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We have gathered here the proofs of a few selected results from [?].

1. A Lyapunov property for rough differential equations

We consider the general rough equation
dys = b(y)dt + o(y)dx, , te[0,1] , yo=aeR?, (1.1)

where x is a given (deterministic) v-rough path on [0, 1], in the sense of [?,

Definition 2.1], for some fixed parameter v € (%, 1). In what follows, we will

write [|x|[|, for ||x||,;[0,1]- Let us also recall the two assumptions at the core of
our study:
Hypothesis (H1): b : R? — R? resp. 0 : R — L(R? R?), is a C3, resp. C*,
vector field such that

sup [[(DWb)(v)|| < oo for £ € {1,2,3} ,

veRE , (12)
resp. sup [[(DWo)(v)|| < oo for L€ {0,...,4} .
veRY

Hypothesis (H2): There exist Cy, Cy > 0 such that for every v € R?, one has
(v, b(v)) < Cy — Ca|v|* . (1.3)

This section is devoted to the proof of the following statement:
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Theorem 1.1. Under Hypothesis (H1) and for every initial condition yo € R?,
Equation (1.1) admits a unique solution y on [0, 1], in the sense of [?, Definition
2.3]. Besides, if we assume in addition that Hypothesis (H2) holds true, then
there exists a constant C (which depends on b, c,~,C1,Ca, but not on x) such
that

lyal1> < e lyoll* + C{L + x5}, with =

Under Hypothesis (H1), the fact that there exists at most one solution to
(1.1) (in other words, the uniqueness part of our statement) is a standard result,
which can for instance be found in [?, Theorem 3.3]. On the opposite, due to the
unboundedness of b, it seems that the proof of existence of a global solution on
[0,1] cannot be found as such in the literature, and we shall therefore provide
a few details below.

In brief, our strategy towards Theorem 1.1 is based on a careful analysis of
the natural discrete numerical scheme associated with (1.1), in the same spirit

as in [?]. Let us thus introduce the sequence of dyadic partitions P, := {t; =
ti = 57; 1 =0,...,2"} of [0,1], and consider the discrete path y™ defined on

P, along the iterative formula

yg =a 5y;ti+1 = b(yZ) 67;iti+1 + O—(yZ) 5xtiti+1 + (DJ ’ U)(yZ) Xt2iti-{(1 ) )

1.5

where we recall that 07, = t — s. We shall also be led to handle the following
quantities associated with y™: for s,t € Py,

LY = oyl —o(yl) dwa — (Do - o)(yl) x2,
Rgin = Oyg —b(yy) 0Tst — o(yy) dzse — (Do - o) (yy) X?t
o= Oyg —o(yg) oz

For every s < t € [0, 1], we will write [s,t] = [s,t], := [s,t] N Py, and set

[ fst

s<te[ly,02] |t - S|#

NI CE([en, €20)] == N0 f; €5 ([6r, €2])] -

NG5 ([, £])] 2=

)

The starting point of our analysis is the following local estimate for RY™,
which can be obtained as a straightforward application of the forthcoming
Proposition 2.7:

Proposition 1.2. Fiz k := %(% + 'y). Then, under Hypothesis (H1), there
exists a constant co (which depends only on b,o,v) such that if we set

. (e
To = To(||x[|) := min (1, (co{l + |1x[|,}) /(v fi)) ,
one has, for every T € P, satisfying 0 <7 < Ty and every k < 1/7,

NIR™C3*([kr, (k + D7 A D] < co{1 + i, |1} - (1.6)
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Corollary 1.3. In the setting of Proposition 1.2, there exists a constant cy
(which depends only on b, o,v) such that for every T € Py, satisfying 0 <1 < Tj
and every k < 1/7, one has

NTy™ L ([kr, (k + D)7 A D] < e {1+ [y 1} (1.7)
NTy"™: €1 ([kr, (k + D7 A 1]] < eafl + [y, [HL + lIxl4} (1.8)

and
NQV™: 3 ([kr, (k + 1)r A D] < ex {1 + [y IHL + [Ix[l4} - (1.9)

Proof. For every t € [kr, (k + 1) A 1], write
ytn = yLlT + b(yZ‘r) 577€T,t + O-(yLLT) 5zk7,t + (DU ) 0) (yLLT) int + RZ;:Lt )

so that using (1.6), we get ||y < 1+ [lyp |l + |x]|,T¢, and (1.7) now follows
from the fact that ||x[|,7y < ||x[,Ty " < 1.

Then, in a more general way, we have for every s <t € [k, (k+ 1)7 A 1]
Syt = b(yy) 6Te + 0(y) 6zt + (Do - o) (ys)) x5, + RY"

and
&= b(yd) 6T + (Do - o) (y]) x5, + Ry
Injecting (1.6) and (1.7) into these expressions easily yields (1.8) and (1.9). O

Corollary 1.4. Under Hypothesis (H1), Equation (1.1) admits a unique global
solution y on [0,1]. Besides, with the previous notations, there exists a subse-
quence of (y™), that we still denote by (y™), such that

"E . (1.10)

n
,nax lye. — vt

Proof. Although the two local estimates (1.7)-(1.8) are not uniform as such
(that is, the right-hand side still depends on y™), they easily give rise, via an
obvious iterative procedure, to a uniform estimate for

NTy™: 0 ([0,1])] == Ny ([0, 1])] + Ny™; €7 ([0, 1])] -

Still denoting by %™ the continuous path obtained through the linear interpo-
lation of (y})i—o,.. 27, we thus get a uniform estimate for A'[y";Cy" ([0, 1])],
which, by a standard compactness argument, allows us to conclude about the
existence of a path y € C]([0,1]), as well as a subsequence of y™ (that we still

denote by y™), such that y” — y in C?’"YI([O7 1]) for every 0 </ < 7.

