
On stochastic calculus with respect to q-Brownian motion
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Abstract. Following the approach and the terminology introduced in [A. Deya and R.
Schott, On the rough paths approach to non-commutative stochastic calculus, J. Funct.
Anal., 2013], we construct a product Lévy area above the q-Brownian motion (for q ∈ [0, 1))
and use this object to study differential equations driven by the process.

We also provide a detailled comparison between the resulting “rough” integral and
the stochastic “Itô” integral exhibited by Donati-Martin in [C. Donati-Martin, Stochastic
integration with respect to q Brownian motion, Probab. Theory Related Fields, 2003].

1. Introduction: the q-Brownian motion

The q-Gaussian processes (for q ∈ [0, 1)) stand for one of the most standard families of
non-commutative random variables in the literature. Their consideration can be traced back
to a paper by Frisch and Bourret in the early 1970s [8]: the dynamics is therein suggested
as a model to quantify some possible non-commutativity phenomenon between the creation
and annihilator operators on the Fock space, the limit case q = 1 morally corresponding to
the classical probability framework. The mathematical construction and basic stochastic
properties of the q-Gaussian processes were then investigated in the 1990s, in a series of
pathbreaking papers by Bożejko, Kümmerer and Speicher [2, 3, 4].

For the sake of clarity, let us briefly recall the framework of this analysis and introduce
a few notations that will be used in the sequel (we refer the reader to the comprehensive
survey [11] for more details on the subsequent definitions and assertions). First, recall
that the processes under consideration consist of paths with values in a non-commutative
probability space, that is a von Neumann algebra A equipped with a weakly continuous,
positive and faithful trace ϕ . The sole existence of such a trace ϕ on A (to be compared
with the “expectation” in this setting) is known to give the algebra a specific structure,
with “Lp”-norms

‖X‖Lp(ϕ) := ϕ(|X|p)1/p ( |X| :=
√
XX∗ )

closely related to the operator norm ‖.‖:
‖X‖Lp(ϕ) ≤ ‖X‖ , ‖X‖ = lim

p→∞
‖X‖Lp(ϕ) , for all X ∈ A . (1)

Now recall that non-commutative probability theory is built upon the following fundamental
spectral result: any element X in the subset A∗ of self-adjoint operators in A can be
associated with a law that shares the same moments. To be more specific, there exists a
unique compactly supported probability measure µ on R such that for any real polynomial
P , ∫

R
P (x)dµ(x) = ϕ(P (X)) . (2)
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Based on this property, elements in A∗ are usually referred to as (non-commutative) random
variables, and in the same vein, the law of a given family {X(i)}i∈I of random variables in
(A, ϕ) is defined as the set of all of its joint moments

ϕ
(
X(i1) · · ·X(ir)) , i1, . . . , ir ∈ I , r ∈ N .

With this stochastic approach in mind and using the terminology of [2], the definition of
a q-Gaussian family can be introduced along the following combinatorial description:

Definition 1.1. 1. Let r be an even integer. A pairing of {1, . . . , r} is any partition of
{1, . . . , r} into r/2 disjoint subsets, each of cardinality 2. We denote by P2({1, . . . , r}) or
P2(r) the set of all pairings of {1, . . . , r}.

2. When π ∈ P2({1, . . . , r}), a crossing in π is any set of the form {{x1, y1}, {x2, y2}}
with {xi, yi} ∈ π and x1 < x2 < y1 < y2. The number of such crossings is denoted by Cr(π).

Definition 1.2. For any fixed q ∈ [0, 1), we call a q-Gaussian family in a non-commutative
probability space (A, ϕ) any collection {Xi}i∈I of random variables in (A, ϕ) such that, for
every integer r ≥1 and all i1, . . . , ir ∈ I, one has

ϕ
(
Xi1 · · ·Xir

)
=

∑
π∈P2({1,...,r})

qCr(π) ∏
{p,q}∈π

ϕ
(
XipXiq

)
. (3)

Therefore, just as with classical (commutative) Gaussian families, the law of a q-Gaussian
family {Xi}i∈I is completely characterized by the set of its covariances ϕ(XiXj), i, j ∈ I. In
fact, when q → 1 and ϕ is - at least morally - identified with the usual expectation, relation
(3) is nothing but the classical Wick formula satisfied by the joint moments of Gaussian
variables.

When q = 0, such a family of random variables is also called a semicircular family, in
reference to its marginal distributions (see [11, Chapter 8] for more details on semicircular
families, in connection with the so-called free central limit theorem).

We are now in a position to introduce the family of processes at the core of our study:

Definition 1.3. For any fixed q ∈ [0, 1), we call q-Brownian motion (q-Bm) in some
non-commutative probability space (A, ϕ) any q-Gaussian family {Xt}t≥0 in (A, ϕ) with
covariance function given by the formula

ϕ
(
XsXt

)
= s ∧ t . (4)

The existence of such a non-commutative process (in some non-commutative space (A, ϕ))
has been established by Bożejko and Speicher in [3]. In the same spirit as above, the q-Bm
distribution can be regarded as a straightforward extension of two well-known processes:
• When q → 1, one recovers the classical Brownian-motion dynamics, with independent,
stationary and normally-distributed increments.
• The 0-Brownian motion coincides with the celebrated free Brownian motion, whose freely-
independent increments are known to be closely related to the asymptotic behaviour of large
random matrices, following Voiculescu’s breakthrough results [14].

Thus, we have here at our disposal a family of processes which, as far as distribution
is concerned, provides a natural “smooth” interpolation between two of the most central
objects in probability theory: the standard and the free Brownian motions. It is then natural
to wonder whether the classical stochastic properties satisfied by each of these two processes
can be “lifted” on the level of this interpolation, or in other words if the properties known
for q = 0 and q → 1 can be extended to every q ∈ [0, 1). Of course, any such extension
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potentially offers an additional piece of evidence in favor of this interpolation model, as a
privileged link between the free and the commutative worlds.

Some first results in this direction, focusing on the stationarity property and the marginal-
distribution issue, can be found in [2]:

Proposition 1.4. For any fixed q ∈ [0, 1), let {Xt}t≥0 be a q-Brownian motion in some
non-commutative probability space (A, ϕ). Then for all 0 ≤ s < t, the random variable
Xt − Xs has the same law as

√
t− sX1, in the sense of identity (2). In particular, any

q-Brownian motion {Xt}t≥0 is a 1
2 -Hölder path in A, i.e.

sup
s<t

‖Xt −Xs‖
|t− s|1/2

≤ ‖X1‖ < ∞ . (5)

Moreover, the law µq of X1 is absolutely continuous with respect to the Lebesgue measure;
its density is supported on

[ −2√
1−q ,

2√
1−q

]
and is given, within this interval, by the formula

µq(dx) = 1
π

√
1− q sin θ

∞∏
n=1

(1− qn)|1− qne2iθ|2 , where x = 2 cos θ√
1− q with θ ∈ [0, π] .

A next natural step is to examine the possible extension, to all q ∈ [0, 1), of the stochastic
integration results associated with the free/classical Brownian motion. Let us here recall
that the foundations of stochastic calculus with respect to the free Brownian motion (that
is, for q = 0) have been laid in a remarkable paper by Biane and Speicher [1]. Among other
results, the latter study involves the construction of a free Itô integral, as well as an analysis
of the free Wiener chaoses generated by the multiple integrals of the free Brownian motion.

These lines of investigation have been followed by Donati-Martin in [7] to handle the
general q-Bm case, with the construction of a q-Itô integral and a study of the q-Wiener
chaos. Let us also mention the results of [5] related to the extension of the fourth-moment
phenomenon that prevails in Wiener chaoses.

In this paper, we intend to go further with the analysis related to the q-Brownian motion.
To be more specific, we propose, in the continuation of [6], to adapt some of the main rough-
path principles to this setting. The aim here is to derive a very robust integration theory
allowing, in particular, to consider the study of differential equations driven by the q-Bm,
i.e. sophisticated dynamics of the form

dYt = f(Yt) · dXt · g(Yt) , (6)
for smooth functions f, g.

In fact, thanks to the general (non-commutative) rough-path results proved in [6] (and
which we will recall in Section 2), the objective essentially reduces to the exhibition of a
so-called product Lévy area above the q-Bm, that is a kind of iterated integral of the process
involving the product structure of A. Let us briefly recall that the definition of such an
object (which appears as quite natural in this algebra setting) has been introduced in [6] as a
way to overcome the possible non-existence problems arising from the study of more general
Lévy areas, in the classical Lyons’ sense [10] (see [13] for a description of the non-existence
issue in the free case).

