider two solutions U, rU of (2.4) with identical initial conditions. Then set

Rst � Rpyqst :� pδyqst �Bipysq pδh
iqst �Σjpysq pδz

jqst � pDΣj �Σkqpysq z2,jkst ,

Qst � Qpyqst :� pδyqst �Σjpysq pδz
jqst ,

and similarly rR :� Rpryq, rQ :� Qpryq. Also, fix µ, resp. µ̃ ¡ 1 such that

N rR; Cγ,µ2;β pr0, 1sqs   8, resp. N r rR; Cγ,µ2;β pr0, 1sqs   8, as well as a parameter

κ satisfying both 1
3   κ   γ and 3κ   µ^ µ̃.

imsart-generic ver. 2014/10/16 file: rough-ergodicity-supplement-final.tex date: February 18, 2019



/ 15

Lemma 2.8. There exists a finite constant cR, rR ¡ 0 such that for every s  
t P Pn, one has

N rR� rR; Cκ,3κ2;β pJs, tKqs ¤ cR, rR �
 
2�nε �N rδpR� rRq; Cκ,3κ3;β pJs, tKqs

(
, (2.22)

where ε :� infpγ � κ, pµ^ µ̃q � 3κq ¡ 0.

Proof. It is a mere application of Lemma 2.4. Observe indeed that

Mκ,3κ
β

�
R� rR; Js, tK

�
¤ Mκ,3κ

β

�
R; Js, tK

�
�Mκ,3κ

β

� rR; Js, tK
�

¤ cR, rR t2
�npγ�κq � 2�npµ1�3κq � 2�npµ2�3κqu .

Lemma 2.9. There exists a finite constant Cy,ry ¡ 0 such that for every s  
t P Pn, one has

N rδpR� rRq; Cκ,3κ3;β pJs, tKqs ¤ Cy,ry |t� s|
γ�κ N κ,2γ

β

�
py, ryq; Js, tK� , (2.23)

where we have set

N κ,2γ
β

�
py, ryq; Js, tK� :�

N ry � ry; C0
1pJs, tKqs �N ry � ry; Cκ1 pJs, tKqs �N rQ� rQ; Cκ,2γ2;β pJs, tKqs .

(2.24)

Proof. First, note that the increments of R (or rR) can be decomposed just as
the increments of Rn in the proof of Corollary 2.6 (see (2.20)), which allows us
to write

δpR� rRqsut � δpBpyq �Bpryqqsu δhut
�
�
Iisu �

rIisu� δziut � �
IIisu �

�IIisu� δziut � �
IIIijsu �

�IIIijsu� z2,ijut ,

where the paths I, II, III, resp. rI,�II,�III, are defined along (2.13)-(2.15) (re-

place pyn, Qnq with py,Qq, resp. pry, rQq). The bound (2.23) is then obtained
through standard differential-calculus arguments based on relations (2.5) and (2.6).

Proof of Theorem 2.3, point piq, and uniqueness property of Theorem 2.2. Consider
the above setting and notations. First, going back to the very definitions of
pK,Rq and p rK, rRq, it is not hard to check that for every s   t P Pn, one has,
with the notation (2.24),

N κ,2γ
β

�
py, ryq; Js, tK�

¤ cy,ry

!
}ys � rys} � |t� s|

κN κ,2γ
β

�
py; ryq; Js, tK��N

�
R� rR; Cκ,3κ2;β pJs, tK

�)
,

where the constant cy,ry does not depend on n. We can then combine (2.22)-
(2.23) and assert that for every s   t P Pn,

N κ,2γ
β

�
py, ryq; Js, tK� ¤ cy,ry

!
}ys � rys} � |t� s|

γ�κN κ,2γ
β

�
py; ryq; Js, tK�� 2�nε

)
.
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The uniqueness result is now immediate. Indeed, for T0 ¡ 0 such that cy,ry T
γ�κ
0 ¤

1
2 , and since y0 � ry0, we first get that

N
�
y � ry; C0

1pJ0, T0Kq
�
¤ N κ,2γ

β

�
py, ryq; J0, T0K

�
¤ Cy,ry � 2

�nε ,

and accordingly yt � ryt for every t P r0, T0s. The argument can then be repeated
on rT0, 2T0s, r2T0, 3T0s, and so on.

