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Abstract

Given a family of rotationally symmetric compact manifolds indexed by the dimension and a weight
function, the goal of this paper is to investigate the cut-off phenomenon for the Brownian motions on
this family. We provide a class of compact manifolds with non-negative Ricci curvatures for which the
cut-off in separation with windows occurs, in high dimension, with different explicit mixing times. We
also produce counter-examples, still with non-negative Ricci curvatures, where there are no cut-off in
separation. In fact we show a phase transition for the cut-off phenomenon concerning the Brownian
motions on a rotationally symmetric compact manifolds. Our proof is based on a previous construction
of a sharp strong stationary times by the authors, and some quantitative estimates on the two first
moments of the covering time of the dual process. The concentration of measure phenomenon for the
above family of manifolds appears to be relevant for the study of the corresponding cut-off.
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1 Introduction

1.1 Overview
The main purpose of the present paper is to investigate the cut-off phenomenon in separation for
Brownian motion on high dimensional compact manifolds, especially for model space that are the
rotationally symmetric compact manifolds. In the context of card shuffling, the cut-off phenomenon
was discovered by Diaconis and Shahshahani [6] and Aldous and Diaconis [1]. Cut-off phenomenon is
an abrupt transition from out of equilibrium to equilibrium, which occurs for certain Markov processes,
when the size of the state space become large. Afterward, the cut-off phenomenon has been proven
for a large variety of finite Markov chains, see e.g. Diaconis [5], Diaconis and Fill [7], Levin, Peres and
Wilmer [11] and Ding, Lubetzky and Peres [9]. Nevertheless the literature on the cut-off phenomenon
for Markov processes on a continuous state space is rather sparse. For example Saloff-Coste [14] has
proven the cut-off phenomenon in total variation distance for the Brownian motions on the spheres
Sn for high dimensions n, with a mixing time of order lnpnq{p2nq, see also Méliot [13] for extensions
to classical symmetric spaces of compact type. Their approach are based on complete knowledge of
the spectral decomposition. It is shown in Hermon, Lacoin and Peres [10] that total variation and
separation cut-off are not equivalent and neither one implies the other. In a precedent paper [3] we
have shown that the cut-off in separation also occurs for the Brownian motion on the sphere of high
dimensions n with a mixing time of order lnpnq{n. In the present paper we generalize such a result for a
large class of manifold, and as example we strengthen this result on spheres with a cut-off in separation
with windows. Note that controlling the separation discrepancy is essentially (but not exactly) a L8

control while the control of the total variation is a L1 control. Heuristically, the difference in the
mixing times in total variation and separation comes from the fact that L1 estimates only require
the dual process to see a big part of the volume, and by concentration of measure phenomenon it is
sufficient to see the “equator”, while to get L8 estimates we have wait for the dual process to cover all
the sphere, namely to reach the opposite pole, and this takes twice as long.

Our goal here is to check that there is a cut-off phenomenon in separation with windows for a large
class of family of rotationally symmetric manifolds with non-negative Ricci curvature Theorems 12
and 21, including the case of spheres Corollary 13. We also give examples of rotationally symmetric
manifolds with non-negative Ricci curvature where there is no cut-off in separation Theorems 18 and
23. In fact we show a phase transition for the cut-off phenomenon concerning the Brownian motions
see Theorem 4. Our results are connected with those of Salez, concerning sequences of irreducible
Markov chains with symmetric support and non-negative coarse Ricci curvature that exhibit cut-off
in total variation when an additional product condition hypothesis is satisfied, see [15] for the precise
statement.

Our proof is based on two ingredients, the resort to the strong stationary times for Xn presented
in [2] and the detailed quantitative estimates on the cover time of dual process (see [4]) that appear
to be an one-dimensional diffusion processes in the case of rotationnaly symmetric manifolds. The
concentration of volume phenomenon plays a crucial role to detect the scale on which the cut-off
phenomenon occurs. This alternative point of view differs from the traditional approach based on
spectral analysis and could be extended to other situations where spectral information is less available.

1.2 Geometric framework
For n ě 2, let Mn

f be the product manifold r0, LsˆSn´1{ „, where pr1, θ1q „ pr2, θ2q if pr1, θ1q “ pr2, θ2q

or r1 “ r2 “ 0 or r1 “ r2 “ L, endowed with the warping product metric

ds2 “ dr b dr ` f2prqdθ b dθ,
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where Sn´1 is the usual sphere of dimension n´ 1 and radius 1, dθ b dθ is the standard metric on the
sphere and f is a regular real function that satisfies the following assumption:

$

&

%

f : r0, Ls Ñ R`,
fpsq „0 s , fpL ´ sq „0 s

f p2kqp0q “ f p2kqpLq “ 0, k P Z`

(1)

We will call such function a weight function, we will assume all along the paper that f is a weight
function. Later, further conditions will be required to ensure the regularity of the metric at r0 „ p0, .q
and rL „ pL, .q. The volume of the geodesic ball Bpr0, rq in Mn

f centered at r0 of radius r P r0, Ls is
given by

VolnpBpr0, rqq “ cn

ż r

0
fn´1psqds,

where cn “ 2πn{2

Γpn
2

q
is the volume of Sn´1. The area of the geodesic sphere BBpr0, rq is cnf

n´1prq

and the mean curvature of any point in BBpr0, rq is given by pn ´ 1q
f 1prq

fprq
. We have Ricpvq “

´

pn ´ 2q
1´f 1prq2

f2prq
´

f2prq

fprq

¯

v if v P TSn´1 and RicpBrq “

´

´pn ´ 1q
f2prq

fprq

¯

Br, where Ric denote the
Ricci tensor. For a good introduction to warped products, see Chapter 3 in Petersen [12].

Here is our main object of interest.

Definition 1 For any n P Nzt1u, Xn B pXnptqqtě0 stands for the Brownian motion on Mn
f started

at r0 and time-accelerated by a factor 2, i.e. the ∆-diffusion in Mn
f . So the generator of Xn is the

Laplacian ∆ and not the Laplacian divided by 2 as it is sometimes more usual in Probability Theory.
˝

It was seen in [4] that Xn can be intertwined with the dual process D B pDptqqtě0 taking values in the
closed balls of Mn

f centered at r0, starting at tr0u and absorbed in finite time τn in the whole set Mn
f . In

[2], several couplings of Xn and D were constructed, so that for any time t ě 0, the conditional law of
Xnptq knowing the trajectory Dpr0, tsq B pDpsqqsPr0,ts is the normalized uniform law over Dptq, which
will be denoted ΛpDptq, ¨q in the sequel. Furthermore, D is progressively measurable with respect to
Xn, in the sense that for any t ě 0, Dpr0, tsq depends on Xn only through Xnpr0, tsq. Due to these
couplings and to general arguments from Diaconis and Fill [7], τn is a strong stationary time for Xn,
meaning that τn and Xnpτnq are independent and Xnpτnq is uniformly distributed over Mn

f . As a
consequence we have

@ t ě 0, spLpXnptqq,Unq ď Prτn ą ts

where the l.h.s. is the separation discrepancy between the law of Xnptq and the uniform distribution
Un over Mn

f . Notice that UnpBpr0, rqq “

şr
0 fn´1psqds

şL
0 fn´1psqds

for any r P r0, Ls.

Recall that the separation discrepancy between two probability measures µ and ν defined on the
same measurable space is given by

spµ, νq “ ess sup
ν

1 ´
dµ

dν

where dµ{dν is the Radon-Nikodym density of µ with respect to ν. Note that }µ ´ ν}tv ď spµ, νq,
where } ¨ }tv stands for the total variation.

Remark 2 Note that for any t P r0, τnq, the “opposite pole” rL does not belong to the support of
ΛpDptq, ¨q. It follows from an extension of Remark 2.39 of Diaconis and Fill [7] that τn is even a sharp
strong stationary time for Xn, meaning that

@ t ě 0, spLpXnptqq,Unq “ Prτn ą ts

Thus the understanding of the convergence in separation of Xn toward Un amounts to understand-
ing the distribution of τn.

˝
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1.3 Cut-off phenomenon
For fixed n, the Brownian motion Xn in Mn

f converges in law to Un, namely

Xnptq
L
ÑtÑ`8 Un.

Quantifying this convergence to equilibrium is relevant when the dimension n becomes large. This
speed of convergence or mixing time, depends one the way the difference between the time marginal
and the uniform distribution is measured. A cut-off phenomenon in separation at time an is a kind of
phase transition, namely the separation discrepancy between Xn and the equilibrium abruptly drops
from the largest value 1 to the smallest one 0 on a small interval around an. More precisely, we say that
the family of diffusion processes pXnqnPNzt1u has a cut-off in separation with mixing times panqnPNzt1u

and windows pbnqnPNzt1u when

@n ě 1, 0 ă bn ď an,

@ r ą 0, lim
nÑ8

spLpXnpan ` rbnqq,Unq “ lim
nÑ8

P rτn ą an ` rbns “ 0

@ r P p0, 1q, lim
nÑ8

spLpXnpan ´ rbnqq,Unq “ 1 ´ lim
nÑ8

P rτn ď an ´ rbns “ 1.

When @n ě 1, bn “ an, we simply say that the family of diffusion processes pXnqnPNzt1u has a
cut-off in separation with mixing times panqnPNzt1u.

1.4 Intertwining relations
Writing Bpr0, Rptqq B Dptq for t P r0, τns, it has been seen in [4] that R B pRptqqtPr0,τns is solution to
the stochastic differential equation

@ t P p0, τnq, dRptq “
?
2dBptq ` bnpRptqqdt (2)

and

τn “ inftt ě 0 : Rptq “ Lu (3)

where pBptqqtě0 is a standard Brownian motion in R and the mapping bn is given by

@ r P p0, Lq, bnprq B 2
fn´1prq

şr
0 f

n´1puq du
´ pn ´ 1q

f 1prq

fprq
(4)

It is not difficult to check that as r goes to 0`

bnprq „
n ` 1

r

and this is sufficient to insure that 0 is an entrance boundary for R, so that starting from 0, it will
never return to 0 at positive times.

In the following corollary we explicit two intertwining relations, which were constructed in [2] The-
orems 3.5 and 4.1, enabling to deduce τn from the Brownian motion Xn (and independent randomness
for the second construction):

Corollary 3 Consider the Brownian motion Xn B pXnptqqtě0 in Mn
f described in Definition 1. For

x P Mn
f ztr0, rLu, denote by Npxq the unit vector at x normal to the sphere centred at r0 with radius

ρpr0, xq where ρ is the distance in Mn
f , pointing towards r0: Npxq “ ´∇ρpr0, ¨qpxq.
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(1) Full coupling. Let D1ptq be the ball in Mn
f centred at r0 with radius R1ptq solution started at 0

to the Itô equation

dR1ptq “ ´
?
2xNpXnptqq, dXnptqqy ` n

„

2
f 1

f
pρpr0, Xnptqqq ´

f 1

f
pR1ptqq

ȷ

dt

This evolution equation is considered up to the hitting time τ
p1q
n of L by R1ptq.

(2) Full decoupling, reflection of D on Xn. Let D2ptq be the ball in Mn
f centered at r0 with radius

R2ptq solution started at 0 to the Itô equation

dR2ptq “ ´
?
2dWt ` 2dLR2

t rρpr0, Xnqs ´ n
f 1

f
pR2ptqq dt

where pWtqtě0 is a real-valued Brownian motion independent of pXnptqqtě0 and pLR2
t rρpr0, Xnqsq

tPr0,τ
p2q
n s

is the local time at 0 of the process R2 ´ρpr0, Xnq. These considerations are valid up to the hitting
time τ

p2q
n of L by R2ptq.