At this point, we would like to draw the reader’s attention to the fact that the construction
in [7] of a q-Itô integral as an element of L2(ϕ) would not be not sufficient for our purpose.
Indeed, the rough-path techniques are based on Taylor-expansion procedures, which, for
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obvious stability reasons, forces us to consider an algebra norm in the computations. As a
result, any satisfying notion of product Lévy area requires some control with respect to the
operator norm, that is in L∞(ϕ) (along (1)), and not only with respect to the L2(ϕ)-norm
(see Section 2 and especially Definition 2.2 for more details on the topology involved in this
control).

In the particular case of the free Bm (q = 0), the Burkholder-Gundy inequality established
by Biane and Speicher in [1, Theorem 3.2.1] immediately gives rise to operator-norm controls
on the free Itô integral, which we could readily exploit in [6] to deal with rough paths in
the free situation. Unfortunately, and at least for the time being, no similar operator-norm
control has been shown for the q-Itô integral when q ∈ (0, 1). With our rough-path objectives
in mind, we will be able to overcome this difficulty though, by resorting to a straightforward
L∞(ϕ)-construction of a product Lévy area - the latter object being actually much more
specific than a general Itô integral. This is the purpose of the forthcoming Section 3, which
leads to the main result of the paper. Injecting this construction into the general rough-
path theory will immediately answer our original issue, that is the derivation of a robust
stochastic calculus for the q-Bm.

It is then possible to compare, a posteriori, the resulting rough integral with more familiar
q-Itô or q-Stratonovich integrals, through a standard L2(ϕ)-analysis and the involvement of
the so-called second-quantization operator. This comparison will be the topic of Section 4.
Let us however insist, one more time, on the fact that this sole L2(ϕ)-analysis would not
have been sufficient for the rough-path theory (and the powerful rough-path results) to be
applied in this situation.

Our construction of a product Lévy area will only rely on the consideration of the law of
the q-Bm, that is on the process as given by Definition 1.3. In other words, no reference will
be made to any particular representation of the process as a map with values in some specific
algebra (just as classical probability theory builds upon the law of the Brownian motion
and not upon its representation). The only reference to some particular representation of
the q-Brownian motion (namely its standard representation on the q-Fock space) will occur
in Section 4, as a way to compare our rough objects with the constructions of [7], based on
the Fock space.

Besides, we have chosen in this study to focus on the case where q ∈ [0, 1) and intro-
duce the q-Brownian motion as a natural interpolation between the free and the standard
Brownian motions. We are aware that the definition of a q-Bm can also be extended to
every q ∈ (−1, 0), that is up to the “anticommutative” situation q → −1. In fact, we must
here specify that the positivity assumption on q will be used in an essential way for the
construction of the product Lévy area (see for instance (24)), and at this point, we do not
know if such an object could also be exhibited in the case q < 0.

As we already sketched it in the above description of our results, the study is organized as
follows. In Section 2, we will recall the general non-commutative rough-path results obtained
in [6] and at the core of the present analysis. Section 3 is devoted to the construction of the
main object involved in the rough-path procedure, that is a product Lévy area above the
q-Bm. Finally, Section 4 focuses on the L2(ϕ)-comparison of the rough constructions with
more standard Itô/Stratonovich definitions.
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2. General rough-path results in C∗-algebras

Our strategy to develop a robust L∞(ϕ)-stochastic calculus for the q-Bm is based on
the non-commutative rough-path considerations of [6, Section 4]. Therefore, before we can
turn to the q-Bm situation, it is necessary for us to recall the main results of the theoretical
analysis carried out in [6]. This requires first a few brief preliminaries on functional calculus
in a C∗-algebra (along the framework of [1]), as well as precisions on the topologies involved
in the study. Special emphasis will be put on the cornerstone of the rough-path machinery,
the product Lévy area, around which the whole integration procedure can be naturally
expanded.

Note that the considerations of this section apply to a general C∗-algebra A, that we fix
from now on. In particular, no additional trace operator will be required here. As before,
we denote by ‖.‖ the operator norm on A, and A∗ will stand for the set of self-adjoint
operators in A. We also fix an arbitrary time horizon T > 0 for the whole section.

2.1. Tensor product. Let A ⊗ A be the algebraic tensor product generated by A, and
just as in [1], denote by ] the natural product interaction between A and A⊗A, that is the
linear extension of the formula

(U1 ⊗ U2)]X = X](U1 ⊗ U2) := U1XU2 , for all U1, U2, X ∈ A .

In a similar way, set, for all U1, U2, U3, X ∈ A,
X](U1 ⊗ U2 ⊗ U3) := (U1XU2)⊗ U3 , (U1 ⊗ U2 ⊗ U3)]X := U1 ⊗ (U2XU3) .

Our developments will actually involve the projective tensor product A⊗̂A of A, that is the
completion of A⊗A with respect to the norm

‖U‖ = ‖U‖A⊗̂A := inf
∑
i

‖Ui‖‖Vi‖ ,

where the infimum is taken over all possible representation U =
∑
i Ui ⊗ Vi of U. It is

readily checked that for all U ∈ A ⊗ A and X ∈ A, one has ‖U]X‖ ≤ ‖U‖‖X‖, and so
the above ]-product continuously extends to A⊗̂A. These considerations can, of course, be
generalized to the n-th projective tensor product A⊗̂n, n ≥ 1, and we will still denote by
‖.‖ the projective tensor norm on A⊗̂n.

Along the same terminology as in [1], we will call any process with values in A⊗̂A, resp.
A⊗̂A⊗̂A, a biprocess, resp. a triprocess.

2.2. Functional calculus in a C∗-algebra. Following again the presentation of [1], let
us introduce the class of functions f defined for every integer k ≥ 0 by

Fk := {f : R→ C : f(x) =
∫
R
eıξxµf (dξ) with

∫
R
|ξ|i µf (dξ) <∞ for every i ∈ {0, . . . , k}},

(7)
and set, if f ∈ Fk, ‖f‖k :=

∑k
i=0

∫
R |ξ|i µf (dξ). Then, with all f ∈ F0 and X ∈ A∗, we

associate the operator f(X) along the formula

f(X) :=
∫
R
eıξXµf (dξ) ,

where the integral in the right-hand side is uniformly convergent in A. This straightforward
operator extension of functional calculus happens to be compatible with Taylor expansions
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of f , a central ingredient towards the application of rough-path techniques. The following
notion of tensor derivatives naturally arises in the procedure (see the subsequent Examples
2.5 and 2.6):

Definition 2.1. For every f ∈ F1, resp. f ∈ F2, we define the tensor derivative, resp.
second tensor derivative, of f by the formula: for every X ∈ A∗,

∂f(X) :=
∫ 1

0
dα
∫
R
ıξ [eıαξX ⊗ eı(1−α)ξX ]µf (dξ) ∈ A⊗̂A ,

resp. ∂2f(X) := −
∫∫

α,β≥0
α+β≤1

dα dβ
∫
R
ξ2 [eıαξX⊗eıβξX⊗eı(1−α−β)ξX ]µf (dξ) ∈ A⊗̂A⊗̂A .

2.3. Filtration and Hölder topologies. From now on and for the rest of Section 2, we
fix a process X : [0, T ]→ A∗ and assume that X is γ-Hölder regular, that is

sup
0≤s<t≤T

‖Xt −Xs‖
|t− s|γ

< ∞ ,

for some fixed coefficient γ ∈ (1/3, 1/2).
With this process in hand, we denote by {At}t∈[0,T ] = {AXt }t∈[0,T ] the filtration generated

by X, that is, for each t ∈ [0, T ], At stands for the closure (with respect to the operator
norm) of the unital subalgebra of A generated by {Xs}0≤s≤t.

For any fixed interval I ⊂ [0, T ], a process Y : I → A is said to be adapted if for each
t ∈ I, Yt ∈ At. In the same way, a biprocess U : [0, T ] → A⊗̂A, resp. a triprocess
U : [0, T ]→ A⊗̂A⊗̂A, is adapted if for each t ∈ [0, T ], Ut ∈ At⊗̂At, resp. Ut ∈ At⊗̂At⊗̂At.

Let us now briefly recall the topologies involved in the rough-path procedure, as far
as time-roughness is concerned (and following Gubinelli’s approach [9]). For V := A⊗̂n
(n ≥ 1), let C1(I;V ) be the set of continuous V -valued maps on I, and C2(I;V ) the set of
continuous V -valued maps on the simplex S2 := {(s, t) ∈ I2 : s ≤ t} that vanish on the
diagonal. The increments of a path g ∈ C1(I;V ) will be denoted by δgst := gt − gs (s ≤ t)
and for every α ∈ (0, 1), we define the α-Hölder spaces Cα1 (I;V ), resp. Cα2 (I;V ), as

Cα1 (I;V ) :=
{
h ∈ C1(I;V ) : N [h; Cα1 (I;V )] := sup

s<t∈I

‖δhst‖
|t− s|α

<∞
}
,

resp.

Cα2 (I;V ) :=
{
h ∈ C2(I;V ) : N [h; Cα2 (I;V )] := sup

s<t∈I

‖hst‖
|t− s|α

<∞
}
.