3. Singular paths and canonical lift

Let us recall that the space E2
γ pr0, 1s;Rdq, as well as the notation ~f~1;γ , have

been introduced in [?, Section 4.1]. Besides, let us denote by C1pr0, 1s;Rdq the
space of differentiable Rd-valued paths on r0, 1s with continuous derivative.

Proposition 3.1. Let z P Cγ1 pr0, 1s;Rdq be a path that can be canonically
lifted into a rough path Lpzq, in the sense of [?, Definition 2.2], and let g P
E2
γ pr0, 1s;Rdq, resp. g P C1pr0, 1s;Rdq. Then z � g can be canonically lifted into

a rough path Lpz � gq and it holds that

N rLpz � gq2 � Lpzq2; C2γ,1�γ
2,γ pr0, 1s;Rd,dqs

¤ cγ
 
1� ~g~2

1;γ �N rz; Cγ1 pr0, 1s;Rdqs2
(
,

(3.1)

resp.

N rLpz � gq2 � Lpzq2; C1�γ
2 pr0, 1s;Rd,dqs

¤ cγ
 
1�N rg; C1pr0, 1s;Rdqs2 �N rz; Cγ1 pr0, 1s;Rdqs2

(
,

(3.2)

for some constant cγ that depends only on γ.

The two following results, which are extensively used in our analysis, are
immediate consequences of (3.1) and (3.2).

Corollary 3.2. Let z P Cγ1 pr0, 1s;Rdq be a path that can be canonically lifted
into a rough path Lpzq and let g P E2

γ pr0, 1s;Rdq, resp. g P C1pr0, 1s;Rdq. Then,
in the setting of Definition 2.1 (with β :� γ, resp. β � 1), a path y : r0, 1s Ñ V
is a solution of

dyt � Bpytq dht �Σpytq dLpz � gqt , y0 � v0 ,

if and only if y is a solution of

dyt �
�
Bpytq dht �Σpytq dgt

�
�Σpytq dLpzqt , y0 � v0 .

Corollary 3.3. Let z P Cγ1 pr0, 1s;Rdq be a path that can be canonically lifted
into a rough path Lpzq and let g P E2

γ pr0, 1s;Rdq. Then it holds that

‖Lpz � gq‖γ;r0,1s ¤ cγ
 
1� ‖Lpzq‖2

γ;r0,1s � ~g~2
1;γ

(
, (3.3)

for some constant cγ that depends only on γ.
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We will only prove Proposition 3.1 in the situation where g P E2
γ pr0, 1s;Rdq,

but the proof when g P C1pr0, 1s;Rdq could be derived from the very same
arguments.

Lemma 3.4. Let g P E2
γ pr0, 1s;Rdq and denote by gn the linear interpolation of

g along the dyadic partition Pn of r0, 1s. Then it holds that

sup
n

sup
tPp0,1szPn

t1�γ |pgnq1t| À ~g~1;γ (3.4)

and for every 0   γ1   γ,

sup
tPp0,1szPn

t1�γ
1

|pgn � gq1t| À ~g~2;γ2�npγ�γ
1q . (3.5)

Proof. Pick t P ptni , t
n
i�1q, for some i � 0, . . . , 2n. One has

t1�γ |pgnq1t| �
t1�γ

tni�1 � tni
|gtni�1

� gtni | ¤ ~g~1;γ t
1�γ

» 1

0

dr

ptni � rptni�1 � tni qq
1�γ

.

If i � 0, then t ¤ tni�1 � tni and so t1�γ |pgnq1t| ¤ ~g~1;γ

³1

0
dr
r1�γ . If i ¥ 1, then

t
2 ¤

i�1
2n�1 ¤

i
2n � tni , and so t1�γ |pgnq1t| ¤ ~g~1;γpt{t

n
i q

1�γ ¤ ~g~1;γ21�γ , which
completes the proof of (3.4).

For (3.5), note first that if i � 0, then t ¤ 2�n and so by (3.4) we get in this
case

t1�γ
1

|pgn � gq1t| ¤ 2�npγ�γ
1q
 
t1�γ |pgnq1t| � t1�γ |g1t|

(
À ~g~1;γ2�npγ�γ

1q .