Let Dptq be the ball in Mn
f centered at r0 with radius Rptq, defined in (2), and let τn be the stopping

time defined in (3).
Then we have:

(1) for i “ 1, 2 Xnpτ
piq
n q is uniformly distributed in Mn

f ,

(2) the pairs pτ
p1q
n , pD1ptqq

tPr0,τ
p1q
n s

q, pτ
p2q
n , pD2ptqq

tPr0,τ
p2q
n s

q and pτn, pDptqqtPr0,τnsq have the same law.

In particular τ
p1q
n and τ

p2q
n satisfy Proposition 7 and Theorem 8 below.

1.5 Outline of the paper and main result
The paper is organized as follow in Section 2 we compute the Green functional of the one-dimensional
diffusion associated to the radius of the dual process, and we give a tractable formulation of all moments
of τn, the covering time of the dual process. In Section 3, we compute the mixing time for several
rotationnaly symmetric manifold and we show that depending on the shape of the weight function f ,
the cut-off occurs in separation for the Brownian motion on Mn

f for high dimensions n, see Theorem
12 and 21, or there is no cut-off in separation, see Theorem 18 and 23.

These results are essentially summarized by the following theorem, showing a phase transition (with
respect to the parameter α P p´1,`8q introduced below) for the cut-off phenomenon concerning the
Brownian motions on the model Mn

f for high dimensions n, depending on the shape of the function f
at L{2. Let us first introduce, in order to simplify the exposition, another set of assumptions on f :

$

&

%

@ s P r0, Ls, fpL ´ sq “ fpsq,
@ s P r0, L{2q, f 1psq ą 0,

@ s P r0, LsztL{2u, f2psq ď 0,
(5)

Theorem 4 Consider a C2 function f on r0, LsztL{2u and C1 in r0, Ls, satisfying Assumptions (1)
and (5). Assume there exist α P p´1,`8q and C ą 0 such that for h ‰ 0 small enough,

f2pL{2 ´ hq “ ´C|h|α ` op|h|αq (6)

Let Xn B pXnptqqtě0 be the Brownian motion described in Definition 1.

• if α P p´1, 0q then pXnqnPNzt1u has a cut-off in separation at time C1{n, with

C1 “ 2

ż L{2

0

fpsq

f 1psq
,

5



• if α “ 0 then pXnqnPNzt1u has a cut-off in separation at time C2 lnpnq{n, with

C2 “
fpL{2q

C
,

• if α ą 0 then pXnqnPNzt1u has no cut-off in separation,

An instance where (6) is satisfied is when there exist α P p´1,`8q, C ą 0 and ϵ P p0, L{2q such
that

@ h P r´ϵ, ϵs, fpL{2 ` hq “ fpL{2q ´ C|h|2`α.

Note the additional factor lnpnq at the critical case α “ 0 for the phase transition. We conjecture
that in the supercritical cases α ą 0, τn{Erτns converges in distribution for large n toward a particular
law depending on α, that would reflect the fact that the larger α ą 0, the more difficult is the mixing.
To go toward this result, we should investigate more moments of the strong stationary times τn than
just the two first ones, as we will do below.

2 Preliminary results
Define for any r P r0, Ls,

Inprq B

ż r

0
fn´1psqds

bnprq B
d

dr
ln

ˆ

I2nprq

fn´1prq

˙

Let Ln :“ B2
r ` bnprqBr be the generator of R defined in (2). Here is our first preliminary result:

Proposition 5 Given g P Cbpr0, Lsq, the bounded solution ϕn of the Poisson equation
"

Lnϕn “ ´g
ϕnpLq “ 0

is given by:

@ r P r0, Ls, ϕnprq “

ż L

r

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
gpsqds

˙

dt. (7)

So the Green operator Gn associated to Ln is given by

@ g P Cbpr0, Lsq, @ r P r0, Ls, Gnrgsprq “

ż L

r

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
gpsqds

˙

dt.

Proof
Use the Remark 6 below to justify integrability of

r0, Ls Q t ÞÑ
fn´1ptq

I2nptq

ż t

0

I2npsq

fn´1psq
gpsqds

at 0 and L. For the function defined in (7), we clearly have, ϕnpLq “ 0, and for any r P r0, Ls,

ϕ1
nprq “ ´

fn´1prq

I2nprq

ż r

0

I2npsq

fn´1psq
gpsqds
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ϕ2
nprq “ ´

ˆ

fn´1

I2n

˙1

prq

ż r

0

I2npsq

fn´1psq
gpsqds ´ gprq.

It follows that

Lnϕnprq “ ´gprq ´

ˆ

fn´1

I2n

˙1

prq

ż r

0

I2npsq

fn´1psq
gpsqds

`

ˆ

ln
I2n

fn´1

˙1

prqϕ1
nprq

“ ´gprq ´

ˆ

fn´1

I2n

˙1

prq

ż r

0

I2npsq

fn´1psq
gpsqds

´

ˆ

ln
fn´1

I2n

˙1

prq

ˆ

´
fn´1prq

I2nprq

ż r

0

I2npsq

fn´1psq
gpsqds

˙

“ ´gprq.

Remark 6
Let us show that the integral

şL
0

fn´1ptq
I2nptq

´

şt
0

I2npsq

fn´1psq
ds

¯

dt is finite. Since fpsq „sÑ0`
s we have

Inpsq „sÑ0`

sn

n , so I2npsq

fn´1psq
„sÑ0`

sn`1

n2 hence fn´1ptq
I2nptq

şt
0

I2npsq

fn´1psq
ds is integrable at 0.

Concerning the integrability at L, since InpLq is positive and finite, it is sufficient to see that for
ε P p0, Lq,

şL
ε fn´1ptq

´

şt
ε

1
fn´1psq

ds
¯

dt is finite and this is indeed true since fpL ´ sq „sÑ0`
s.

The above considerations further enable us to see that

lim
tÑ0`

1

Inptq

ż t

0

I2npsq

fn´1psq
ds “ 0

justifying the following integration by parts:
ż L

0

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
ds

˙

dt “

ż L

0

ˆ

´
1

Inptq

˙1 ˆ
ż t

0

I2npsq

fn´1psq
ds

˙

dt

“ ´
1

InpLq

ż L

0

I2npsq

fn´1psq
ds `

ż L

0

Inpsq

fn´1psq
ds

“

ż L

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds

“
1

VolnpMq

ż L

0

VolnpBpr0, sqqVolnpBcpr0, sqq

Voln´1pBBpr0, sqq
ds

where Voln´1 is the pn´ 1q-dimensional Hausdorff measure. The last r.h.s. and the following Proposi-
tion 7 show that Erτns ď L

hnpMn
f q

, with the Cheeger constant hnpMq B infDĎM,VolnpDqďVolnpMq{2
Voln´1pBDq

VolnpDq
.

˝

Let un,0 B 1, the constant function taking the value 1 on r0, Ls, and consider the following sequence
pun,kqkPN, defined inductively by bounded solution of

@ k P N,
"

Lnun,k “ ´kun,k´1

un,kpLq “ 0.
(8)

We have for all n, k P Z`,

un,k
k!

“ G˝k
n r1s B GnrGnr¨ ¨ ¨ rGnr1ss ¨ ¨ ¨ ss.
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Proposition 7 We have for all n ě 2:

Erτns “ un,1p0q “

ż L

0

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
ds

˙

dt

“

ż L

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds (9)

Erτ2ns “ un,2p0q “ 2

ż L

0

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
un,1psqds

˙

dt,

and more generally, for any k P Z`,

Erτkn s “ un,kp0q “ k!G˝k
n r1sp0q

Proof
Suppose by induction that un,kpxq “ Exrτkn s. This is clearly satisfied for k “ 0. Using Itô’s formula,
we have for all 0 ď t ď τn, for the process R defined in (2) and starting with Rp0q “ x P r0, Ls,

un,k`1pRptqq ´ un,k`1pxq “ ´pk ` 1q

ż t

0
un,kpRpsqqds ` Mt

where pMtqtPr0,τns is a martingale. Consider this equality with t “ τn, take expectation and use the
Markov property to get

un,k`1pxq “ pk ` 1qEx

„
ż τn

0
un,kpRpsqqds

ȷ

“ pk ` 1qEx

„
ż τn

0
ERpsqrτ

k
n sds

ȷ

“ pk ` 1qEx

„
ż τn

0
pτn ´ sqkds

ȷ

“ Exrτk`1
n s.

From Remark 6, Gnpgqprq is defined and bounded if g is bounded. Moreover Gnpgqp0q ě Gnpgqprq

if g ě 0. This implies that if un,kp0q ă 8, then un,k`1 is defined and bounded.
■

The following characterisation of the cut-off phenomenon holds in general and in particular for the
Brownian motion in Mn

f with initial value r0. The underlying idea of comparing the variance and the
square of the expectation of sharp strong stationary times was also used by Diaconis and Saloff-Coste
[8].

As usual, we say that fn “ opgnq when fn
gn

Ñ 0 as n goes to infinity, and fn “ Opgnq when there
exists a constant c such that fn ď cgn.
Let an „nÑ8 Erτns “

şL
0

fn´1ptq
I2nptq

´

şt
0

I2npsq

fn´1psq
ds

¯

dt.

Theorem 8 Suppose that for some sequence pbnqně1 we have @n ě 1, 0 ă bn ď an,

an ´ Erτns “ opbnq and Varpτnq “ opb2nq,

then the family of diffusion processes pXnqnPNzt1u has a cut-off in separation with mixing times
panqnPNzt1u and windows pbnqnPNzt1u in the sense of Section 1.3.
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Proof
Since τn is a sharp strong stationary time for Xn, we have

@ t ě 0, spLpXnptqq,Unq “ P rτn ą ts .

Using Bienaymé-Tchebychev inequality we have for any r ą 0,

P rτn ą an ` rbns “ P rτn ´ Erτns ą rbn ` an ´ Erτnss

ď
Varpτnq

prbn ` an ´ Erτnsq2

“
opbnq2

prbn ` opbnqq2
“ op1q

For the behavior before an, write for r P p0, 1q,

Prτn ď an ´ rbns “ Prτn ´ Erτns ď an ´ rbn ´ Erτnss

and note that an ´ rbn ´ Erτns “ ´rp1 ` op1qqbn ă 0 for n large. Thus we get

Prτn ď an ´ rnbs ď
Varpτnq

prbn ` opbnqq2
“ op1q

■

Proposition 7 could be used to compute the variance of τn, but it is not well-adapted to compute
an equivalent, so let us give an alternative computation of the variance.

Proposition 9 The variance of τn is given by

Varpτnq “ 2

ż L

0

fn´1ptq

I2nptq

ż t

0

I2npsq

fn´1psq
pu1

n,1psqq2ds

Proof
Recall that un,1 is the solution of

"

Lnun,1 “ ´1
un,1pLq “ 0

Using (2) and Itô formula, we have:

un,1pRpτnqq ´ un,1p0q “ ´τn `
?
2

ż τn

0
u1
n,1pRpsqqdBs,

and since un,1p0q “ Erτns, we have

Varpτnq “ 2E
„

ż τn

0
pu1

n,1q2pRpsqqds

ȷ

.

Let ϕn be the solution of
"

Lnϕn “ ´2pu1
n,1q2

ϕnpLq “ 0

Again by Itô formula, we get

ϕnpRpτnqq ´ ϕnp0q “ ´2

ż τn

0
pu1

n,1q2pRpsqqds ` Mτn ,

where pMtqtPr0,τns is a martingale. After taking the expectation in the above formula, we get from
Proposition 2:

Varpτnq “ ϕnp0q “ 2

ż L

0

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
pu1

n,1psqq2ds

˙

dt

■
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3 Application to cut-off for rotationnaly symmetric
In this section we derive the cut-off in separation phenomenon for a class of rotationally symmetric
manifolds that contains spheres.