2.4. The product Lévy area. Consider the successive spaces
LT (A⇀) := {L = (Lst)0≤s<t≤T : Lst ∈ L(As⊗̂As,A)} ,

LT (A→) := {L = (Lst)0≤s<t≤T : Lst ∈ L(As⊗̂As,At)} ,
and for every λ ∈ [0, 1], denote by Cλ2 (LT (A⇀)), resp. Cλ2 (LT (A→)), the set of elements
L ∈ LT (A⇀), resp. L ∈ LT (A→), for which the following quantity is finite:

N [L; Cλ2 (LT (A⇀))] := sup
s<t∈[0,T ]

U∈As⊗̂As,U6=0

‖Lst[U]‖
|t− s|λ ‖U‖

. (8)

At this point, recall that we have fixed a γ-Hölder processX : [0, T ]→ A∗ (γ ∈ (1/3, 1/2))
for the whole section 2.
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Definition 2.2. We call product Lévy area above X any process X2 such that:
(i) (2γ-roughness) X2 ∈ C2γ

2 (LT (A→)),
(ii) (Product Chen identity) For all s < u < t and U ∈ As⊗̂As,

X2
st[U]− X2

su[U]− X2
ut[U] = (U]δXsu) δXut . (9)

Remark 2.3. Recall that Definition 2.2 is derived from the theoretical analysis performed in
[6, Section 4] with equation (6) in mind. At some heuristic level, and following the classical
rough-path approach, the notion of product Lévy area must be seen as some abstract version
of the iterated integral

X2
st[U] =

∫ t

s
(U]δXsu) dXu , (10)

noting that definition of this integral is not clear a priori for a non-differentiable process
X. As pointed out in [6], the above notion of “Lévy area” is specifically designed to handle
the non-commutative algebra dynamics of (6), and it offers a much more efficient approach
than general rough-path theory based on “tensor” Lévy areas (the object considered in
[10]). In a commutative setting (i.e., if A were a commutative algebra), the basic process
Ast(U) := 1

2(U]δXst) δXst would immediately provide us with such a product Lévy area.
In the general (non-commutative) situation though, this path only satisfies

Ast[U]− Asu[U]− Aut[U] = 1
2
[
(U]δXsu) δXut + (U]δXut) δXsu

]
,

so that A may not meet the product-Chen condition (ii), making Definition 2.2 undoubtedly
relevant.
2.5. Controlled (bi)processes and integration. A second ingredient in the rough-path
machinery (in addition to a “Lévy area”) consists in the identification of a suitable class
of integrands for the future rough integral with respect to X. The following definition
naturally arises in this setting:
Definition 2.4. Given a time interval I ⊂ [0, T ], we call adapted controlled process, resp.
biprocess, on I any adapted process Y ∈ Cγ1 (I;A), resp. biprocess U ∈ Cγ1 (I;A⊗̂A), with
increments of the form

(δY )st = YX
s ](δX)st + Y [

st , s < t ∈ I , (11)
resp.

(δU)st = (δX)st]UX,1s + UX,2s ](δX)st + U[
st , s < t ∈ I , (12)

for some adapted biprocess YX ∈ Cγ1 (I;A⊗̂A) , resp. adapted triprocesses UX,1,UX,2 ∈
Cγ1 (I;A⊗̂3), and Y [ ∈ C2γ

2 (I;A), resp. U[ ∈ C2γ
2 (I;A⊗̂A). We denote by QX(I), resp.

QX(I), the space of adapted controlled processes, resp. biprocesses, on I, and finally we
define Q∗X(I) as the subspace of controlled processes Y ∈ QX(I) for which one has both
Y ∗s = Ys and (YX

s )∗ = YX
s for every s ∈ I.

Example 2.5. If f, g ∈ F2 and Y ∈ Q∗X(I) with decomposition (11), then U := f(Y )⊗g(Y ) ∈
QX(I) with

UX,1s := [∂f(Ys) YX
s ]⊗ g(Ys) , UX,2s = f(Ys)⊗ [∂g(Ys) YX

s ] .

Example 2.6. If f ∈ F3, then U := ∂f(X) ∈ QX([0, T ]) with UX,1s = UX,2s = ∂2f(Xs).

We are finally in a position to recall the definition of the rough integral with respect to
X, which can be expressed (among other ways) as the limit of “corrected Riemann sums”:
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Proposition 2.7. [6, Proposition 4.12] Assume that we are given a product Lévy area X2

above X, in the sense of Definition 2.2, as well as a time interval I = [`1, `2] ⊂ [0, T ].
Then for every U ∈ QX(I) with decomposition (12), all s < t ∈ I and every subdivision
Dst = {t0 = s < t1 < . . . < tn = t} of [s, t] with mesh |Dst| tending to 0, the corrected
Riemann sum∑

ti∈Dst

{
Uti](δX)titi+1 + [X2

titi+1 × Id](UX,1ti ) + [Id× X2,∗
titi+1 ](UX,2ti )

}
converges in A as |Dst| → 0. We call the limit the rough integral (from s to t) of U against
X := (X,X2), and we denote it by

∫ t
s Uu]dXu. This construction satisfies the two following

properties:
• (Consistency) If X is a differentiable process in A and X2 is understood in the classical
Lebesgue sense (that is, as in (10)), then

∫ t
s Uu]dXu coincides with the classical Lebesgue

integral
∫ t
s [Uu]X

′
u] du;

• (Stability) For every A ∈ A, there exists a unique process Z ∈ QX(I) such that Z`1 = A

and (δZ)st =
∫ t
s Uu]dXu for all s < t ∈ I.

Theorem 2.8. [6, Theorem 4.15] Assume that we are given a product Lévy area X2 above
X. Let f = (f1, . . . , fm) ∈ Fm

3 , g = (f∗1 , . . . , f∗m) or (f∗m, . . . , f∗1 ), and fix A ∈ A∗. Then the
equation

Y0 = A , (δY )st =
m∑
i=1

∫ t

s
fi(Yu) dXu gi(Yu) , s < t ∈ [0, T ] , (13)

interpreted with Proposition 2.7, admits a unique solution Y ∈ Q∗X([0, T ]).

2.6. Approximation results. Another advantage of the rough-path approach - beyond its
consistency and stability properties - lies in the continuity of the constructions with respect
to the driving (rough) path. In this non-commutative setting, and following the approach of
[6], the phenomenon can be illustrated through several “Wong-Zakaï-type” approximation
results, which we propose to briefly review here. To this end, for every sequence of partitions
(Dn) of [0, T ] with mesh tending to zero, denote by {Xn

t }t∈[0,T ] = {XDn

t }t∈[0,T ] the sequence
of linear interpolations of X along Dn, i.e., if Dn := {0 = t0 < t1 < . . . < tk = T},

Xn
t := Xti + t− ti

ti+1 − ti
δXtiti+1 for t ∈ [ti, ti+1] .

Then consider the sequence of approximated product Lévy areas defined for every U ∈ A⊗̂A
as

X2,n
st [U] = X2,Dn

st [U] :=
∫ t

s
(U]δXn

su) dXn
u , s < t ∈ [0, T ] , (14)

where the integral is understood in the classical Lebesgue sense. In other words, if tk ≤ s <
tk+1 ≤ t` ≤ t < t`+1,

X2,n
st [U] =

∫ tk+1

s

du

tk+1 − tk
(
U]δXn

su

)
(δX)tktk+1

+
`−1∑
i=k+1

∫ ti+1

ti

du

ti+1 − ti
(
U]δXn

su

)
(δX)titi+1 +

∫ t

t`

du

tk+1 − tk
(
U]δXn

su

)
(δX)tktk+1 .

Proposition 2.9. [6, Proposition 4.16] Assume that there exists a product Lévy area X2

above X such that, as n tends to infinity,
N [Xn −X; Cγ1 ([0, T ];A)]→ 0 and N [X2,n − X2; C2γ

2 (LT (A⇀))]→ 0 . (15)



ON STOCHASTIC CALCULUS WITH RESPECT TO q-BROWNIAN MOTION 9

Then for all f, g ∈ F3, it holds that∫ .

.
f(Xn

u ) dXn
u g(Xn

u ) n→∞−−−→
∫ .

.
f(Xu) dXu g(Xu) in Cγ2 ([0, T ];A) , (16)

where the integral in the limit is interpreted with Proposition 2.7. Similarly, for all f ∈ F3,
one has ∫ .

.
∂f(Xn

u )]dXn
u

n→∞−−−→
∫ .