If i ¥ 1, then

t1�γ
1

|pgn � gq1t| �
t1�γ

1

tni�1 � tni

���� » tni�1

tni

tg1r � g1tu dr

����
À ~g~2;γ

t1�γ
1

tni�1 � tni

» tni�1

tni

|t� u|

ptni q
2�γ

du

À ~g~2;γ

�
t

tni


1�γ1� tni�1 � tni
tni


1�pγ�γ1q

2�npγ�γ
1q .

As above, we can conclude by using the fact that in this case, one has

max
� t

2
, tni�1 � tni

�
¤ tni .
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Proof of Proposition 3.1. Denote by zn, resp. gn, the linear interpolation of z,
resp. g, along the dyadic partition Pn. By (3.5), the convergence of gn to g (and

accordingly the convergence of zn � gn to z � g) in Cγ
1

1 pr0, 1s;Rdq is immediate,
since

|δpgn � gqst| ¤

» t
s

|pgn � gq1u| du À 2�npγ�γ
1qpt� sq

» 1

0

dr

ps� rpt� sqq1�γ1

À 2�npγ�γ
1qpt� sqγ

1

.

Then, by setting x :� z�g, we have the following readily-checked decomposition

x2,n
st �z2,nst �

» t
s

pδznqsubdg
n
u �

�» t
s

pδznqutbdg
n
u


�
�

» t
s

pδgnqsubdg
n
u . (3.6)

Now consider the integral
³t
s
pδzqsu b dgu, which, due to the regularity of g, can

be interpreted in the classical Lebesgue sense, and use (3.4)-(3.5) to assert that���� » t
s

pδznqsu b dgnu �

» t
s

pδzqsu b dgu

����
¤

» t
s

|δpzn � zqsu| b |dgnu | �

» t
s

|pδzqsu| b |dpgn � gqu|

À N rzn � z; Cγ
1

1 pr0, 1s;R
dqs

» t
s

|u� s|γ
1

u1�γ
du

�N rz; Cγ1 pr0, 1s;Rdqs2�npγ�γ
1q

» t
s

|u� s|γ

u1�γ1
du

À |t� s|γ�γ
1 
N rzn � z; Cγ

1

1 pr0, 1s;R
dqs � 2�npγ�γ

1q
( » 1

0

dr

r1�pγ�γ1q
.

We can treat the two other summands in (3.6) along the same lines, which

leads us to the desired conclusion, namely N rx2,n � z2,n; C2γ1

2 pr0, 1s;Rdqs Ñ 0
as nÑ8. We even get the explicit description

Lpz � gq2st � Lpzq2st �

» t
s

pδzqsu b dgu �

�» t
s

pδzqut b dgu


�
�

» t
s

pδgqsu b dgu .

With this decomposition in hand, it is now easy to exhibit the bound (3.1): for
instance, for every 0   s   t,���� » t

s

pδzqsu b dgu

����
¤ ~g~1;γN rz; Cγ1 pr0, 1s;Rdqs

» t
s

|u� s|γ

u1�γ
du

¤ ~g~1;γN rz; Cγ1 pr0, 1s;Rdqs |t� s|1�γ
» 1

0

rγ

ps� rpt� sqq1�γ
dr

¤ ~g~1;γN rz; Cγ1 pr0, 1s;Rdqs

min

�
|t� s|2γ

» 1

0

dr

r1�2γ
, sγ�1|t� s|1�γ

» 1

0

rγ dr



.
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4. Proof of Lemma 2.4

The argument relies on the algorithm introduced in [?, Section 6] and which aims
at “removing the points one by one” between tp and tq�1 in a tricky way. First,
just as in [?, Section 3.1], and given any (not necessarily uniform) subpartition
Π of Pn, we define the path GΠ as follows: for every s ¤ t P Pn,

GΠ
st :�

$'&'%
0 if ps, tq XΠ � H

pδGqsut if ps, tq XΠ � u

Gst �Gst̃1 �
°`�1
k�1Gt̃k t̃k�1

�Gt̃`t if ps, tq XΠ � tt̃1, ..., t̃`u

.