The fact that y actually defines a solution of (1.1) is then an easy consequence
of the bound (1.6). The details of the procedure can for instance be found at
the end of [?, Section 3.3]. Finally, and as we have already evoked it in the
beginning of the section, the uniqueness of this solution is a standard result
from the rough-path literature (see [?, Theorem 3.3]). O
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Let us now turn to the proof of the second part of Theorem 1.1, that is to the
proof of (1.4) under Hypotheses (H1) and (H2). To this end, we introduce, for
every n = 0, the additional discrete path z" : P,, — R defined for every t € P,
as L

4= SR
In the same vein as above, we will lean on the following quantities related to
zZ™: for every s,t € P,

RG" = 02—yl b(yR ) 0Te — (Yl o (Y ) dmse — X(y2) X2,
Ly = 020 =l o(yl)) dme — D(yl) x2
Q" = 0zl —ys,o(ys)) s

where we have set

2(yg) = <o(ys), o(ys)) + s, (Do - 0)(ys)) -

Just to be clear, the notation for the second-order term in R*™, L*™ specifically
refers to the sum

2,5k
Sy %3, = {<oi(us), on(ys)) + <y, (Daj - on) (y))} x5 -
Finally, along the same lines as in the subsequent Section 2, we set, if s = £

2’!1,
and ¢t = 5L and G : [0,1] — R,

MH[G; [s,t]] := sup NGt

pi<q |tic1 — ti|*

Let us start with a few estimates on R*™, for which Hypothesis (H2) is still
not required:

Lemma 1.5. Under Hypothesis (H1) and with the above notations, there exists
a constant co (which depends only on b,o,v) such that for every s < t € Py,
one has

MY[RZ™; [, ]] < eaf L+ [Ix[3HL + Ny €Y ([s, )]} - (1.11)
Proof. We have
n n n 1 n n
5Ztiti+1 = <yt1 ’ 5ytiti+1> + §<6ytiti+1 ) 6ytiti+1> )
and so, injecting (1.5) into the first term gives
zZ,n 1 n n n n
Rti’tiﬂ = §<5ytiti+1 ) 5ytiti+1> —<o(ys)s U(yti)>xt2iti+1
n 1 n n
= <J(ytl) 6xtiti+1 + iQ?tJi,ti_H ) Qiliti+1>
1 n n n n
0210000 = O TRV, |

n ]‘ n n
= <J(yti) 5xtiti+1 + iQiJ;ti_,_lv i’ti+1> ) (112)
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where we have used the basic identity
X2 4 X2 = 5at, b,
Finally, since Q7. | = b(y7") 0Te,1,,, + (Do o) (i) xtzitprl, it is immediate that

Q% I < Ttiwr — {1 + I} + [t — a7 IIx]| -
Going back to (1.12), we get the conclusion. O

Proposition 1.6. Assume Hypothesis (H1) holds true and let Ty = To(||x||+)
be the time defined in Proposition 1.2. Then there exists a constant cs (which
depends only on b,o,7) such that for every T € P, satisfying 0 < 7 < Ty and
every k < 1/, one has

NR*™Cy" ([kr, (k + 1) A 1] < ea{l+ [Ix[5 31 + 23} -
Proof. Thanks to the forthcoming Lemma 2.4, we can rely on the estimate
N[Rz’";ng([[kT, (k+ 171 A 1])]
< M* [R*™; [k, (k + 1)T A 1]] +N[5RZ’";C§7([[ICT, (k+ 17T A1])] .

As far as the first term is concerned, combining (1.11) and (1.7) allows us to
assert that

MY [RZ’"; [kr, (k+1)7 A 1]]] <{1+ ||x||3}{1 + 2z}
Then, for every s < u <t € [k7, (k + 1)7 A 1], decompose dR.); as
ORGy = —0({y", b(y")))su 6 Tue + OLg; -
On the one hand, one has, by (1.7) and (1.8),
10" b(y™ ) su| < [COyL, by )| + [<yL s 6b(y™) s
S fu—= s+ [Ix[H1 + 25}

On the other hand, combining Chen’s identity with elementary Taylor expan-
sions easily leads us to the decomposition

SLZN = {1, + IT, + I1IL, + IV} 62, + 055 (y™)su x237

sut — ut

with
Xiiy") == {oi(y"), 05(y")) + ", (Doi - a5)(y"))
‘u = <5y?u’ §U¢(yn)su> ) Iléu = <O'i(yg)7 Qghn

1
11, = j de y, Doy + € Syl ) QU
0
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and finally
1
IWw=Ld&ﬁiﬂmw+£@&rihwmkwwbbﬁa-

With the above expressions in mind and using the three estimates (1.7), (1.8)
and (1.9), it is not hard to check that

[6L50E| < 18— P71+ (I3 + 28

sut

which achieves the proof of our assertion.

Let us finally involve Hypothesis (H2) into the picture:

Corollary 1.7. Assume Hypotheses (H1) and (H2) hold true and let Ty =
To(|Ix||y) be the time defined in Proposition 1.2. Then there exist constants
¢y, ¢5 (both depending only on b,o,v,C1,Cs) such that if we set

. 2 1 K
m =) = min (0 2 () )
Y

one has, for every T € P, satisfying 0 < T < T1 and every k < 1/7,

C _
Soinear < (1= 507) o + eafl + ]2} (1.13)
where we recall that the two parameters Cy, Co have been introduced in Hypoth-

esis (H2).

