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Abstract

Given a family of rotationally symmetric compact manifolds indexed by the dimension and a weight
function, the goal of this paper is to investigate the cut-off phenomenon for the Brownian motions on
this family. We provide a class of compact manifolds with non-negative Ricci curvatures for which the
cut-off in separation with windows occurs, in high dimension, with different explicit mixing times. We
also produce counter-examples, still with non-negative Ricci curvatures, where there are no cut-off in
separation. In fact we show a phase transition for the cut-off phenomenon concerning the Brownian
motions on a rotationally symmetric compact manifolds. Our proof is based on a previous construction
of a sharp strong stationary times by the authors, and some quantitative estimates on the two first
moments of the covering time of the dual process. The concentration of measure phenomenon for the
above family of manifolds appears to be relevant for the study of the corresponding cut-off.
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1 Introduction

1.1 Overview

The main purpose of the present paper is to investigate the cut-off phenomenon in separation for
Brownian motion on high dimensional compact manifolds, especially for model space that are the
rotationally symmetric compact manifolds. In the context of card shuffling, the cut-off phenomenon
was discovered by Diaconis and Shahshahani [6] and Aldous and Diaconis [1]. Cut-off phenomenon is
an abrupt transition from out of equilibrium to equilibrium, which occurs for certain Markov processes,
when the size of the state space become large. Afterward, the cut-off phenomenon has been proven
for a large variety of finite Markov chains, see e.g. Diaconis [5], Diaconis and Fill [7], Levin, Peres and
Wilmer [11] and Ding, Lubetzky and Peres [9]. Nevertheless the literature on the cut-off phenomenon
for Markov processes on a continuous state space is rather sparse. For example Saloff-Coste [14] has
proven the cut-off phenomenon in total variation distance for the Brownian motions on the spheres
S™ for high dimensions n, with a mixing time of order In(n)/(2n), see also Méliot [13] for extensions
to classical symmetric spaces of compact type. Their approach are based on complete knowledge of
the spectral decomposition. It is shown in Hermon, Lacoin and Peres [10] that total variation and
separation cut-off are not equivalent and neither one implies the other. In a precedent paper [3] we
have shown that the cut-off in separation also occurs for the Brownian motion on the sphere of high
dimensions n with a mixing time of order In(n)/n. In the present paper we generalize such a result for a
large class of manifold, and as example we strengthen this result on spheres with a cut-off in separation
with windows. Note that controlling the separation discrepancy is essentially (but not exactly) a L®
control while the control of the total variation is a L' control. Heuristically, the difference in the
mixing times in total variation and separation comes from the fact that L' estimates only require
the dual process to see a big part of the volume, and by concentration of measure phenomenon it is
sufficient to see the “equator”, while to get L™ estimates we have wait for the dual process to cover all
the sphere, namely to reach the opposite pole, and this takes twice as long.

Our goal here is to check that there is a cut-off phenomenon in separation with windows for a large
class of family of rotationally symmetric manifolds with non-negative Ricci curvature Theorems 12
and 21, including the case of spheres Corollary 13. We also give examples of rotationally symmetric
manifolds with non-negative Ricci curvature where there is no cut-off in separation Theorems 18 and
23. In fact we show a phase transition for the cut-off phenomenon concerning the Brownian motions
see Theorem 4. Our results are connected with those of Salez, concerning sequences of irreducible
Markov chains with symmetric support and non-negative coarse Ricci curvature that exhibit cut-off
in total variation when an additional product condition hypothesis is satisfied, see [15] for the precise
statement.

Our proof is based on two ingredients, the resort to the strong stationary times for X,, presented
in [2] and the detailed quantitative estimates on the cover time of dual process (see [4]) that appear
to be an one-dimensional diffusion processes in the case of rotationnaly symmetric manifolds. The
concentration of volume phenomenon plays a crucial role to detect the scale on which the cut-off
phenomenon occurs. This alternative point of view differs from the traditional approach based on
spectral analysis and could be extended to other situations where spectral information is less available.

1.2 Geometric framework
For n > 2, let M} be the product manifold [0, L] xS"1/ ~ where (r1,01) ~ (r2,02) if (r1,01) = (12, 02)

orry =19 =0o0rr =1y =L, endowed with the warping product metric

ds® = dr @ dr + fQ(r)d9®d0,



where S”! is the usual sphere of dimension n — 1 and radius 1, df ® df is the standard metric on the
sphere and f is a regular real function that satisfies the following assumption:

[0, L] — Ry,
f(s)~os , f(L—s)~0s (1)
FER0) = fOR(L)=0,keZy
We will call such function a weight function, we will assume all along the paper that f is a weight
function. Later, further conditions will be required to ensure the regularity of the metric at 0 ~ (0, .)

and L ~ (L,.). The volume of the geodesic ball B(0,r) in M7} centered at 0 of radius r € [0, L] is
given by

Vol,,(B(0,7)) = ¢n JOT " 1(s)ds,

where ¢, = %’Enﬂ/j is the volume of S"~'. The area of the geodesic sphere dB(0,7) is ¢, f"(r)
2

and the mean curvature of any point in dB(0,r) is given by (n — 1)];((:)). We have Ric(v) =

((n —2) 1}{'(8))2 — J;:é?) v if v e TS* ! and Ric(d,) = (—(n — 1)]},/((5)) Or, where Ric denote the

Ricci tensor. For a good introduction to warped products, see Chapter 3 in Petersen [12].

Here is our main object of interest.

Definition 1 For any n € N\{1}, X, := (X,())i=0 stands for the Brownian motion on M} started

at 0 and time-accelerated by a factor 2, i.e. the A-diffusion in My So the generator of X, is the
Laplacian A and not the Laplacian divided by 2 as it is sometimes more usual in Probability Theory.

[m]
It was seen in [4] that X, can be intertwined with the dual process D := (D(t));>0 taking values in the
closed balls of M} centered at 0, starting at {5} and absorbed in finite time 7, in the whole set M¥. In
[2], several couplings of X, and D were constructed, so that for any time ¢ > 0, the conditional law of
Xn(t) knowing the trajectory D([0,t]) := (D(s))seo,q is the normalized uniform law over D(t), which
will be denoted A(D(t),-) in the sequel. Furthermore, D is progressively measurable with respect to
Xy, in the sense that for any ¢ > 0, D([0,¢]) depends on X,, only through X,,([0,¢]). Due to these
couplings and to general arguments from Diaconis and Fill [7], 7, is a strong stationary time for X,
meaning that 7,, and X, (7,,) are independent and X, (7,) is uniformly distributed over M3. As a
consequence we have

VE20,  s(C(Xa(0)Un) < Plr > 1]
where the Lh.s. is the separation discrepancy between the law of X,,(¢) and the uniform distribution

~ T rn—1
U, over MP. Notice that Uy (B(0, 7)) = Ssg’;n_if())j for any r € [0, L].
s)as
Recall that the separation discrepancgf between two probability measures p and v defined on the

same measurable space is given by

d
s(p,v) = essysupl—ﬁ

where dp/dv is the Radon-Nikodym density of p with respect to v. Note that |u — v < s(u,v),
where || - ¢ stands for the total variation.

Remark 2 Note that for any ¢ € [0,7,), the “opposite pole” L does not belong to the support of
A(D(t),-). It follows from an extension of Remark 2.39 of Diaconis and Fill [7] that 7, is even a sharp
strong stationary time for X,,, meaning that

Vi=0,  s(L(Xa(),Un) = Pl > 1]

Thus the understanding of the convergence in separation of X,, toward i, amounts to understand-
ing the distribution of 7.



1.3 Cut-off phenomenon

For fixed n, the Brownian motion X,, in M} converges in law to U, namely

L
Xn (t) =ty Un.

Quantifying this convergence to equilibrium is relevant when the dimension n becomes large. This
speed of convergence or mixing time, depends one the way the difference between the time marginal
and the uniform distribution is measured. A cut-off phenomenon in separation at time a,, is a kind of
phase transition, namely the separation discrepancy between X,, and the equilibrium abruptly drops
from the largest value 1 to the smallest one 0 on a small interval around a,,. More precisely, we say that
the family of diffusion processes (Xy)nen (13 has a cut-off in separation with mixing times (an)nem (1}
and windows (bp)pen (1} When

Vn?l, 0<bn<an>

Vr>o0, lirglos(ﬁ(Xn(an + b)), Un) = hI%OIP[Tn >an+71by] = 0
n— n—s
Vre(0,1), lirrgos(/u'(Xn(an — b)), Uy) =1 — lirr(}oIF’[Tn <ap,—rb,] = 1

When Vn > 1, b, = ay,, we simply say that the family of diffusion processes (X;),em (1} has a
cut-off in separation with mixing times (an)pen (1}-

1.4 Intertwining relations

Writing B(0, R(t)) := D(t) for t € [0,7,], it has been seen in [4] that R := (R(t))se[0,7,] is solution to
the stochastic differential equation

Vte(0,7), dR(t) = ~2dB(t) + b,(R(t))dt (2)
and
7, = inf{t>=0: R(t) = L} (3)
where (B(t));>0 is a standard Brownian motion in R and the mapping b, is given by

ol
QSS 1 (u) du

Vre(0,L), bp(r) = (4)

It is not difficult to check that as r goes to 04

n+1
T

bp(r) ~

and this is sufficient to insure that 0 is an entrance boundary for R, so that starting from 0, it will
never return to 0 at positive times.