With this notation, if s � tp and t � tq�1, one has in particular

Gst � G
Js,tK
st �

q̧

i�p

Gtiti�1
. (4.1)

As far as the sum is concerned, we have on the one hand, since µ1 ¥ 1,

s1�λ
�� q̧

i�p

Gtiti�1

�� ¤Mα,µ1

λ

�
G; Js, tK

�
�
q̧

i�p

|ti�1�ti|
µ1 ¤Mα,µ1

λ

�
G; Js, tK

�
�|t�s|µ1 ,

and on the other hand�� q̧

i�p

Gtiti�1

�� ¤Mα,µ1

λ

�
G; Js, tK

�
�

"
|tp�1 � s|

α
�

q̧

i�p�1

tλ�1
i |ti�1 � ti|

µ1

*
,

with

q̧

i�p�1

tλ�1
i |ti�1�ti|

µ1 �
1

2npλ�µ1�1q

q̧

i�p�1

1

i1�λ
À

1

2npλ�µ1�1q
|q�1�p|λ À |t�s|λ .

Going back to (4.1), it remains us to bound }G
Js,tK
st }. For the sake of clarity, let

us temporarily change the notation by setting, for s, t fixed as above,

tk :� t�
k

2n
, k � 0, . . . , N , where N :� 2npt� sq p� q � 1� p q . (4.2)

We make this (unnatural) choice to “reverse” the time, that is to consider a
decreasing function k ÞÑ tk, in a such a way that the below notations will be
consistent with those of [?, Section 6] (and especially those of [?, Proposition
6.2]). Consider indeed the algorithm described in [?, Section 6] to remove one by
one the points between 0 and N , and accordingly the points of Pn between s and
t (just use the transformation (4.2) to connect one with the other). Denote by
pΠmqm�0,...,N�1 the decreasing sequence of partitions of Js, tK that is associated
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with this algorithm. With the notations of [?, Section 6], it is readily checked
that

GΠm

st �GΠm�1

st � pδGqt
k
�
m
tkm tk�m

, GΠ0

st � G
Js,tK
st , GΠN�1

st � 0 ,

and so

G
Js,tK
st �

N�1̧

m�1

pδGqt
k
�
m
tkm tk�m

. (4.3)

Now, still with the notations of [?, Section 6] in mind, write

Ņ

m�0

pδGqt
k
�
m
tkm tk�m

�
M�1¸
r�1

"
pδGqstkAr�1�1

t
k
�

Ar�1�1

�
Aŗ

m�Ar�1�2

pδGqt
k
�
m
tkm tk�m

*
and so

�� Ņ

m�0

pδGqt
k
�
m
tkm tk�m

�� ¤ N rδG; Cα,µ2

3;λ pJs, tKqs�

M�1¸
r�1

"
|tk�Ar�1�1

� s|α �
Aŗ

m�Ar�1�2

tλ�1

k�m
|tk�m � tk�m |

µ2

*
. (4.4)

Observe at this point that

|tk�Ar�1�1
� s|α � |t� s|α �

����1� k�Ar�1�1

N

����α
and

tλ�1

k�m
|tk�m � tk�m |

µ2 ¤ |t� s|λ�µ2�1 �
1

Nµ2

����1� k�m
N

����λ�1

|k�m � k�m|
µ2 .

Going back to (4.4), we get that

�� Ņ

m�0

pδGqt
k
�
m
tkm tk�m

�� ¤ |t� s|
αN rδG; Cα,µ2

3;λ pJs, tKqs �QNα,λ,µ2
, (4.5)

where we have set

QNα,λ,µ2
:�

M�1¸
r�1

"����1� k�Ar�1�1

N

����α � 1

Nµ2

Aŗ

m�Ar�1�2

����1� k�m
N

����λ�1

|k�m � k�m|
µ2

*
.