Proof. Using Hypothesis (H2), we get that for every 7 € P, and every such
that k < 1/,

n
Z(k+1)'r/\1

= 2 + Y 0 )) 0 Thor (ki 1)7 1
it 0 (WR)) 0Ter o 1)r a1 + Z(Wir) X (g 1y7 a1 + R e an
< (1—Cor)zp, + Cri7
+Wkrs T (Wr )) 0T her (ke 1)r a1 + 2 (Ugr) er,(kJrl)T/\l + RZ;—T,L(k-',—l)TAl J
and so, thanks to Proposition 1.6, we can conclude that for every 0 < 7 <

min (7o, C%) and every k < 1/7, one has

Z?k«kl)'r/\l < (1 - CQT)ZITCLT + ClT
nyiy L O n
el 1+ b+ Ze e

for some constant ¢4 = c4(b, 0,7,Cs). Now, by the very definition of T;, we
know that if 0 < 7 < T3, then

e {1+ x5} < 7(eam®HL+ x[5}) < 7\

imsart-generic ver. 2014/10/16 file: rough-ergodicity-supplement-final.tex date: February 18, 2019



/ 7

and thus we can recast relation (1.14) into:

3C 1
Zr1yra1 S <1 - 42T> zpe + O + ca|| x|, 7 {1 + (22,)2 }

To achieve the proof, it now suffices to use the basic inequality

C

‘2 2y-1
4

1
callxlly 7 (250) % < 7 m+*H|

O

At this point, we are very close to (1.4). With the notations of Corollary 1.7,
consider n large enough such that we can exhibit 79 € P,, satisfying %Tl <7<
T, and then let K be the integer such that (K —1)79 < 1 < K1y. Iterating the
bound (1.13) with 7 = 7 yields that

n
21

/N

C. K
(1= 2m0) a4+ es KA1+ [x|2}r

C o
< (1-Fn)” e K{L 4 [x|2)r2

< TPl b K{1+ x24T

Thanks to (1.10), the conclusion is now immediate, by noting that K 27 <
7272 and then using the explicit description of T}, Ty in terms of HXH7

2. Singular rough equations

We fix two parameters for the whole section: y € (3, 1) (for the general Holder
roughness) and f € [y, 1] (encoding the singularity at time 0).

2.1. Singular rough solutions and well-posedness results

We define singular extensions of the usual Holder spaces through the following
seminorms: given a Banach space V, an interval I < [0,1] and two parameters
a€ (0,1],p = a, set, for any map f: 1> — V, resp. f: > -V,

NTF A V)] :=max<sup oy g ”fV) (2.1)

s<tel [t — 8" 0<s<ter |t — s|" 5571

resp.

N[ f; Ca’“(I )] —max( sup | foutlv sup 7”fsutHV ) . (2.2)

s<u<tel |t - 3|a ’ O<s<u<tel |t - S|N sh=1

and then
Cf‘;’;(l; V)= {f eCi(L;V): 6f € CO"“(I V)} (2.3)
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Of course, it holds that C;*(I;V) < C2(I; V) and C{*(I; V) = C/(I; V).

Let us now introduce the related notion of a singular rough solution. In the
sequel, given two Banach spaces V, W and a smooth map F : V — W, we will
denote by DWF : V — L(V®, W) the (-th derivative of F, understood in the
usual Fréchet sense.

Definition 2.1. Consider a path h € CY;’Bl([O, 1;R™) and a ~-rough path z =
(2,22), in the sense of [, Definition 2.1]. Then, for any fized Banach space
V', any interval I = [to,t1] < [0,1], any vo € V and any continuous, resp.
differentiable, vector field

B: Vo> LR™V) | resp. X:V - LER:V),
we call y € C](I; V) a solution (on I) of the equation
dy: = B(ys) dhy + X(y1) dze  ,  yrg = 0o (2.4)
if the two-parameter path RY defined as

Rl = (8y)st = Bilys) (5h')st = Zj(ys) (627 )se = (DT - T (ys) 2y’

belongs to Cg;’é‘(l; V), for some parameter p > 1. Here, the notation DX; - Xy,

stands for

(DX - Xi)(v) == (DX;)(v)(Xk(v)) , for everyveV .

Let us now turn to the presentation of our main results about existence and
uniqueness of a solution for the rough singular equation (2.4). We will either
be concerned with the classical situation of bounded vector fields (Hypothesis
(VF1)) or the more general possibility of linear growth (Hypothesis (VF2)).

Hypothesis (VF1). The vector field B, resp. X, is C2, resp. C3, and
sup [DYB(v)| < oo for £ e {1,2}
veV

resp. sup [DOX(v)| < o for £€{0,...,3} .
veV

Hypothesis (VF2). The vector field B, resp. X, is C?, resp. C3, and the fol-
lowing bounds hold true: for all £ € {0,1,2},m € {0,...,3},

[((POB)) <1+l (D)) <1+ o], (255)
and also, for every v,w €V,

I(DX- X)) s 1+ ]of ,  [(DX-2)(v) = (DX D) (w)] S v —w|{l+ IIEJ2||}6)-
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Theorem 2.2 ((VF1)-situation). Under Hypothesis (VF1), and for any vy € V,
Equation (2.4) admits a unique solution on [0, 1] with initial condition vy, in
the sense of Definition 2.1.

Theorem 2.3 ((VF2)-situation). Under Hypothesis (VF2), the following as-
sertions hold true:

(i) For any vo € V, Equation (2.4) admits at most one solution on [0,1] with
initial condition vy, in the sense of Definition 2.1.

(ii) For every K = 1, there exists Mk > 0 such that if
looll < K, N6h;C35([0,1])] < K and [z]y,p0.17 < Mk

then Equation (2.4) admits a unique solution y on [0, 1] with initial condition
vg, in the sense of Definition 2.1. Besides,

Ny: ([0, 11 V)] + Ny: €1 ([0,1]: V)] < C(K) (2.7)

for some growing function C : Rt — RT.

Just as in the above Section 1, and in the same spirit as in [?], our proof for
both Theorem 2.2 and Theorem 2.3 relies on the examination of the discrete
scheme associated with the equation. Set t; = t} := 2%, Pn o= {ti :+ 1 =
0,...,2"} and define y™ along the iterative formula: y{} = vy and

(§yn)titi+1 = B(yZ) (5h)titi+1 + E(yZ) (52)titi+1 + (DE : Z)(yZ) ztziti_,_l .
Then, for every s,t € P,, set
Ry = (6y™)st = B(y?) (6h)se — 2(y2) (82)se — (DX - D)(yy) 22,
noting in particular that R, == 0. We will also consider the paths
Ly o= (0y")se — 2(y) (02)se — (DX D)(y) 22y (= Riy + B(yy)(6h)st )
and
ot = (0y")se — (y?) (02)st -
Finally, for every s < t € [0,1], we will write [s,t] = [s,t], := [s,t] N P,, and

we extend (or rather restrict) the norms (2.1)-(2.3) to discrete paths as

| fouw v ‘ || fu v >

sup -
|a ’ 0<u<ve[s,t] lv— U|# uf=1

N1f; €55 ([5,t]; V)] == max < sup

u<ve[s,t] |U —u

with a similar definition for N'f; Ci"([s, ]; V)], i € {1, 3}.

