RANDOM WEIGHTED SOBOLEV INEQUALITIES ON R? AND
APPLICATION TO HERMITE FUNCTIONS

by

Aurélien Poiret, Didier Robert & Laurent Thomann

Abstract. — We extend a randomisation method, introduced by Shiffman-Zelditch and developed by
Burg-Lebeau on compact manifolds for the Laplace operator, to the case of R? with the harmonic oscillator.
We construct measures, thanks to probability laws which satisfy the concentration of measure property,
on the support of which we prove optimal weighted Sobolev estimates on R?. This construction relies on
accurate estimates on the spectral function in a non-compact configuration space. As an application, we
show that there exists a basis of Hermite functions with good decay properties in L (Rd), when d > 2.

1. Introduction and results

1.1. Introduction. — During the last years, several papers have shown that some basic results
concerning P.D.E. and Sobolev spaces can be strikingly improved using randomization techniques. In
particular Burg-Lebeau developed in [2] a randomisation method based on the Laplace operator on
a compact Riemannian manifold, and showed that almost surely, a function enjoys better Sobolev
estimates than expected, using ideas of Shiffman-Zelditch [18]. This approach depends heavily on
spectral properties of the operator one considers. In this paper we are interested in estimates in
Sobolev spaces based on the harmonic oscillator in L?(R9)
d
H=-A+z]*=) (-07 + ).

j=1
We get optimal stochastic weighted Sobolev estimates on R using the Burg-Lebeau method. Indeed
we show that there is a unified setting for these results, including the case of compact manifolds.
We also make the following extension: In [2], the construction of the measures relied on Gaussian
random variables, while in our work we consider general random variable which satisfy concentration
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of measure estimates (including discrete random variables, see Section . However, we obtain the
optimal estimates only in the case of the Gaussians.

We will see that the extension from a compact manifold to an operator on R% with discrete spectrum
is not trivial because of the complex behaviour of the spectral function on a non-compact configuration
space.

In our forthcoming paper [15], we will give some applications to the well-posedness of nonlinear
Schrédinger equations with Sobolev regularity below the optimal deterministic index.

Most of the results stated here can be extended to more general Schrodinger Hamiltonians —A+V ()
with confining potentials V. This will be detailed in [17].

Let d > 2. We want to define probability measures on finite dimensional subspaces &, C L?(R?),
based on spectral projections with respect to H. We denote by {¢;, j > 1} an orthonormal basis
of L*(R?%) of eigenvectors of H (the Hermite functions), and we denote by {\j, j > 1} the non
decreasing sequence of eigenvalues (each is repeated according to its multiplicity): Hp; = \;p;.

For h > 0, we define the interval I}, = [, %h[ and we assume that a; and by, satisfy, for some
a,b,D > 0,6 € [0,1],
(1.1) limay, =a, limb,=b, 0<a<b and b, —ay> DK,
h—0 h—0

with any D > 0if 6 < 1 and D > 2 in the case 6 = 1. This condition ensures that INj, the

number (with multiplicities) of eigenvalues of H in Ij tends to infinity when h — 0. Indeed, we can

check that Nj, ~ ch™%(b, — ay), in particular }llin%) N = +o0, since d > 2. In the sequel, we write
ﬁ.

A, ={j>1, \j € I} and &, = span{yj, j € Ay}, so that N}, = #Aj, = dim &y,. Finally, we denote

by Sp={u€é&, : lull 2(ray = 1} the unit sphere of &j,.

In the sequel, we will consider sequences (7, )nen so that there exists Ky > 0

K
(1.2) Il < 55 D2 hil’s i€ An, VR €0,1].
h JEAL
This condition means that on each level of energy \,, n € Ay, one coefficient |y;| cannot be much

larger than the others. Sometimes, in order to prove lower bound estimates, we will need the stronger
condition (K7 > 0)

K, Ky
(1'3) E h/j|2 < |’7n’2 < § |7j‘27 Vn € Ay, Vh 6]07 1]'
Np Ny,
JEAR JEAR

This so-called “squeezing” condition means that on each level of energy \,,, n € Ay, the coefficients ||
have almost the same size. For instance (1.2]) or (L.3) hold if there exists (ds)nejo,1) S0 that v, = d,
for all n € Ay,
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Consider a probability space (2, F,P) and let {X,,, n > 1} be independent standard complex
Gaussians N¢(0,1). In fact, in our work we will consider more general probability laws, which satisfy
concentration of measure estimates (see Assumption , but for sake of clarity, we first state the results
in this particular case. If (7, )nen satisfies , we define the random vector in &,

Uy (w) == vy p(w) = Z 7 X (W) ;.
JEAR
We define a probability measure P, on Sy by: for all measurable and bounded function f : S, — R

" ) = L C) R
|, FdPaa) = [ 1 (nvy(w)m(m) ).