From now on, all constants will be denoted c, their exact values can change from one line to another.
When these constants depend on a parameter, such as A, we will rather write cpAq.

Proposition 10 Let f be a C3 function on r0, Ls satisfying Assumptions (1) and (5). Assume that

f2pL{2q ă 0. Denote for n ě 1 an :“
fpL{2q

|f2pL{2q|

lnpnq

n
, and let pbnqně1 satisfy

?
lnn

n
“ opbnq and

bn ď an. Then
Erτns ´ an “ opbnq. (10)

Proof
From Proposition 7 and Remark 6 we get: Erτns “ un,1p0q. Let us write, for An :“ e

?
lnn:

un,1p0q “

ż L

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds “ 2

ż L{2

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds

“ 2 pαn ` γn ` βnq (11)

with

αn :“

ż L{2´An{
?
n

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds, (12)

γn :“

ż L{2´1{
?
n

L{2´An{
?
n

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds (13)

and

βn :“

ż L{2

L{2´1{
?
n

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds. (14)

We will prove that
an ´ 2αn “ opbnq, γn “ opbnq and βn “ opbnq (15)

and this will establish (10).

Let us prove that an ´ 2αn “ opbnq.
We introduce

Jnpsq B
Inpsq

fn´1psq

InpLq ´ Inpsq

InpLq
“

Inpsq

fn´1psq

InpL ´ sq

InpLq
. (16)

We have

αn :“

ż L{2´An{
?
n

0
Jnpsqds (17)

We will prove that

@ s P
“

0, L{2 ´ An{
?
n

‰

,

ˇ

ˇ

ˇ

ˇ

fpsq

nf 1psq
´ Jnpsq

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

fpsq

nA2
nf

1psq

˙

(18)

uniformly in s, and then that

1

n

ż L{2´An{
?
n

0

fpsq

f 1psq
ds ´

an
2

`

?
lnn

n
“ Op1{nq. (19)

10



From estimates (18) and (19) we will get an ´ 2αn “ opbnq.
For s “ L

2 , since f is increasing in r0, L{2s and f 1pL{2q “ 0 we get using Laplace’s method:

In

ˆ

L

2

˙

“

ż L
2

0
fn´1ptqdt “

ż L
2

0
expppn ´ 1q lnpfqptqqdt

„nÑ8

c

π

2| lnpfpsqq2|s“L{2|

fn´1pL{2q
?
n ´ 1

„nÑ8

d

πfpL{2q

2n|f2pL{2q|
fn´1pL{2q. (20)

If s ă L
2 ´ An?

n
then we have the following expansion, since f 1 ą 0 on the interval r0, L{2q:

Inpsq “

ż s

0
fn´1ptqdt “

ż s

0
expppn ´ 1q lnpfptqqqdt

ď
L

2
exp

ˆ

pn ´ 1q ln

ˆ

f

ˆ

L

2
´

An
?
n

˙˙˙

“
L

2
f

ˆ

L

2

˙n´1

exp

„

pn ´ 1q ln

ˆ

1 `
A2

nf
2pL{2q

2nfpL{2q
` O

ˆ

A3
n

n3{2

˙˙ȷ

“
L

2
f

ˆ

L

2

˙n´1

exp

„

A2
nf

2pL{2q

2fpL{2q
` O

ˆ

A3
n

n1{2

˙ȷ

. (21)

This implies that
ˇ

ˇ

ˇ

ˇ

InpLq ´ Inpsq

InpLq
´ 1

ˇ

ˇ

ˇ

ˇ

“
L

2

Inpsq

InpLq
ď

L

2

f
`

L
2

˘n´1

InpLq
exp

„

A2
nf

2pL{2q

2fpL{2q
` O

ˆ

A3
n

n1{2

˙ȷ

„
L

4

d

2n|f2pL{2q|

πfpL{2q
exp

„

A2
nf

2pL{2q

2fpL{2q
` O

ˆ

A3
n

n1{2

˙ȷ

ď
C

n

for some C ą 0 (this majoration will be enough for our purpose). We get

1 ´
C

n
ď

InpLq ´ Inpsq

InpLq
ď 1. (22)

We now investigate the term Inpsq{fn´1psq of Jnpsq. After integration by parts, for 0 ď s ă L{2,
and since f 1 ą 0 on r0, L{2q, we have

Inpsq “

ż s

0
fn´1ptqdt “

ż s

0

f 1ptqfn´1ptq

f 1ptq
dt

“
fnpsq

nf 1psq
`

ż s

0

fnptqf2ptq

npf 1ptqq2
dt. (23)

Since f 1 is decreasing and positive on r0, L{2q, we have for s P r0, L{2q,

@ t P r0, ss,
fnptq

pf 1ptqq2
ď

fnptq

pf 1psqq2
,

hence, with m B minr0,L{2s f
2 ă 0,

fnpsq

nf 1psq
`

m

npf 1psqq2
In`1psq ď Inpsq ď

fnpsq

nf 1psq
.
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From the above equation we get

fnpsq

nf 1psq

ˆ

1 `
mfpsq

pn ` 1qpf 1psqq2

˙

ď Inpsq ď
fnpsq

nf 1psq
. (24)

Since f is increasing, f 1 is non-increasing in p0, L{2q and m ă 0 we deduce that for s P r0, L{2´An{
?
ns:

fnpsq

nf 1psq

ˆ

1 ´
|m|fpL{2q

pn ` 1qpf 1pL{2 ´ An{
?
nqq2

˙

ď Inpsq ď
fnpsq

nf 1psq
. (25)

From
f 1

`

L{2 ´ An{
?
n

˘

`
An
?
n
f2pL{2q “ O

`

A2
n{n

˘

(26)

we get

f 1
`

L{2 ´ An{
?
n

˘2
´

A2
n

n
f2pL{2q2 “ O

ˆ

A3
n

n3{2

˙

which yields
|m|fpL{2q

pn ` 1qpf 1pL{2 ´ An{
?
nqq2

“ O

ˆ

1

A2
n

˙

.

This estimate together with (25) give for s P r0, L{2 ´ An{
?
ns:

0 ď
fpsq

nf 1psq
´

Inpsq

fn´1psq
ď

C

A2
n

fpsq

nf 1psq
(27)

for some C ą 0. Multiplying by
InpLq ´ Inpsq

InpLq
and using (22) we get for all s P r0, L{2 ´ An{

?
ns,

ˇ

ˇ

ˇ

ˇ

fpsq

nf 1psq
´ Jnpsq

ˇ

ˇ

ˇ

ˇ

ď
Cfpsq

A2
nnf

1psq
(28)

for some C ą 0. This is (18).

For proving (19) we remark that a Taylor expansion of
fpsq

f 1psq
yields on s P r0, L{2q

fpsq

f 1psq
“

fpL{2q

|f2pL{2q|pL{2 ´ sq
` gpsq (29)

with gpsq uniformly bounded in r0, L{2q. So

1

n

ż L{2´An{
?
n

0

fpsq

f 1psq
ds “

fpL{2q

|f2pL{2q|

ˆ

lnn

2n
´

lnAn

n

˙

` Op1{nq

“
an
2

´

?
lnn

n
` Op1{nq

which is (19). So an ´ 2αn “ opbnq.

Next we prove that γn “ opbnq. We already know as an immediate consequence of (24) that on
r0, L{2 ´ 1{

?
ns, we have

Jnpsq ď
fpsq

nf 1psq
. (30)

On the other hand, by (29),
fpsq

f 1psq
´

fpL{2q

|f2pL{2q|pL{2 ´ sq
is bounded in r0, L{2q .Consequently,

1

n

ż L{2´1{
?
n

L{2´An{
?
n

fpsq

f 1psq
ds „

1

n

ż L{2´1{
?
n

L{2´An{
?
n

fpL{2q

|f2pL{2q|pL{2 ´ sq
ds

“
1

n

fpL{2q

|f2pL{2q|
lnpAnq “

1

n

fpL{2q

|f2pL{2q|

?
lnn “ opbnq. (31)

This proves the second estimate in (15).

12



Finally we prove that βn “ opbnq.
If s P rL2 ´ 1?

n
, L2 ` 1?

n
s, then write s “ L{2 ` a{

?
n, with a P r´1, 1s. Since f 1pL{2q “ 0 and f is

C3, we have uniformly in a P r´1, 1s:

InpL{2 ` a{
?
nq “ InpL{2q `

ż L{2`a{
?
n

L{2
fn´1pxqdx

“ InpL{2q `
1

?
n

ż a

0
fn´1

ˆ

L

2
`

h
?
n

˙

dh

“ InpL{2q `
1

?
n

ż a

0

ˆ

fpL{2q `
f2pL{2qh2

2n
` Op1{n3{2q

˙n´1

dh

„
fn´1pL{2q

?
n

˜

d

πfpL{2q

2|f2pL{2q|
`

ż a

0
e

f2pL{2qh2

2fpL{2q dh

¸

“
fn´1pL{2q

?
n

ż a

´8

e
f2pL{2qh2

2fpL{2q dh. (32)

Hence, letting hpaq “
şa

´8
e

f2pL{2qh2

2fpL{2q dh, we get that for βn defined in (11)

βn B

ż L{2

L{2´1{
?
n

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds

„
1

?
nInpLq

ż 0

´1

hpaqhp´aqf2n´2pL{2q

nfn´1pL{2qe
f2pL{2qa2

2fpL{2q

da

„
c

n
“ opbnq, (33)

where we used the following uniform estimate in a P r´1, 1s obtained as in (21)

fnpL{2 ´ a{
?
nq „ fnpL{2qe

f2pL{2qa2

2fpL{2q , (34)

and next (20) for the last equivalent.
■

Proposition 11 Let f be a C3 function on r0, Ls satisfying Assumptions (1) and (5). Assume that
f2pL{2q ă 0, then

Varpτnq “ O

ˆ

lnn

n2

˙

.

Proof
From Proposition 9 and after integration by parts, it follows that for all A large enough and for all n
large enough:

Varpτnq

2
“

ż L

0

fn´1ptq

I2nptq

ż t

0

I2npsq

fn´1psq
pu1

n,1psqq2ds

“

„

´
1

Inptq

ż t

0

I2npsq

fn´1psq
pu1

n,1psqq2ds

ȷL

0

`

ż L

0

Inpsq

fn´1psq
pu1

n,1psqq2ds

“

ż L

0

Inpsq

fn´1psq

InpLq ´ Inpsq

InpLq
pu1

n,1psqq2ds

13



“

ż L{2´A{
?
n

0
Jnpsqpu1

n,1psqq2ds
loooooooooooooooooomoooooooooooooooooon

An

`

ż L{2`A{
?
n

L{2´A{
?
n
Jnpsqpu1

n,1psqq2ds
loooooooooooooooooomoooooooooooooooooon

Bn

(35)

`

ż L

L{2`A{
?
n
Jnpsqpu1

n,1psqq2ds
looooooooooooooooomooooooooooooooooon

Cn

(36)

We will analyze the three last terms separately. Recall that by Proposition 5 and from the fact that
un,1 “ Gnr1s, we have

pu1
n,1ptqq2 “

ˆ

fn´1ptq

I2nptq

ż t

0

I2npsq

fn´1psq
ds

˙2

(37)

• Let us start by the term An, using computations (23) and (24), since f is increasing, f 1 is non-
increasing in p0, L{2q and m ă 0, it follows that for A big enough and for all n sufficiently large,
and for all s P r0, L{2 ´ A{

?
ns,

fn`1psq

n2pf 1psqq2

ˆ

1 ´
1

A

˙2

ď
I2npsq

fn´1psq
ď

fn`1psq

n2pf 1psqq2
. (38)

Let Wnptq “
şt
0
fn`1psq

pf 1psqq2
ds, for 0 ď t ă L{2, we have after integration by parts:

Wnptq “

ż t

0

fn`1psqf 1psq

pf 1psqq3
ds

“
fn`2ptq

pn ` 2qpf 1ptqq3
`

3

n ` 2

ż t

0

fn`2psqf2psq

pf 1psqq4
ds.