.
∂f(Xu)]dXu in Cγ2 ([0, T ];A) , (17)

which immediately yields Itô’s formula: for all s < t ∈ [0, T ],

δf(X)st =
∫ t

s
∂f(Xu)]dXu . (18)

Finally, for some fixed f = (f1, . . . , fm) ∈ Fm
3 and g = (f∗1 , . . . , f∗m) (or g := (f∗m, . . . , f∗1 )),

let us denote by Y n = Y Dn the solution of the classical Lebesgue equation on [0, T ]

Y n
0 = A ∈ A∗ , dY n

t =
∑m

i=1
fi(Y n

t ) dXn
t gi(Y n

t ) .

Theorem 2.10. [6, Theorem 4.17] Under the assumptions of Proposition 2.9, one has
Y n n→∞−−−→ Y in Cγ1 ([0, T ];A), where Y is the solution of (13) given by Theorem 2.8.

As we pointed it out in the introduction, these convergence results are based on Taylor-
expansion procedures and accordingly, the consideration of an algebra norm for the control
of U and Lst[U] in the roughness assumption (8) is an essential ingredient.

3. A product Lévy area above the q-Brownian motion

We go back here to the q-Bm setting described in Section 1. Namely, we fix q ∈ [0, 1) and
consider a q-Brownian motion (Xt)t≥0 in some non-commutative probability space (A, ϕ).
With the developments of the previous section in mind, the route towards an efficient
operator-norm calculus for X is now clear: we need to exhibit a product Lévy area above
X, in the sense of Definition 2.2. Our main result thus reads as follows:

Theorem 3.1. Denote by {Xn
t }t≥0 the linear interpolation of X along the dyadic partition

Dn := {tni , i ≥ 0}, tni := i
2n . Then there exists a product Lévy area X2,S above X, in the

sense of Definition 2.2, such that for every T > 0 and every 0 < γ < 1/2, one has

Xn → X in Cγ1 ([0, T ];A) and X2,n → X2,S in C2γ
2 (LT (A→)) , (19)

where X2,n is defined by (14). We call X2,S the Stratonovich product Lévy area above X.

Based on this result, the conclusions of Proposition 2.7, Theorem 2.8, Proposition 2.9
and Theorem 2.10 can all be applied to the q-Brownian motion, with limits understood as
rough integrals with respect to the “product rough path” XS := (X,X2,S). The Stratonovich
terminology is here used as a reference to the classical commutative situation, where the
(almost sure) limit of the sequence of approximated Lévy areas would indeed coincide with
the Stratonovich iterated integral (see also Corollary 4.10 for another justification of this
terminology).

Before we turn to the proof of Theorem 3.1, let us recall that the whole difficulty in
constructing a stochastic integral with respect to the general q-Bm, in comparison with
the free (q = 0) or the commutative (q → 1) cases, lies in the absence of any satisfying
“q-freeness” property for the increments of the process when q ∈ (0, 1) (as reported by
Speicher in [12]). For instance, if s < u < t,
ϕ
(
(Xu−Xs)(Xt−Xu)(Xu−Xs)(Xt−Xu)

)
= q ϕ

(
(Xu−Xs)2)ϕ((Xt−Xu)2) = q |u−s||t−u| ,
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which shows that, for q 6= 0, the disjoint increments of a q-Brownian motion {Xt}t≥0 are
indeed not freely independent (in the sense of [6, Definition 2.6]), making most of the
arguments of [1] unexploitable in this situation.

This being said, we can still rely here on the basic fact that for all q ∈ [0, 1), ϕ
(
(Xu −

Xs)(Xt −Xu)
)

= 0. Together with Formula (3), this very weak “freeness” property of the
increments will somehow be sufficient for our purpose, the construction of a product Lévy
area being much more specific than the construction of a general stochastic integral (along
Itô’s standard procedure).

The proof of Theorem 3.1 will also appeal to the two following elementary lemmas. The
first one (whose proof follows immediately from (3)) is related to the linear stability of
q-Gaussian families:

Lemma 3.2. For any fixed q ∈ [0, 1), let Y := {Y1, . . . , Yd} be a q-Gaussian vector in
some non-commutative probability space (A, ϕ), and consider a real-valued (d×m)-matrix
Λ. Then Z := ΛY is also a q-Gaussian vector in (A, ϕ).

We will also need the following general topology property on the space accommodating
any Lévy area:

Lemma 3.3. The space Cλ2 (LT (A⇀)), endowed with the norm (8), is complete.

Proof. Although the arguments are classical, let us provide a few details here, since the
Cλ2 (LT (A⇀))-structure is not exactly standard.

Consider a Cauchy sequence Ln in Cλ2 (LT (A⇀)). For every fixed s ∈ [0, T ], the sequence
Lns. defines a Cauchy sequence in the space L∞([s, T ];L(As⊗̂As,A)) of bounded functions
on [s, T ] (with values in L(As⊗̂As,A)), endowed with the uniform norm. Therefore it
converges in the latter space to some function Ls.. The fact that the so-defined family
{Lst}s<t belongs to Cλ2 (LT (A⇀)) is an immediate consequence of the boundedness of Ln in
Cλ2 (LT (A⇀)). Finally, given ε > 0 and for all fixed s < t, we know that there existsMε,s,t ≥ 0
such that for all m ≥ Mε,s,t, ‖Lmst − Lst‖L(As⊗̂As,A) ≤ ε

2 |t − s|
λ. On the other hand, there

exists Nε ≥ 0 such that for all n,m ≥ Nε and all s < t, ‖Lnst − Lmst‖L(As⊗̂As,A) ≤ ε
2 |t− s|

λ.
Therefore, for all n ≥ Nε and all s < t, we get that for m := max(Nε,Mε,s,t),

‖Lnst − Lst‖L(As⊗̂As,A) ≤ ‖L
n
st − Lmst‖L(As⊗̂As,A) + ‖Lst − Lmst‖L(As⊗̂As,A) ≤ ε|t− s|

λ ,

and so Ln → L in Cλ2 (LT (A⇀)), which achieves to prove that the latter space is complete.
�

Proof of Theorem 3.1. Throughout the proof, we will denote by A . B any bound of the
form A ≤ cB, where c is a universal constant independent from the parameters under con-
sideration. The first-order convergence statement in (19) is a straightforward consequence
of the 1/2-Hölder regularity of X. In fact, using (5), it can be checked that for all n ≥ 0
and s < t,

‖δXn
st‖ . ‖X1‖|t− s|1/2 and ‖δ(Xn −X)st‖ . ‖X1‖|t− s|γ2−n(1/2−γ) . (20)

Let us turn to the second-order convergence and to this end, fix n ≥ 0 and s < t such that
tnk ≤ s < tnk+1, tn` ≤ t < t`+1, with k ≤ `. If |`− k| ≤ 1, or in other words if |t− s| ≤ 2−n+1,
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the expected bound can be readily derived from the first estimate in (20), that is for every
U ∈ As⊗̂As, we get from (20)

‖X2,n+1
st [U]− X2,n

st [U]‖ ≤ ‖X2,n+1
st [U]‖+ ‖X2,n

st [U]‖ . ‖X1‖2|t− s|2γ2−n(1/2−γ) .

Assume from now on that ` ≥ k + 2 and in this case consider the decomposition, for every
U ∈ As⊗̂As,

X2,n+1
st [U]− X2,n

st [U]

=
[ ∫ tn`

tn
k+1

(
U]δXn+1

tn
k+1u

)
dXn+1

u −
∫ tn`

tn
k+1

(
U]δXn

tn
k+1u

)
dXn

u

]

+
[ ∫ tnk+1

s

(
U]δXn+1

su

)
dXn+1

u +
∫ t

tn
`

(
U]δXn+1

su

)
dXn+1

u −
∫ tnk+1

s

(
U]δXn

su

)
dXn

u

−
∫ t

tn
`

(
U]δXn

su

)
dXn

u

]
+
[ ∫ tn`

tn
k+1

(
U]δXn+1

stn
k+1

)
dXn+1

u −
∫ tn`

tn
k+1

(
U]δXn

stn
k+1

)
dXn

u

]
. (21)

The “boundary” integrals within the second and third brackets can again be bounded indi-
vidually using the first estimate in (20) only. For instance,

∥∥∥ ∫ t

tn
`

(
U]δXn+1

su

)
dXn+1

u

∥∥∥
. ‖X1‖‖U‖

[
1{tn+1

2`
≤t<tn+1

2`+1}

∫ t

tn
`

|s− u|1/2
(
2n+1‖δXtn+1

2`
tn+1
2`+1
‖
)

+1{tn+1
2`+1≤t<t

n+1
2`+2}

∫ tn+1
2`+1

tn+1
2`

|s− u|1/2
(
2n+1‖δXtn+1

2`
tn+1
2`+1
‖
)

+1{tn+1
2`+1≤t<t

n+1
2`+2}

∫ t

tn+1
2`+1

|s− u|1/2
(
2n+1‖δXtn+1

2`+1t
n+1
2`+2
‖
)]

. ‖X1‖2‖U‖|t− s|2γ2−n(1/2−γ) .