In the following corollary we explicit two intertwining relations, which were constructed in [2] The-
orems 3.5 and 4.1, enabling to deduce 7,, from the Brownian motion X,, (and independent randomness
for the second construction):

Corollary 3 Consider the Brownian motion Xy, = (Xn(t))iz0 in M} described in Definition 1. For
T € M}"‘\{ﬁ,i}, denote by N(z) the unit vector at & normal to the sphere centred at 0 with radius
p(0, ) where p is the distance in M™, pointing towards 0: N(z) = —Vp(0,-)(x).



(1) Full coupling. Let D:(t) be the ball in M centred at 0 with radius Ry(t) solution started at 0
to the Ité equation

dR\(t) = —ﬂ<N<Xn<t>>,an<t>>>+n[2f'<p<6,xn<t>>>—J}’(th»} dt

This evolution equation is considered up to the hitting time Ty(bl) of L by Ry(t).

(2) Full decoupling, reflection of D on X,,. Let Ds(t) be the ball in M7 centered at 0 with radius
Ra(t) solution started at O to the Ité equation

n‘};(Rg(t)) dt

where (W) =0 is a real-valued Brownian motion independent of (X, (t))=0 and (LT2[p(0, X,,)])

dRy(t) = —2dW, + 2dL[p(0, X,,)] —

1s the local time at 0 of the process Ro —p(a, Xy). These considerations are valid up to the hitting
time 7,2 of L by Ry(t).

Let D(t) be the ball in M7} centered at 0 with radius R(t), defined in (2), and let T, be the stopping
time defined in (3).
Then we have:

(1) fori=1,2 Xn(n(,,i)) is uniformly distributed in M7,

(2) the pairs (1, (Dy () 0,07 (7, (D2()) (g -27) and (7o, (D(1))ic[o,7,,)) have the same law.
(1) (2)

In particular 7, and m,"" satisfy Proposition 7 and Theorem § below.

1.5 Outline of the paper and main result

The paper is organized as follow in Section 2 we compute the Green functional of the one-dimensional
diffusion associated to the radius of the dual process, and we give a tractable formulation of all moments
of 7,, the covering time of the dual process. In Section 3, we compute the mixing time for several
rotationnaly symmetric manifold and we show that depending on the shape of the weight function f,
the cut-off occurs in separation for the Brownian motion on My for high dimensions n, see Theorem
12 and 21, or there is no cut-off in separation, see Theorem 18 and 23.

These results are essentially summarized by the following theorem, showing a phase transition (with
respect to the parameter o € (—1, +00) introduced below) for the cut-off phenomenon concerning the
Brownian motions on the model MY for high dimensions n, depending on the shape of the function f
at L/2. Let us first introduce, in order to simplify the exposition, another set of assumptions on f:

Vsel0, L],  f(L—s)=f(s),
Vsel[0,L/2),  f(s)>0, (5)
¥se[0, LNL/2),  f'(s) <0,

Theorem 4 Consider a C? function f on [0, LI\{L/2} and C* in [0, L], satisfying Assumptions (1)
and (5). Assume there exist a € (—1,+m0) and C > 0 such that for h # 0 small enough,

f"(Lj2=h) = —=C|n|" + o(|h|") (6)

Let X, = (X,(t))t=0 be the Brownian motion described in Definition 1.
o if o€ (—1,0) then (Xn)nem (1} has a cut-off in separation at time C1/n, with

[ ()
Cl”fo Fi(s)’

te[0,72]



o if a =0 then (Xn)nenmq1y has a cut-off in separation at time CzIn(n)/n, with

o, 1E2)

C )
e if a >0 then (Xy)nem 1) has no cut-off in separation,

An instance where (6) is satisfied is when there exist « € (—1,+), C' > 0 and € € (0, L/2) such
that

V hel[—ee, f(L/2+h) = f(L/2)—C|n|*"e.

Note the additional factor In(n) at the critical case o = 0 for the phase transition. We conjecture
that in the supercritical cases a > 0, 7,,/E[7,,] converges in distribution for large n toward a particular
law depending on «, that would reflect the fact that the larger a > 0, the more difficult is the mixing.
To go toward this result, we should investigate more moments of the strong stationary times 7, than
just the two first ones, as we will do below.

2 Preliminary results

Define for any r € [0, L],

:'\4
—
=
SN—r
Il

L ' P (s)ds

o = du()

Let L, := 0% + b,(r)0, be the generator of R defined in (2). Here is our first preliminary result:

Proposition 5 Given g € Cy([0, L]), the bounded solution ¢y, of the Poisson equation

{ Ln¢n = —g
¢n(L) 0

s given by:

L pn—1 t 2 s
vre[0,L], onr) — | L - <t<)t> < fo fﬂ <l)g(s)ds> dt. (7)

So the Green operator G,, associated to Ly is given by

) (f I3(s)

Vge L) VreLl Gl - | s

e g(s)ds) dt.

Proof
Use the Remark 6 below to justify integrability of

) f I3(s)
() Jo f771(s)

at 0 and L. For the function defined in (7), we clearly have, ¢,,(L) = 0, and for any r € [0, L],

) f” I3(s)
L(r) Jo f77(s)

[0,L] 5t —

g(s)ds

n(r) =

g(s)ds



n—1 T 2
10 = (550 0 [ 28 gto0s gt

It follows that

n—1 T IrQL s
n®n(r) = —g(r) — (flr% > (r) 0 fn—(l(l)g(s)ds
2y
+ <ln f"n1> (r)gl (r)
_ A W A )
- () [ et
ot PN (7 Ia(s)
(5 ) (e [ o)
= —g(r).
Remark 6 Y )
Let us show that the integral SL f; t)t) (So f{L (15( ds) dt is finite. Since f(s) ~s-0, s we have

n n—1
In(s) ~s—0. 57, 80 val (18()) ~s—04 ? hence f12 t()t So i

Concerning the 1ntegrability at L, since I, (L) is p081t1ve and finite, it is sufficient to see that for
ce(0,L) S 1) (S = 1(5) ds) dt is finite and this is indeed true since f(L —s) ~s0, s
The above considerations further enable us to see that

, 1t I2(s) B
i w7 -

I(s

)ds is integrable at 0.

justifying the following integration by parts:

Vi (L) = [ (i) (55 »

~ 1 LoI2(s s) .
=L ), fnl)“ffwsd
)

L In() ( _I
- f”‘l(s)< 1.(L) )ds
_ 1 J Vol,, (B(0, s))Vol,,(B<(0, 8>)ds
Vol, (M) Jo Vol,,_1(0B(0, s))

where Vol,,_; is the (n — 1)-dimensional Hausdorff measure. The last r.h.s. and the following Proposi—
n—1(0D)
Volnl( D)
O

tion 7 show that E[7,] < #M}L), with the Cheeger constant hy, (M) = inf pc ar vol, (D)< Vol, (M)/2

Let wy, o := 1, the constant function taking the value 1 on [0, L], and consider the following sequence
(tn, k) ken, defined inductively by bounded solution of

Lnun,k = _kun,k—l
VEkeN, { unp(L) = 0. (8)
We have for all n,k € Z*,

% = GoM[1] = Gu[Gal- - [Gal1]] -+ 1]



Proposition 7 We have for alln > 2

s = i< 2l [ )

f
_ L In(s) (In(L>_I (s)
o f"(s) In(L)

ds 9)

E[72] = up2(0) = QLL f;,;(lt()t) (f ff(ls(l)un;(s)ds) dt,

and more generally, for any k € Z,,
E[r,] = unx(0) = kG [1](0)
Proof

Suppose by induction that u, x(z) = E,[7%]. This is clearly satisfied for k = 0. Using It6’s formula,
we have for all 0 < ¢t < 7,, for the process R defined in (2) and starting with R(0) = x € [0, L],

t
o1 (R(L)) — i1 (2) = —(k + 1) L o (R(s))ds + M

where (Mt)eo,r,,] is @ martingale. Consider this equality with ¢ = 7,,, take expectation and use the
Markov property to get

Upk+1(2) = (K + 1)E,
= (k+1)E,

= (k+ 1E,

T 1T 1T 1
3 3 3
—
O
D
| I

From Remark 6, G, (g)(r) is defined and bounded if g is bounded. Moreover G (g)(0) = G, (g)(r)
if g > 0. This implies that if w,, ;(0) < 00, then wuy, 41 is defined and bounded.
]

The following characterisation of the cut-off phenomenon holds in general and in particular for the
Brownian motion in M}L with initial value 0. The underlying idea of comparing the variance and the
square of the expectation of sharp strong stationary times was also used by Diaconis and Saloff-Coste
8]

As usual, we say that f, = o(g,) when gTT: — 0 as n goes to infinity, and f,, = O(g,) when there
exists a constant ¢ such that fn < ¢gn.