Since f2 ď 0, we deduce, using (38),
ż t

0

I2npsq

fn´1psq
ds ď

fn`2ptq

n3pf 1ptqq3
(39)

and that for A big enough and for all n sufficiently large:

pu1
n,1ptqq2 ď

˜

n2pf 1ptqq2fn`2ptq

fn`1ptqp1 ´ 1
Aq2n3pf 1ptqq3

¸2

“

˜

fptq

nf 1ptqp1 ´ 1
Aq2

¸2

.

Also by (30),

Jnpsq B
Inpsq

fn´1psq

InpL ´ sq

InpLq
ď

fpsq

nf 1psq
.

Hence for A big enough, for all n sufficiently large, and for An defined in (36), by (38), we have

An ď
1

n3p1 ´ 1
Aq4

ż L{2´A{
?
n

0

f3psq

pf 1psqq3
ds

ď
fpL{2q3

n3p1 ´ 1
Aq4

ż L{2´A{
?
n

0

1

pf 1psqq3
ds

14



„
c

A2n2
,

where in the last equivalent we used 1
f 1psq

„sÑL{2´
1

|f2pL{2q|pL{2´sq
.

Hence for A big enough,

An “ O

ˆ

lnpnq

n2

˙

. (40)

• For the term Bn in (36): for A big enough, for all n large enough and for a P r´A,As, we have

ˇ

ˇ

ˇ

ˇ

u1
n,1

ˆ

L

2
`

a
?
n

˙ˇ

ˇ

ˇ

ˇ

“
fn´1

´

L
2 ` a?

n

¯

I2n

´

L
2 ` a?

n

¯

˜

ż L{2´A{
?
n

0

I2npsq

fn´1psq
ds `

ż L{2` a?
n

L{2´A{
?
n

I2npsq

fn´1psq
ds

¸

.

Let Cpf, 2q “

´

2fpL{2q

|f2pL{2q|

¯1{2
we have (similarly to the computation in (21) and (26)):

fnpL{2 ´ A{n1{2q „ fnpL{2qe
´A2

Cpf,2q2 , (41)

and

f 1pL{2 ´ A{n1{2q „
|f2pL{2q|A

n1{2
. (42)

By the above computation and (39), we have

ż L{2´A{
?
n

0

I2npsq

fn´1psq
ds ď

fn`2pL{2 ´ A?
n

q

n3pf 1pL{2 ´ A?
n

qq3
„

fn`2pL{2qe
´ A2

Cpf,2q2

n3{2A3|f2pL{2q|3
.

Recall that from (32), and for h1paq “
şa

´8
e

´h2

Cpf,2q2 dh, we have uniformly over a P r´A,As

InpL{2 ` a{
?
nq „ fn´1pL{2q

h1paq
?
n

, (43)

hence since uniformly in a P r´A,As,

fnpL{2 ´ a{n1{2q „ fnpL{2qe
´a2

Cpf,2q2 ,

taking (41) into account,

ż L{2` a?
n

L{2´A{
?
n

I2npsq

fn´1psq
ds “

1
?
n

ż a

´A

I2npL{2 ` ã?
n

q

fn´1pL{2 ` ã?
n

q
dã

„
fn´1pL{2q

?
n

ż a

´A

h21pãqe
ã2

Cpf,2q2

n
dã “

fn´1pL{2qθApaq

n3{2
, (44)

where θApaq B
şa

´A h21pãqe
ã2

Cpf,2q2 dã.
We have for A big enough

|u1
n,1

ˆ

L

2
`

a
?
n

˙

| ď c
e

´ a2

Cpf,2q2

?
nh21paq

ˆ

θApaq `
1

A3

˙

.
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Hence

Bn B

ż L{2`A{
?
n

L{2´A{
?
n
Jnpsqpu1

n,1psqq2ds

“
1

?
n

ż A

´A
JnpL{2 ` a{

?
nqpu1

n,1pL{2 ` a{
?
nqq2da

ď
1

?
n

ż A

´A
JnpL{2 ` a{

?
nq

¨

˝c
e

´ a2

Cpf,2q2

?
nh21paq

ˆ

θApaq `
1

A3

˙

˛

‚

2

da

„
cpAq

n2
,

where, taking (43) into account, we use for the last term that

JnpL{2 ` a{
?
nq “

InpL{2 ` a{
?
nq

fn´1pL{2 ` a{
?
nq

InpL{2 ´ a{
?
nq

InpLq
„ c

h1paqh1p´aqe
a2

Cpf,2q2

?
n

,

and cpAq is a constant that depends on A. It follows that once A is fixed, for n big enough,

Bn “ O

ˆ

lnpnq

n2

˙

. (45)

• For the last term Cn in (36), note that Jnpsq “ JnpL ´ sq so

Cn “

ż L

L{2`A{
?
n
Jnpsqpu1

n,1psqq2ds

“

ż L{2´A{
?
n

0
Jnpsqpu1

n,1pL ´ sqq2ds.

Also for s ď L{2 ´ A{
?
n

|u1
n,1pL ´ sq| “

fn´1psq

I2npL ´ sq

ż L´s

0

I2nptq

fn´1ptq
dt

“
fn´1psq

I2npL ´ sq

˜

ż L{2´A{
?
n

0

I2nptq

fn´1ptq
dt `

ż L{2`A{
?
n

L{2´A{
?
n

I2nptq

fn´1ptq
dt `

ż L´s

L{2`A{
?
n

I2nptq

fn´1ptq
dt

¸

.

Using (39), (41) and (42), we have that for A big enough, for all n sufficiently large

ż L{2´A{
?
n

0

I2npsq

fn´1psq
ds ď 2

fn`2pL{2qe
´ A2

Cpf,2q2

n3{2A3pf2pL{2qq3

and using (44),
ż L{2`A{

?
n

L{2´A{
?
n

I2nptq

fn´1ptq
dt ď 2

θApAqfn´1pL{2q

n3{2
.

For the last term since for s ď L{2 ´ A{
?
n,

ż L´s

L{2`A{
?
n

I2nptq

fn´1ptq
dt ď I2npL ´ sq

ż L´s

L{2`A{
?
n

1

fn´1ptq
dt
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“ I2npL ´ sq

ż L{2´A{
?
n

s

1

fn´1ptq
dt

“ I2npL ´ sq

ż L{2´A{
?
n

s

f 1ptq

fn´1ptqf 1ptq
dt

ď
I2npL ´ sq

f 1pL{2 ´ A{
?
nq

ˆ

f´n`2psq

n ´ 2

˙

„ c
f´n`2psqI2npL ´ sq

n1{2A

Since L ´ s ě L{2, we have for A big enough and for all n sufficiently large,

|u1
n,1pL ´ sq| ď c

f2n´2pL{2q

n3{2I2npL{2q

¨

˝

e
´ A2

Cpf,2q2

A3
` θApAq

˛

‚` c
fpsq

n1{2A

ď
c

n1{2

¨

˝

e
´ A2

Cpf,2q2

A3
` θApAq

˛

‚` c
fpsq

n1{2A
ď cpAq

1

n1{2

where in the second inequality, we used (20). Since, for s ď L{2´A{
?
n, by (24) Jnpsq ď

fpsq

nf 1psq
,

for A big enough and for all n sufficiently large,

Cn “

ż L{2´A{
?
n

0
Jnpsqpu1

n,1pL ´ sqq2ds.

ď
cpAq2

n

ż L{2´A{
?
n

0
Jnpsqds

ď
cpAq2fpL{2q

n2

ż L{2´A{
?
n

0

1

f 1psq
ds

„
cpAq2fpL{2q

n2

ˆ

1

2
lnpnq

˙

„ cpAq2
lnpnq

n2

Hence

Cn “ O

ˆ

lnpnq

n2

˙

. (46)

Putting (40), (45) and (46) together, we deduce that Varpτnq “ O

ˆ

lnpnq

n2

˙

.

■

We deduce the following result

Theorem 12 Let f be a C3 function on r0, Ls satisfying Assumptions (1) and (5) and f2pL{2q ă 0.
For n P Nzt1u, consider the Brownian motion Xn B pXnptqqtě0 described in Definition 1. Then the
family of diffusion processes pXnqnPNzt1u has a cut-off in separation in the sense of Section 1.3, with

mixing times panqnPNzt1u “

´

fpL{2q

|f2pL{2q|

lnpnq

n

¯

nPNzt1u
and windows pbnqnPNzt1u satisfying @ n ě 1, bn ď an,

together with
a

lnpnq

n
“ opbnq.

Proof
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Use Theorem 8, Proposition 10 and Proposition 11.
■

The previous arguments provide an alternative proof to the main result from [3], and strengthens
the result with a cut-off in separation with windows:

Corollary 13 Let Xn B pXnptqqtě0 be the Brownian motion described in Definition 1, where Mn
f

is replaced by the sphere Sn and where r0 now stands for any point of Sn. Then the family of diffu-
sion processes pXnqnPNzt1u has a cut-off in separation in the sense of Section 1.3, with mixing times

panqnPNzt1u “

´

lnpnq

n

¯

nPNzt1u
and windows pbnqnPNzt1u satisfying @ n ě 1, bn ď an, together with

a

lnpnq

n
“ opbnq.

Proof
Use Theorem 12, with f “ sin and L “ π, and note that by symmetry in this case the starting point
is not relevant.

■

We also deduce the following consequences.

Corollary 14 Let f be a C3 function on r0, Ls satisfying Assumptions (1) and (5) and f2pL{2q ă 0.
For n P Nzt1u, consider the Brownian motion Xn B pXnptqqtě0 in Mn

f described in Definition 1.
There exist C ą 0 and n0 P N such that for all r ą 0, 0 ă r1 ă 1 and for all n ě n0,

›

›

›

›

L
ˆ

Xnpp1 ` rq
fpL{2q

|f2pL{2q|

lnpnq

n
q

˙

´ Un

›

›

›

›

tv

ď
C

r2 lnpnq

@ y P Mn
f , P

pnq

p1`rq
fpL{2q

|f2pL{2q|

lnpnq

n

p0̃, yq ě

ˆ

1 ´
C

r2 lnpnq

˙

1

VolpMn
f q

inf
yPMn

f

P
pnq

p1´r1q
fpL{2q

|f2pL{2q|

lnpnq

n

p0̃, yq ď

ˆ

C

r12 lnpnq

˙

1

VolpMn
f q

where } ¨ }tv stands for the total variation norm, LpXnptqq is the law of Xnptq, Un is the uniform
measure in Mn

f , and P
pnq

t p¨, ¨q is the heat kernel density at time t ą 0 associated to the Laplacian on
Mn

f .