Therefore, we only have to focus on the first bracket in decomposition (21). In fact,
noting that

∫ tni+1

tni

(
U]δXn

tni u

)
dXn

u = 1
2
(
U]δXtni t

n
i+1

)
δXtni t

n
i+1

,
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we get∫ tn`

tn
k+1

(
U]δXn+1

tn
k+1u

)
dXn+1

u −
∫ tn`

tn
k+1

(
U]δXn

tn
k+1u

)
dXn

u

=
`−1∑
i=k+1

{∫ tn+1
2i+1

tn+1
2i

(
U]δXn+1

tn
k+1u

)
dXn+1

u +
∫ tn+1

2i+2

tn+1
2i+1

(
U]δXn+1

tn
k+1u

)
dXn+1

u

−
∫ tni+1

tni

(
U]δXn

tn
k+1u

)
dXn

u

}

=
`−1∑
i=k+1

{[ ∫ tn+1
2i+1

tn+1
2i

(
U]δXn+1

tn+1
2i u

)
dXn+1

u +
∫ tn+1

2i+2

tn+1
2i+1

(
U]δXn+1

tn+1
2i+1u

)
dXn+1

u

−
∫ tni+1

tni

(
U]δXn

tni u

)
dXn

u

]
+
[(

U]δXtn
k+1t

n+1
2i

)
δXtn+1

2i tn+1
2i+1

+
(
U]δXtn

k+1t
n+1
2i+1

)
δXtn+1

2i+1t
n+1
2i+2

−
(
U]δXtn

k+1t
n+1
2i

)
δXtn+1

2i tn+1
2i+2

]}

=
`−1∑
i=k+1

{1
2

[(
U]δXtn+1

2i tn+1
2i+1

)
δXtn+1

2i tn+1
2i+1

+
(
U]δXtn+1

2i+1t
n+1
2i+2

)
δXtn+1

2i+1t
n+1
2i+2

−
(
U]δXtn+1

2i tn+1
2i+2

)
δXtn+1

2i tn+1
2i+2

]
+
[
−
(
U]δXtn

k+1t
n+1
2i

)
δXtn+1

2i+1t
n+1
2i+2

+
(
U]δXtn

k+1t
n+1
2i+1

)
δXtn+1

2i+1t
n+1
2i+2

]}

=
`−1∑
i=k+1

{1
2

[
−
(
U]δXtn+1

2i tn+1
2i+1

)
δXtn+1

2i+1t
n+1
2i+2
−
(
U]δXtn+1

2i+1t
n+1
2i+2

)
δXtn+1

2i tn+1
2i+1

]

+
[(

U]δXtn+1
2i tn+1

2i+1

)
δXtn+1

2i+1t
n+1
2i+2

]}

= 1
2

`−1∑
i=k+1

[(
U](δX)tn+1

2i tn+1
2i+1

)
(δX)tn+1

2i+1t
n+1
2i+2
−
(
U](δX)tn+1

2i+1t
n+1
2i+2

)
(δX)tn+1

2i tn+1
2i+1

]
. (22)

Let us bound the two sums

S1,n
st [U] :=

`−1∑
i=k+1

(
U](δX)tn+1

2i tn+1
2i+1

)
(δX)tn+1

2i+1t
n+1
2i+2

and

S2,n
st [U] :=

`−1∑
i=k+1

(
U](δX)tn+1

2i+1t
n+1
2i+2

)
(δX)tn+1

2i tn+1
2i+1

separately.
Consider first the case where U =

∑o
j=1 Uj ⊗ Vj , with

Uj := X
sj

1
· · ·X

sj
mj

, Vj := X
sj

mj +1
· · ·X

sj
mj +pj

,
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and sjp ≤ s for all j, p. Besides, let us set Yi = Yi,n := (δX)tn+1
i tn+1

i+1
. With these notations,

and for every r ≥ 1, we have

ϕ
(
|S1,n
st [U]|2r

)
= ϕ

([(∑
i1

∑
j1

Uj1Y2i1Vj1Y2i1+1

)(∑
i2

∑
j2

Uj2Y2i2Vj2Y2i2+1

)∗]r)
=

∑
i1,...,i2r

∑
j1,...,j2r

ϕ
([
Uj1Y2i1Vj1Y2i1+1Y2i2+1V

∗
j2Y2i2U

∗
j2

]
· · ·

[
Uj2r−1Y2i2r−1Vj2r−1Y2i2r−1+1Y2i2r+1V

∗
j2r
Y2i2rU

∗
j2r

])
, (23)

where each index i runs over {k + 1, . . . , `− 1} and each index j runs overs {1, . . . , o}. At
this point, observe that for all fixed i := (i1, . . . , i2r) and j := (j1, . . . , j2r), the family

{X
sj

1
, . . . , X

sj
mj +pj

, Y2i, Y2i+1, i ∈ {i1, . . . , i2r}, j ∈ {j1, . . . , j2r}}

is a q-Gaussian family (due to Lemma 3.2) and accordingly the associated joint moments
obey Formula (3). Besides, we have trivially

ϕ
(
Y2iaY2ib+1

)
= 0 , ϕ

(
Y2iaY2ib

)
= ϕ

(
Y2ia+1Y2ib+1

)
= 1{ia=ib}2

−(n+1)ϕ
(
|X1|2)

and
ϕ
(
Y2iXsj

a
) = ϕ

(
Y2i+1Xsj

a
) = 0 .

Using these basic observations and going back to (23), it is clear that, when applying
Formula (3) to the expectation in (23), we can restrict the sum to the set of pairings π ∈
P2({1, . . . , Nr}) (Nr := 2

[
(mj1 +pj1)+ . . .+(mj2r +pj2r )]+8r) that decompose - in a unique

way - as a combination of three sub-pairings, namely: 1) a pairing π1 ∈ P2({1, . . . , 2r})
that connects the random variables {Y2i} to each other; 2) a pairing π2 ∈ P2({1, . . . , 2r})
that connects the random variables {Y2i+1} to each other; 3) a pairing π3 ∈ P2({1, . . . , N ′r})
(N ′r := 2

[
(mj1 + pj1) + . . . + (mj2r + pj2r )]) that connects the random variables {X

sj
i
} to

each other. Moreover, with this decomposition in mind, one has clearly

Cr(π) ≥ Cr(π1) + Cr(π2) + Cr(π3) .

Consequently, it holds that for all fixed i := (i1, . . . , i2r) and j := (j1, . . . , j2r),∣∣∣ϕ([Uj1Y2i1Vj1Y2i1+1Y2i2+1V
∗
j2Y2i2U

∗
j2

]
· · ·[

Uj2r−1Y2i2r−1Vj2r−1Y2i2r−1+1Y2i2r+1V
∗
j2r
Y2i2rU

∗
j2r

])∣∣∣
≤

∑
π1,π2∈P2({1,...,2r})
π3∈P2({1,...,N ′r})

qCr(π1)+Cr(π2)+Cr(π3)

∏
{a,b}∈π1

ϕ
(
Y2iaY2ib

)
1{ia=ib}

∏
{c,d}∈π2

ϕ
(
Y2ic+1Y2id+1

)
1{ic=id}

∏
{e,f}∈π3

ϕ
(
Zj
eZ

j
f

)
(24)

≤ 2−2r(n+1)ϕ
(
|X1|2)2r

( ∑
π1∈P2({1,...,2r})

qCr(π1) ∏
{a,b}∈π1

1{ia=ib}

)
( ∑
π2∈P2({1,...,2r})

qCr(π2) ∏
{c,d}∈π2

1{ic=id}

)( ∑
π3∈P2({1,...,N ′r})

qCr(π3) ∏
{e,f}∈π3

ϕ
(
Zj
eZ

j
f

))
,
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where Zj stands for the natural reordering of the variables {X
sj

m
}, namely for all a ∈

{1, . . . , 2r} and b ∈ {1, . . . ,mja + pja},

Zj
2[(mj1+pj1 )+...+(mja−1+pja−1 )]+b = Zj

2[(mj1+pj1 )+...+(mja−1+pja−1 )]+[2(mja+pja )−b] := X
sja

b
.