Let ap, ~noao E[1,] = [j):f?zl (So fIQ(S )ds) dt.

Theorem 8 Suppose that for some sequence (by)n>1 we have ¥n =1, 0 < b, < ay,
an —E[1:] = o(b,) and Var(r,) = o(b?),

then the family of diffusion processes (Xn)neN\{l} has a cut-off in separation with mizing times
(an)nem g1y and windows (bn)nen (13 in the sense of Section 1.3.



Proof
Since 7, is a sharp strong stationary time for X,,, we have
VE20,  s(LXa(®),U) = Plr>1].
Using Bienaymé-Tchebychev inequality we have for any r > 0,
Plr > an +rby] = Plr, —E[m] > rbn + an — E[1,]]
Var(r,)
(rbp + an — E[1,])?
o(b,)?

= GontomE - W

For the behavior before a,,, write for r € (0, 1),
Plr, < ap —rby] = Plr —E[m] < an — by, — E[1,,]]
and note that a,, — rb, — E[7,] = —r(1 + 0(1))b,, < 0 for n large. Thus we get

Var(r,
) = o)

P n < G — nb S T
[7n < an = )] (rby, + 0(bn))

Proposition 7 could be used to compute the variance of 7,, but it is not well-adapted to compute
an equivalent, so let us give an alternative computation of the variance.

Proposition 9 The variance of 1, is given by

Var(7,) = 2 A0 Jt L) (ul, 1(5))%ds

o L2 Jo o)™
Proof
Recall that w,, 1 is the solution of
{ Lyup1 = —1
upi1(L) = 0

Using (2) and It6 formula, we have:
Un1 (R(Tn)) — un,1(0) = —7, + \/§J uy, 1 (R(s))dBs,
0
and since u,1(0) = E[7,], we have

Var(r,) = 28 [ f " (u;171)2(R(s))ds] .

Let ¢, be the solution of

Il
o

{ Lnd)n = _Q(U;’l,l)Q
¢n(L)

Again by It6 formula, we get
Gn(R(1n)) — ¢ (0) = —2 L (u),1)?(R(s))ds + M,

where (M})e[o,r,] is a martingale. After taking the expectation in the above formula, we get from

Proposition 2: . ) - Lfn—l(t) R s
an(r) = 0n(0) =2 [ L0 ([ o)




3 Application to cut-off for rotationnaly symmetric

In this section we derive the cut-off in separation phenomenon for a class of rotationally symmetric
manifolds that contains spheres.

From now on, all constants will be denoted ¢, their exact values can change from one line to another.
When these constants depend on a parameter, such as A, we will rather write c¢(A).

Proposition 10 Let f be a C? function on [0, L] satisfying Assumptions (1) and (5). Assume that
f(L/2) In(n) Inn

f"(L/2) < 0. Denote forn > 1 a, := L) , and let (by)n>1 satisfy = o(b,) and
b, < a,. Then
E[7.] — an = o(bn). (10)
Proof
From Proposition 7 and Remark 6 we get: E[7,] = u,,1(0). Let us write, for A, := eVinn,
(F L(s) (I.(L) - L(s) o Lu(s) (Ln(L) - Lu(s)
w0 = [ 75 (M) =2 s ()«
= 2(Oén+’)/n+ﬁn) (11)
with L/o /R
— TV Ty (s) In(L) — In(s)
Q1= J;) Fi(s) < (D) ) ds, (12)
L=l 1, (s) <In(L) — In(s)>
n ‘= d 3
(= ol G e I "
" V2 () (I(D) - L9
I,(s I,(L)—1I,(s
n = ds. 4
= f 7ot () -
We will prove that
ap — 200, = O(bn)v Tn = O(bn) and S, = O(bn) (15)

and this will establish (10).

Let us prove that a,, — 2a,, = o(by,).
We introduce

Jn(s) = = . (16)

We have
L/2—An/\/n
- f Ju(s)ds (17)
0
We will prove that
Vse[0,L/2 - An/yn], ‘HJ;‘Z;) - Jn(s)’ ~0 (7%) (18)
uniformly in s, and then that
1 [E2=AnNV £ (s) an Inn
nL e — O(1/n). (19)

10



From estimates (18) and (19) we will get a,, — 2, = 0(by,).

For s = £, since f is increasing in [0, L/2] and f'(L/2) = 0 we get using Laplace’s method:

In <§> = Jj fri()dt = Lg exp((n — 1) In(f)(t))dt

. ¢ 7 [N L2)
"2\ {5 syl vn—1

mf(L/2)

n—1
Ve R 2

n—0o0

Ifs<L-— T then we have the following expansion, since f’ > 0 on the interval [0, L/2):

)= | e = [ esan - Dmre)

“ser(e-m(r(5-32)))
L3 (3) e (1 A o ()]
_ gf <§>n_1exp [W o <7ﬁ}§2>} | N
This implies that
MO0 | L L [ SRL2 0 ()]
L [0 (1)
Y

for some C > 0 (this majoration will be enough for our purpose). We get

| C L)L)

- St (22)

We now investigate the term I,(s)/f" 1(s) of J,(s). After integration by parts, for 0 < s < L/2,
and since f’ > 0 on [0, L/2), we have

In(s)=f Y dt—f wdt

B F7(t) f// )
- f, J Pt (23)

Since f’ is decreasing and positive on [0, L/2), we have for s € [0, L/2),

Fr(t) ()
vV te|0,s], ()2 < (f'(s)?’

hence, with m = mingq 1,91 f" <0,

Lo+ i) < o) < 25

11



From the above equation we get

f"(s) mf(s) f"(s)
7 (1 mrnpmr) < < gy 2
Since f is increasing, f’ is non-increasing in (0, L/2) and m < 0 we deduce that for s € [0, L/2—A,,/+/n]:
) (- mlf(L/2) a0
7 (- e ) <0 < gy >
From
(L2 = Au¥) + 2 £7(1/2) = O (43/n) (26)
we get P I
P (L= Auvi) - 2 e - o ()
which yields
[mlf(L/2) _o( L
(n+1)(f'(L/2 = An/v/n))* ¢ (A%> '
This estimate together with (25) give for s € [0, L/2 — A,,/\/n]:
fls) — In(s) _ C f(s)
CSpe) T ) S A 0
for some C' > 0. Multiplying by W and using (22) we get for all s € [0,L/2 — A, //n],
FO) L G
a7 A 2
for some C' > 0. This is (18).
For proving (19) we remark that a Taylor expansion of ;/((Z)) yields on s € [0, L/2)
f) (L) )
7y TR 0 2

with ¢(s) uniformly bounded in [0, L/2). So

1 L2=An/NR £ (g) . f(L/2) (lnn  InA, .
o, Foy 4o~ T (o ) + 0w
- %” - */1;7” +0(1/n)

which is (19). So a, — 20y, = o(by,).

Next we prove that ~, = o(b,). We already know as an immediate consequence of (24) that on

[0, L/2 — 1/4/n], we have
f(s)

Tn(s) < = ) (30)
f(s) — F(L/2) is bounded in onsequen
On the other hand, by (29), ) PRI =) bounded in [0, L/2) .Consequently,
1 fL/“Nﬁ fls) o 1 JL/“W SR
nJrjp—an/vn f'(8) n Jrjo—anvm 17 (L/2)|(L/2 — s)
_ L) _ 1 fL2) g
=) A = ey Vi = o) 3y

This proves the second estimate in (15).
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Finally we prove that 3, = o(by,).
Ifse[s— ﬁ, Ly ﬁ], then write s = L/2 + a/+/n, with a € [—1,1]. Since f/(L/2) =0 and f is
C3, we have uniformly in a € [-1,1]:

L/2+a/y/n
Io(L/2 + a/v/n) = I,(L/2) + f (@) da

L/2

i (5 )

" n—1
I.(L/2) + f ( f(L/2) + / (222)}22—1—0(1/713/2)) dh

nfl a " 2
/) wf(L/2) +J e%dh
2| f"(L/2)]
n—1 a " 2
- f\(ﬁL/z)J o 2R g, (32)
n -0
F(L/2)?