Proof
From the computations in the proof of Proposition 10 and Proposition 11, with bn “ an, there exist
C ą 0 and n0 P N such that for all r ą 0 and for all n ě n0,

P rτn ą p1 ` rqans ď
Varpτnq

pp1 ` rqan ´ Erτnsq2
ď

C

r2 lnpnq

The first conclusion follows, since

}L pXnpp1 ` rqanqq ´ Un}tv ď s pL pXnpp1 ` rqanqq ,Unq ď P rτn ą p1 ` rqans

The second conclusion follows by definition of the separation discrepancy, since for all y P Mn
f and

t ą 0,

1 ´ P
pnq

t p0̃, yqvolpMn
f q ď spLpXnptqq,Unq

The last conclusion follows in the same way.
■
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Proposition 15 Let f be a C3 function on r0, Ls satisfying Assumptions (1) and (5). Assume that
for some k ě 2,

fpL{2 ` hq “ fpL{2q `
f p2kqpL{2q

p2kq!
h2k ` oph2kq

where f p2kqpL{2q ă 0, then

Erτns „
2kCp2kqCpf, 2kq2

n1{kΓ
`

1
2k

˘ ,

where Γ is the usual Gamma functional and

Cpf, 2kq B

ˆ

p2kq!fpL{2q

|f p2kqpL{2q|

˙1{2k

(47)

Cp2kq B

ż 8

0
h1,kpaqh1,kp´aqea

2k
da, (48)

and for any x P R, h1,kpxq B
şx

´8
e´a2kda.

Proof
Recall from Proposition 7 that Erτns “ un,1p0q “

şL
0

Inpsq

fn´1psq

´

InpLq´Inpsq

InpLq

¯

ds. Let us write, for A big
enough and n sufficiently large:

un,1p0q “

ż L

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds “ 2

ż L{2

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds

“ 2

¨

˚

˚

˚

˝

ż L{2´A{n1{2k

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

An

(49)

`

ż L{2

L{2´A{n1{2k

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Bn

˛

‹

‹

‹

‚

(50)

• Volume of Mn
f : Since f is increasing in r0, L{2s, using Laplace method we get:

In

ˆ

L

2

˙

“

ż L
2

0
fn´1ptqdt “

ż L
2

0
expppn ´ 1q lnpfqptqqdt

„nÑ8

Γ
`

1
2k

˘

2k

ˆ

p2kq!

|pln fqp2kqpL{2q|

˙1{2k fn´1pL{2q

pn ´ 1q1{2k

„nÑ8

1

2k
Γ

ˆ

1

2k

˙ ˆ

p2kq!fpL{2q

n|f p2kqpL{2q|

˙1{2k

fn´1pL{2q

„nÑ8

1

2k
Γ

ˆ

1

2k

˙

Cpf, 2kq
fn´1pL{2q

n1{2k
(51)

Since f2 is non-positive, f 1p0q “ 1, f piqpL{2q “ 0 for i P t1, ..., 2k ´ 1u, and f p2kqpL{2q ă 0, there
exists M ą 0 such that, for all u P r0, Ls

ˇ

ˇ

ˇ

ˇ

f2puq

pf 1puqqp2k´2q{p2k´1q

ˇ

ˇ

ˇ

ˇ

ď M.
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It follows that for all s P r0, L{2q and for all t P r0, ss

ˇ

ˇ

ˇ

ˇ

fnptqf2ptq

npf 1ptqq2

ˇ

ˇ

ˇ

ˇ

ď
fnptqM

npf 1ptqq2k{p2k´1q
ď

fnptqM

npf 1psqq2k{p2k´1q
.

Hence (23) gives
fnpsq

nf 1psq
´

M

npf 1psqq2k{p2k´1q
In`1psq ď Inpsq ď

fnpsq

nf 1psq
, (52)

it follows that
fnpsq

nf 1psq

ˆ

1 ´
Mfpsq

pn ` 1qpf 1psqq2k{p2k´1q

˙

ď Inpsq ď
fnpsq

nf 1psq
,

and
1 ´

fnpsq

nf 1psqInpLq
ď

InpLq ´ Inpsq

InpLq
ď 1. (53)

• For s P r0, L{2 ´ A{n1{2ks.
The above equation gives:

1 ´
fnpL{2 ´ A{n1{2kq

nf 1pL{2 ´ A{n1{2kqInpLq
ď

InpLq ´ Inpsq

InpLq
ď 1.

Since

fnpL{2 ´ A{n1{2kq „ fnpL{2qe
´A2k

Cpf,2kq2k , (54)

and

f 1pL{2 ´ A{n1{2kq „
|f p2kqpL{2q|A2k´1

p2k ´ 1q!np2k´1q{2k
, (55)

using (51), we get for A big enough and n large enough

fnpL{2 ´ A{n1{2kq

nf 1pL{2 ´ A{n1{2kqInpLq
„

fpL{2qe
´A2k

Cpf,2kq2k

2
p2kq!Γ

`

1
2k

˘

Cpf, 2kq|f p2kqpL{2q|A2k´1
ď e

´A2k

Cpf,2kq2k ,

and so using the above equations, we get that for A big enough uniformly over s P r0, L{2 ´

A{n1{2ks

p1 ´ e
´A2k

Cpf,2kq2k q ď
InpLq ´ Inpsq

InpLq
ď 1. (56)

Since
Mfpsq

pn ` 1qpf 1psqq2k{p2k´1q
ď

MfpL{2q

pn ` 1qpf 1pL{2 ´ A{n1{2kqq2k{p2k´1q
„

c

A2k

it follows with (55) that for A big enough and n sufficiently large

fnpsq

nf 1psq

ˆ

1 ´
1

A2k´1

˙

ď Inpsq ď
fnpsq

nf 1psq
. (57)

Hence using (56) we get that for A big enough and for all n sufficiently large, uniformly in
s P r0, L{2 ´ A{n1{2ks:

fpsq

nf 1psq

ˆ

1 ´
1

A2k´1

˙

p1 ´ e
´A2k

Cpf,2kq2k q ď Jnpsq ď
fpsq

nf 1psq
(58)
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where Jn is defined in (16).

Since fpsq

f 1psq
„sÑL{2´

p2k´1q!fpL{2q

|f p2kqpL{2q|pL{2´sqp2k´1q , we have

1

n

ż L{2´A{n1{2k

0

fpsq

f 1psq
ds „

1

n

ż L{2´A{n1{2k

0

p2k ´ 1q!fpL{2q

|f p2kqpL{2q|pL{2 ´ sqp2k´1q
ds „

c

n1{kA2k´2
.

We get, for all A big enough, and for An defined in (49):

lim sup
nÑ8

An
c

n1{k

“ lim sup
nÑ8

şL{2´A{n1{2k

0 Jnpsqds
c

n1{k

ď
1

A2k´2
(59)

and

lim inf
nÑ8

An
c

n1{k

“ lim inf
nÑ8

şL{2´A{n1{2k

0 Jnpsqds
c

n1{k

ě
1

A2k´2

ˆ

1 ´
1

A2k´1

˙

p1 ´ e
´A2k

Cpf,2kq2k q (60)

• If s P rL2 ´ A
n1{2k ,

L
2 ` A

n1{2k s, then write s “ L{2 ` a{n1{2k, with a P r´A,As. Since f piqpL{2q “ 0

for i P t1, ..., 2k ´ 1u, f p2kqpL{2q ă 0 and f P C2k`1, we deduce that uniformly in a P r´A,As:

InpL{2 ` a{n1{2kq “ InpL{2q `

ż L{2`a{n1{2k

L{2
fn´1pxqdx

“ InpL{2q `
1

n1{2k

ż a

0
fn´1

ˆ

L

2
`

h

n1{2k

˙

dh

“ InpL{2q `
1

n1{2k

ż a

0

˜

fpL{2q ´
|f p2kqpL{2q|

p2kq!n
h2k ` Op

1

np2k`1q{2k
q

¸n´1

dh

„
fn´1pL{2q

n1{2k

ˆ

1

2k
Γ

ˆ

1

2k

˙

Cpf, 2kq `

ż a

0
e

´h2k

Cpf,2kq2k dh

˙

“
fn´1pL{2q

n1{2k

ż a

´8

e
´h2k

Cpf,2kq2k dh. (61)

Let hkpaq “
şa

´8
e

´h2k

Cpf,2kq2k dh. Since InpLq ´ Inpsq “ InpL ´ sq we have uniformly in a P r´A,As

InpL{2 ` a{n1{2kqpInpLq ´ InpL{2 ` a{n1{2kqq „
f2n´2pL{2q

n1{k
hkpaqhkp´aq.

Since
ż L{2

L{2´A{n1{2k

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds

“
1

n1{2kInpLq

ż 0

´A

InpL{2 ` a{n1{2kqpInpLq ´ InpL{2 ` a{n1{2kqq

fn´1pL{2 ` a{n1{2kq
da

we get for all A big enough, and for Bn defined in (49)

Bn „
fn´1pL{2q

n3{2kInpLq

ż 0

´A
hkpaqhkp´aqe

a2k

Cpf,2kq2k da

„
1

n1{k 1
kΓ

`

1
2k

˘

Cpf, 2kq

ż 0

´A
hkpaqhkp´aqe

a2k

Cpf,2kq2k da (62)
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Also
ż 8

0
hkpaqhkp´aqe

a2k

Cpf,2kq2k da “ Cpf, 2kq3Cp2kq

where Cp2kq “
ş8

0 h1,kpaqh1,kp´aqea
2k
da and h1,kpxq “

şx
´8

e´a2kda (note that Cp2kq is finite
since k ě 2). We have for all A large enough

ż 0

´A
hpaqhp´aqe

a2k

Cpf,2kq2k da `
c

A2k´2
p1 ´

1

A2k´1
qp1 ´ e

´A2k

Cpf,2kq2k q

ď lim inf
nÑ8

Erτns

2k
n1{kΓp 1

2k qCpf,2kq

ď lim sup
nÑ8

Erτns

2k
n1{kΓp 1

2k qCpf,2kq

ď
c

A2k´2
`

ż 0

´A
hpaqhp´aqe

a2k

Cpf,2kq2k da,

and so letting A go to infinity, we get

Erτns „
2kCp2kqC2pf, 2kq

n1{kΓ
`

1
2k

˘ “
2kCp2kq

n1{kΓ
`

1
2k

˘

ˆ

p2k!fpL{2q

|f p2kqpL{2q|

˙1{k

.

■

Remark 16 Note that the dominant term of Erτns comes from
şL{2´A{

?
n

0 Jnpsq ds when k “ 1, and
comes from

şL{2

L{2´A{n1{2k Jnpsqds when k ě 2, this essentially leads to two different proofs, despite the
apparent similarity. We will find this feature again in the sequel.

˝

Proposition 17 Let f be a C2k`1 function on r0, Ls satisfying Assumption (1) and (5). Assume that
for some k ě 2,

fpL{2 ` hq “ fpL{2q ´
|f p2kqpL{2q|

p2kq!
h2k ` oph2kq

where f p2kqpL{2q ă 0 then

lim
nÑ8

Erτ2ns

Erτns2
“ 1 `

2

ck

ż 8

´8

h2kp´aqe
a2k

Cpf,2kq2k

ż a

´8

h2kpãqe
ã2k

Cpf,2kq2k dãda,

where ck “ Cp2kq2Cpf, 2kq3{k, and Cp2kq and Cpf, 2kq are defined in (48) and (47). In particular

Varpτnq “ OpErτns2q, Varpτnq ‰ opErτns2q.

Proof
Using Proposition 7 and integration by parts we get

1

2
Erτ2ns “

ż L

0

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
un,1psqds

˙

dt.

“

ż L

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

un,1psqds.