We can check that in the isotropic case (y; = A for all j € Ap), P, ;, is the uniform probability

VN
on Sy (see Appendix .

Finally, let us recall the definition of harmonic Sobolev spaces for s > 0, p > 1.
(1.4) WP = WeP(RY) = {u € LP(R?), H*/*u € LP(RY)},
H® = H(RT) = W2
The natural norms are denoted by ||u|[yys.» and up to equivalence of norms we have (see [23] Lemma 2.4])

for 1 <p< 400
lullwsw = [H*ull 2o = [(=A)*?ul 1o + [|(x)*ul 1o

1.2. Main results of the paper. —

1.2.1. Estimates for frequency localised functions. — Our first result gives properties of the
elements on the support of P, j,, which are high frequency localised functions. Namely

Theorem 1.1. — Let d > 2. Assume that 0 <6 < 2/3 in (L.1) and that condition (1.3 holds. Then
there exist 0 < Cy < C1, ¢1 > 0 and hg > 0 such that for all h €]0, ho].

P, [u € Sy : Cyllogh|V/? < [wllyar.00 may < Ci|log h\l/Q} >1—he.
Moreover the estimate from above is satisfied for any § < 1 with D large enough.

It is clear that under condition (|1.3)), there exist 0 < Cy < Cj, so that for all u € Sy, and s > 0
Coh ™% < [l may < C3h™/2,

since all elements of S, oscillate with frequency h~/2. Thus Theorem shows a gain of d/2
derivatives in L°°, and this induces a gain of d derivatives compared to the usual deterministic Sobolev
embeddings. This can be compared with the results of [2] where the authors obtain a gain of d/2
derivatives on compact manifolds: this comes from different behaviours of the spectral function, see
Section |3| Notice that the bounds in Theorem (and in the results of [2] as well) do not depend
on the length of the interval of the frequency localisation I, (see ), but only on the size of the
frequencies. This is a consequence of the randomisation, and from the bound .
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We will see in Theorem that the upper bound in Theorem holds for any 0 < § < 1 and for
more general random variables X which satisfy the concentration of measure property. However, to
prove the lower bound (see Corollary , we have to restrict to the case of Gaussians: in the general
case, under Assumption |1, we do not reach the factor |In h]l/ 2. Following the approach of [18 [2],
we first prove estimates of ||ul])ya/2,00(gay With large r and uniform constants (see Theorem , and
which are essentially optimal for general random variables (see Theorem .

The condition < 2/3 is needed to prove the lower bound, thanks to a reasonable functional calculus
based on the harmonic oscillator (see Appendix .

Finally we point out that in a very recent paper [6], Feng and Zelditch prove similar estimates for
the mean and median for the L°°-norm of random holomorphic fields.

1.2.2. Global Sobolev estimates. — Using a dyadic Littlewood-Paley decomposition, we now
give general estimates in Sobolev spaces; we refer to Subsection for more details. For s € R
and p, q € [1,+0o0], we define the harmonic Besov space by

(1.5) Bs (RY) = {u =3t 32 g | gy < o }

n>0 n>0

where the u, have frequencies of size ~ 2". The space B;yq(Rd) is a Banach space with the norm
in £7(N) of {2"/2||u | L () }n>0-
We assume that v satisfies (|1.2)) and

Y b, < 4o where R, = Y wl

n>0 k: Ap€[2k,2k+1]

Then we set
+oo
vy (W) =D X (w)ej,
=0

so that almost surely v, € 8871(Rd) and its probability law defines a measure i, in B3 (R?). Notice
that we have

H*(R?) C By | (RY) C L*(R), Vs> 0.

We have the following result

Theorem 1.2. — For every (s,r) € R? such that r > 2 and s = d(3 — 1) there exists co > 0 such
that for all K > 0 we have

_ 2
(L6) i [0 € B RY) ¢ [lullypeoay > K ullg oy | < ek

In particular piy-almost all functions in Bg’l(Rd) are in W (R9).
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If - satisfies 1) and the (weaker) condition Z \’y]?\n < +o00, then p., defines a probability measure
n>0
on L?(R?) and we can prove the estimate

_ 2
(1.7) o | 0 € LARY) ¢ fullypergaey 2 Kl paggs) | < 0%,

with s = d(3 — ) when 7 < +00 and s < d/2 in the case r = +oco. From this result it is easy to
deduce space-time estimates (Strichartz) for the linear flow e
nonlinear problem. This will be pursued in [15].

tHy, which can be used to study the

1.2.3. An application to Hermite functions. — Similarly to [2], the previous results give some
information on Hilbertian bases. We prove that there exists a basis of Hermite functions with good
decay properties.