Hence, letting h(a) = §* e 2772 dh, we get that for (3, defined in (11)

e [0l (L) E0) ,

L2—1/ym f771(s) I(L)
1 f h@h(-a)f*2(L/2)
V) Jor g e 1 2) A
~ = = olba), (33)

where we used the following uniform estimate in a € [—1, 1] obtained as in (21)

'”(L/Q)a2

f(L/2 = a/v/n) ~ f*(L/2)e 2T, (34)

and next (20) for the last equivalent.

Proposition 11 Let f be a C? function on [0, L] satisfying Assumptions (1) and (5). Assume that

f"(L/2) <0, then
1
Var(r,) = 0 () .

Proof

From Proposition 9 and after integration by parts, it follows that for all A large enough and for all n
large enough:

Var(Tn) n=1(t) I2(s) 2
> ) B f f” 1<s>(“”1(8)) s
t I S 2 S ’ - In(S) 'LL/ S 2 S
[ >L e+ [T e
n(s) n ) / 2
fn 1(8) (L) (un,l(s)) ds

13



L/2—A/\/n L/2+A/\/n
- f Tn(s)(tly 1 (s))2ds + f Tn(s) (ts 1 ())2ds (35)
0 L/2—A/n
s >
L
H ) s (36)
L/24+A/v/n

J

Ch

We will analyze the three last terms separately. Recall that by Proposition 5 and from the fact that
up1 = Gp[1], we have

n—1 t 12(s 2
a0 = (T [ ehas) 37

e Let us start by the term A,,, using computations (23) and (24), since f is increasing, f’ is non-
increasing in (0, L/2) and m < 0, it follows that for A big enough and for all n sufficiently large,
and for all s € [0,L/2 — A/y/n],

) (1Y Rs) )
n2(7'(s))? (1 A) S (s S n2 ()2

Let W, (t) = é %;)(;Q)ds, for 0 <t < L/2, we have after integration by parts:

Walt) = | F)p

_ ) 3 ()
Tt OP v QJo O

(38)

Since f” < 0, we deduce, using (38),
t 1'2 n+2 t
ni(IS) ds < {; ! < >3
o fr(s) n3(f'(t))
and that for A big enough and for all n sufficiently large:

, R2(F 022 )
) (f"“(t (1—}1)2n3(f’(t))3>

)
) Y
nfHa—-57)

L) L(L—s) _ f(s)
P = BT E S i)

Hence for A big enough, for all n sufficiently large, and for A, defined in (36), by (38), we have
1 L/2—A/yn 3
Ap €~ f 1) g
n3(1—5)* Jo (f'(s))?

f(L/2 3 L/2—A/\/n 1
h 775”(1—)4f0 (f'(s))?

(39)

Also by (30),

BN

~—

ol

14



c
A2n?’

. . 1 1
where in the last equwalent we used m NSHL/Zf W

A, — o(ln(")) (40)

n2

Hence for A big enough,

e For the term B, in (36): for A big enough, for all n large enough and for a € [-A, A], we have

i (L)) E ) (e B R B
w2 T yn)| L, a n=1(s _asgm fr (s '
Vn I(j T) 0 fr=1(s) Lj2—asym fH(s)
1/2
Let C(f,2) = (ﬁc{:&gg‘) / we have (similarly to the computation in (21) and (26)):
a2
FUL/2 = A2y~ fU(L)2)eCTA, (41)
and
F(L/2)|A
F (L2 — A2 ~ ‘(711//2)’ (42)
By the above computation and (39), we have
2
J VRANT p(s) PR e e
s < ~ .
0 A C) n?(f1(L/2 = 5))F - nPPAR|f(L/2)P

_p2

Recall that from (32), and for hi(a) = §*  e°72? dh, we have uniformly over a € [—A, A]

L(L/2 + a/5/m) ~ 1 (L)2) hjg) , (43)

hence since uniformly in a € [—A4, A],

—a?

JU(LJ2 = afnV2) ~ (12U,

taking (41) into account,

L/2+ﬁ 12( ) L/2+ ) .

%) s = d

L/z—A/ﬁ O \ff Jrt L/2+ N ‘
L) [ ,ﬁ(a)mi)a P20
e e

(44)

22
where 04(a) = S h?(a)ec(2? da.
We have for A big enough

a,2
! L, |<07€_C(m2 0 (a)+L
P2 yn) T kg a) TN A8 )

15



Hence

JL/Q-Q-A/\/'E

B, = Jn(s)(u;ljl(s))gds

L/2—A//n
1 A
- L f Tn(L)2 + a/v/m) (s 1 (L2 + a//m))2da
Vn)_a ’
a2 2
e C(f2)?2 1

1 A
T j_A Jn(L/2 + a/+/n) (C\/ﬁh%@ (0,4(@) + A3>> da
c(4)

n?’

A

where, taking (43) into account, we use for the last term that

2

I(L/2+ a/y/n) Ln(L/2=a/y) _ hi(a)hi(—a)ec0a?

In(L/2 = ~ ,
N T EINO R AT Vi
and ¢(A) is a constant that depends on A. It follows that once A is fixed, for n big enough,
In(n)
Bn = O<n2)' (45)

e For the last term C,, in (36), note that J,(s) = Jn(L — s) so

L

Com | sl (5)2ds
L/2+A/v/n ’
L/2—A//n
-| In(5) (ty (L - 5))%ds.
0

Also for s < L/2 — A/+/n

, i) (R RO
== g | i

L) ([MEANR R (MEANE R R R

" BL-9) (fo fn*(t)dt*L/Q_A/ﬁ =0 d”me ™)

Using (39), (41) and (42), we have that for A big enough, for all n sufficiently large

JL/Z—A/\/E 1721(3) _ f"+2(L/2)6_$’22>2
0 () S TR A (pr(1)2))3

and using (44),

0A(A) [ (L/2)

L/24+A/\/n 72 (t)
n dt <2
J n3/2

L2—ajm o)
For the last term since for s < L/2 — A//n,

L—s 2 L—s
f Iﬁ(lt) dt < IA(L — s)J %dt
L2+A/vm fPH(®) L2+A/vm I ()

16



L/2—A//n

=I(L —s) f fn_ll(t)dt
L/2—A/\/n f/(t)

— T72(7 _

== | i o™

R(L—s) (1)
S P(L/2— Alvn) ( n—2 )
FH2 () I2(L — 5)
nl/2A

Since L — s > L/2, we have for A big enough and for all n sufficiently large,

|1 (L= 8)] < . (ewm + eA(A>) )

n3/212(L/2) A3 nl/2A

A2
c e C(2)? f(s) 1
< n1/2 ( A3 + 9A(A)> + Cnl/QA < C(A)W

where in the second inequality, we used (20). Since, for s < L/2 — A/y/n, by (24) J,(s) < 1(s)

nf'(s)’
for A big enough and for all n sufficiently large,
L/2— A/
C, = f Jn(s)(uﬁlyl(L — s))zds.
0
2 L/2—A//n
< o(4) J Jn(s)ds
noJo
2 L/2—A/\/n
AP | L
n? 0 f'(s)
c(A)?f(L/2) (1 o In(n)
~ T 5 ].n('n) ~ C(A) n2
Hence
_ In(n)
Cn = 0(n2>- (46)
_ In(n)
Putting (40), (45) and (46) together, we deduce that Var(r,) = O 5 | -
n
|

We deduce the following result

Theorem 12 Let f be a C? function on [0, L] satisfying Assumptions (1) and (5) and f"(L/2) < 0.
For n € N\{1}, consider the Brownian motion X, = (X, (t))i=0 described in Definition 1. Then the
family of diffusion processes (Xn)nem\(1y has a cut-off in separation in the sense of Section 1.8, with

mizing times (an)nen (1} = (%lng)

vIn(n) = o(by).

>nEN\{1} and windows (bn)neN\{l} satisfying¥ n =1, b, < an,

together with

Proof

17



Use Theorem 8, Proposition 10 and Proposition 11.
|

The previous arguments provide an alternative proof to the main result from [3|, and strengthens
the result with a cut-off in separation with windows:
Corollary 13 Let X, = (Xy(t))i=0 be the Brownian motion described in Definition 1, where M}

s replaced by the sphere S™ and where 0 now stands for any point of S™. Then the family of diffu-
810M processes (Xn)neN\{l} has a cut-off in separation in the sense of Section 1.3, with mixing times

(an)nemq1y = (¥>nel\!\{1} and windows (bn)npem g1y satisfying ¥ n = 1, by, < an, together with
In(n)
= o(by).
")~ ofb)
Proof

Use Theorem 12, with f = sin and L = 7, and note that by symmetry in this case the starting point
is not relevant.

We also deduce the following consequences.