Also by Proposition 5 and integration by parts we have

un,1prq “

ż L

r

fn´1ptq

I2nptq

ˆ
ż t

0

I2npsq

fn´1psq
ds

˙

dt
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“
1

Inprq

ż r

0

I2npsq

fn´1psq
ds ´

1

InpLq

ż L

0

I2npsq

fn´1psq
ds `

ż L

r

Inpsq

fn´1psq
ds

“

ˆ

InpLq ´ Inprq

InpLqInprq

˙
ż r

0

I2npsq

fn´1psq
ds `

ż L

r

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds.

It follows that

1

2
Erτ2ns “

ż L

0

1

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙2 ż s

0

I2nptq

fn´1ptq
dtds

`

ż L

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙
ż L

s

Inptq

fn´1ptq

ˆ

InpLq ´ Inptq

InpLq

˙

dtds.

“

ż L

0

1

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙2 ż s

0

I2nptq

fn´1ptq
dtds

`
1

2

ˆ
ż L

0

Inptq

fn´1ptq

ˆ

InpLq ´ Inptq

InpLq

˙

dt

˙2

“

ż L

0

1

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙2 ż s

0

I2nptq

fn´1ptq
dtds `

1

2
Erτns2,

and so

Erτ2ns

Erτns2
“ 1 `

2
şL
0

1
fn´1psq

´

InpLq´Inpsq

InpLq

¯2
şs
0

I2nptq
fn´1ptq

dtds

Erτns2

“ 1 `
2

şL
0

1
fn´1psq

pInpLq ´ Inpsqq
2 şs

0
I2nptq

fn´1ptq
dtds

Erτns2InpLq
2

Note that the numerator in the right hand side of the above first equation is the variance of τn. Let
us write for all A large enough and for all n large enough:

ż L

0

pInpLq ´ Inpsqq
2

fn´1psq

ż s

0

I2nptq

fn´1ptq
dtds “

ż L{2´A{n1{2k

0

pInpL ´ sqq
2

fn´1psq

ż s

0

I2nptq

fn´1ptq
dtds

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

An

`

ż L{2`A{n1{2k

L{2´A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

0

I2nptq

fn´1ptq
dtds

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Bn

`

ż L

L{2`A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

0

I2nptq

fn´1ptq
dtds

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Cn

(63)

• Let us start by the term An in (63), using (57), for A big enough and for all n sufficiently large
we have, for all s P r0, L{2 ´ A{n1{2ks,

fn`1psq

n2pf 1psqq2
p1 ´

1

A2k´1
q2 ď

I2npsq

fn´1psq
ď

fn`1psq

n2pf 1psqq2
. (64)

Let Wn`1ptq “
şt
0
fn`1psq

pf 1psqq2
ds, after integration by parts, we have:

Wn`1ptq “

ż t

0

fn`1psqf 1psq

pf 1psqq3
ds
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“
fn`2ptq

pn ` 2qpf 1ptqq3
` 3

ż t

0

fn`2psqf2psq

pn ` 2qpf 1psqq4
ds

Since f2 is negative,

Wn`1ptq ď
fn`2ptq

pn ` 2qpf 1ptqq3
.

It follows that:
ż s

0

I2nptq

fn´1ptq
dt ď

fn`2psq

n3pf 1psqq3
. (65)

Hence since 1
f 1psq

„sÑL{2´
p2k´1q!

|f p2kqpL{2q|pL{2´sq2k´1 , we have

An ď
InpLq2

n3

ż L{2´A{n1{2k

0

f3psq

pf 1psqq3
ds

ď
InpLq2f3pL{2q

n3

ż L{2´A{n1{2k

0

1

pf 1psqq3
ds

„ c
InpLq2

n2{kA6k´4
.

Since by Proposition 15, Erτns „ c
n1{k , it follows that for all A big enough,

lim sup
nÑ8

An

Erτns2InpLq
2 ď

c

A6k´4
(66)

• for the term Bn in (63): for A big enough, for all n sufficiently large we write

Bn “

ż L{2`A{n1{2k

L{2´A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

0

I2nptq

fn´1ptq
dtds

“

ż L{2`A{n1{2k

L{2´A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż L{2´A{n1{2k

0

I2nptq

fn´1ptq
dtds

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

B
p1q
n

`

ż L{2`A{n1{2k

L{2´A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

L{2´A{n1{2k

I2nptq

fn´1ptq
dtds

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

B
p2q
n

.

– Let us estimate the term B
p1q
n . Using (54) and (65) we have,

ż L{2´A{n1{2k

0

I2nptq

fn´1ptq
dt ď

fn`2pL{2 ´ A{n1{2kq

n3pf 1pL{2 ´ A{n1{2kqq3

„ c
fn`2pL{2qe

´A2k

Cpf,2kq2k

n3p A2k´1

np2k´1q{2k q3

„ c
fn`2pL{2qe

´A2k

Cpf,2kq2k

n3{2kA6k´3
.
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So using (61), we have uniformly in a P r´A,As

InpL{2 ` a{n1{2kq „
fn´1pL{2q

n1{2k
hkpaq. (67)

Since uniformly in a P r´A,As we have, recall (54),

fnpL{2 ´ a{n1{2kq „ fnpL{2qe
´a2k

Cpf,2kq2k , (68)

we deduce that

Bp1q
n ď c

1

n1{2k

ż A

´A

I2npL{2 ´ a{n1{2kq

fn´1pL{2 ` a{n1{2kq

fn`2pL{2qe
´A2k

Cpf,2kq2k

n3{2kA6k´3
da

„ c
fn`2pL{2qe

´A2k

Cpf,2kq2k

n2{kA6k´3

ż A

´A

I2npL{2 ´ a{n1{2kq

fn´1pL{2 ` a{n1{2kq
da

„ c
fn`2pL{2qe

´A2k

Cpf,2kq2k

n2{kA6k´3

ż A

´A

ˆ

fn´1pL{2qhkp´aq

n1{2k

˙2
1

fn´1pL{2qe
´a2k

Cpf,2kq2k

da

„ c
f2n`1pL{2qe

´A2k

Cpf,2kq2k

n3{kA6k´3

ż A

´A
phkp´aqq

2 e
a2k

Cpf,2kq2k da

ď c
f2n`1pL{2q

n3{kA6k´3

ż A

´A
phkp´aqq

2 da

ď 2c ∥ hk ∥28
f2n`1pL{2q

n3{kA6k´4
.

Also by (51) and Proposition 15 we have

Erτns2InpLq
2

„
ckf

2n´2pL{2q

n3{k
.

Note that the constant ck “ Cp2kq2Cpf, 2kq3{k, where Cp2kq and Cpf, 2kq are defined in
(48) and (47). It follows that for all A big enough,

lim sup
nÑ8

B
p1q
n

Erτns2InpLq
2 ď

c

A6k´4
(69)

– Let us estimate the term B
p2q
n . Using (68) and (67) we have

Bp2q
n “

ż L{2`A{n1{2k

L{2´A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

L{2´A{n1{2k

I2nptq

fn´1ptq
dtds

“
1

n1{2k

ż A

´A

`

InpL{2 ´ a{n1{2kq
˘2

fn´1pL{2 ` a{n1{2kq

ż L{2`a{n1{2k

L{2´A{n1{2k

I2nptq

fn´1ptq
dtda

“
1

n1{k

ż A

´A

`

InpL{2 ´ a{n1{2kq
˘2

fn´1pL{2 ` a{n1{2kq

ż a

´A

I2npL{2 ` ã{n1{2kq

fn´1pL{2 ` ã{n1{2kq
dãda

„
1

n1{k

ż A

´A

´

fn´1pL{2qhkp´aq

n1{2k

¯2

fn´1pL{2qe
´a2k

Cpf,2kq2k

ż a

´A

´

fn´1pL{2qhkpãq

n1{2k

¯2

fn´1pL{2qe
´ã2k

Cpf,2kq2k

dãda
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„
f2n´2pL{2q

n3{k

ż A

´A
h2kp´aqe

a2k

Cpf,2kq2k

ż a

´A
h2kpãqe

ã2k

Cpf,2kq2k dãda

It follows that for all A big enough

lim
nÑ8

B
p2q
n

Erτns2InpLq
2 “

CpAq

ck
, (70)

where CpAq “
şA

´A h2kp´aqe
a2k

Cpf,2kq2k
şa

´A h2kpãqe
ã2k

Cpf,2kq2k dãda

• for the term Cn in (63): for A big enough, and for all n sufficiently large we write

Cn “

ż L

L{2`A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

0

I2nptq

fn´1ptq
dtds

“

ż L

L{2`A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż L{2´A{n1{2k

0

I2nptq

fn´1ptq
dtds

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

C
p1q
n

`

ż L

L{2`A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż L{2`A{n1{2k

L{2´A{n1{2k

I2nptq

fn´1ptq
dtds

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

C
p2q
n

`

ż L

L{2`A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

L{2`A{n1{2k

I2nptq

fn´1ptq
dtds

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

C
p3q
n

.

– For C
p1q
n , using (65), we have

Cp1q
n “

˜

ż L{2´A{n1{2k

0

I2nptq

fn´1ptq
dt

¸2

ď

¨

˝c
fn`2pL{2qe

´A2k

Cpf,2kq2k

n3{2kA6k´3

˛

‚

2

,

and so

lim sup
nÑ8

C
p1q
n

Erτns2InpLq
2 ď

c

A12k´6
(71)

– For C
p2q
n , note that after a change of variable it is equal to B

p1q
n hence

lim sup
nÑ8

C
p2q
n

Erτns2InpLq
2 ď

c

A6k´4
(72)

– For C
p3q
n , since f2 ď 0 and by (64) we have

Cp3q
n “

ż L

L{2`A{n1{2k

pInpL ´ sqq
2

fn´1psq

ż s

L{2`A{n1{2k

I2nptq

fn´1ptq
dtds

“

ż L{2´A{n1{2k

0

pInpsqq
2

fn´1psq

ż L´s

L{2`A{n1{2k

I2nptq

fn´1ptq
dtds

“

ż L{2´A{n1{2k

0

pInpsqq
2

fn´1psq

ż L{2´A{n1{2k

s

I2npL ´ tq

fn´1ptq
dtds
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ď I2npLq

ż L{2´A{n1{2k

0

pInpsqq
2

fn´1psq

ż L{2´A{n1{2k

s

f 1ptq

fn´1ptqf 1ptq
dtds

ď
I2npLq

f 1pL{2 ´ A{n1{2kq

ż L{2´A{n1{2k

0

pInpsqq
2

fn´1psq

ż L{2´A{n1{2k

s

f 1ptq

fn´1ptq
dtds

ď
I2npLq

pn ´ 2qf 1pL{2 ´ A{n1{2kq

ż L{2´A{n1{2k

0

pInpsqq
2

fn´1psq

1

fn´2psq
ds

ď
I2npLq

pn ´ 2qf 1pL{2 ´ A{n1{2kq

ż L{2´A{n1{2k

0

ˆ

Inpsq

fn´1psq

˙2

fpsqds

ď
I2npLq

pn ´ 2qf 1pL{2 ´ A{n1{2kq

ż L{2´A{n1{2k

0

f3psq

n2pf 1psqq2
ds

ď
I2npLqf3pL{2q

n2pn ´ 2qf 1pL{2 ´ A{n1{2kq

ż L{2´A{n1{2k

0

1

pf 1psqq2
ds

„ c
I2npLqf3pL{2q

n3pA{n1{2kqq2k´1

n2´3{2k

A4k´3

„ c
I2npLqf3pL{2q

n2{kA6k´4
.