Theorem 1.3. — Let d > 2. Then there exists a Hilbertian basis of L?>(R?) of eigenfunctions of the
harmonic oscillator H denoted by (pn)n>1 such that |on | r2rey = 1 and so that for some M >0 and
alln > 1,

_d
(1.8) nll oo (may < MAn * (1 +log Ap)'/2.

We refer to Theorem for a more quantitative result, and where we prove that for a natural
probability measure, almost all Hermite basis satisfies the property of Theorem [1.3| (see also Corol-
lary . For the proof of this result, we need the finest randomisation with 6 = 1 and D = 2 in ,
so that P, 5 is a probability measure on each eigenspace.

The result of Theorem does not hold true in dimension d = 1. Indeed, in this case one can prove
the optimal bound (see [11])

(1.9) lenllLee @) < Cn~1/12,

Let us compare (|1.10]) with the general known bounds on Hermite functions. We have Hy,, = \,¢n,
with A\, ~ en'/?, therefore (T.10]) can be rewritten

(1.10) nll o (may < Mn~/4(1 + logn)'/2.
For a general basis with d > 2, Koch and Tataru [11] (see also [12]) prove that

N |=

d_
[onll oo may < CAn 2,

which shows that induces a gain of d — 1 derivatives compared to the general case. We stress
that we don’t now any explicit example of (¢,)n>1 which satisfy the conclusion of the Theorem. For
instance, the basis (¢,),>1 obtained by tensorisation of the 1D basis does not realise because
of which implies the optimal bound

||SOIL||Loo(Rd) < C)\;1/12'

Observe also that the basis of radial Hermite functions does not satisfy (1.10]) in dimension d > 2. As
in [2, Théoreme 8], it is likely that the log term in ([1.10) can not be avoided.
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1.3. Notations and plan of the paper. —

Notations. — In this paper c,C > 0 denote constants the value of which may change from line to line.
These constants will always be universal, or uniformly bounded with respect to the other parameters.

We denote by H = —A+|z|? = Z;Ll(—a}m;) the harmonic oscillator on RY, and for s > 0 we define
the Sobolev space H* by the norm ||u||ps = ||HS/2U”L2(R4) ~ ||ull s ey + (@) *ull L2 (ray. More generally,
we define the spaces WP by the norm ||u|lyys» = HHS/ZUHLIJ(]Rd). We write L"™*(R?) = L"(RY, (x)*dx),
and its norm ||ul|,s.

The rest of the paper is organised as follows. In Section[2]we describe the general probabilistic setting
and we prove large deviation estimates on Hilbert spaces. In Section [3| we state crucial estimates on
the spectral function of the harmonic oscillator. Section [4]is devoted to the proof of weighted Sobolev
estimates and of the mains results. In Section [5| we prove Theorem

Acknowledgements. — The authors thank Nicolas Burq for discussions on this subject and for his

suggestion to introduce conditions ((1.2))-(1.3]).

2. A general setting for probabilistic smoothing estimates

Our aim in this section is to unify several probabilistic approaches to improve smoothing estimates
established for dispersive equations. This setting is inspired by papers of Burg-Lebeau [2], Burqg-
Tzvetkov [3}, [4] and their collaborators.

2.1. The concentration of measure property. —

Definition 2.1. — We say that a family of Borelian probability measures (v, RY) N>1 satisfies the
concentration of measure property if there exist constants ¢, C' > 0 independent of N € N such that
for all Lipschitz and convex function F : RV — R

cr?

(2.1) VN[XGRN L |F(X) — B(F(X))| >r} <ce iy >0,

where ||F'||;p is the best constant so that |F(X) — F(Y)| < ||F||ipl| X — Y| 2.

For a comprehensive study of these phenomena, we refer to the book of Ledoux [13]. Notice that
one of the main features of is that the bound is independent of the dimension of space, which
enables to take NV large.

Typically, in our applications, F will be a norm in RY.

