QED of atomic resonances Jérémy Faupin

The mod

Result

Ingredients of the proof

On Quantum Electrodynamics of atomic resonances

Jérémy Faupin

Institut Elie Cartan de Lorraine Université de Lorraine

Joint work with M. Ballesteros, J. Fröhlich, B. Schubnel

Outline of the talk

1 The model
A simple model of an atom
The quantized electromagnetic field
Total physical system

2 Results
Main results
Related results

3 Ingredients of the proof Mathematical tools Strategy of the proof QED of atomic resonances Jérémy Faupin

The model

A simple

model of an atom

quantized electromagnetic field

physica

Results

Ingredients of the proof

Part I

The model

The atom (1)

Assumptions

- The atom is non-relativistic
- The atom is assumed to have only finitely many excited states

Internal degrees of freedom

- Internal degrees of freedom described by an N-level system
- Hilbert space: \mathbb{C}^N
- Hamiltonian: $N \times N$ matrix given by

$$H_{is} := \begin{pmatrix} E_N & \cdots & 0 \\ \vdots & \ddots & 0 \\ 0 & \cdots & E_1 \end{pmatrix}, \quad E_N > \cdots > E_1$$

• The energy scale of transitions between internal states of the atom is measured by the quantity

$$\delta_0 := \min_{i \neq i} |E_i - E_j|$$

The atom (2)

External degrees of freedom

- Usual Hilbert space of orbital wave functions: $L^2(\mathbb{R}^3)$
- Position of the (center of mass of the) atom: $\vec{x} \in \mathbb{R}^3$
- Kinetic energy of the free center of mass motion: $-\frac{1}{2}\Delta$

Atomic Hamiltonian

Hilbert space

$$\mathcal{H}_{at} := L^2(\mathbb{R}^3) \otimes \mathbb{C}^N$$

• Hamiltonian:

$$H_{at} := -\frac{1}{2}\Delta + H_{is},$$

with domain $D(H_{at}) = H^2(\mathbb{R}^3) \otimes \mathbb{C}^N$

Electric dipole moment

Represented by

$$\vec{d} = (d_1, d_2, d_3),$$

where, for $j=1,2,3,d_i\equiv\mathbb{I}\otimes d_i$ is an $N\times N$ hermitian matrix

The quantized electromagnetic field (1)

Fock space

- Wave vector of a photon: $\vec{k} \in \mathbb{R}^3$
- Helicity of a photon: $\lambda \in \{1, 2\}$
 - Notation:

$$\underline{\mathbb{R}}^3 := \mathbb{R}^3 \times \{1,2\} = \left\{\underline{\underline{k}} := (\vec{k}, \lambda) \mid \vec{k} \in \mathbb{R}^3, \lambda \in \{1,2\}\right\}$$

Moreover, $\underline{\mathbb{R}}^{3n} := (\underline{\mathbb{R}}^3)^{\times n}$, and, for $B \subset \mathbb{R}^3$,

$$\underline{B} := B \times \{1, 2\}, \qquad \int_{\underline{B}} d\underline{k} := \sum_{\lambda=1, 2} \int_{B} d\vec{k}$$

Hilbert space of states of photons given by

$$\mathcal{H}_f := \mathcal{F}_+(L^2(\underline{\mathbb{R}}^3)),$$

where $\mathcal{F}_+(L^2(\underline{\mathbb{R}}^3))$ is the symmetric Fock space over the space $L^2(\underline{\mathbb{R}}^3)$ of one-photon states:

$$\mathcal{H}_f = \mathbb{C} \oplus \bigoplus_{s \geq 1} \mathrm{L}^2_s(\underline{\mathbb{R}}^{3n})$$

The quantized electromagnetic field (2)

Photon creation- and annihilation operators

Denoted by

$$a^*(\underline{k}) \equiv a^*_{\lambda}(\vec{k}), \quad a(\underline{k}) \equiv a_{\lambda}(\vec{k}), \quad \text{for all } \underline{k} = (\vec{k}, \lambda) \in \underline{\mathbb{R}}^3$$