Corollary 14 Let f be a C® function on [0, L] satisfying Assumptions (1) and (5) and f"(L/2) < 0.
For n € N\{1}, consider the Brownian motion X, = (Xn(t))i=0 in M} described in Definition 1.
There exist C > 0 and ng € N such that for all™ >0, 0 <1’ <1 and for all n = ny,

f(L/2) In(n)\ C
HE (X"“””f"@/mr n)) TS P
P (14+r) iRm0 B0 57 = r2In(n) ) Vol(Mj)

C 1
inf P 0,5) <
yclsl}\/l;l (1*T/)|ffu(<LL//22))‘ln§L")( ') r?In(n) /) Vol(M7)

where || - |ty stands for the total variation norm, L(X,(t)) is the law of X, (t), Uy, is the uniform

measure in My, and Pt(n)(', -) is the heat kernel density at time t > 0 associated to the Laplacian on

Proof

From the computations in the proof of Proposition 10 and Proposition 11, with b, = a,, there exist
C' > 0 and ng € N such that for all » > 0 and for all n > ng,

Var(7,) - C

Plr, > (1 +7)as] < (1 +7r)a, — E[1,])2 ~ r2In(n)

The first conclusion follows, since
I1£(Xn((1+7)an)) —Unlyy, < s(LXn((14+7)an)),Un) < Plr, > (1+71)ay]

The second conclusion follows by definition of the separation discrepancy, since for all y € My and
t >0,

1— P (0, y)vol(M}) < s(L(Xn(t)),Un)

The last conclusion follows in the same way.
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Proposition 15 Let f be a C3 function on [0, L] satisfying Assumptions (1) and (5). Assume that
for some k = 2,

f(L/2+h) = f(L/2) +
where fR)(L/2) <0, then

2kC(2k)C(f, 2k)?
W)

E[rn] ~
where I is the usual Gamma functional and

k)UF(L/2)\ "

(2
C(f,2k) = — 47
2 = ({7 o
0
C(2k) = J ha g(a)hy x(—a)e®" da, (48)
0
and for any x € R, hy j(x) =" e~ da.
Proof
Recall from Proposition 7 that E[7,] = w1 ( Sé: finl ©) ( (2(_]4[)"(8)) ds. Let us write, for A big
enough and n sufficiently large:
L _ L/2 _
a0 = [ L (DB g,y [ L) (LD hio)
o f77H(s) In(L) A €) In(L)
L/2—A/n1/?k _
s 7o L)
L2 In(s)  (In(L) — In(s)
+ = n n ds 50
Jya s 7507 ) o
Bn
e Volume of My Since f is increasing in [0, L/2], using Laplace method we get:
L 3 3
0 (5) = [T = [ el -y
I'(3) (2k)! L2k pn=1(,9)
T Tk |(In f) (Qk (L/2)] (n —1)Y/2k
- i 2k 'f L/2) 2k fn—l(L/2)
e 2k 2k ) \ n|fCR)(L/2)|
1 - 1(L/Q)

Since f” is non-positive, f/(0) = 1, f(L/2) = 0 for i € {1,...,2k — 1}, and f?*)(L/2) < 0, there
exists M > 0 such that, for all u € [0, L]

‘ f"(w)
(f/(u))(Zk—Q)/(Qk:—l)

< M.
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It follows that for all s € [0, L/2) and for all ¢ € [0, s]

SO oM oM
n(FE) | S n(f @)D = a(f(s)HEE

Hence (23) gives

(s M "(s
T{f’((s)) o n(f/(s))Qk/(Qk;—l)In-i'l(S) < In(s) < ,r{f/((s))7 (52)
it follows that 7(s) MF(s) 7(s)
70 (- i) < B0 < iy
and
fm(s) In(L) — In(s)
TGO S L@ S (53)
For s € [0,L/2 — A/n'/?k].
The above equation gives:
=AY L(D) ~ In(s) ]
nf(L/2 — A/nl2K) I, (L) ~  I,(L) 7
Since
FrL2— AR~ (L), 549
and
f/(L/2 - A/nl/Zk) |f(2k) (L/2)|A2k_1 (55)

(2]{: _ 1)!n(2k—1)/2k ’

using (51), we get for A big enough and n large enough

a2k
fn(L/2 — A/nl/%) f(L/2)€C(f’2k)2k _ ﬁi?mc
~ < T ’
nf'(L/2 — A/n'/?K) I, (L) (2%)@‘ (i) C(f, 2k)|f2k) (L/2)|A2k—1

and so using the above equations, we get that for A big enough uniformly over s € [0, L/2 —
A /n1/2k]

(1 — ecanmy ¢ W) — 8 (56)

Since

Mf(s) Mf(L/2) _c
(n+ 1)(f/(s)2K/ =1 = (n + 1)(f/(L/2 — A/nl/2k))2k/(2k=1) — A2k

it follows with (55) that for A big enough and n sufficiently large

F(s) (1 L
17 (1= ) <20 <3y o

Hence using (56) we get that for A big enough and for all n sufficiently large, uniformly in
se[0,L/2 — A/nl/?k]:

s 1 _ =A%k s
nj;s(l) <1 - A2k—1> (1 - cFTHT) < () < 1) (58)
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where J, is defined in (16).

e L(5) (2k—1)!F(L/2)
SlnCe f’(s) 5_>L/2_ |f(2k)(L/2)|(L/2 s)(% R we ha,Ve

L[ L GO

n Jo f'(s) n Jo |fCR)(L/2)|(L/2 — 5)2k=1) nl/k A2k-2"

We get, for all A big enough, and for A,, defined in (49):

L/27A/n1/2k‘]
s)ds 1
lim sup = lim sup 22 - n(s) < o (59)
n—ao0 1/k n—00 ni/k A
and
L/2—A/n1/2k I A2k
s)ds 1 1 _=AC
liminf —% = lim inf 22 - > 1— —— ) (1—ectan* 60
Pt —r et - A2k—2 A2k—1 (1—e ) (60)

o Ifse [% - f/‘gk, 5+ 1/2,6] then write s = L/2 + a/n'/?* with a € [~A, A]. Since f@)(L/2) =

/
for i e {1,...,2k — 1}, f(Qk)(L/Z) <0 and fe C?**1 we deduce that uniformly in a € [—A, A]:
L/2+a/n1/2k

In(L/2 + a/nl/%) = In(L/2) + J PN @)d

L2

1 (L h
= In(L/2) + ni/2k f e <2 1/2k> dh

a (2k) n—1
=h@mw,;%ﬁ(ﬂwm—”@gﬁmwhuxwagwg dh

_mNL/2) 1 oo
nl/%(QkF (%) CUf,2k) + Le e dh)

P (L/2) ey
- — _OOeC(fa%)%dh. (61)

_p2k

Let hi(a) = §*_ ecG20%* dh. Since I,,(L) — In(s) = In(L — s) we have uniformly in a € [—A, A]

I.(L/2 + a/n"?*)(I,(L) — I,(L/2 + a/n"/?*)) ~ th(a)hk(—a).

Since

L/2 I.(s) (I,(L)— L,(s)
JL/QA/nl/Qk fr=1(s) ( In(L) > @

— 1 O I.(L/2 + a/n'/?*)(I,(L) — I,(L/2 + a/nl/Qk))d
= n1/2kfn(L> J A —1<L/2+a/n1/gk> a

we get for all A big enough, and for B,, defined in (49)

S H(L)2) e
B~ e, (L )f hi(a)hi(—a)e 2% da
1

a2k

hi(a)hg(— )ec(f c(f.20)%k g (62)
nl/k%F (i) (f,2k) J
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Also

o0 W2k
J hi(a)hg(—a)e W20 da = C(f, 2k)3C(2k)
0

where C(2k) = S(O)O hi k(a)hy p(—a)e? *da and hy g k@) =" e da (note that C(2k) is finite
since k > 2). We have for all A large enough

2k

0 __a®" 1 _ A2k
f h(a)h(—a)eC:20?F da +
—A

C A
Tz (1= Jper) (1 — et

E E
< liminf 27,;”] < limsup #
-0 2k R 2k
ST 8 o7 Ty 8 Tory Ty

o2k

0
+ J h(a)h(—a)ec:20)%* da,
—A

C

S Joh2

and so letting A go to infinity, we get

E 2k0(2k)02( 2k)  2kC(2k) [ (2k'f(L/2) \*

Remark 16 Note that the dominant term of E[7,] comes from SL/ AN g (s)ds when k =1, and

comes from XL 2 A/ni/2k Jn(s)ds when k > 2, this essentially leads to two different proofs, despite the
apparent similarity. We will find this feature again in the sequel.