As a result, the double sum in (23) is bounded by

2−2rnϕ
(
|X1|2)2r

( ∑
π1∈P2({1,...,2r})

qCr(π1)
`−1∑

i1,...,i2r=k+1

∏
{a,b}∈π1

1{ia=ib}

)
( ∑
π2∈P2({1,...,2r})

qCr(π2)
) o∑
j1,...,j2r=1

( ∑
π3∈P2({1,...,N ′r})

qCr(π3) ∏
{e,f}∈π3

ϕ
(
Zj
eZ

j
f

))
. (25)

Now observe that the last sum in (25) actually corresponds to
o∑

j1,...,j2r=1

( ∑
π3∈P2({1,...,N ′r})

qCr(π3) ∏
{e,f}∈π3

ϕ
(
Zj
eZ

j
f

))
= ϕ

(∣∣∣ o∑
j=1

UjVj
∣∣∣2r) , (26)

and for every fixed π1 ∈ P2({1, . . . , 2r}),

`−1∑
i1,...,i2r=k+1

∏
{a,b}∈π1

1{ia=ib}

=
( `−1∑
i1,...,i2r=k+1

∏
{a,b}∈π1

1{ia=ib}

)2(1−2γ)( `−1∑
i1,...,i2r=k+1

∏
{a,b}∈π1

1{ia=ib}

)4γ−1

≤ (`− (k + 1))2(1−2γ)r(`− (k + 1))2r(4γ−1)

≤ |tn` − tnk+1|4rγ24rγn ≤ |t− s|4rγ24rγn . (27)

By injecting (26) and (27) into (25), we end up with the estimate

ϕ
(
|S1,n
st [U]|2r

)
≤ |t− s|4rγ2−2r(1−2γ)nϕ

(
|X1|2)2r

( ∑
π∈P2({1,...,2r})

qCr(π)
)2
ϕ
(∣∣∣ o∑

j=1
UjVj

∣∣∣2r)

≤ |t− s|4rγ2−2r(1−2γ)nϕ
(
|X1|2)2rϕ

(
|X1|2r

)2
ϕ
(∣∣∣ o∑

j=1
UjVj

∣∣∣2r) ,
and so

ϕ
(
|S1,n
st [U]|2r

)1/2r
≤ |t− s|2γ2−(1−2γ)nϕ

(
|X1|2)ϕ

(
|X1|2r

)1/r
ϕ
(∣∣∣ o∑

j=1
UjVj

∣∣∣2r)1/2r

≤ |t− s|2γ2−(1−2γ)n‖X1‖4
∥∥∥ o∑
j=1

UjVj
∥∥∥

≤ |t− s|2γ2−(1−2γ)n‖X1‖4
( o∑
j=1
‖Uj‖‖Vj‖

)
. (28)
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It is easy to see that the above arguments could also be applied to the more general situation
where U :=

∑o
j=1 Uj ⊗ Vj with

Uj :=
Kj∑
k=0

αj,kXsj,k
1
· · ·X

sj,k
mj,k

and

Vj :=
Lj∑
`=0

βj,`Xuj,`
1
· · ·X

uj,`
pj,`

, αj,k, βj,` ∈ C , sj,ka , uj,`b ∈ [0, s] ,

leading in the end to the same bound (28). Therefore, this bound (28) can actually be
extended to any Uj , Vj ∈ As, which then entails that for every U ∈ As⊗̂As,

ϕ
(
|S1,n
st [U]|2r

)1/2r ≤ |t− s|2γ2−(1−2γ)n‖X1‖4‖U‖ ,
and by letting r tend to infinity, we get by (1) that

‖S1,n
st [U]‖ ≤ |t− s|2γ2−(1−2γ)n‖X1‖4‖U‖ .

The very same reasoning can of course be used in order to estimate ‖S2,n
st [U]‖, with the same

resulting bound. Going back to (21) and (22), we have thus proved that X2,n is a Cauchy
sequence in Cλ2 (LT (A⇀)), and by Lemma 3.3, we can therefore assert that it converges in
this space to some element X2,S .
The product Chen identity (10) for X2,S is readily obtained by passing to the limit (in a
pointwise way) in the product Chen identity that is trivially satisfied by X2,n. Finally, in
order to show that X2,S actually belongs to Cλ2 (LT (A→)), fix s < t, U ∈ As⊗̂As, and set

Wn := X2,n
st [U] , W := X2,S

st [U] , W̄n :=
∫ tn`

s
(U]δXn

su) dXn
u ,

where tn` is such that s < tn` ≤ t < tn`+1 (considering n large enough). Using the first
estimate in (20), it is easy to check that ‖Wn − W̄n‖ → 0, and so, since ‖Wn −W‖ → 0,
we get that ‖W̄n −W‖ → 0. As W̄n ∈ At, we can conclude that W ∈ At, as expected.

�

Remark 3.4. Observe that in a commutative setting, the sum (22) would simply vanish,
leading to an almost trivial proof, which clearly points out the specificity of our non-
commutative framework (as evoked in Remark 2.3).

4. Comparison with L2(ϕ)-constructions

Our objective in this section is to compare the previous L∞(ϕ)-constructions (i.e., con-
structions based on the operator norm) with the L2(ϕ)-constructions exhibited by Donati-
Martin in [7]. In brief, we shall see that, when studied in L2(ϕ), the previous rough
constructions correspond to Stratonovich-type integrals, while the constructions in [7] are
more of a Itô-type. This comparison relies on an additional ingredient, the so-called second-
quantization operator, whose central role in q-integration theory was already pointed out
in Donati-Martin’s work.

Since we intend to make specific references to some of the results of [7], we assume for
simplicity that we are exactly in the same setting as in the latter study. Namely, for a fixed
q ∈ [0, 1), we assume that the q-Bm {Xt}t≥0 we will handle in this section is constructed as
the “canonical process” on the q-Fock space (A, ϕ) (see [7] for details on these structures).

As in the previous sections, we denote by At the closure, with respect to the operator
norm, of the algebra generated by {Xs}s≤t.
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4.1. Second quantization. Recall that the space L2(ϕ) is defined as the completion of A
as a Hilbert space through the product

〈U, V 〉 := ϕ(UV ∗) . (29)
We will denote by ‖.‖L2(ϕ) the associated norm, to be distinguished from the operator norm
‖.‖. For every t ≥ 0, let Bt be the von Neumann algebra generated by {Xs}s≤t (observe
in particular that At ⊂ Bt ⊂ A) and denote by ϕ(·|Bt) the conditional expectation with
respect to Bt. In other words, for every U ∈ A, ϕ(U |Bt) stands for the orthogonal projection
of U onto Bt, with respect to the product (29): Z = ϕ(U |Bt) if and only if Z ∈ Bt and
ϕ(ZW ∗) = ϕ(UW ∗) for every W ∈ Bt.

A possible way to introduce the second-quantization operator goes through the following
invariance result:

Lemma 4.1. [7, Theorem 3.1]. For all s0 < t0, s1 < t1, with s0 ≤ s1, and U ∈ As0 ⊂ As1,
it holds that

ϕ
(
(δX)s0t0U(δX)s0t0

∣∣Bs0

)
|t0 − s0|

=
ϕ
(
(δX)s1t1U(δX)s1t1

∣∣Bs1

)
|t1 − s1|

.

Definition 4.2. We call second quantization of X the operator Γq : ∪t≥0At → A defined
for all s ≥ 0 and U ∈ As by the formula

Γq(U) := ϕ
(
(δX)s,s+1U(δX)s,s+1

∣∣Bs) .
In particular, for all s ≥ 0 and U ∈ As, Γq(U) ∈ Bs, Γq(U)∗ = Γq(U∗) and

‖Γq(U)‖L2(ϕ) ≤ ‖(δX)s,s+1U(δX)s,s+1‖L2(ϕ) ≤ ‖X1‖2‖U‖ . (30)

Remark 4.3. For q = 0, it is easy to check that, thanks to the freeness properties of X, the
second quantization reduces to Γ0(U) = ϕ(U), while in the commutative situation, that is
when q → 1, one has (at least morally) Γ1(U) = U .

In fact, we will essentially use the operator Γq through the following result, which offers
a quite general tool to study Itô/Stratonovich correction terms (for the sake of clarity, we
have postponed the proof of this proposition to Section 4.4):

Proposition 4.4. For every adapted triprocess U ∈ Cε1([s, t];A⊗̂3) (s < t, ε > 0) and every
subdivision ∆ of [s, t] whose mesh |∆| tends to 0, it holds that∑

(ti)∈∆
(δXtiti+1]Uti)]δXtiti+1 −→

∫ t

s

[
Id× Γq × Id

]
(Uu) du in L2(ϕ) , (31)

where Id × Γq × Id stands for the continuous extension, as an operator from ∪u≥0A⊗̂3
u to

L2(ϕ), of the operator
(Id× Γq × Id)(U1 ⊗ U2 ⊗ U3) := U1Γq(U2)U3 , U1, U2, U2 ∈ Au .

4.2. Non-commutative Itô integral. Let us here slightly rephrase the results of [7] re-
garding Itô’s approach to stochastic integration with respect to X.

Definition 4.5. Fix an interval I ⊂ R. An adapted biprocess U : I → A⊗̂A is said to be
Itô integrable against X if it is adapted and if for every partition ∆ of I whose mesh |∆|
tends to 0, the sequence of Riemann sums

S∆
X(U) :=

∑
ti∈∆

Uti]δXtiti+1
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converges in L2(ϕ) (as |∆| → 0). In this case, we call the limit of S∆
X(U) the product Itô

integral of U against X, and we denote it by∫
I

Us]dXs ∈ L2(ϕ) .