Fock vacuum

Fock space \mathcal{H}_f contains a unit vector, Ω , called "vacuum (vector)" and unique up to a phase, with the property that

$$a(\underline{k})\Omega = 0$$
, for all \underline{k}

Hamiltonian

Hamiltonian of the free electromagnetic field given by

$$H_f = \int_{\mathbb{R}^3} |\vec{k}| a^*(\underline{k}) a(\underline{k}) d\underline{k}$$

Total physical system (1)

Hilbert space

Total Hilbert space:

$$\mathcal{H}=\mathcal{H}_{at}\otimes\mathcal{H}_{f}$$

Interaction of the atom with the quantized electromagnetic field

Interaction Hamiltonian:

$$H_I := -\vec{d} \cdot \vec{E}(\vec{x}),$$

where \vec{E} denotes the quantized electric field:

$$\vec{E}(\vec{x}) := -i \int_{\mathbb{R}^3} \Lambda(\vec{k}) |\vec{k}|^{\frac{1}{2}} \vec{\epsilon}(\underline{k}) \left(e^{i\vec{k}\cdot\vec{x}} \otimes a(\underline{k}) - e^{-i\vec{k}\cdot\vec{x}} \otimes a^*(\underline{k}) \right) d\underline{k}$$

• $k \mapsto \vec{\epsilon}(k) \in \mathbb{R}^3$ represents the polarization vector:

$$|\vec{\epsilon}(k)| = 1$$
, $\vec{\epsilon}(k) \cdot \vec{k} = 0$, $\vec{\epsilon}((r\vec{k}, \lambda)) = \vec{\epsilon}((\vec{k}, \lambda))$, $\forall r > 0$, $\forall k \in \mathbb{R}^3$

• $\Lambda: \mathbb{R}^3 \mapsto \mathbb{R}$ is an ultraviolet cut-off:

$$\Lambda(\vec{k}) = e^{-|\vec{k}|^2/(2\sigma_{\Lambda}^2)}, \quad \sigma_{\Lambda} > 1$$

Total physical system (2)

Total Hamiltonian

Total Hamiltonian of the system:

$$\mathbf{H} := H_{at} + H_f + \lambda_0 H_I, \qquad \lambda_0 \in \mathbb{R}$$

Translation invariance

Photon momentum operator:

$$\vec{P}_f := \int_{\mathbb{R}^3} \vec{k} a^*(\underline{k}) a(\underline{k}) d\underline{k}$$

Total momentum operator:

$$\vec{P}_{tot} := -i\vec{\nabla} + \vec{P}_f$$

$$[\mathbf{H}, \vec{P}_{tot,j}] = 0, \quad j = 1, 2, 3$$

The fibre Hamiltonian

Direct integrals

Isomorphism

$$\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^N \otimes \mathcal{H}_f \cong L^2(\mathbb{R}^3; \mathbb{C}^N \otimes \mathcal{H}_f)$$

• Direct integral decomposition

$$\mathcal{H} = \int_{\mathbb{R}^3}^{\oplus} \mathcal{H}_{\vec{p}} d\vec{p}, \quad H = \int_{\mathbb{R}^3}^{\oplus} H(\vec{p}) d\vec{p},$$

where the fibre space is

$$\mathcal{H}_{\vec{p}} := \mathbb{C}^N \otimes \mathcal{H}_f$$

and the fibre Hamiltonian is

$$H(\vec{p}) := H_{is} + \frac{1}{2}(\vec{p} - \vec{P}_f)^2 + H_f + \lambda_0 H_{I,0},$$

where

$$H_{l,0} := i \int_{\mathbb{R}^3} \Lambda(\vec{k}) |\vec{k}|^{\frac{1}{2}} \left(\vec{\epsilon}(\underline{k}) \cdot \vec{d} \otimes a(\underline{k}) - \vec{\epsilon}(\underline{k}) \cdot \vec{d} \otimes a^*(\underline{k}) \right) d\underline{k}$$

of the proof

Spectrum of $H_0(P)$

Simplification

Subtracting the trivial term $\vec{p}^2/2$, we obtain the Hamiltonian

$$H(\vec{p}) := H_{is} + \frac{1}{2}\vec{P}_f^2 - \vec{p}\cdot\vec{P}_f + H_f + \lambda_0 H_{I,0}$$