(]

Proposition 17 Let f be a C***1 function on [0, L] satisfying Assumption (1) and (5). Assume that
for some k = 2

|f*R(L/2)|

FEf240) = f(Lf2) ~ s

h?* + o(h*")

where fR)(L/2) < 0 then

E[TQ] 2 o0 a2k a 52k
lim ——" =1+ — hi(—a)eCU 2w f hi(a)eCU20% dada,
n—o0 B[7;,]? Ck J—o0 -0

where ¢, = C(2k)2C(f,2k)%*, and C(2k) and C(f,2k) are defined in (48) and (47). In particular

Var(r,) = O(E[m.]?), Var(m,) # o(E[7.]?).

Proof

Using Proposition 7 and integration by parts we get

%E[Tg] B fo = (lt()t) (J = (18())%,1(5)ds> dt.
J e (I”(L}nZLﬁ"(S)) 1 (5)ds.

Also by Proposition 5 and integration by parts we have

Un(r) = LL f;(lt()t) ( t ff(ls()s)dS> dt
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TI2(s) 1 L I2(s) Lo IL(s)
Lf"l(S)dS I <L>L f”l(S)dHL Foi(s) ™
(

I2(s) L I.(s) (I.(L)—I,(s)
e [ e (M) e

EE[TT%] _ k nlls In(L) — In(s) 2 i%(t) dtds
o P\ ), f";(t) 1.(7) |
n —I,(s SISt
- |, =0 (I (Lf)n<L§ ( )> fofng(lgwdtds
L _
(0 ()

)
_ JL ! <I"(L)_I"(s)>2f 5O g+ Lepr g2,

o f7(s) I(L) o frL(t) 2
and so
L L(L)~In()\2 ¢s I12(t)
Efral _ . 2§, fn}l(s)( T.(D) ) So Frydtds
E[Tn]z B ]E[Tn]2
s 2
L 2§ s (In(L) = L(s))* § ety dtds

E[r]2Ln(L)?

Note that the numerator in the right hand side of the above first equation is the variance of 7,,. Let
us write for all A large enough and for all n large enough:

P (L) = Ln(9))? (0 L3 o (P =) B
Jy S ), e _L e o™
Ap
LA (1 (L — ) (7 _I3() g (In(L = 8)* [ _I3(®)
I P e o W LR RIS =l e (o L

[ ) "

By Chn

(63)

e Let us start by the term A, in (63), using (57), for A big enough and for all n sufficiently large
we have, for all s € [0,L/2 — A/nl/%L

fn'H(S) 1

IQ s n+1 s
(PP A < )

fri(s) T 2 (f(s)?

)? <

(64)

+1(S)

Let Wyy1(t) = Sé {;,(s))Q ds, after integration by parts, we have:

L) (s)

W= | e
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e ) )
RO 3fo (n +2)(f'())1"

Since f” is negative,

fn+2(t)
Whi1(t) € ————7—=-
N R (O
It follows that:
12 F+2(s)
< .
Jy 75 = o
Hence since ﬁ ~sLj2— |f(2k)(L/(22)k|(7L1/)2!fs)2k—1’ we have

Ly(L)? (M4 pi(s)
A, <
< =5, O
(LY (Lj2) (M
< T TEO)
I,(L)?
€ 2]k A6k—1"

Since by Proposition 15, E[7,] ~ —7» it follows that for all A big enough,

. An c
lim sup

- < - 66
o0 E[Tn]2In(L)2 A6k74 ( )

e for the term B,, in (63): for A big enough, for all n sufficiently large we write

[ I3
. fnil(t)dtds
)2 JL/2A/n1/2k 1721(75)

0 frHe)

L/2+A/nt/2k (I(L —
L/2A/n1/2k fr=i(s
L/2+A/n1/2k (I(L —

fL/QA/nl/Qk fr1(s

B,

dtds

— | |2

<

B{M

JL/2+A/n1/2k ([n<L . 8))2 fs I,%(t) dtds
n—1 n—1 :
r2—Amvze fPHs) Jppmamuee fP7HE)

" J

BY

— Let us estimate the term BS". Using (54) and (65) we have,

J~L/2—A/n1/2k Ig(t) i < fn+2(L/2 _ A/nl/%)
0 i) T A (f(L)2 — A/nl/2k))3
_ a2k
[ (L/2)e ST
”3(%)
_ a2k
[ (L/2)eCT R
n3/2k A6k—3 :

~ C
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So using (61), we have uniformly in a € [—A, A]
L))

I,(L/2 + a/n*/?k) ~ ik

hi(a). (67)

Since uniformly in a € [—A, A] we have, recall (54),

2k

L2 = a/n) ~ f(L[2)eT (65)

we deduce that

_ A2k
_ L (M B(L/2—a/n') frR(L/2)ecuan
ntoS ChieR |, FrL(L/2 + a/nl/2k)  p3/2k A6k=3
_ A2k
e S [ f
a
n2/k A6k—3 _a fPYL/2 4 a/nl/2k)

P [ (rR ey L

2/k A6k—3 1/2k —a2k
n / A —A n / fn_l(L/2)eC(f’2k)2k

_ 42k

FEHL(L/2)eC e (A L
n3/k AGk—3 _A (hi(—a))” ect2h* da

L2 (4 2
< CW JA (hk(—a)) da
f2n+1 (L/Q)
n3/kA6k—4 ’

N

2¢ || hy |12

Also by (51) and Proposition 15 we have

S (L/2)

E[Tn]2In(L)2 ~ n3/k

Note that the constant ¢ = C(2k)2C(f,2k)3*, where C(2k) and C(f,2k) are defined in
(48) and (47). It follows that for all A big enough,

BS) c
lim su <
novn B[ PL(D)? A%

(69)

— Let us estimate the term BY). Using (68) and (67) we have

50 _ JL/“A/“”’“ (In(L — 5))* f ORI
Lja—amize  f7(s)  Jppmamues frH(E)
1 (4 (L(L/2 - a/nl/%))2 L/2+a/nl/2 12(1)
T Lk JA fr=Y(L/2 + a/nl/?F) JL/ZA/nl/Q’f =)
1 (A (In(L/2 = a/nV/?))® (o 12(L/2 + a/n'/2*)
T plk J_A frYL/2 + a/nl/2k) j_A frY(L/2 + a/nl/2k)

n—1 —a 2 n—1 4 2
LA (f (igggk( )) . (f (ﬁ@hk())
1/’CJ dada
n —

dtda

dada

_a2k

_a2k
A fn=1([/2)ectam J=A n-1( /)T M
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In—2 o2k a a2k
fsgfmf B (—a)e Tz f B2 (@)e S0 dada
n _ —A

It follows that for all A big enough

. B C(4)
O B |
n—0 E[7,]21,(L) ck

2k a2k

where C(A) = SfA hi(—a)eﬂfa’%)zk §* , hi(a)ect20? dada

e for the term C), in (63): for A big enough, and for all n sufficiently large we write

g —s)* [ I2(t)
C, = dtds
L/2+A/n1/2k f” Ls) Jo fo7(t)
n1/2k
¢ (ATES) - U
- n— 1 n—
L/2+A/n1/2k f (s) 0 1)
C(l)
L o L/2+A/n1/2k 12
+ nLl ) f i (1) dtds
Jrjppamuee f77Hs) Jppoapee 17N
9
L _ 2 rs 2
. (a0 | 5Oy,
L2+amvze f7Hs)  Jpjpramyes fHE)

cff)

— For 07(11), using (65), we have

c = (

2

2k
Lj2—=A/n'/?k  r2 t 2 n+2(r1 /9 W
f i ) < [ S L/2)e 7

0 fn—l (t) n3/2k A6k—3
and so

iV c
lim su = <
n_,oop E[Tn]QIn(L)Z A12k—6

— For 0722), note that after a change of variable it is equal to Bﬁf)

hence

lim su <
et E[rPIo(L)?  ASF

— For C7(L3), since f” < 0 and by (64) we have

oY = JL fn T S)) L L)y

L/2+Afn1/2k ) Jrjpsamiee frHE)
nl/ s
B JL/Q A/nlt/2k S))2 J\L (t) dtds
- 1 n—1
0 (8) Jrjosamires fr71(t)
JLQA/”I/% S ) jL/Q A/nl/Zk IQ L —
0 fr=1(s) i)

t) ——————=dtds
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N

oy (M2 Lae)? (A )
B | it ) IERIOTHON
I3(L) BT (1, (5))? (HARAME (e
J/(L/2 — Ajnl2F) fo () f )
I’?L(L) L/Z—A/nl/% (
(n—2)f(L/2 — A/n'/?F) fo f
I%(L) L/2—A/n1/2k
(n—2)f(L/2 = A/n'/?F) fo <
I3(L) B A <s
(n—2)f(L/2 — A/n'/?F) fo
I2(L)f3(L/2) ERmAmE
n?(n —2) f(L/2 — A/n'/?F) fo
(L) FA(Lf2) n2%2%
3 (A /2Ry 21 A1k=3
L)L)

n2/k A6k—4

A

dtds

A

1
-2

n—

A

A

N

It follows that

0(3) c
lim su <
ot E[r 2o (L)?  ASF

Using equations (66),(69),(70), (71),(72) ,(73) we get, for all A big enough

(1)
= lim inf 2%
Ck n—00 E[7,,)2I,(L)