Given a biprocess U : I → A⊗̂A and a partition ∆ of I, we denote by U∆ the step-
approximation

U∆ :=
∑
ti∈∆

Uti1[ti,ti+1[ .

The following isometry property, to be compared with the classical Brownian Itô isometry,
is the key ingredient to identify Itô-integrable processes:

Proposition 4.6. [7, Proposition 3.3]. For every interval I ⊂ R, all adapted biprocesses

U : I → A⊗A , V : I → A⊗A ,

and all partitions ∆1,∆2 of I, it holds that

〈S∆1
X (U), S∆2

X (V)〉L2(ϕ) =
∫ ∞

0
〈〈U∆1

u ,V∆2
u 〉〉q du , (32)

where 〈〈., .〉〉q is the bilinear extension of the application defined for all U1, U2, V1, V2 ∈
∪t≥0At as

〈〈U1 ⊗ U2, V1 ⊗ V2〉〉q := ϕ
(
U1Γq(U2V

∗
2 )V ∗1

)
.

Corollary 4.7. Let U : I → A⊗̂A be an adapted biprocess such that∫
I
‖Uu‖2A⊗̂A du <∞ and

∫
I
‖U∆

u −Uu‖2A⊗̂A du→ 0 as |∆| → 0 ,

for every partition ∆ of I. Then U is Itô integrable against X and∥∥∥ ∫
I

Uu]dXu

∥∥∥2

L2(ϕ)
=
∫
I
〈〈Uu,Uu〉〉q du . (33)

Proof. Let us just provide a few details, the procedure being essential standard. Consider a
sequence Un : I → A⊗A of adapted biprocesses such that for every t ∈ I, ‖Un

t −Ut‖ → 0.
Then, given two partitions ∆1,∆2 of I, one has by (32)∥∥S∆1

X (Un)− S∆2
X (Un)

∥∥2
L2(ϕ) =

∫
I
〈〈Un,∆1

u −Un,∆2
u ,Un,∆1

u −Un,∆2
u 〉〉q du .

By applying Cauchy-Schwarz inequality and then (30), it is readily checked that for all
V ∈ As ⊗As,

〈〈V,V〉〉q ≤ ‖X1‖2‖V‖2 ,
and so ∥∥S∆1

X (Un)− S∆2
X (Un)

∥∥2
L2(ϕ) ≤ ‖X1‖2

∫
I

∥∥Un,∆1
u −Un,∆2

u

∥∥2 du ,

which, by letting n tend to infinity, leads us to∥∥S∆1
X (U)− S∆2

X (U)
∥∥2
L2(ϕ) ≤ ‖X1‖2

∫
I

∥∥U∆1
u −U∆2

u

∥∥2 du .

The conclusion easily follows. �
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4.3. Comparison with the rough integral. We now have all the tools to identify, as
elements in L2(ϕ), the rough constructions arising from Sections 2 and 3.

Let us first consider the situation at the level of the product Lévy area provided by
Theorem 3.1. To this end, given 0 ≤ s < t and U ∈ As⊗̂As, observe that, by Corollary 4.7,
the biprocess Vu := (U]δXsu)⊗ 1 is known to be Itô-integrable on [s, t], which allows us to
consider the integral

∫ t

s
(U]δXsu) dXu ∈ L2(ϕ) .

Proposition 4.8. For all 0 ≤ s < t and every U ∈ As⊗̂As, it holds that

X2,S
st [U] =

∫ t

s
(U]δXsu) dXu + 1

2(t− s)
(
Id× Γq

)
[U] in L2(ϕ) , (34)

where Id × Γq stands for the continuous extension, as an operator from As⊗̂As to L2(ϕ),
of the operator

(
Id× Γq

)
[U ⊗ V ] := UΓq(V ) .

Proof. Fix s < t, U ∈ As⊗̂As, and let D̃n be the subdivision obtained by adding the two
times s, t to the dyadic partitionDn := {i/2n, i ≥ 0}. Denote by X̃n the linear interpolation
of X along D̃n and set X̂n :=

∑
t̂i
Xt̂i

1[t̂i,t̂i+1) where {s = t̂1 < . . . < t̂n = t} := D̃n ∩ [s, t].
Besides, we recall that the notation X2,Dn (or X2,D̃n) has been introduced in (14).

Using only the 1/2-Hölder regularity of X (see (5)), it is easy to check that for every
U ∈ As⊗̂As,

‖X2,Dn

st [U]− X2,D̃n

st [U]‖ ≤ c‖X1‖2‖U‖ |t− s|2γ 2−n(1/2−γ) , (35)

for some universal constant c and for every γ ∈ (0, 1/2). Thus, by Theorem 3.1, we can
assert that X2,D̃n

st [U] converges to X2,S
st [U] for the operator norm (and accordingly in L2(ϕ)).

Now write

X2,D̃n

st [U] =
∫ t

s
(U]δX̃n

su) dX̃n
u (36)

=
n−1∑
k=1

1
t̂k+1 − t̂k

∫ t̂k+1

t̂k

U]
(
δXst̂k

+ u− t̂k
t̂k+1 − t̂k

(δX)t̂k t̂k+1

)
du (δX)t̂k t̂k+1

=
n−1∑
k=1

(U]δXst̂k
) δXt̂k t̂k+1

+ 1
2

n−1∑
k=1

U](δX)t̂k t̂k+1
(δX)t̂k t̂k+1

=
∫ t

s
(U]δX̂n

su) dXu + 1
2

n−1∑
k=1

U](δX)t̂k t̂k+1
(δX)t̂k t̂k+1

. (37)
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Thanks to (33), it holds that∥∥ ∫ t

s
(U]δX̂n

su) dXu −
∫ t

s
(U]δXsu) dXu

∥∥2
L2(ϕ)

=
∫ t

s
〈〈 (U][δX̂n

su − δXsu])⊗ 1, (U][δX̂n
su − δXsu])⊗ 1 〉〉q du

=
∫ t

s

∥∥U][δX̂n
su − δXsu]

∥∥2
L2(ϕ) du

≤ ‖U‖2
n−1∑
k=1

∫ t̂k+1

t̂k

‖Xt̂k
−Xu‖2 du

≤ ‖U‖2
n−1∑
k=1

∫ t̂k+1

t̂k

(u− t̂k) du ≤ 1
2‖U‖

22−n |t− s| → 0 .

Observe finally that the limit of the second term in (37) is immediately provided by Propo-
sition 4.4, which achieves the proof of (34). �

Let us now extend the correction formula (34) to any adapted controlled biprocess, that
is to the class of biprocesses introduced in Definition 2.4. Using again Corollary 4.7, it is
easy to check that, as an adapted Hölder path in A⊗̂A, any such controlled biprocess is
Itô-integrable when considered on an interval I of finite Lebesgue measure. This puts us in
a position to state the formula:

Corollary 4.9. For all 0 ≤ s < t and every adapted controlled biprocess U ∈ QX([s, t])
with decomposition (12), it holds that∫ t

s
Uu]dXSu =

∫ t

s
Uu]dXu + 1

2

∫ t

s
(Id× Γq × Id)[UX,1u + UX,2u ] du in L2(ϕ) . (38)

Proof. The transition from (34) to (38) follows from the very same Taylor-expansion argu-
ment as in the proof of [6, Proposition 5.6] (related to the free case), and so, for the sake
of conciseness, we do not repeat it here. �

At this point, observe that the combination of Proposition 2.9 and Corollary 4.9 imme-
diately yields the following q-extension of Itô/Stratonovich formula: for all f ∈ F3 and
s < t,

δ(f(X))st =
∫ t

s
∂f(Xu)]dXSu =

∫ t

s
∂f(Xu)]dXu +

∫ t

s
[Id× Γq × Id](∂2f(Xu)) du .

As another spin-off of Formula (38), we can finally derive an expression of the rough
Stratonovich integral

∫ t
s Uu]dXSu as the L2(ϕ)-limit of “mean-value” Riemann sums. The

result, which emphasizes the analogy between the rough construction and the classical
(commutative) Stratonovich integral, can be stated as follows:

Corollary 4.10. For all 0 ≤ s < t and every adapted controlled biprocess U ∈ QX([s, t]),
it holds that ∫ t

s
Uu]dXSu = lim

|∆|→0

∑
(ti)∈∆

1
2
(
Uti + Uti+1

)
]δXtiti+1 in L2(ϕ) , (39)

for any subdivision ∆ of [s, t] whose mesh |∆| tends to 0.
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Proof. For any subdivision ∆ = (ti) of [s, t], write
1
2
(
Uti + Uti+1

)
]δXtiti+1

= Uti]δXtiti+1 + 1
2δUtiti+1]δXtiti+1

= Uti]δXtiti+1

+1
2
[
(δXtiti+1]U

X,1
ti )]δXtiti+1 + (UX,2ti ]δXtiti+1)]δXtiti+1 + U[

titi+1]δXtiti+1

]
,

and observe that, with the notations of Section 2.3, we have

‖U[
titi+1]δXtiti+1‖ ≤ |ti+1 − ti|2γ+1/2‖X1‖N [U[; C2γ

2 ([s, t])] .