Non-interacting Hamiltonian

$$H_0(\vec{p}) := H_{is} + \frac{1}{2} \vec{P}_f^2 - \vec{p} \cdot \vec{P}_f + H_f$$

Spectrum

$$\sigma(H_0(\vec{p})) = \left\{ egin{array}{ll} & [E_1,\infty) & ext{if } |ec{p}| \leq 1, \ & [E_1+|ec{p}|-rac{1}{2}-rac{ec{p}^2}{2},\infty) & ext{if } |ec{p}| \geq 1. \end{array}
ight.$$

• Pure point spectrum

$$\sigma_{\text{DD}}(H_0(\vec{p})) = \{ \vec{E}_1, \vec{E}_2, \dots \vec{E}_N \} \text{ for all } \vec{p} \in \mathbb{R}^3$$

QED of atomic resonances Jérémy Faupin

The model

Results

Main results Related

Ingredients of the proof

Part II

Results

Complex dilatations in Fock space

Dilatation operator in the 1-photon space

(Unitary) dilatation operator: for $\theta \in \mathbb{R}$,

$$\gamma_{ heta}(\phi)(ec{k},\lambda) := e^{-3 heta/2}\phi(e^{- heta}ec{k},\lambda), \quad ext{for } \phi \in L^2(\underline{\mathbb{R}}^3)$$

Second quantization

Second quantization of γ_{θ} : $\Gamma_{\theta} := \Gamma(\gamma_{\theta})$ operator on \mathcal{H}_f defined by:

$$\Gamma_{\theta}(\Phi)(\underline{k}_1,\ldots,\underline{k}_n) := e^{-3n\theta/2}\Phi(e^{-\theta}\vec{k}_1,\lambda_1,\ldots,e^{-\theta}\vec{k}_n,\lambda_n)$$

Dilated Hamiltonian

$$H_{\theta}(\vec{p}) := \Gamma_{\theta} H(\vec{p}) \Gamma_{\theta}^* = H_{is} + \frac{1}{2} e^{-2\theta} \vec{P}_f^2 - e^{-\theta} \vec{p} \cdot \vec{P}_f + e^{-\theta} H_f + \lambda_0 H_{I,\theta},$$

where

$$H_{I,\theta}:=i e^{-2\theta} \int_{\mathbb{R}^3} \Lambda(e^{-\theta} \vec{k}) |\vec{k}|^{\frac{1}{2}} \left(\vec{\epsilon}(\underline{k}) \cdot \vec{d} \otimes a(\underline{k}) - \vec{\epsilon}(\underline{k}) \cdot \vec{d} \otimes a^*(\underline{k})\right) d\underline{k}.$$

Analytically extended to $D(0, \pi/4) := \{\theta \in \mathbb{C} : |\theta| < \pi/4\}.$

Spectrum of the non-interacting dilated Hamiltonian

Non-interacting dilated Hamiltonian

$$\label{eq:H_theta_f} \textit{\textbf{H}}_{\theta,0}(\vec{\textit{p}}) := \textit{\textbf{H}}_{\textit{is}} + e^{-2\theta} \frac{\vec{\textit{P}}_{\textit{f}}^2}{2} - e^{-\theta} \vec{\textit{p}} \cdot \vec{\textit{P}_{\textit{f}}} + e^{-\theta} \textit{\textbf{H}}_{\textit{f}}$$

Spectrum

For $\delta_0 > 0$, E_1, \ldots, E_N are simple eigenvalues of $H_{\theta,0}(\vec{p})$. For $|\vec{p}| < 1$ and $\theta = i\vartheta$, $\vartheta \in \mathbb{R}$, the spectrum of $H_{\theta,0}(\vec{p})$ is included in a region of the following form:

Figure: Shape of the spectrum of $H_{\theta,0}(\vec{p})$ for $\vec{p} \in \mathbb{R}^3$, $|\vec{p}| < 1$.