It follows that

lim sup
nÑ8

C
p3q
n

Erτns2InpLq
2 ď

c

A6k´4
(73)

Using equations (66),(69),(70), (71),(72) ,(73) we get, for all A big enough

2CpAq

ck
“ lim inf

nÑ8
2

B
p1q
n

Erτns2InpLq
2

ď lim inf
nÑ8

2
şL
0

1
fn´1psq

pInpLq ´ Inpsqq
2 şs

0
I2nptq

fn´1ptq
dtds

Erτns2InpLq
2

ď lim sup
nÑ8

2
şL
0

1
fn´1psq

pInpLq ´ Inpsqq
2 şs

0
I2nptq

fn´1ptq
dtds

Erτns2InpLq
2

ď 2 lim sup
nÑ8

An ` B
p2q
n ` B

p1q
n ` C

p1q
n ` C

p2q
n ` C

p3q
n

Erτns2InpLq
2

ď
c

A6k´4
`

2CpAq

ck

Passing to the limit when A goes to infinity, and using dominated convergence theorem , we get

lim
nÑ8

2

şL
0

1
fn´1psq

pInpLq ´ Inpsqq
2 şs

0
I2nptq

fn´1ptq
dtds

Erτns2InpLq
2

“
2

ck

ż 8

´8

h2kp´aqe
a2k

Cpf,2kq2k

ż a

´8

h2kpãqe
ã2k

Cpf,2kq2k dãda,

and
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lim
nÑ8

Erτ2ns

Erτns2
“ 1 `

2

ck

ż 8

´8

h2kp´aqe
a2k

Cpf,2kq2k

ż a

´8

h2kpãqe
ã2k

Cpf,2kq2k dãda,

It follows that

Varpτnq „ Erτns2
´ 2

ck

ż 8

´8

h2kp´aqe
a2k

Cpf,2kq2k

ż a

´8

h2kpãqe
ã2k

Cpf,2kq2k

¯

and Varpτnq ‰ opErτns2q.
■

Theorem 18 Let f be a C2k`1 function on r0, Ls satisfying Assumptions (1) and (5). Assume that
for some k ě 2,

fpL{2 ` hq “ fpL{2q `
f p2kqpL{2q

p2kq!
h2k ` oph2kq

where f p2kqpL{2q ă 0. For any n P Nzt1u, let Xn B pXnptqqtě0 be the Brownian motion described in
Definition 1. Then the family of diffusion processes pXnqnPNzt1u has no cut-off in separation.

Proof
The proof is by contradiction. Suppose that the family of diffusion processes pXnqnPNzt1u has a cut-off
in separation with mixing times panqnPNzt1u. Since for any n P Nzt1u, τn is a sharp strong stationary
time for Xn, the following convergence in probability holds for large n,

τn
an

P
Ñ 1.

Note that by Propositions 5 and 7, we have

∥ Gnp1q ∥8“ un,1p0q “ Erτns,

∥ Gn ∥L8,L8“ Erτns,

and
Erτkn s “ k!G˝k

n r1s ď k!Erτnsk.

Hence τn
Erτns

is uniformly integrable. Up to extracting a subsequence, we can suppose that τn
Erτns

converges in law, says toward a random variable Y .
Using Slutsky Theorem we have that p τn

Erτns
, τn
an

q converge in law to pY, 1q, and so an
Erτns

converge in
law to Y , and there exist λ P R` such that

an
Erτns

Ñ λ “ Y.

Hence τn
Erτns

P
Ñ λ, and since τn

Erτns
is uniformly integrable, the convergence takes place in L1, and λ “ 1.

Also τ2n
Erτns2

P
Ñ 1, and τ2n

Erτns2
is uniformly integrable, so the convergence takes place in L1, and

E
„

τ2n
Erτns2

ȷ

Ñ 1,

and we get a contradiction with Proposition 17.
In the next propositions, we show that the cut-off phenomenon in separation occurs when fpxq

looks like fpL{2q ´ C|L{2 ´ x|1`α for x near L{2 , with α P p0, 1q, but with a different speed in
comparison with the case α “ 1 in Theorem 12.
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Proposition 19 Let f be a C2 function on r0, LsztL{2u and C1 on r0, Ls satisfying Assumptions (1)
and (5). Assume that locally around L{2 we have for some α P p0, 1q and C ą 0,

f2pL{2 ´ hq “ ´C|h|α´1 ` op|h|α´1q

then

Erτns „
2

n

ż L{2

0

fpsq

f 1psq
ds

Proof
We follow the same computations as in the proof of Proposition 10, and we adopt the same notations.
For A big enough and n sufficiently large, let

Erτns “ 2

¨

˚

˚

˚

˝

ż L{2´A{n1{p1`αq

0

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

An

(74)

`

ż L{2

L{2´A{n1{p1`αq

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Bn

˛

‹

‹

‹

‚

(75)

Since f 1pL{2q “ 0 we have,

f 1pL{2 ´ hq “
C

α
signphq|h|α ` op|h|αq,

fpL{2 ´ hq “ fpL{2q ´
C

αpα ` 1q
|h|1`α ` op|h|1`αq.

Let Cα “ C
αpα`1q

, since lnpfpL{2´hqq “ lnpfpL{2qq´ Cα
fpL{2q

|h|1`α`op|h|1`αq, using Laplace’s method
we get:

InpL{2q “

ż L
2

0
fn´1ptqdt „nÑ8

fn´1pL{2q

n1{p1`αq
Cpα, fq, (76)

where Cpα, fq “ p
fpL{2q

Cα
q1{p1`αq 1

1`αΓp 1
1`αq.

• For A big enough and for all n sufficiently large, and for s P r0, L{2´A{n1{p1`αqs, let us compute
an equivalent of An in (74).
Let mn “ infr0,L{2´A{n1{p1`αqs f

2 by hypothesis on f , we have for large n,

mn „ ´C
Aα´1

npα´1q{p1`αq
.

Since
mnfpsq

pn ` 1qpf 1psqq2
ě

mnfpL{2q

pn ` 1qpf 1pL{2 ´ A{n1{p1`αqqq2
„nÑ8 ´

c1
A1`α

,

we get that for A big enough and n sufficiently large

mnfpsq

pn ` 1qpf 1psqq2
ě ´

1

Ap1`αq{2
.
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Also for large n,

fnpsq

nf 1psqInpLq
ď

fnpL{2 ´ A{n1{p1`αqq

nf 1pL{2 ´ A{n1{p1`αqqInpLq
„ c1

e
´

Cα
fpL{2q

A1`α

Aα
,

so for A big enough and n sufficiently large

fnpsq

nf 1psqInpLq
ď

1

Aα{2
.

Using (24) and (53), it follows that for A big enough and n sufficiently large, uniformly in
s P r0, L{2 ´ A{n1{p1`αqs,

fnpsq

nf 1psq

ˆ

1 ´
1

Ap1`αq{2

˙

ď Inpsq ď
fnpsq

nf 1psq
, (77)

and so
fpsq

nf 1psq

ˆ

1 ´
1

Aα{2

˙ ˆ

1 ´
1

Ap1`αq{2

˙

ď Jnpsq ď
fpsq

nf 1psq
. (78)

where Jn is defined in (16).

Since fpsq

f 1psq
„sÑpL{2q´

α
C

fpL{2q

|L{2´s|α
, is integrable at L{2 we get that for all A big enough:

ˆ

1 ´
1

Aα{2

˙ ˆ

1 ´
1

Ap1`αq{2

˙

ď lim inf
nÑ8

An

1
n

şL{2
0

fpsq

f 1psq
ds

ď lim sup
nÑ8

An

1
n

şL{2
0

fpsq

f 1psq
ds

ď 1 (79)

• For A big enough and for all n sufficiently large, and for s P rL{2 ´ A{n1{p1`αq, L{2s, let us
compute the equivalent of Bn in (75).
More generally when s P rL2 ´ A

n1{p1`αq ,
L
2 ` A

n1{p1`αq s, write s “ L{2`a{n1{p1`αq, with a P r´A,As.
We have uniformly in a P r´A,As:

InpL{2 ` a{n1{p1`αqq “ InpL{2q `

ż L{2`a{n1{p1`αq

L{2
fn´1pxqdx

“ InpL{2q `
1

n1{p1`αq

ż a

0
fn´1pL{2 `

h

n1{p1`αq
qdh

“ InpL{2q `
1

n1{p1`αq

ż a

0

ˆ

f

ˆ

L

2

˙

´
Cα|h|1`α

n
` o

ˆ

|h|1`α

n

˙˙n´1

dh

“ InpL{2q `
fpL{2qn´1

n1{p1`αq

ż a

0
e

pn´1q ln

ˆ

1´
Cα|h|1`α

fpL{2qn
`o

ˆ

|h|1`α

n

˙˙

dh

„
fn´1pL{2q

n1{p1`αq

ˆ

Cpα, fq `

ż a

0
e

´
Cα|h|1`α

fpL{2q dh

˙

“
fn´1pL{2q

n1{p1`αq

ż a

´8

e
´

Cα|h|1`α

fpL{2q dh. (80)

Concerning the justification of the equivalent in the above computation, note the integral term
şa
0 e

pn´1q lnp1´
Cα|h|1`α

fpL{2qn
`op|h|1`α{nqq

dh converges for fixed a to
şa
0 e

´
Cαh1`α

fpL{2q dh, by the dominated
convergence theorem (since the integrand is bounded by 1), finally by Dini’s theorem this con-
vergence is uniform in a P r´A,As. The last equality follows by a change of variable formula

that shows that Cpα, fq “
ş0

´8
e

´
Cα|h|1`α

fpL{2q dh.
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Define hαpaq “
şa

´8
e

´
Cα|h|1`α

fpL{2q dh, we get that for A big enough, and for Bn defined in (75)

Bn B

ż L{2

L{2´A{n1{p1`αq

Inpsq

fn´1psq

ˆ

InpLq ´ Inpsq

InpLq

˙

ds

„
1

n3{p1`αqInpLq

ż 0

´A

hαpaqhαp´aqf2n´2pL{2q

fn´1pL{2q
e

Cα|a|1`α

fpL{2q da

„
c

n2{p1`αq
“ o

ˆ

1

n

˙

, (81)

where we took (76) into account. Hence using (79) we have for all A large enough
ˆ

1 ´
1

Aα{2

˙ ˆ

1 ´
1

Ap1`αq{2

˙

ď lim inf
nÑ8

Erτns

2
n

şL{2
0

fpsq

f 1psq
ds

ď lim sup
nÑ8

Erτns

2
n

şL{2
0

fpsq

f 1psq
ds

ď 1,

and so leting A tends to infinity we get

Erτns „
2

n

ż L{2

0

fpsq

f 1psq
ds.

■

Proposition 20 Let f be a C2 function on r0, LsztL{2u and C1 on r0, Ls satisfying Assumptions (1)
and (5). Assume that for some α P p0, 1q and C ą 0, we have for all |h| ą 0 small enough,

f2pL{2 ´ hq “ ´C|h|α´1 ` op|h|α´1q

then

Varpτnq “ o

ˆ

1

n2

˙

.

Proof
From Proposition 9 and after integration by parts, we have that for all A large enough and for all n
large enough:

Varpτnq

2
“

ż L{2´A{n1{p1`αq

0
Jnpsqpu1

n,1psqq2ds
looooooooooooooooooooomooooooooooooooooooooon

An

`

ż L{2`A{n1{p1`αq

L{2´A{n1{p1`αq

Jnpsqpu1
n,1psqq2ds

looooooooooooooooooooomooooooooooooooooooooon

Bn

(82)

`

ż L

L{2`A{n1{p1`αq

Jnpsqpu1
n,1psqq2ds

loooooooooooooooooooomoooooooooooooooooooon

Cn

, (83)

where Jn is defined in (16) and pu1
n,1q2 in (37).