Therefore, we are exactly in a position to apply [?, Proposition 6.2] and assert
that supN¥1Q

N
α,λ,µ2

  8. The combination of (4.3) and (4.5) then gives us the
desired estimate, namely

}G
Js,tK
st } À |t� s|

αN rδG; Cα,µ2

3;λ pJs, tKqs .
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The estimation of s1�λ}G
Js,tK
st } is easier. Indeed, with decomposition (4.3) in

mind, we simply use the fact that the above algorithm also satisfies

|k�m � k�m| ¤
2N

pN �m� 1q
for every m � 1, . . . , N � 1 ,

and consequently

s1�λ}G
Js,tK
st } ¤

N�1̧

m�1

t1�λ
k�m

}pδGqt
k
�
m
tkm tk�m

}

¤ N rδG; Cα,µ2

3;λ pJs, tKqs �
N�1̧

m�1

|tk�m � tk�m |
µ2

À |t� s|
µ2 N rδG; Cα,µ2

3;λ pJs, tKqs .

5. Proof of [?, Lemma 8.8]

For the sake of clarity, and with the setting described in [?, Section 4.2] in mind,
let us recall the statement of the result under consideration:

Lemma 5.1. Let α ¡ 0 and assume that for some (fixed) calibration of the
scheme, there exists η P p0, 1q such that for all k ¥ 1, ` ¥ 0 and K ¡ 0 ,

PpEk|Ek�1q ¥ η , PpFk,`|Ek�1q ¤ 2�α` and ∆τk ¥ ak a.s., (5.1)

where ak ¥ 1 for every k ¥ 1. Then there exists a constant C2
η,α ¡ 0 and for

every p ¡ 0 there exists a constant C1
η,α,p ¡ 0 such that for every k ¥ 1,

E
��

sup
tPp0,1s

t1�γ |Dτk
τm�1,τmptq|

	��� Ek� ¤ C1
η,α,p

a
1{2�H
k ηpk�mq{p

, m P t1, . . . , k � 1u ,

(5.2)

E
��

sup
tPp0,1s

t1�γ |Dτk
�8,0ptq|

	��� Ek� ¤ C1
η,α,p

a
1{2�H
k ηk{p

, (5.3)

and

max
�
E
��

sup
tPp0,1s

t1�γ |Dτk
τk�1,τk

ptq|
	��� Ek�,E�� sup

tPp0,1s

t1�γ |D0
�8,0ptq|

	�	
¤ C2

η,α .

(5.4)

The proof of this result will rely on the following general estimate, which
somehow allows us to “fix” the duration of Attempt m and to go back to a
conditioning by Em�1.

Lemma 5.2. In the setting of Lemma 5.1, fix m ¥ 1 and, on the event Em,
consider a generic process pRtqt¡τm�1

. Besides, on the event Fm,` (` ¥ 0), set
∆pm, `q :� ∆τm ¥ 1 (noticing that ∆τm is deterministic in this case). Then,
for every p ¡ 0, it holds that

ErRτm |Eks ¤ cη,αη
pm�kq{p sup

`¥0
Er|Rτm�1�∆pm,`q|

2p|Em�1s
1
2p , (5.5)
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where cη,α depends on η and α only.

Proof. First, one can readily check that

ErRτm |Ems �
¸
`¥0

ErRτm�1�∆pm,`q|Fm,`sPpFm,`|Emq.

By the Cauchy-Schwarz inequality and the fact that Fm,` � Em�1, one has then

ErRτm�1�∆pm,`q|Fm,`s �
ErRτm�1�∆pm,`q1Fm,` |Em�1s

PpFm,`|Em�1q

¤ ErR2
τm�1�∆pm,`q|Em�1s

1
2PpFm,`|Em�1q

� 1
2 .

As Fm,` � Em � Em�1, we can obviously write

PpFm,`|Emq �
PpFm,`|Em�1q

PpEm|Em�1q
,

so that, thanks to our assumption (5.1), the following holds true:

ErRτm |Ems ¤ η�
1
2

¸
`¥0

ErR2
τm�1�∆pm,`q|Em�1s

1
2PpFm,`|Em�1q

1
2 .

Invoking our assumption (5.1) again, we deduce that

ErRτm |Ems ¤ η�
1
2

¸
`¥0

2�
α`
2 ErR2

τm�1�∆pm,`q|Em�1s
1
2

which yields:

ErRτm |Ems ¤ cη,α � sup
`¥0

ErR2
τm�1�∆pm,`q|Em�1s

1
2 . (5.6)

Since Ek � Em for k ¥ m, a similar Cauchy-Schwarz argument as above implies
that for a given random variable S and for every p ¡ 0,

|ErS|Eks| ¤
Er|S|p|Ems

1
p

PpEk|Emq
1
p

. (5.7)

Using that PpEk|Emq ¥ ηk�m, we finally obtain the desired control:

ErRτm |Eks ¤ cη,αη
pm�kq{p sup

`¥0
Er|Rτm�1�∆pm,`q|

2p|Em�1s
1
2p , (5.8)

where cη,α depends on η and α only.
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Proof of Lemma 5.1. The reasoning is divided in three steps.