Main results

Theorem (Ballesteros, F, Fröhlich, Schubnel)

Let $0 < \nu < 1$. There exists $\lambda_c(\nu) > 0$ such that, for all $|\lambda_0| < \lambda_c(\nu)$ and $\vec{p} \in \mathbb{R}^3$, $|\vec{p}| < \nu$, the following properties are satisfied:

- a) $E(\vec{p}) := \inf \sigma(H(\vec{p}))$ is a non-degenerate eigenvalue of $H(\vec{p})$,
- b) For all $i_0 \in \{1, \dots, N\}$ and $\theta \in \mathbb{C}$ with $0 < \text{Im}(\theta) < \pi/4$ large enough, $H_{\theta}(\vec{p})$ has an eigenvalue, $z^{(\infty)}(\vec{p})$, such that $z^{(\infty)}(\vec{p}) \to E_{i_0}$ as $\lambda_0 \to 0$. For $i_0 = 1$, $z^{(\infty)}(\vec{p}) = E(\vec{p})$.

Moreover, for $|\vec{p}| < \nu$, $|\lambda_0|$ small enough and $0 < \text{Im}(\theta) < \pi/4$ large enough, the ground state energy, $E(\vec{p})$, its associated eigenprojection, $\pi(\vec{p})$, and resonances energies, $z^{(\infty)}(\vec{p})$, are analytic in \vec{p} , λ_0 and θ . In particular, they are independent of θ

QED of atomic resonances

Jérémy Faupin

The mode

Results
Main
results
Related

results
Ingredients
of the proof

Renormalized mass

Renormalized mass

- Rotation symmetry: $E(\vec{p}) = E(|\vec{p}|)$
- The renormalized mass of the atom can be defined by

$$m_{
m ren} = rac{1}{(\partial_{|ec{p}|}^2 E)(0) + 1} \quad ext{ where } \quad \partial_{|ec{p}|} = rac{ec{p}}{|ec{p}|} \cdot
abla_{ec{p}}$$

QED of atomic resonances

Jérémy Faupin

Related results

of the proof

Ingredients

Cerenkov radiation

Conjecture

- For $|\vec{p}| > 1$, $E(\vec{p})$ is not an eigenvalue
- Preliminary results: [De Roeck, Fröhlich, Pizzo '13]
- In what follows, we always assume that $|\vec{p}| < 1$

Ground states of related (translation invariant) models

Free electron

- Nelson model
 - [Fröhlich '73], [Pizzo '03]: E(p̄) is not an eigenvalue (unless an infrared regularization is imposed)
 - [Abdesselam, Hasler '13]: $E(\vec{p})$ analytic in \vec{p} and λ_0
- Pauli-Fierz model
 - [Chen,Fröhlich '07], [Chen '08], [Hasler,Herbst '08] [Chen,Fröhlich,Pizzo '09]

$$E(\vec{p})$$
 is an eigenvalue $\Leftrightarrow \nabla E(\vec{p}) = 0 \Leftrightarrow \vec{p} = \vec{0}$.

For $\vec{p} \neq \vec{0}$, a ground state exists in a "non-Fock representation"

[Bach,Chen,Fröhlich,Sigal '07], [Chen '08], [Chen,Fröhlich,Pizzo '09], [Fröhlich,Pizzo '10]: \$\vec{p}\$ → E(\$\vec{p}\$) is twice differentiable near 0

Atoms and ions

[Amour, Grébert, Guillot '06], [Loss, Miyao, Spohn '07], [Fröhlich, Griesemer, Schlein '07], [Hasler, Herbst '08]: (for Pauli-Fierz models)

$$E(\vec{p})$$
 is an eigenvalue \Leftrightarrow (Total charge vanishes) or $(\vec{p} = \vec{0})$

QED of atomic resonances Jérémy Faupin

.