• Let us start by estimating the term An, using (77), it follows that for A big enough and for all
n sufficiently large, and for all s P r0, L{2 ´ A{n1{p1`αqs,

fn`1psq

n2pf 1psqq2

ˆ

1 ´
1

Ap1`αq{2

˙2

ď
I2npsq

fn´1psq
ď

fn`1psq

n2pf 1psqq2
. (84)
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Since f2 ď 0 in r0, L{2r, (39) holds for all 0 ď t ă L{2, hence for A big enough and for all n
sufficiently large, and for all t P r0, L{2 ´ A{n1{p1`αqs:

pu1
n,1ptqq2 ď

˜

fptq

nf 1ptqp1 ´ 1
Ap1`αq{2 q2

¸2

.

Also by (38),

Jnpsq B
Inpsq

fn´1psq

InpL ´ sq

InpLq
ď

fpsq

nf 1psq
.

Hence for A big enough, for all n sufficiently large, and for An defined in (82), we have

An ď
1

n3p1 ´ 1
Ap1`αq{2 q4

ż L{2´A{n1{p1`αq

0

f3psq

pf 1psqq3
ds

ď
fpL{2q3

n3p1 ´ 1
Ap1`αq{2 q4

ż L{2´A{n1{p1`αq

0

1

pf 1psqq3
ds

Taking into account that 1
f 1psq

„sÑL{2´
c

|pL{2´sq|α
, we get

ż L{2´A{n1{p1`αq

0

1

pf 1psqq3
ds „

$

’

&

’

%

c , if 3α ă 1

c lnpn1{p1`αq{Aq , if 3α “ 1

cn
p3α´1q{p1`αq

Ap3α´1q , if 3α ą 1.

Hence for A big enough, we get

An „

$

’

’

&

’

’

%

c{n3 , if 3α ă 1

c lnpnq{n3 , if 3α “ 1

c{n
4

1`α , if 3α ą 1,

in particular, since α P p0, 1q,

An “ o

ˆ

1

n2

˙

. (85)

• For the term Bn in (82): for A big enough, for all n large enough and for a P r´A,As, let
x “ L{2 ` a{n1{p1`αq we have

ˇ

ˇ

ˇ

ˇ

u1
n,1

ˆ

L

2
`

a

n1{p1`αq

˙ˇ

ˇ

ˇ

ˇ

“

fn´1
´

L
2 ` a

n1{p1`αq

¯

I2n

´

L
2 ` a

n1{p1`αq

¯

˜

ż L{2´A{n1{p1`αq

0

I2npsq

fn´1psq
ds `

ż L{2` a

n1{p1`αq

L{2´A{n1{p1`αq

I2npsq

fn´1psq
ds

¸

.

By the above computation and (39), we have

ż L{2´A{n1{p1`αq

0

I2npsq

fn´1psq
ds ď

fn`2pL{2 ´ A
n1{p1`αq q

n3pf 1pL{2 ´ A
n1{p1`αq qq3

„ c
fn`2pL{2qe

´
Cα

fpL{2q
Ap1`αq

n3{p1`αqA3α
.

Recall that from (80), and for hαpaq “
şa

´8
e

´
Cα|h|1`α

fpL{2q dh, we have uniformly over a P r´A,As

InpL{2 ` a{n1{p1`αqq „ fn´1pL{2q
hαpaq

n1{p1`αq
, (86)
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hence uniformly in a P r´A,As,

ż L{2` a

n1{p1`αq

L{2´A{n1{p1`αq

I2npsq

fn´1psq
ds “

1

n1{p1`αq

ż a

´A

I2npL{2 ` ã
n1{p1`αq q

fn´1pL{2 ` ã
n1{p1`αq q

dã

„
fn´1pL{2q

n3{p1`αq

ż a

´A
h2αpãqe

Cα
fpL{2q

|ã|p1`αq

dã

“
fn´1pL{2qθα,Apaq

n3{p1`αq
,

where θα,Apaq B
şa

´A h2αpãqe
Cα

fpL{2q
|ã|p1`αq

dã.
Since uniformly in a P r´A,As,

fnpL{2 ´ a{n1{p1`αqq „ fnpL{2qe
´

Cα
fpL{2q

|a|p1`αq

,

we have for A big enough

ˇ

ˇ

ˇ

ˇ

u1
n,1

ˆ

L

2
`

a

n1{p1`αq

˙ˇ

ˇ

ˇ

ˇ

ď c
e

´
Cα

fpL{2q
|a|p1`αq

n1{p1`αqh2αpaq

ˆ

θα,Apaq `
1

A3α

˙

.

Hence

Bn B

ż L{2`A{n1{p1`αq

L{2´A{n1{p1`αq

Jnpsqpu1
n,1psqq2ds

“
1

n1{p1`αq

ż A

´A
JnpL{2 ` a{n1{p1`αqqpu1

n,1pL{2 ` a{n1{p1`αqqq2da

ď
1

n1{p1`αq

ż A

´A
JnpL{2 ` a{n1{p1`αqq

˜

c
e

´
Cα

fpL{2q
|a|p1`αq

n1{p1`αqh2αpaq

ˆ

θα,Apaq `
1

A3α

˙

¸2

da

„
cpAq

n4{p1`αq
,

where we use in the third line that

JnpL{2 ` a{n1{p1`αqq “
InpL{2 ` a{n1{p1`αqq

fn´1pL{2 ` a{n1{p1`αqq

InpL{2 ´ a{n1{p1`αqq

InpLq

„ c
hαpaqhαp´aqe

Cα
fpL{2q

|a|p1`αq

n1{p1`αq
,

and cpAq is a constant that depends on A. It follows that for all A large enough,

Bn “ o

ˆ

1

n2

˙

. (87)

• For the last term Cn in (83), note that Jnpsq “ JnpL ´ sq so

Cn “

ż L

L{2`A{n1{p1`αq

Jnpsqpu1
n,1psqq2ds
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“

ż L{2´A{n1{p1`αq

0
Jnpsqpu1

n,1pL ´ sqq2ds.

Also for s ď L{2 ´ A{n1{p1`αq

|u1
n,1pL ´ sq| “

fn´1psq

I2npL ´ sq

ż L´s

0

I2nptq

fn´1ptq
dt

“
fn´1psq

I2npL ´ sq

˜

ż L{2´A{n1{p1`αq

0

I2nptq

fn´1ptq
dt

`

ż L{2`A{n1{p1`αq

L{2´A{n1{p1`αq

I2nptq

fn´1ptq
dt `

ż L´s

L{2`A{n1{p1`αq

I2nptq

fn´1ptq
dt

¸

.

The first two terms in the above bracket has been computed in the above item, for the last term
since for s ď L{2 ´ A{n1{p1`αq,

ż L´s

L{2`A{n1{p1`αq

I2nptq

fn´1ptq
dt ď I2npL ´ sq

ż L´s

L{2`A{n1{p1`αq

1

fn´1ptq
dt

“ I2npL ´ sq

ż L{2´A{n1{p1`αq

s

1

fn´1ptq
dt

“ I2npL ´ sq

ż L{2´A{n1{p1`αq

s

f 1ptq

fn´1ptqf 1ptq
dt

ď
I2npL ´ sq

f 1pL{2 ´ A{n1{p1`αqq

ˆ

f´n`2psq

n ´ 2

˙

„ c
f´n`2psqI2npL ´ sq

n1{p1`αqAα

Since L ´ s ě L{2, we have for A big enough and for all n sufficiently large,

|u1
n,1pL ´ sq| ď

f2n´2pL{2q

n3{p1`αqI2npL{2q

ˆ

1

A3α
` θApAq

˙

` c
fpsq

n1{p1`αqAα

ď
c

n1{p1`αq

ˆ

1

A3α
` θApAq

˙

` c
fpsq

n1{p1`αqAα
ď

cpAq

n1{p1`αq

where in the second inequality, we used (76). Since, for s ď L{2´A{n1{p1`αq, (77) yield Jnpsq ď
fpsq

nf 1psq
, so for A big enough and for all n sufficiently large,

Cn “

ż L{2´A{n1{p1`αq

0
Jnpsqpu1

n,1pL ´ sqq2ds.

ď
c2pAq

n2{p1`αq

ż L{2´A{n1{p1`αq

0
Jnpsqds

ď
c2pAqfpL{2q

n1`2{p1`αq

ż L{2´A{n1{p1`αq

0

1

f 1psq
ds

„ c
c2pAqfpL{2q

n1`2{p1`αq
“ op

1

n2
q,
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where for the equivalent we use that f 1psq „pL{2q´ c|L{2 ´ s|α and the integral is convergent.
The last equality follows since α P p0, 1q. Hence

Cn “ o

ˆ

1

n2

˙

. (88)

Putting (85), (87) and (88) together, we deduce that Varpτnq “ o
`

1
n2

˘

.
■

Theorem 21 Let f be a C2 function on r0, LsztL{2u and C1 on r0, Ls satisfying Assumptions (1)
and (5). Assume that for some α P p0, 1q and C ą 0, we have for all |h| ą 0 small enough,

f2pL{2 ´ hq “ ´C|h|α´1 ` op|h|α´1q.

Let Xn B pXnptqqtě0 be the Brownian motion described in Definition 1. Then the family of diffusion
processes pXnqnPNzt1u has a cut-off in separation with mixing times panqnPNzt1u “

´

2
n

şL{2
0

fpsq

f 1psq
ds

¯

nPNzt1u
,

in the sense of Section 1.3.

Proof
Use Theorem 8, Proposition 19 and Proposition 20.

■

Corollary 22 With same hypothesis as in Theorem 21, there exist C̃ ą 0 and n0 P N such that for
all r ą 0, 0 ă r1 ă 1 and for all n ě n0,

›

›

›

›

›

L

˜

Xnpp1 ` rq
2

n

ż L{2

0

fpsq

f 1psq
dsq

¸

´ Un

›

›

›

›

›

tv

ď
C̃

r2n
1´α
1`α

@ y P Mn
f , P

pnq

p1`rq 2
n

şL{2
0

fpsq

f 1psq
ds

p0̃, yq ě

˜

1 ´
C̃

r2n
1´α
1`α

¸

1

VolpMn
f q

inf
yPMn

f

P
pnq

p1´r1q 2
n

şL{2
0

fpsq

f 1psq
ds

p0̃, yq ď

˜

C̃

r12n
1´α
1`α

¸

1

VolpMn
f q

Proof
In the proof of Proposition 20 we have in fact (since the dominant term is Cn)

Varpτnq “ O

ˆ

1

n1` 2
1`α

˙

.

The result follows with the same proof as the proof of Corollary 14.

Theorem 23 Let f be a C2 function on r0, LsztL{2u and C1 on r0, Ls satisfying Assumptions (1)
and (5). Assume that for some α ą 1 and C ą 0, we have for all |h| ą 0 small enough,

f2pL{2 ´ hq “ ´C|h|α´1 ` op|h|α´1q.

Let Xn B pXnptqqtě0 be the Brownian motion described in Definition 1. Then the family of diffusion
processes pXnqnPNzt1u has no cut-off in separation.
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Proof
Following the proof of Proposition 19, we show that

Erτns „
Cαpfq

n2{p2`αq
.

Following the proof of Proposition 17, we show that Varpτnq{2 is equivalent for n large to B
p2q
n

InpLq2

with the same decompositions as introduced there. It follows that Varpτnq{Erτns2 converges toward a
positive constant and we conclude as in Theorem 18.

■

To end the paper, let us give the

Proof of Theorem 4
The items of Theorem 4 correspond respectively to Theorem 21, Theorem 12 and Theorem 23.

■
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