2\ = $)) §2 0 dtds
< liminf b gy (n(2) = ())QSOf 10
e E[7n]?1n (L)
2 st (D) — 1(9)? 5y s dtds
< limsup -
n—00 ]E[Tn]QIn(L)
A+ BY +BY + oV + P + o
< 2limsup -
n—w E[Tn]QIn(L)
c 2C(A)
S gea T

Passing to the limit when A goes to infinity, and using dominated convergence theorem , we get

L 2 s I,zlt
- 2So sy (In(L) = L(s))* §5 ot dtds
n—o00 ]E[Tn]2fn(L)2

2 o0 a2k a &Zk
= hi(—a)eC2m J hi(a)ecU 20 dada,
k J—w0 —o

and
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E[r;] 2 (7 2 sz [* 1205 GO g7
lim 5 =1+— hi(—a)e o2k hi(a)ec 20" dada,
n—w E[7,] Ck J—o0 —0

It follows that

2 0 a2k a a2k
Var(r) ~ B[P ( | et [ @)
Ck J-o0 -0
and Var(r,) # o(E[7,]?).
]

Theorem 18 Let f be a C**1 function on [0, L] satisfying Assumptions (1) and (5). Assume that
for some k = 2

FeI(L/2)

FEL2eh) = P2+ g

h** + o(h**)

where fF)(L/2) < 0. For any n € N\{1}, let X,, := (X,,(t))i=0 be the Brownian motion described in
Definition 1. Then the family of diffusion processes (Xn)nen (1} has no cut-off in separation.

Proof
The proof is by contradiction. Suppose that the family of diffusion processes (Xn)neN\{l} has a cut-off
in separation with mixing times (a)nen (13- Since for any n € N\{1}, 7, is a sharp strong stationary
time for X,,, the following convergence in probability holds for large n,
™ P
— =
an

1.

Note that by Propositions 5 and 7, we have

| Gn(1) lloo=tn,1(0) = E[7a],

I G e e = E[7a],

and
E[r}] = kIG;F[1] < K'E[r,]".
Hence E[Tjn] is uniformly integrable. Up to extracting a subsequence, we can suppose that E[T:n]

converges in law, says toward a random variable Y.
Using Slutsky Theorem we have that (E[T:n], 2) converge in law to (Y, 1), and so E[ -7 converge in

law to Y, and there exist A € R™ such that

E[7,]

- A=Y

Hence E[T" ] LN A, and since E[ - is uniformly integrable, the convergence takes place in L', and A = 1.

Also IE[ B2 E 1, and [72]2 is uniformly integrable, so the convergence takes place in L', and

2
-
El—2_-|—>1
[E[Tn]z] ’
and we get a contradiction with Proposition 17.
In the next propositions, we show that the cut-off phenomenon in separation occurs when f(x)
looks like f(L/2) — C|L/2 — x|**® for x near L/2 , with a € (0,1), but with a different speed in
comparison with the case & = 1 in Theorem 12.
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Proposition 19 Let f be a C? function on [0, L)\{L/2} and C' on [0, L] satisfying Assumptions (1)
and (5). Assume that locally around L/2 we have for some ac€ (0,1) and C > 0,

f'(Lj2=h) = =CIh[*~ +o(lh]*7T)
then ] ~ 2 L/2 £(s) o
Tonde o f(s)
Proof

We follow the same computations as in the proof of Proposition 10, and we adopt the same notations.
For A big enough and n sufficiently large, let

L2=AmNOED (o) (L) = Tn(s)
E[Tn] =2 L fn—l(s) < In(L) > ds (74)
An
L/2 I,(s) (I,(L)—I,(s)
i jL/QA/nl/(l+a) fr=1(s) ( I,(L) )df (75)

~~

Bn
Since f'(L/2) = 0 we have,
C 3 (63 [e%
f/(L/2 = 1) = —sign(h)[h|* + o([h]"),

C
ala + 1)

|h|1+a + O(|h‘1+a).

f(L/2=h) = f(L/2) -

Let Cy = ﬁ, since In(f(L/2—h)) = In(f(L/2))— L/2) |h|1 T +o(|h|1+), using Laplace’s method
we get:
n—1
1,(L/2) f FrH 0~ T ), (76)

where C(a, f) = ( L/2))1/(1+a)1iar(1+a>

e For A big enough and for all n sufficiently large, and for s € [0, L/2 — A/n*/(1+%)] let us compute
an equivalent of A,, in (74).

Let my, = infjg 10 a/1/0+a) f” by hypothesis on f, we have for large n,

Aafl
M~ _Cn(a—l)/(1+a)'
Since
My f(5) - m, f(L/2) N _a
(n+ D)2~ (n+ D(F(L/2— At/ ~"=% " gl

we get that for A big enough and n sufficiently large
mnf(s) < 1

(n+1)(f(s)? ~  Alre2
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Also for large n,

+a

f”(S) - fn(L/Q _ A/nl/(lJra)) 6_%’41
nP L) S nf (Lf2 = Af O (D) ~ 0T A

so for A big enough and n sufficiently large

)
nf'(s)I,(L) ~ A2’

Using (24) and (53), it follows that for A big enough and n sufficiently large, uniformly in
se[0,L/2 — A/nt/(0+a)]

(5) i (s)
7t (1~ ) <100 < 5 7
and =0 £(s) i i £(s)
o () (1 ) < 90 < ity (78)
where J, is defined in (16).

Since % ~os(L)2)- & |Lf/(2L_/§‘)a, is integrable at L/2 we get that for all A big enough:

1 1 A A
l1-—= ) [1- ——= ] € liminf —————— < limsup ————— < 1 (79)
< a/2> < (1+0<)/2> n— L/2 f(s s L/2 f(s
A A 55 f’((s)) ds o 5 f’((s)) ds

For A big enough and for all n sufficiently large, and for s € [L/2 — A/n"/(0+%) L/2] let us
compute the equivalent of B,, in (75).

More generally when s € [& — nl/(j?-l—a) L nl/(il+a)]’ write s = L/2+a/n'/(17®) with a € [—A, A].
We have uniformly in a € [—A, A]:

L/2+a/nt/(+a)
In(L/2 + a/nl/(Ha)) = In(L/2) + f PN @)da
L/2

o ]. a n—1 h

B 1 a L Ca‘h’1+a ’h’1+a n—1
- LD+ s [ <f<2>— o (M ah

n—1 ra (n_1)in(1— Calh*T* (e
:In(L/2)+4f(f/2) Je( (1=t o[ >>dh
nl/(1+a) 0

P2 <C’(a,f) + j erh>

l/(1+a) 0

n—1 L/2 a _Ca\h\1+a
— ]MJ e FEZ2) dh. (80)
n o —o

Concerning the justification of the equivalent in the above computation, note the integral term

B 7Ca‘h‘l+o¢ 1+a 7Cah1+a
ge(n D In(l= =3+l /m) gp, converges for fixed a to Sge F(Z/2 " dh, by the dominated

convergence theorem (since the integrand is bounded by 1), finally by Dini’s theorem this con-

vergence is uniform in a € [—A, A]. The last equality follows by a change of variable formula
1+«

_Calr|
that shows that C(a, f) = SO_OC e TR dh.
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Calh|1 T2

Define hq(a) = §* e FE™ " dh, we get that for A big enough, and for By, defined in (75)

o L/2 In(s) In(L) — In(s))

b= fL/Z—A/nl/(1+<¥) fr(s) ( I,(L) ds
1 O ho(a)ha(—a)f>"2(L/2) Calalt®

~ n3/(1+a)In(L) J_A f”—l(L/Q) e FIZ2) da

c 1
~n2/(14wt)20<n>’ (81)

where we took (76) into account. Hence using (79) we have for all A large enough

1 1 .. E[7,] ) E[7,]
1-——||1-——+ ] <liminf —————+—— <limsup——=——+— <1
a/2> ( (1+a)/2> n—cwo 2 (L/2 f(s) nooo 2 (L/2 f(s) ’
A A 7l Feds © 2l Feds

and so leting A tends to infinity we get

Proposition 20 Let f be a C? function on [0, L]\{L/2} and C on [0, L] satisfying Assumptions (1)
and (5). Assume that for some o € (0,1) and C > 0, we have for all |h| > 0 small enough,

F'(L/2 = h) = =C|h[*7" + o(|R|*™)

then

Proof

From Proposition 9 and after integration by parts, we have that for all A large enough and for all n
large enough:

L2+ Ajnt/(+0)

L/2—A/n1/(+a)
Var(m) _ | Ia(5) (a1 5) P+ | T (s)2ds (82)
2 Jo ’ L/2—A/n}/(1+e) ’
A, S
L
" j Tn(s) (s 1 (5))ds, (83)
L/2+A/nt/(+a) ’

SF

where J, is defined in (16) and (u;, ;)* in (37).

e Let us start by estimating the term A,,, using (77), it follows that for A big enough and for all
n sufficiently large, and for all s € [0, L/2 — A/n'/(1+)],

(s LV B )
g (- awan) < 7 < dpr *
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Since f” < 0 in [0,L/2[, (39) holds for all 0 < ¢ < L/2, hence for A big enough and for all n
sufficiently large, and for all t € [0, L/2 — A/n!/(1+)]:

2
o f(@)
(up1 (8)” < (nf/(t)(l — A<1+1a)/2)2>

Also by (38),
v (38) J(s) = ) (L —5) _ S5
TN L(L) T nfl(s)

Hence for A big enough, for all n sufficiently large, and for A,, defined in (82), we have

_A/nl/(1+)
A, < 1 f AT L,
n3(1 - A<1+1a)/2 )4 0 (f/(s))3
f(L/2)3 L/2—A/nt/(+e) 1
< ———=ds
n3(1 = Jrtaye)? Jo (f'(s))?