The mode

Results Main results

Related results

Ingredients of the proof

Analyticity in the coupling constant

Models with static nuclei

[Griesemer, Hasler '09], [Hasler, Herbst '11]: For different models related to non-relativistic QED, analyticity in the coupling constant, proven using spectral renormalization group

QED of atomic resonances

Jérémy Faupin

The mode

Results
Main
results
Related

results
Ingredients
of the proof

Resonances

Models with static nuclei

[Bach,Fröhlich,Sigal '98], [Abou Salem,F,Fröhlich,Sigal '09], [Sigal '09], [Bach,Ballesteros,Fröhlich '13]: For different models related to non-relativistic QED, existence of resonances, proven using spectral renormalization group or iterative perturbation theory

Moving Hydrogen atom (but center of mass confined)

[F '08] Existence of resonances proven using spectral renormalization group

Main results (2)

Theorem (Ballesteros, F, Fröhlich, Schubnel)

Let $0 < \nu < 1$. There exists $\lambda_c(\nu) > 0$ such that, for all $|\lambda_0| < \lambda_c(\nu)$ and $\vec{p} \in \mathbb{R}^3$, $|\vec{p}| < \nu$, the following properties are satisfied:

- a) $E(\vec{p}) := \inf \sigma(H(\vec{p}))$ is a non-degenerate eigenvalue of $H(\vec{p})$,
- b) For all $i_0 \in \{1, \cdots, N\}$ and $\theta \in \mathbb{C}$ with $0 < \operatorname{Im}(\theta) < \pi/4$ large enough, $H_{\theta}(\vec{p})$ has an eigenvalue, $z^{(\infty)}(\vec{p})$, such that $z^{(\infty)}(\vec{p}) \to E_{i_0}$ as $\lambda_0 \to 0$. For $i_0 = 1$, $z^{(\infty)}(\vec{p}) = E(\vec{p})$.

Moreover, for $|\vec{p}| < \nu$, $|\lambda_0|$ small enough and $0 < \operatorname{Im}(\theta) < \pi/4$ large enough, the ground state energy, $E(\vec{p})$, its associated eigenprojection, $\pi(\vec{p})$, and resonances energies, $z^{(\infty)}(\vec{p})$, are analytic in \vec{p} , λ_0 and θ . In particular, they are independent of θ

Main contributions

- Existence of resonances for translation invariant models
- Analyticity of resonances energies in \vec{p} and λ_0
- Proof: Inductive construction ("replacing" the spectral renormalization group analysis and) involving a sequence of 'smooth Feshbach-Schur maps', which yields an algorithm for the calculation of the resonances energies that converges super-exponentially fast

Fermi Golden Rule

Proposition (Ballesteros, F, Fröhlich, Schubnel)

Let $\underline{i_0} > 1$ and $\vec{p} \in \mathbb{R}^3$, $|\vec{p}| < 1$. Suppose that

$$\sum_{j< i_0} \int_{\underline{\mathbb{R}}^3} \Big| \sum_{s \in \{1,2,3\}} (d_s)_{N-j+1,N-i_0+1} \epsilon_s(\underline{k}) \Big|^2 |\vec{k}| |\Lambda(\vec{k})|^2$$

$$\delta(E_j-E_{i_0}+|\vec{k}|-\vec{p}\cdot\vec{k}+\frac{\vec{k}^2}{2})d\underline{k}>0,$$

Then, under the conditions of our main theorem and for $|\lambda_0|$ small enough, the imaginary part of $z^{(\infty)}(\vec{p})$ is strictly negative

QED of atomic resonances Jérémy

Faupin

Ingredients of the proof

Part III

Ingredients of the proof

Feshbach-Schur map (1)

Definition (Feshbach-Schur Pairs)

Let P be an operator on a separable Hilbert space \mathcal{V} , $0 \leq P \leq 1$. Assume that P and $\overline{P} := \sqrt{1-P^2}$ are both non-zero. Let H and T be two closed operators on \mathcal{V} with identical domains. Assume that P and \overline{P} commute with T. We set W := H - T and assume that $\overline{P}WP$ and $PW\overline{P}$ are bounded operators. We define

$$H_P := T + PWP, \quad H_{\overline{P}} := T + \overline{P}W\overline{P}.$$

The pair (H, T) is called a Feshbach-Schur pair associated with P iff

- (i) $H_{\overline{P}}$ and T are bounded invertible on $\overline{P}[\mathcal{V}]$
- (ii) $H_{\overline{P}}^{-1}\overline{P}WP$ can be extended to a bounded operator on $\mathcal V$

For an arbitrary Feshbach-Schur pair (H, T) associated with P, we define the (smooth) Feshbach-Schur map by

$$F_P(\cdot,T): H \mapsto F_P(H,T) := T + PWP - PW\overline{P}H_{\overline{P}}^{-1}\overline{P}WP$$