The whole key towards the desired estimates lies in the following “singular
sewing lemma”:
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Lemma 2.4. Let 0 < aa < A <1, 3 = 1 and pa > 1. Then there exists a
constant Co xuy. s > 0 such that for every path G : P2 -V and all s <t € Py,
one has

NIG; ey ([, t]; V)]
< Canpun e {MYH G [s, t]] + NTOG; C;’;‘Q([[s,t]];‘/)]} ,

where we have set, if s = & and t = %

27L 2’”4 )
Gyt Ge.v.
MG [G; ﬂs,tﬂ] :=max | sup 7” titis | ,  sup —” ttt”l”)\ T
p<i<q [tiv1 —4i]® 7 pri<i<q [tiv1 — ti|“1ti -

Proof. See Appendix 4. O

2.2. Existence of a solution in the (VF2)-situation

Proposition 2.5. Let Hypothesis (VF2) prevail and assume additionally that
N[éh;C;;’Bl([O, 1; V)] < K, for some K > 1 .

Then there exists a constant co (which depends only on B, X, v and ) such

that if we set Ty = To(K) := min (1, (COK)_6/(3'7_1)), the following assertion

holds true for every k < 1/Ty: if ||z] 4017 < (1 + Hy,’C‘ToH)_l, then

NL™; C3o5(IRTo, (k + 1) To A 1] V)] < co K{1+ lyiiz, 1} - (2.8)

Proof. The strategy consists in an iteration procedure over the points of the
partition. So, assume that (2.8) holds true on an interval [0,¢,], with ¢, < To
(for some time Ty to be determined along the proof). In other words, assume
that

NILYC35([0, 8] V)] < e {1+ w3} (2.9)

where we denote from now on cg := ¢ K (for some constant ¢( to be fixed later
on). Due to (2.5) and (2.6), it is then easy to check that the following bounds
hold true as well:

NIy ([0, tD)] < {1+ g5 131 + exTq} (2.10)
and
max (Ny™; €7 ([0, 1,1, N[Q™; €357 ([0,141)]) < {1+ g IH1 + e} - (2.11)

Now, in order to extend (2.9) on [0, t44+1] (assuming that ¢,41 < Tp), let us first
apply Lemma 2.4 to L™ and assert that

NL™;C35([0, tg41])] S ML [0, t44])] +N[5L";C§;§“([[0,tq+1]])(] )
2.12
where we set from now on k := %(% + ’y), so that 1 < 3k < 3.
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As far as the first term is concerned, we can use the fact that Riy.. =0,
and then (2.5) and (2.10), to deduce that

ML 0, te1D] = NIB(Y") 6h; C35([0, tg11])]
< K-N[B");C([0:4]] < K{1+ Jyg 11+ exTg'} -
In order to estimate N[dL"; C;’;’”([[O, tg+1])], let us first rely on Chen relation

and decompose the increments of L™ as §L"™ = I 62° + 11" §z' + 1117 22 where
we have set

1
I, = f AN (D) (" + A(By")s0) Q7 (2.13)

I, := L AN [(DZ3)(y2 + N0y™)se) — (DZ)(y™)] Z5(y2) (627)se ,  (2.14)

1] = 6(DX; - 25)(y")st - (2.15)
For I' §z, we can combine (2.5), (2.10) and (2.11) to get that
NI 625 €337 ([0, g.41])]
—K n 2
< T+ [y L+ exch) 2oy
U+l D+ T80 - (04 1981 el

(L4 gL+ 109y

A

A

where we have used the assumption {1 + [y [}[z] ;0,17 < 1 to derive the third
inequality.

With similar arguments, we can show that
NIIE 62270, 1)
S U+l + T ek (0 + s 12121 o )
S (U IHL+ T ek
Finally, thanks to the second estimate in (2.6), we obtain that

NI 229585 ([0, tgea )] < {1+ Jyg 11 + T3 07 ek}

Going back to (2.12), we have shown that, for some constant ¢; depending
only on B, X and (v, s, 8),

NTE™CE3 (10, g DT < 1+ [} - (e B{1 + T k)
Let us now set ¢ := 2¢1, ¢k = coK and Ty := min(1, (2¢; K)~Y(r=%)), in such

a way that
a K{1+ Tg’(wfﬁ)ci} <ck ,
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and accordingly N[L";C;;’é([[O,tqHﬂ)] < e {l+|lyg|} as desired.

This iteration procedure allows us to extend the bound (2.9) over the interval
[0,Tp]. Then it is easy to see that the very same arguments can be used for any
interval [Ty, (k + 1)Tp], which completes the proof.

O

Corollary 2.6. Let Hypothesis (VF2) prevail and assume additionally that
N[ﬁh;C;’é([O, 1;V)I<SK and vl < K, for some K >1 .

Then there exists My > 0 such that if ||z|;j0,1] < Mk, one has

sup max (Ay": €7 ([0, 1], N Ty"s 7 ([0, 1D)]
nz=0 (216)
NTQ™; €33 (10, 1)L NIL™ €35 ([0.1D)]) < C(K)

for some growing function C : RT™ — R™. As a result, under the same assump-
tions and if |z];j0,1) < Mk, it holds that

sup N[R";C3:37([0,1])] < D(K) (2.17)

n=0

for some growing function D : RT — RT.