Taking into account that ﬁ ~sL/2— m, we get

L/2—A/nt/(+e) 1 c ,if 3a < 1
f —rgds ~ cln(n/0+2) /A) | if 3a = 1
’ e G i > 1

Hence for A big enough, we get
c/n’ Jif 3o < 1
A, ~ cln(n)/n® | if3a =1

c/nlﬁ ,if 3a > 1,

A, - o<le> (85)

e For the term B, in (82): for A big enough, for all n large enough and for a € [—A, A], let
x = L/2 + a/n"/1+%) we have

(L, a
Uni\ 5+ iTa)

no1 (L o i
5 (5 ) ( [ By [ ) ds)'

S
—1 -1
I (% + W) 0 fr=1(s) Lj2—A/mt/Gre) fT71(s)

By the above computation and (39), we have

in particular, since a € (0, 1),

a)

«@ n - Co
J LA ) L2 ) prr)e et

s < c
: O™ S WL/~ i) ST A5
Calh 1+«
Recall that from (80), and for hq(a) = §* e 7@ dh, we have uniformly over a € [—A, A]
o n— ha(a)
Ly(L/2 + a/n*(F2)) ~ f I(L/2)ma (86)
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hence uniformly in a € [—A, A],

Lt amizer  I2(s) g — 1 o (L2 + —rey) "
L apiiee J2Ls) T nl/0Fe) )y paei(pp @)
/2—A/nt/(1+a) —A ni/d+a)
P H(L/2) 2 slajare)
“ns/am)f 3@ aa
_ ["HL/2)0a,4(a)
n3/(1+a) ’

where 0 4(a) = [, h2(a)er@2 """ ga,

Since umformly inae[—A, A,

JL/2 = afnt )~ g 2)e Tl

we have for A big enough

|a|(1+ a)

, L+ a - e AL 0 N 1
Un1i\ 5 T ij(+a) \cnl/(1+a)h37(a) a,4(a) A3 |

Hence
L/24+A/nt/(+)

B, = J In(8)(ul, 1(8))2d8
L/2 Afnt/(1+a) '

= ﬁ J Jn(L)2 + a/n/(F) ) (tt 1 (L/2 + a/nt 1+ 2dq

2

(1+
1 A 1/(14a) e I L/2 . 1
< TWJ_AJn(L/2+G/n ) CTLI/(TW GO[,A( )+ﬁ da
c(4)
T A/ (Tra)’

where we use in the third line that
I,(L/2 + a/n¥/0+)  [(L/2 — a/nt/(0+)
FEL  ofui )L 0

ha(a)ho(—a)eT@m "
~cC l/(1+a) )

Jn(L/2 + a/n/(1F0)) =

and ¢(A) is a constant that depends on A. It follows that for all A large enough,

B, - o(le> (87)

e For the last term C), in (83), note that J,,(s) = J,(L — s) so

L
Cp = f Tn(s)(td, 1 (s))?ds
L/2+A/nl/(+e) ’
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L/2—A/nt/(+e)
| Jn(s) (tly (L — s))2ds.
0

Also for s < L/2 — A/nl/(1+a)

n—1(g L—s 2
it = L [ O

CRR(L-s) o )
n—1 L/2—A/nt/(+e) 1o
IR(L =) \ Jo i)
L/2+A/nl/(+e) 2 L—s 2
+ f Lt) +j L) ) |
L/2-Amv/a+e) fr7(E) L2+ Amt/Gra) fP7H(D)

The first two terms in the above bracket has been computed in the above item, for the last term
since for s < L/2 — A/nl/(lJrOt)7

L—s I2 t L—s 1
f 71(1) dtglg(L—s)f ——dt
L2+ A/nt/Gre) f7H(E) L2+ Afnt/Gra) fP7H(D)
— I?(L —s) JLQA/TLU(IM) S
" s =)

L/2—A/nl/(1+e) 7(t)

:Ig(L—s)J dt

s i) (@)
_ B(L-s) <fn+2<s>>
T OfI(L/2 — A/nt/(+a)) \ n—2
f2(s) (L — s)
nl/(1+a) Ao

Since L — s = L/2, we have for A big enough and for all n sufficiently large,

2n—2
, L) (1 (s)
\uml(L — S)‘ < n3/(1+a)[%(L/2) A3 + GA(A) + CW

¢ <1 +6A(A)>+c /() < o(A4)

S T \ A%a nl/(+o) ga S pi/(+a)

where in the second inequality, we used (76). Since, for s < L/2 — A/nY/0+%) (77) yield J,(s) <

n]}(,?l), so for A big enough and for all n sufficiently large,

L/Q_A/nl/(1+o¢)

Cn = Jo Jn(s)(u;’l(L — 5))2ds.
2(A) L/2—A/nt/(+e)
X WJ;) Jn(S)dS
_ A(Af(L/2) Lj2—Afmt/a+e) )
S i) s

L2 1

plt2/(ta) (nz ),
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where for the equivalent we use that f'(s) ~(r/9)- ¢/L/2 — s|* and the integral is convergent.
The last equality follows since « € (0,1). Hence

C, - 0&#). (88)

Putting (85), (87) and (88) together, we deduce that Var(r,) = o (#) .
|

Theorem 21 Let f be a C? function on [0, L]\{L/2} and C* on [0, L] satisfying Assumptions (1)
and (5). Assume that for some a € (0,1) and C > 0, we have for all |h| > 0 small enough,

F'(Lj2=h) = =CJp*~" +o(|h[*71).

Let X, = (X, (t))i=0 be the Brownian motion described in Definition 1. Then the family of diffusion

processes (Xn)nen (1} has a cut-off in separation with miring times (an)pem 1} = <% 5/2 Jj:,((s)) ds

>neN\{1}’

in the sense of Section 1.3.

Proof

Use Theorem 8, Proposition 19 and Proposition 20.
[ |

Corollary 22 With same hypothesis as in Theorem 21, there exist C > 0 and no € N such that for
allr>0,0<7" <1 and for all n = ng,

L (Xn((l + r)z i) ds)) — Uy,

C

nJo f(s)

ﬁ

tv

n (n) 0
vyer7 P(1+) é/Qf,((Z))d 0,y) =

-
. o < (5

1
r2n1+a ) Vol(M )
1
/2n 1+a VO]( )

inf P o . 0,y
veMy  (1-r)2 (52 f,((s))d( )

Proof

In the proof of Proposition 20 we have in fact (since the dominant term is C),)

wwm;o( 12>

n1+ 1+a

The result follows with the same proof as the proof of Corollary 14.

Theorem 23 Let f be a C? function on [0, LI\{L/2} and C' on [0, L] satisfying Assumptions (1)
and (5). Assume that for some o> 1 and C > 0, we have for all |h| > 0 small enough,

F'(L/2=h) = =Cla*~" +o(|h[*7H).

Let X, := (X, (t))¢=0 be the Brownian motion described in Definition 1. Then the family of diffusion
processes (Xn)nem 13 has no cut-off in separation.
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Proof
Following the proof of Proposition 19, we show that

Ca(f)

E[7a] n2/+a)

(2)
Following the proof of Proposition 17, we show that Var(r,)/2 is equivalent for n large to IB#)Q
with the same decompositions as introduced there. It follows that Var(7,)/E[7,]? converges toward a

positive constant and we conclude as in Theorem 18.

[ |
To end the paper, let us give the
Proof of Theorem 4
The items of Theorem 4 correspond respectively to Theorem 21, Theorem 12 and Theorem 23.
[ |
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