Strategy of the proof

Feshbach-Schur map (2)

Theorem ([Bach,Chen,Fröhlich,Sigal '03], [Griesemer,Hasler '08])

Let $0 \le P \le 1$, and let (H, T) be a Feshbach-Schur pair associated with P (i.e., satisfying properties (i) and (ii) of the previous definition). Define

$$Q_P(H,T) := P - \overline{P}H_{\overline{P}}^{-1}\overline{P}WP.$$

Then the following hold true:

- (i) H is bounded invertible on \mathcal{V} if and only if $F_P(H, T)$ is bounded invertible on $P[\mathcal{V}]$.
- (ii) H is not injective if and only if $F_P(H, T)$ is not injective as an operator on P[V]:

$$H\psi = 0, \ \psi \neq 0 \Longrightarrow F_P(H, T)P\psi = 0, \ P\psi \neq 0,$$

$$F_P(H,T)\phi = 0, \ \phi \neq 0 \Longrightarrow HQ_P(H,T)\phi = 0, \ Q_P(H,T)\phi \neq 0.$$

Kernels

We denote by

$$\underline{w} := \{w_{m,n}\}_{m,n\in\mathbb{N}_0}$$

a sequence of bounded measurable functions,

$$\forall m, n : w_{m,n} : \mathbb{R} \times \mathbb{R}^3 \times \underline{\mathbb{R}}^{3m} \times \underline{\mathbb{R}}^{3n} \to \mathbb{C},$$

that are continuously differentiable in the variables, $r \in \sigma(H_f) \subset \mathbb{R}$, $\vec{l} \in \sigma(\vec{P}_f) = \mathbb{R}^3$, respectively, appearing in the first and the second argument, and symmetric in the m variables in \mathbb{R}^{3m} and the n variables in \mathbb{R}^{3n} . We suppose furthermore that

$$w_{0,0}(0,\vec{0})=0$$

Wick monomials (2)

Generalized Wick monomials

With a sequence, \underline{w} , of functions, we associate a bounded operator

$$W_{m,n}(\underline{w}) := \mathbf{1}_{H_f \leq 1} \int_{\underline{\mathbb{R}}^{3m} \times \underline{\mathbb{R}}^{3n}} a^*(\underline{k}_1) \cdots a^*(\underline{k}_m)$$

$$w_{m,n}(H_f; \vec{P}_f; \underline{k}_1, \cdots, \underline{k}_m; \underline{\tilde{k}}_1, \cdots, \underline{\tilde{k}}_n)$$

$$a(\underline{\tilde{k}}_1) \cdots a(\underline{\tilde{k}}_n) \prod_{i=1}^m d\underline{k}_i \prod_{i=1}^n d\underline{\tilde{k}}_j \mathbf{1}_{H_f \leq 1}$$

Effective Hamiltonians

For every sequence of functions w and every $\mathcal{E} \in \mathbb{C}$ we define

$$H[\underline{w},\mathcal{E}] = \sum_{m+n>0} W_{m,n}(\underline{w}) + \mathcal{E}, \quad W_{\geq 1}(\underline{w}) := \sum_{m+n>1} W_{m,n}(\underline{w})$$

Analyticity in the total momentum

Complexification of the total momentum

Let $\vec{p}^* \in \mathbb{R}^3$, $|\vec{p}^*| < 1$ and $\theta = i\vartheta$, $0 < \vartheta < \pi/4$. We set

$$\mu = \frac{1 - |\vec{p}^*|}{2}$$

and

$$U_{\theta}[\vec{p}^*] := \{ \vec{p} \in \mathbb{C}^3 \mid |\vec{p} - \vec{p}^*| < \mu \} \cap \{ \vec{p} \in \mathbb{C}^3 \mid |\mathrm{Im}(\vec{p})| < \frac{\mu}{2} \tan(\vartheta) \}.$$

For $\vec{p} \in U_{\theta}[\vec{p}^*]$, we consider the operator

$$H_{ heta}(ec{p}) := H_{is} + e^{-2 heta} rac{ec{P}_f^2}{2} - e^{- heta} ec{p} \cdot ec{P}_f + e^{- heta} H_f + \lambda_0 H_{I, heta}$$