Proof. Using (2.8) as well as its spin-offs (2.10) and (2.11), it is not hard to
exhibit a growing sequence (ci) that depends only on (B, X,~, ) (and not on
K) such that the following property holds true: for every k = 0, if |z]..[0,1] <
(1 +cx{l + K})~!, then one has both

Ny CI)] < epa{l + K} (2.18)
and

max (N[y”;Cf([k)],N[ ";C;’;A’(]k)],/\/'[L";C;’Bl(lk)]) <o {l + K7},

(2.19)
where we have set I := [kTp, (k + 1)Tp]. As a result, if we denote by Nk
the smallest integer such that ToNx > 1 and assume that |z;j0,1] < Mk :=
(1 + eng (1 + K))~1, then both bounds (2.18) and (2.19) hold true for k =
0,...,Ng — 1. The extension of these local bounds into global ones (that is, on
the interval [0, 1]) is then a matter of standard arguments, which achieves the
proof of (2.16).

As far as (2.17) is concerned, apply first Lemma 2.4 to the path R™, which,
since Ry, =0, entails that

NIR™C357([0,1]; V)] S N[SR™; €357 ([0,1]; V)1} -

imsart-generic ver. 2014/10/16 file: rough-ergodicity-supplement-final.tex date: February 18, 2019



/ 13

Then, just as in the proof of Proposition 2.5, observe that we can decompose
the increments of R™ as
(6}%n)sut:: 613(yn)8u(5h)Ut
+ (OL™) gut = 0B(Y™)su(Oh)ur + 11,825, + IT0, 628, + T1T9227

su“ut

(2.20)

where the paths (I, II,11I) have been defined through (2.13)-(2.15). The con-
clusion is now easy to derive from the bound (2.16).
O

Proof of Theorem 2.3, point (ii). Consider the sequence (still denoted by y™)
of continuous paths on [0, 1] defined through the linear interpolation of the
points of the previous (discrete) sequence y”. Define Mg as in Corollary 2.6
and assume that ||z|;j0,1] < Mk. Then it is readily checked that (2.16) gives
rise to a uniform bound for N[y™;C{ ([0, 1]; V)], and we can therefore conclude
about the existence of a path y € C{([0,1];V), as well as a subsequence of
y™ (that we still denote by y™), such that y™ — y in CF([0,1]; V) for every
0<k<r.

The fact that y actually defines a solution of (2.4) is essentially obtained by
passing to the limit in the uniform estimate (2.17). The details of this (easy)
procedure can for instance be found at the end of [?, Section 3.3]. As for the
bound (2.7), it is a straightforward consequence of (2.16). O

2.3. Existence of a solution in the (VF1)-situation

Under Hypothesis (VF1), the exhibition of a uniform bound for
NR'CRA(I0AD]  (with > 1)

essentially follows the same general procedure as in the classical ('non-singular’)
situation treated in [?] or [?]. As we here consider slightly more specific topolo-
gies, let us briefly review the result at the core of this procedure.

Proposition 2.7. Let Hypothesis (VF1) prevail and assume additionally that
N[éh;C;’Bl([O, 1;R™M] < K, for some K > 1.

Also, fix a parameter k such that 1 < 3k < 3. Then there exists a a constant
co (which depends only on B, X, v, 8 and k) such that if we set

. —1/(v=r)
Ty = Ty(||z, K) := min (1,(60{1+||Z||,Y}K) ) ,
the following property holds true: for every 0 < Ty < Ty and every k < 1/T1,

NTR™ 35" (IRTv, (k + DTt A 1)) < co K{1+ |lyiin, |} - (2.21)
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Proof. Just as in the proof of Proposition 2.5, the strategy consists in an itera-
tion procedure over the points of P,,. The argument actually relies on the follow-
ing two readily-checked assertions: (i) If NTR";CJ; ?’K([[s, th] < co K{1+ |y2|},
then one has

max (My"; € ([s, 11)], NQ™5 €357 ([, 11)])
<o K[llzlly + {1+ ly21H{1 + co}{1 + K|t — s|"}]
for some constant c; that depends only on (B, X); (i) With decomposition
(2.20) in mind, one has
NTSR™;C35" ([5,1])]
< ot = "7 [Ny (s DL+ K + [[23 + NTQ G525 (Is )zl ]

for some constant ¢z that depends only on (B, X).

It is now easy to inject (¢) and (4¢) into the iteration scheme exhibited in the
previous section for L™ (note that we can additionally use the fact that Ry, =
0 here). The details of the procedure are therefore left to the reader. O
Proof of the existence statement in Theorem 2.2. Starting from (2.21) and us-
ing the same steps as in the proof of Corollary 2.6, one easily gets uniform
estimates for both N[y™;C{ ([0, 1])] and NR";C3. BK([[O, 1])]. The derivation of
a solution then follows from the same convergence argument as in the above
proof of Theorem 2.3, point (7). O

2.4. Uniqueness of the solution

It is a well-known fact that uniqueness statements are usually less demanding
than existence statements as far as global boundedness of the vector fields is
concerned. Accordingly, in opposition with the previous existence proof (where
specific sharp estimates had to be displayed), the strategy towards uniqueness
essentially follows the same lines as in the standard situation. We briefly review
the transposition of the main arguments in this singular setting.

Assume here that either Hypothesis (VF1) or Hypothesis (VF2) prevails and
consider two solutions U, U of (2.4) with identical initial conditions. Then set

Rot = R(y)st = (0y)st — Bilys) (0h') st — X;(ys) (627) 5t — (DX - i) (ys) 257%

Qst = Q(y)st = (5y)9t - Ej(ys) (5Zj)st )

and similarly R := R(}), Q := Q(¥). Also, fix p, resp. i > 1 such that
NIR; €35 ([0,1])] < oo, resp. NI[R ;Co.5 ([0,1])] < o0, as well as a parameter
r satisfying both 1 3 <k <7vand 3k < p A f.
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Lemma 2.8. There exists a finite constant cp 5 > 0 such that for every s <
t € P,, one has

NTR = B C5(Is,t)] < eq - {277 + NO(R = By (s, D1} (2:22)
where € ;= inf(y — K, (4 A i) —3K) > 0.
Proof. 1t is a mere application of Lemma 2.4. Observe indeed that
MR =Ri[s,1]] < MG [R;[s,t]] + M5 [R; [s.1]]
< Ch. ~{2 (y=r) 4 9g=n(u1—=3r) 4 o~ (uz*%)} )
O