Step 1. Case 1 ¤ m   k. Since ∆τk ¥ ak, it is readily checked that for all
m   k, t P r0, 1s and r P rτm�1, τms, one has t � τk � r ¥ ak. We then deduce
from [?, Lemma 8.7] that

sup
tPr0,1s

t1�γ |Dτk
τm�1,τmptq| ¤ sup

tPr0,1s

|Dτk
τm�1,τmptq| ¤ cHa

H�1{2
k Rτm (5.9)

where we have set, for every t ¡ τm�1,

Rt :� pt� τm�1q
�1 ��Wt �Wτm�1

��� » t
τm�1

pt� 1� rq�2 |Wt �Wr| dr .

Since
³t
τm�1

pt � 1 � rq�3{2dr ¤ 2 for every t ¡ τm�1, one can first check by

Jensen’s inequality that�» t
τm�1

pt� 1� rq�2 |Wt �Wr| dr

�p

¤ cp

» t
τm�1

pt� 1� rq�3{2
�
pt� rq�

1
2 |Wt �Wr|

	p
dr .

Then it follows from the scaling property of the Brownian motion that for every
` ¥ 0,

Er|Rτm�1�∆pm,`q|
2p|Em�1s ¤ cp ,

where cp depends on p only (and the notation ∆pm, `q has been introduced in
Lemma 5.2). Using (5.5), we get the desired bound (5.2).

Step 2. Case m � k ¥ 1. Let us write here

sup
tPp0,1s

t1�γ |Dτk
τk�1,τk

ptq| ¤ sup
tPp0,1s

|Dτk
τk�1,τk�1ptq|� sup

tPp0,1s

t1�γ |Dτk
τk�1,τk

ptq| . (5.10)

The first term in the right-hand side can then be treated along the very same
arguments as above (using p � 1{2 in (5.5)), which gives us directly

E
��

sup
tPp0,1s

|Dτk
τk�1,τk�1ptq|

	��� Ek� ¤ c1η,α . (5.11)

On the other hand, using the bound of [?, Lemma 8.7] again, we get that

sup
tPp0,1s

t1�γ |Dτk
τk�1,τk

ptq| ¤ cHRτk ,

with, for every t ¡ τk�1,

Rt :� |Wt �Wt�1| �

» t
t�1

|t� r|pH�γq�3{2|Wt �Wr| dr .
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It is then readily checked that for every ` ¥ 0,

Er|Rτk�1�∆pk,`q||Ek�1s ¤ cH,γ ,

and so we can apply (5.5) again (with p � 1{2) to assert that

E
��

sup
tPp0,1s

t1�γ |Dτk
τk�1,τk

ptq|
	��� Ek� ¤ c2η,α . (5.12)

The combination of (5.10), (5.11) and (5.12) provide the first part of (5.4).

Step 3. Asymptotic cases. On the one hand, we can use [?, Lemma 8.7] to
obtain that for every k ¥ 1,

sup
tPp0,1s

t1�γ |Dτk
�8,0ptq| ¤ sup

tPp0,1s

|Dτk
�8,0ptq| ¤ cHa

H�1{2
k

» 0

�8

|1� r|�2|Wr| dr

and (5.3) then follows from the general bound (5.7) (with m � 0).

On the other hand, it is not hard to see that the situation where k � 0 can be
handled with the same strategy as in Step 3, namely writing

sup
tPp0,1s

t1�γ |D0
�8,0ptq| ¤ sup

tPp0,1s

|D0
�8,�1ptq| � sup

tPp0,1s

t1�γ |D0
�1,0ptq|

and then bounding the first, resp. second, term along the arguments of Step 2,
resp. Step 3, with p � 1{2. This easily leads us to the second part of (5.4), and
accordingly the proof of the lemma is achieved.
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