The First Decimation Step of Spectral Renormalization (1)

The first spectral "projection"

ullet Let ψ_{i_0} denote a normalized eigenvector of ${\it H}_{is}$ associated to the eigenvalue E_{i_0} and

$$P_{i_0} := |\psi_{i_0}\rangle\langle\psi_{i_0}|$$

• Let $\chi \in C^{\infty}(\mathbb{R})$ a decreasing function satisfying

$$\chi(r) := \begin{cases} 1, & \text{if } r \leq 3/4, \\ 0 & \text{if } r > 1, \end{cases}$$

and strictly decreasing on (3/4,1). For $\rho_0 \in (0,1)$, let

$$\chi_{
ho_0}(r) := \chi(r/
ho_0), \quad \overline{\chi}_{
ho_0}(r) := \sqrt{1 - \chi_{
ho_0}^2(r)}$$

• Operator χ_{i_0} is defined by

$$\chi_{i_0} := P_{i_0} \otimes \chi_{\rho_0}(H_f)$$

The First Decimation Step of Spectral Renormalization (2)

The first Feshbach-Schur map

• For $|z - E_{i_0}| \le r_0 \ll \rho_0 \mu \sin(\vartheta)$, $(H_{\theta}(\vec{p}) - z, H_{\theta,0}(\vec{p}) - z)$ is a Feshbach-Schur pair associated to χ_{i_0}

Figure: Spectrum of $H_{\theta,0}(\vec{p})$ restricted to the range of $\bar{\chi}_{i_0} = \sqrt{1 - \chi_{i_0}^2}$. The spectral parameter z is located inside $D(E_{i_0}, r_0)$

• Expanding the resolvent into a Neumann series, and using Wick ordering, one verifies that there is a sequence of functions $\underline{w}^{(0)}(\vec{p},z)$ and $\mathcal{E}^{(0)}(\vec{p},z) \in \mathbb{C}$ such that

$$F_{\chi_{i_0}}(H_{\theta}(\vec{p})-z,H_{\theta,0}(\vec{p})-z)_{|\mathsf{Ran}(\chi_{i_0})} = \left(P_{i_0} \otimes H[\underline{w}^{(0)}(\vec{p},z),\mathcal{E}^{(0)}(\vec{p},z)]\right)_{|\mathsf{Ran}(\chi_{i_0})}$$

Strategy of the proof

Inductive Construction of Effective Hamiltonians (1)

Scale parameters

Let $(\rho_j)_{j\in\mathbb{N}_0}$, $(r_j)_{j\in\mathbb{N}_0}$ be defined by

$$\rho_j = \rho_0^{(2-\varepsilon)^j}, \text{ with } \varepsilon \in (0,1), \quad r_j := \frac{\mu \sin(\vartheta)}{32} \rho_j$$

Hilbert spaces

A filtration of Hilbert spaces $(\mathcal{H}^{(j)})_{j\in\mathbb{N}_0}$ is given by setting

$$\mathcal{H}^{(j)} = 1\!\!1_{H_f \leq
ho_j} [\mathcal{H}_f]$$

Strategy of the proof

Inductive Construction of Effective Hamiltonians (2)

Effective Hamiltonians

We construct inductively a sequence of complex numbers $\{z^{(j-1)}(\vec{p})\}_{j\in\mathbb{N}_0}$, $z^{(-1)}(\vec{p}):=E_{i_0}$, and, for every $z\in D(z^{(j-1)}(\vec{p}),r_j)$, a sequence of functions $\underline{w}^{(j)}(\vec{p},z)$ and a complex number $\mathcal{E}^{(j)}(\vec{p},z)$:

(a) Let

$$W_{m,n}^{(j)}(\vec{p},z) := W_{m,n}(\underline{w}^{(j)}(\vec{p},z)), \quad H^{(j)}(\vec{p},z) := H[\underline{w}^{(j)}(\vec{p},z), \mathcal{E}^{(j)}(\vec{p},z)],$$

acting on
$$\mathcal{H}^{(j)}$$
, (with $m,n\in\mathbb{N}_0$). Then

$$H^{(j+1)}(\vec{p},z) = F_{\chi_{\rho_{j+1}}(H_f)}[H^{(j)}(\vec{p},z), W_{0,0}^{(j)}(\vec{p},z) + \mathcal{E}^{(j)}(\vec{p},z)]|_{\mathbb{1}_{H_f \leq \rho_{j+1}}}$$

is well defined.