Lemma 2.9. There exists a finite constant Cy 5 > 0 such that for every s <
t € P,, one has

NTO(R = R);Ci3™([s, D] < Cy gt — s ™" NF [(w,0): [, 1] . (2.23)
where we have set
N (9 1] =

5 (2.24)
Ny = 3:C0([s, D] + Ny — 3¢5 (s, D] + N[Q — ;€55 ([, 4])] -

Proof. First, note that the increments of R (or E) can be decomposed just as
the increments of R™ in the proof of Corollary 2.6 (see (2.20)), which allows us
to write

5(R - é)sut = 6(B(y) - B(g))au 5hut
+ [I;u - T;u] 5Z1ztt + [II;u - ﬁ;u] 52 [IIIZ] - II[ ] ; Z] ’

where the paths I, 11,111, resp. I, ﬁ, m, are defined along (2.13)-(2.15) (re-

place (y™, Q™) with (y,Q), resp. (7, @)) The bound (2.23) is then obtained
through standard differential-calculus arguments based on relations (2.5) and (2.6).
O

Proof of Theorem 2.3, point (i), and uniqueness property of Theorem 2.2. Consider
the above setting and notations. First, going back to the very definitions of

(K, R) and (K, R), it is not hard to check that for every s < t € P, one has,
with the notation (2.24),

N[, 9): s, 1]
< ey s = Bl + 1t = sl N5 [(9:9): I, 4] + N [R = Bscyd(Ts. 1]}

where the constant ¢, 5 does not depend on n. We can then combine (2.22)-
(2.23) and assert that for every s <t € P,

NG [ 9): 05 10] < epp{ by = il + 1t = s 7 N5 (s s s, 1] +277
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The uniqueness result is now immediate. Indeed, for Ty > 0 such that ¢, 5 T ™" <
L “and since yo = 9o, we first get that

2
N[y - :’7’ C?([O7TOH)] < NEQV [(yvéj)7 [[OaTO]]] < Cy,?j -277E )

and accordingly y; = ¥ for every ¢ € [0, Tp]. The argument can then be repeated
on [Ty, 2To], [2T0, 3T0], and so on. O

3. Singular paths and canonical lift

Let us recall that the space £2([0,1];R?), as well as the notation || f]|1;y, have
been introduced in [?, Section 4.1]. Besides, let us denote by C1([0,1];R¢) the
space of differentiable R?-valued paths on [0, 1] with continuous derivative.

Proposition 3.1. Let z € C/([0,1];R?) be a path that can be canonically
lifted into a rough path £(z), in the sense of [?, Definition 2.2/, and let g €
E2([0,1];RY), resp. g € CH([0,1];R?). Then z + g can be canonically lifted into
a rough path £(z + g) and it holds that

NIL(z + 9)% - £(2)% ¢35 ([0, 1], R
< e {1+ lgll?, + Nz 1 ([0, 1R}
resp.
N{E(z +9)% = £(2)%C,7 ([0, 1] R )]
< ey {1+ Ng; ([0, 1], R + N[z.¢7 ([0, 1; R

for some constant c,, that depends only on .

The two following results, which are extensively used in our analysis, are
immediate consequences of (3.1) and (3.2).

Corollary 3.2. Let z € C]([0,1];R?) be a path that can be canonically lifted
into a rough path £(z) and let g € 83([0, 1];R?), resp. g € C1([0,1];RY). Then,
in the setting of Definition 2.1 (with B :=-y, resp. $=1), a path y : [0,1] > V
s a solution of

dyr = B(yt) dhy + X(y) d&(z + g)¢ , Yo =0,
if and only if y is a solution of

dy; = [B(y:) dhy + 2(ys) dge] + S(y:) d€(2)e , yo = o -

Corollary 3.3. Let z € C]([0,1];R?) be a path that can be canonically lifted
into a rough path £(z) and let g € E2(|0, 1];R%). Then it holds that

1202 + 9) 10,17 < e {1 + 1) 500,07 + N9l T} (3.3)

for some constant c that depends only on .
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We will only prove Proposition 3.1 in the situation where g € 5,3([0, 1; RY),
but the proof when g € C!([0,1];R?) could be derived from the very same
arguments.

Lemma 3.4. Let g € 53([0, 1]; R?) and denote by g™ the linear interpolation of
g along the dyadic partition Py, of [0,1]. Then it holds that

sup  sup  t7(g")il S llgllhy (3.4)
n te(0,1\Py,

and for every 0 < ' <7,

sup ¢ 77|(g" — )] < [lgllan27 0T (3.5)
te(0,1\ Py

Proof. Pick t € (t,t7, ), for some i = 0,...,2". One has

1
dr
< gl ¢ '
gl JO (¢ + (P, —th)

=
—tn |gt?+1 — 9
(2

PG = 5

i+1
If i = 0, then t < #7, — ¢ and so £177|(g")}] < [lg[l1y §y 725 £ i > 1, then
5 < giter < 5w =t} and so 17 |(g")i] < gl (t/87)' 7 < llgllis2' 7, which
completes the proof of (3.4).