Taking the sum over i and then letting |∆| tend to 0, we get by Proposition 4.4 that
the sum in (39) converges in L2(ϕ) to the right-hand side of (38), which leads us to the
conclusion. �

4.4. Proof of Proposition 4.4. When Ut = Ut ⊗ Vt ⊗Wt, the convergence property (31)
has been shown in the proof of [7, Theorem 3.2]. However, since we want the formula
to hold for general adapted triprocesses here, we need to exhibit additional controls. Let
Un : [s, t]→ A⊗3 be a sequence of adapted triprocesses such that

∥∥Unu − Uu∥∥→ 0 for every
u ∈ [s, t], and fix a subdivision ∆ = (ti) of [s, t]. Then set successively Yi := δXtiti+1 ,

S∆(U) :=
∑

(ti)∈∆

{
(Yi]Uti)]Yi − (ti+1 − ti)

[
Id× Γq × Id

]
(Uti)

}
and Sn∆(U) :=

∑
(ti)∈∆

{
(Yi]Unti)]Yi − (ti+1 − ti)

[
Id× Γq × Id

]
(Unti)

}
.

If Unt :=
∑
`≤Ln

t
Unt,` ⊗ V n

t,` ⊗Wn
t,` ∈ A

⊗3
t , Sn∆(U) thus corresponds to

Sn∆(U) =
∑

(ti)∈∆

∑
`≤Ln

ti

Mn
i,` ,

with
Mn
i,` := Unti,`YiV

n
ti,`YiW

n
ti,` − (ti+1 − ti)Unti,`Γq(V

n
ti,`)W

n
ti,` ,

so
‖Sn∆(U)‖2L2(ϕ) =

∑
(ti1 )∈∆

∑
(ti2 )∈∆

∑
`1≤Ln

ti1

∑
`2≤Ln

ti2

ϕ
(
Mn
i1,`1(Mn

i2,`2)∗
)
. (40)

For more clarity, let us set Uni,` := Unti,`, V
n
i,` := V n

ti,`
, Wn

i,` := Wn
ti,`

, and consider then the
expansion

ϕ
(
Mn
i1,`1(Mn

i2,`2)∗
)

= ϕ
(
Uni1,`1Yi1V

n
i1,`1Yi1W

n
i1,`1W

n,∗
i2,`2

Yi2V
n,∗
i2,`2

Yi2U
n,∗
i2,`2

)
−(ti2+1 − ti2)ϕ

(
Uni1,`1Yi1V

n
i1,`1Yi1W

n
i1,`1W

n,∗
i2,`2

Γq(V n,∗
i2,`2

)Un,∗i2,`2
)

−(ti1+1 − ti1)ϕ
(
Uni1,`1Γq(V n

i1,`1)Wn
i1,`1W

n,∗
i2,`2

Yi2V
n,∗
i2,`2

Yi2U
n,∗
i2,`2

)
+(ti1+1 − ti1)(ti2+1 − ti2)ϕ

(
Uni1,`1Γq(V n

i1,`1)Wn
i1,`1W

n,∗
i2,`2

Γq(V n,∗
i2,`2

)Un,∗i2,`2
)
. (41)
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Step 1: Non-diagonal terms (i1 6= i2). Observe first that if for instance i1 < i2, we have, by
combining Lemma 4.1 and Definition 4.2,

ϕ
(
Uni1,`1Yi1V

n
i1,`1Yi1W

n
i1,`1W

n,∗
i2,`2

Yi2V
n,∗
i2,`2

Yi2U
n,∗
i2,`2

)
= ϕ

(
Uni1,`1Yi1V

n
i1,`1Yi1W

n
i1,`1W

n,∗
i2,`2

ϕ
(
Yi2V

n,∗
i2,`2

Yi2
∣∣Bti2

)
Un,∗i2,`2

)
= (ti2+1 − ti2)ϕ

(
Uni1,`1Yi1V

n
i1,`1Yi1W

n
i1,`1W

n,∗
i2,`2

Γq(V n,∗
i2,`2

)Un,∗i2,`2
)
,

and with the same conditioning argument

ϕ
(
Uni1,`1Γq(V n

i1,`1)Wn
i1,`1W

n,∗
i2,`2

Yi2V
n,∗
i2,`2

Yi2U
n,∗
i2,`2

)
= (ti2+1 − ti2)ϕ

(
Uni1,`1Γq(V n

i1,`1)Wn
i1,`1W

n,∗
i2,`2

Γq(V n,∗
i2,`2

)Un,∗i2,`2
)
,

so that, going back to (41), one has ϕ
(
Mn
i1,`1

(Mn
i2,`2

)∗
)

= 0. Similar arguments lead to the
same conclusion when i2 < i1.
Step 2: Diagonal terms (i1 = i2 = i). First, observe that with the same conditioning
argument as above, decomposition (41) actually reduces to

ϕ
(
Mn
i,`1(Mn

i,`2)∗
)

= ϕ
(
Uni,`1YiV

n
i,`1YiW

n
i,`1W

n,∗
i,`2
YiV

n,∗
i,`2

YiU
n,∗
i,`2

)
−(ti+1 − ti)2ϕ

(
Uni,`1Γq(V n

i,`1)Wn
i,`1W

n,∗
i,`2

Γq(V n,∗
i,`2

)Un,∗i,`2
)
.

Now, on the one hand, using (5) and the Cauchy-Schwarz inequality,∣∣ϕ(Uni,`1YiV n
i,`1YiW

n
i,`1W

n,∗
i,`2
YiV

n,∗
i,`2

YiU
n,∗
i,`2

)∣∣
≤ ‖Yi‖4‖Uni,`1‖‖V

n
i,`1‖‖W

n
i,`1‖‖W

n
i,`2‖‖V

n
i,`2‖‖U

n
i,`2‖

≤ (ti+1 − ti)2‖X1‖4‖Uni,`1‖‖V
n
i,`1‖‖W

n
i,`1‖‖W

n
i,`2‖‖V

n
i,`2‖‖U

n
i,`2‖ .

On the other hand, using the definition of Γq(Vj1),∣∣ϕ(Uni,`1Γq(V n
i,`1)Wn

i,`1W
n,∗
i,`2

Γq(V n,∗
i,`2

)Un,∗i,`2
)∣∣

=
∣∣ϕ(Uni,`1(δX)ti,ti+1V

n
i,`1(δX)ti,ti+1W

n
i,`1W

n,∗
i,`2

Γq(V n,∗
i,`2

)Un,∗i,`2
)∣∣

≤
∥∥Un,∗i,`2Uni,`1(δX)ti,ti+1V

n
i,`1(δX)ti,ti+1W

n
i,`1W

n,∗
i,`2

∥∥
L2(ϕ)

∥∥Γq(V n,∗
i,`2

)
∥∥
L2(ϕ) ,

which, by (30), entails that∣∣ϕ(Uni,`1Γq(V n
i,`1)Wn

i,`1W
n,∗
i,`2

Γq(V n,∗
i,`2

)Un,∗i,`2
)∣∣

≤ ‖X1‖4‖Uni,`1‖‖V
n
i,`1‖‖W

n
i,`1‖‖W

n
i,`2‖‖V

n
i,`2‖‖U

n
i,`2‖ .

Going back to (40), we have thus shown that

‖Sn∆(U)‖2L2(ϕ) ≤ ‖X1‖4
∑

(ti)∈∆
(ti+1 − ti)2

( ∑
`≤Ln

ti

‖Uni,`‖‖V n
i,`‖‖Wn

i,`‖
)2

,

and so we can assert that

‖Sn∆(U)‖2L2(ϕ) ≤ ‖X1‖4
∑

(ti)∈∆
(ti+1 − ti)2‖Unti‖

2

≤ 2‖X1‖4
{ ∑

(ti)∈∆
(ti+1 − ti)2‖Unti − Uti‖

2 +
(

sup
u∈[s,t]

‖Uu‖2
)
|t− s||∆|

}
.
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By letting n tend to infinity first, we can conclude that ‖S∆(U)‖2L2(ϕ) → 0 as the mesh |∆|
tends to 0. The convergence∑

(ti)∈∆
(ti+1 − ti)

[
Id× Γq × Id

]
(Uti)→

∫ t

s

[
Id× Γq × Id

]
(Uu) du in L2(ϕ)

follows easily from the regularity of U , by noting that for every u and every V ∈ A⊗̂3
u ,∥∥[Id× Γq × Id

]
(V)

∥∥
L2(ϕ) ≤ ‖V‖ .

This achieves the proof of our statement.
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