(b) The complex number $z^{(j)}(\vec{p})$ is defined as the only zero of the function

$$D\left(z^{(j-1)}(\vec{p}), \frac{2}{3}r_j\right) \ni z \longrightarrow \mathcal{E}^{(j)}(\vec{p}, z) = \langle \Omega | H^{(j)}(\vec{p}, z) \Omega \rangle$$

QED of atomic resonances

Jérémy Faupin

The mod

Result

Ingredients of the proof Mathematical

Strategy of the proof

Inductive Construction of Effective Hamiltonians (3)

Isospectrality properties

Using isospectrality of the Feshbach-Schur map, we have the following properties:

$$H_{\theta}(\vec{p}) - z$$
 is bounded invertible $\iff H^{(j)}(\vec{p}, z)$ is bounded invertible.

$$H_{\theta}(\vec{p}) - z$$
 is not injective $\iff H^{(j)}(\vec{p}, z)$ is not injective.

Strategy of the proof

Inductive Construction of Effective Hamiltonians (4)

Estimates

• The following inequality holds:

$$|z^{(j)}(\vec{p})-z^{(j-1)}(\vec{p})|<\frac{r_j}{2}$$

• $H^{(j)}(\vec{p},z)$ is the sum of the unperturbed Hamiltonian, $T=W_{0,0}^{(j)}(\vec{p},z)+\mathcal{E}^{(j)}(\vec{p},z)$, and a perturbation given by $W=W_{\geq 1}^{(j)}(\vec{p},z)$ whose norm tends to zero, as j tends to ∞ , super-exponentially rapidly,

$$||W_{\geq 1}^{(j)}(\vec{p},z)|| \leq \mathbf{C}^{j} \rho_{j}^{2},$$

for some constant C

QED of atomic resonances

Jérémy Faupin

The mode

D----la

Ingredients of the proof Mathematical

Strategy of the proof

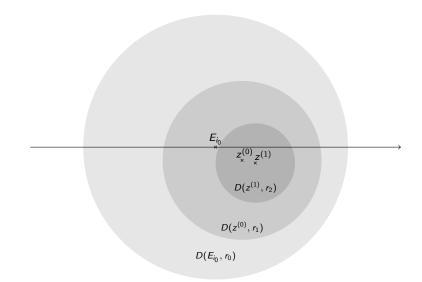


Figure: The sets $D(z^{(j)}(\vec{p}), r_{j+1})$ are shrinking super-exponentially fast with j and, for every $j \in \mathbb{N}_0$, $D(z^{(j)}(\vec{p}), r_{j+1}) \subset D(z^{(j-1)}(\vec{p}), r_j)$.

Construction of Eigenvalues and Analyticity in \vec{p}

Approximate resonances energies

• The sequence of approximate resonance energies $(z^{(j)}(\vec{p}))_{j\in\mathbb{N}_0}$ is a Cauchy sequence of analytic functions of \vec{p} . We then define

$$z^{(\infty)}(\vec{p}) := \lim_{j \to \infty} z^{(j)}(\vec{p}) = \bigcap_{j \in \mathbb{N}_0} D(z^{(j-1)}(\vec{p}), r_j),$$

which is analytic in \vec{p}

• Analyticity in θ , for $\operatorname{Im}(\theta) < \frac{\pi}{4}$ large enough, and in λ_0 , for $|\lambda_0|$ small enough, can be shown by very similar arguments.

Isospectrality

Using isospectrality of the Feshbach-Schur map, one verifies that $z^{(\infty)}(\vec{p})$ is an eigenvalue of $H_{\theta}(\vec{p})$; it is the resonance energy that we are looking for

QED of atomic resonances Jérémy Faupin

The model

D . . II .

Ingredients of the proof

Thank you!