For (3.5), note first that if ¢ = 0, then ¢ < 27" and so by (3.4) we get in this
case

16" — ) < 2T G+ g < Nl 2O

1;72

If 7 > 1, then

1—y'|¢.n / tl_ﬂyl H / ’
NG -l = | | -y ar
i+l U [ Jen
2t |t —
< . du
Itz [, oy
1— n ny\ 1-(v—=7")
t o —t o
< Mol () (FEE) e
A [

As above, we can conclude by using the fact that in this case, one has

max (2

St — ) <

K2
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Proof of Proposition 3.1. Denote by z™, resp. g”, the linear interpolation of z,
resp. g, along the dyadic partition P,. By (3.5), the convergence of g™ to ¢g (and
accordingly the convergence of 2" + g™ to z + g) in C?I([O, 1]; R?) is immediate,
since

t ’ 1 dr
N N e N D] e e e

< 27O — g

Then, by setting x := z+g, we have the following readily-checked decomposition
t t * t
-t = [ emed+ ([ 0ot + [ G edt . 6o

Now consider the integral Sz (02) su ® dgy, which, due to the regularity of g, can
be interpreted in the classical Lebesgue sense, and use (3.4)-(3.5) to assert that

t t
f (62" 00 @ gl — j (62)ou @ dga

S S

t t
< j 16(=" — )] ® |dg?| + j 1(52) ] ® (" — )l
, ol — ol
< N[" =207 ([0,1];RY)] % du
s u
o (= s
AT (o1 R0 [ gy
v+ n 5! d —n{y—v") ! dr

We can treat the two other summands in (3.6) along the same lines, which
leads us to the desired conclusion, namely N[x®" — z2";C37 ([0,1];R%)] — 0
as n — 00. We even get the explicit description

¢

o+ 9% - 2% = | (620 @ dgu + (f(az)ut ® dgu) "4 |G

S S S

With this decomposition in hand, it is now easy to exhibit the bound (3.1): for
instance, for every 0 < s < t,

t
f(5z)eu®dgu
" lu— |
< llglhoN: 6 (0.1 Y) [ 1 g
N6 ([0, 1]; R? o 1 " d
< . . . _
< ol M CURY = o7 [ ar

< gl Nz C7 ([0, 1] RY)]

g 1
min <|t—s|27j = ,8771|t—8|1+7J r”dr) .
o 0
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4. Proof of Lemma 2.4

The argument relies on the algorithm introduced in [?, Section 6] and which aims
at “removing the points one by one” between t,, and t441 in a tricky way. First,
just as in [?, Section 3.1], and given any (not necessarily uniform) subpartition
II of P,,, we define the path G as follows: for every s <t € P,

0 if (s,t) "Il =
Gy =4 (0G)sut if (s,t) "I =u .
Gyu— Gy — YN G — Gy, i (5,8) N IL = {f, ., 10}

Tretnst

With this notation, if s = ¢, and ¢ = 441, one has in particular
1], N
G =G+ Gruys - (4.1)
i=p
As far as the sum is concerned, we have on the one hand, since pu; > 1,
q a
sTM DY Grgy | < MG [s 1] D) Mt =il < MM (G [s, 2] |t—s]*
1=p 1=p

and on the other hand

q q
IS Graonr]| < ME# [G: [5,4]] - { o — s+ S 2t —tz—v“} ,
i=p

i=p+1

with

q q
1 1 1
A—1 _ A A
Z i =t = on(Am—1) Z P S on(A+ii—1) lg+1=p|" S [t=s|".
i=p+1 1=p+1

Going back to (4.1), it remains us to bound HGE?t]] |. For the sake of clarity, let
us temporarily change the notation by setting, for s,t fixed as above,

tp =1t k=0,...,N, where N:=2"(t—s) (=q+1—p). (4.2)

~
We make this (unnatural) choice to “reverse” the time, that is to consider a
decreasing function k — t;, in a such a way that the below notations will be
consistent with those of [?, Section 6] (and especially those of [?, Proposition
6.2]). Consider indeed the algorithm described in [?, Section 6] to remove one by
one the points between 0 and N, and accordingly the points of P,, between s and
t (just use the transformation (4.2) to connect one with the other). Denote by
(II"™),—0,..., n—1 the decreasing sequence of partitions of [s, t] that is associated
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with this algorithm. With the notations of [?, Section 6], it is readily checked
that

G -Gy = (56) C G =alt el =0,

bt bty —
and so
o] N-1
G = 2 0 vt - (4.3)
m=1

Now, still with the notations of [?, Section 6] in mind, write

A,

N M—1
Z (5G)tk$tkm - = Z {(5G)StkAr—l+lth. o + Z (6G)tk;{;tkm k;,'}
m=0 r=1 r—1 m=A,_1+2
and so
N
| > 0G) s vie, | S NTSGsCoL2 ([, 2])]-
m:o m m
M-1 A,
A—1 4
D {|t,€A T R S A e P } . (4.4)
r=1 =t m=A,_1+2
Observe at this point that
k3 o
AT el _ r—1+1
R \1 Pt
and
A-1 H2 Atpa—1 1 k:’r; At + — |2
tk;"n |tkfn - tkj,l| < |t - S| ’ Nh2 1- W |km - km| .
Going back to (4.4), we get that
N
|3 66, 1, | <l = s NBGC3= (U5, D]- Qe+ (45)
m=0
where we have set
M—-1 = o A, A=l
N Ap—141 1 k N
a s T Z {‘1 - Nl + Nh2 Z 11— |k:rrL - km|#2} :
r=1 m=A,_1+2

Therefore, we are exactly in a position to apply [?, Proposition 6.2] and assert
that sup s QOA:)\#Q < 00. The combination of (4.3) and (4.5) then gives us the
desired estimate, namely

|G < |t — s|* N[8G; C5d ([, 4])] -
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The estimation of s~ ’\||G[[9 ] | is easier. Indeed, with decomposition (4.3) in
mind, we simply use the fact that the above algorithm also satisfies

|k — k| < ﬁ forevery m=1,...,N—1,
and consequently
N-1
SAEET < 2 0D e, |
m=1

< NG C3" ([s, )] Z ey, — e I

< Jt—s|"? [6G;C§‘;;‘2([[s,t]})].

5. Proof of [?, Lemma 8.8]
For the sake of clarity, and with the setting described in [?, Section 4.2] in mind,
let us recall the statement of the result under consideration:

Lemma 5.1. Let a > 0 and assume that for some (fixed) calibration of the
scheme, there exists n € (0,1) such that for allk >1,£>0 and K >0,

]P)(gk|gk,1) = n, ]P)(,F]c Z|gk71) < 2_()‘[ and ATk ap a.s., (51)

where ay, = 1 for every k = 1. Then there exists a constant C2_ > 0 and for

n,x
every p > 0 there exists a constant C} > 0 such that for every k > 1,

n,0,p
E[(tsg)pl]tl o )|)‘5k] <a1/26jn‘;f’_nw . omell,.. . k—1},
* 1 (5.2)
E[(tes(lg_)pl] 77D o )|)‘5k] < M , (5.3)
and
max (E[(teb(%pl]tl "D )|)‘5k],ﬂ“:[(t€b(l(1)p1] ¢ 7|D_/ olt )|)]) < C?],a
(5.4)

The proof of this result will rely on the following general estimate, which
somehow allows us to “fix” the duration of Attempt m and to go back to a
conditioning by &,,_1.

Lemma 5.2. In the setting of Lemma 5.1, fit m > 1 and, on the event &,,,
consider a generic process (Ri)i>r,,_,. Besides, on the event Fy, o (¢ > 0), set
A(m,l) := A1y, = 1 (noticing that At,, is deterministic in this case). Then,
for every p > 0, it holds that

1
E[R., |E] < Cn, an(m k)/pSUPE“erq-&-A(m,E)|2p|gm71]2" ) (5.5)

020
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where ¢, o depends on n and o only.

Proof. First, one can readily check that

E[RTm |gm] = Z E[Rfm,1+A(7n,Z)|Fm,f]]P)(Fm,l|€m)-
=0

By the Cauchy-Schwarz inequality and the fact that £, ;, € £,,_1, one has then

E[er,1+A(m,E) lij |57n—1]
P(Fm,€|g7rz—1)

SE[R2  Amo)€m1]2PFrelEm1) 77 .

E[RTm71 +A(m,0) |Fm7£] =

As F, ¢ € &y < &1, We can obviously write

IP>(F‘1’n,€|£m—1)

IP>(F‘17”L,€|‘c/‘7‘n): IP((S |5 _1) 3

so that, thanks to our assumption (5.1), the following holds true:

1 1 1
Eml <72 Z E[Rzm_lJrA(m,Z)|gm71]2P(Fm’Z|gmfl)2 :
£=0

E[R

Tm

Invoking our assumption (5.1) again, we deduce that

_1 _at 1
E[R'rnz |(C:m] g n 2 Z 27> E[R3m71+A(m’Z) |5m_1] :
£=0

which yields:

E[r,, [Em] < r.a SUDELRS A pEm-1]* - (5.6)

=

Since &, c &, for k = m, a similar Cauchy-Schwarz argument as above implies
that for a given random variable S and for every p > 0,

1

E[|S|P|Em]?
Elsleq) < LS 1Enlr 5.7

P(Ex|Em)?

Using that P(Ex|Em) = n*~™, we finally obtain the desired control:
B[R, |Ek] < ¢y.an™ P Sup B[Ry, Ao |Em 117, (5.8)
220

where ¢, o depends on 7 and o only. O
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Proof of Lemma 5.1. The reasoning is divided in three steps.

Step 1. Case 1 < m < k. Since A1, > ay, it is readily checked that for all
m < k,t€[0,1] and r € [Tpy_1, Tm], One has ¢ + 7, — r = a;. We then deduce
from [?, Lemma 8.7] that

sup 1D ()] < sup [DF (D] <enal PR, (5.9)

te[0,1] te[0,1]

where we have set, for every t > 7,,,_1,

t
Ry i=(t—Tm_1)"" Wy = Wo, |+ J (t+1—=r)"2|W, — W,|dr.

Tm—1

Since S: L t+1- r)=32dr < 2 for every t > T,,_1, one can first check by
Jensen’s inequality that

+ p
(J (t+1—r)_2|Wt—WT|dr>

t N p
< cpf (t+1=7) 22 (=) H W= W) ar .

Tm—1
Then it follows from the scaling property of the Brownian motion that for every
{=0,
E“erfl-&-A(ml)|2p|gm71] < Cp

where ¢, depends on p only (and the notation A(m,¢) has been introduced in
Lemma 5.2). Using (5.5), we get the desired bound (5.2).

Step 2. Case m = k > 1. Let us write here

sup t'77| D (t)] < sup |DI* (t)|+ sup t'77|D*

Th—1,Tk Tk—1,Tk—1 Te—1,7k
te(0,1] ' te(0,1] ’ te(0,1]

(t)]. (5.10)

The first term in the right-hand side can then be treated along the very same
arguments as above (using p = 1/2 in (5.5)), which gives us directly

E[(tes(%g] |D;’:_1’Trl(t)|)‘£k] <ch.. (5.11)

On the other hand, using the bound of [?, Lemma 8.7] again, we get that

Sup t1_7|ID-7r—:—1,7—k (t)| < CHRTk ’
te(0,1]

with, for every t > 7,1,
t
Ry := [Wy =W, 1| + J |t —r|E==32 )W, — W, | dr

t—1
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It is then readily checked that for every ¢ > 0,

E[|R;,_ +amollEk-1] < cmq ,

and so we can apply (5.5) again (with p = 1/2) to assert that

]E[(ts(%pl]tl—’Y|D;:_m(t)|)‘5k] <A, (5.12)
€(0,

The combination of (5.10), (5.11) and (5.12) provide the first part of (5.4).

Step 3. Asymptotic cases. On the one hand, we can use [?, Lemma 8.7] to
obtain that for every k > 1,

0
sup 11707, (0] < sup (D%, o(0)] < craf ™ [ L= oW dr
te(0,1] te(0,1] -0

and (5.3) then follows from the general bound (5.7) (with m = 0).

On the other hand, it is not hard to see that the situation where k = 0 can be
handled with the same strategy as in Step 3, namely writing

sup t'77DL, ()| < sup DL, _i(8)]+ sup ¢'77DL, (1)
te(0,1] te(0,1] te(0,1]

and then bounding the first, resp. second, term along the arguments of Step 2,
resp. Step 3, with p = 1/2. This easily leads us to the second part of (5.4), and
accordingly the proof of the lemma is achieved.

O
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