Let us give some significative examples of such measures.

o If (vy,RY)y>1 is a family of probability measures which satisfies a Log-Sobolev estimate with
constant C* > 0, then (2.1)) is satisfied for all Lipschitz function F : RN — R (see [T, Théoréme 7.4.1,
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page 123]). Recall that a probability measure vy on RY satisfies a Log-Sobolev estimate if there exists
C > 0 independent of N > 1 so that for all f € Cy(RY)

2 f?
(2.2) N fPIn ( (f2))
Such a property is usually difficult to check. See [1] for more details. Notice that the convexity of F
is not needed.

e A probability measure of the form dvy(z) = ¢y exp (— Z;V:1 ]xj]a)dx, x € RV, satisfies if
and only if o > 2 (see [1, page 109]).

dvy (z <o/ \Vfldvy(z), E(f?) = RNdeVN(x).

e Assume that v is a measure on R with bounded support, then vy = v® satisfies the concentration
of measure property. This is the Talagrand theorem [20] (see also [21]] for an introduction to the topic).

Assumption 1. — Consider a probability space (Q, F,P) and let {X,, n > 1} be a sequence of
independent, identically distributed, real or complex random values. In the sequel we can assume that
they are real with the identification C ~ R%. Moreover, we assume that for all n > 1,

(i) Denote by v law of the X,,. We assume that the family (V®N,RN>N21 satisfies the concentration
of measure property in the sense of Definition [2.1]
(i) The r.v. X, is centred: E(X,) = 0.
(iii) The r.v. X, is normalized: E(X2) = 1.

Under Assumption (I for all n > 1, and ¢ > 0 small enough
(2.3) E(eEXTQL) < 400.
Indeed, by Definition [2.1] with F/(X) = X,

X2 oo CeX?2 oo In A 00 1
E(e® n):/ v(e~® n>)\)d)\:1+/ v(|Xn| > E)d)\§1+2/ AT=0dA < +o0.
0 1 1

Next, with the inequality s|z| < ex?/2+ s2/(2¢), we obtain that for all s € R, E(e?Xn) < CeCs” which
in turn implies (see [14, Proposition 46]) that there exists C' > 0 so that for all s € R

(2.4) E(e*¥n) < e%°.

Remark 2.2. — Condition ({2.4) is weaker that (2.2)): a family of independent centred r.v. {X,,, n > 1}
which satisfies (2.4])) does not necessarily satisfy (2.1]) for all Lipschitz function F. Indeed, using Kol-
mogorov estimate, one can prove (see [13]) that condition (2.1)) is equivalent to

(25) / SF dy < eCSQHFH%ip’ Vs eR,
R4
for all Lipschitz function F' with v-mean 0.

We conclude with the elementary property
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Lemma 2.3. — Assume that {X,,} satisfies and that {oj, 1 < j < N} are real numbers such
that Z a? < 1. Then X := Z a; X satisfies (2.4) with the same constant C'.

1<j<N 1<G<N
N
Proof. — Tt is a direct application of (2.5 with F(X) = Z a; X;. O
j=1
2.2. Probabilities on Hilbert spaces. — In this sub-section K is a separable complex Hilbert

space and K is a self-adjoint, positive operator on K with a compact resolvent. We denote by
{¢j, j > 1} an orthonormal basis of eigenvectors of K, Ky; = \jp;, and {\;, j > 1} is the non
decreasing sequence of eigenvalues of K (each is repeated according to its multiplicity). Then we get
a natural scale of Sobolev spaces associated with K defined for s > 0 by K* = Dom(K*/2).

Now we want to introduce probability measures on these spaces and on some finite dimensional
spaces of IC.

Let us describe in our setting the randomization technique deeply used by Burg-Tzvetkov in [3].
Let v = {v;j};>1 a sequence of complex numbers such that Z )\jhj]Z < +00.

i>1

Consider a probability space (2, F,P) and let {X,,, n > Jl_} be independent, identically distributed

random variables which satisfy Assumption

We denote by vg = Z’yjap]— € K¢, and we define the random vector v(w) = Z’ijj(w)goj. We
Jj=1 Jj=1
have E(||vy]|%) < +o0, therefore v, € K*, a.s. We define the measure p, on K* as the law of the
random vector v,.

2.2.1. The Kakutani theorem. — The following proposition gives some properties of the mea-
sures /iy (see [5] for more details).

Proposition 2.4. — Assume that all random variables X; have the same law v.

(1) If the support of v is R and if v; # 0 for all j > 1 then the support of p is K°.
(i) If for some € > 0 we have vg ¢ K51 then p, (K51€) = 0.
(iii) Assume that we are in the particular case where dv(x) = coe 11" dr with o > 2. Let v = {;}
and B = {B;} be two complex sequences and assume that
i

a/2 2
(2.6) > ( 5 —1) = fo0.

Jj=1
Then the measures [y and pg are mutually singular, i.e there exists a measurable set A C H?® such
that py(A) =1 and pg(A) = 0.

We give the proof of (iii) in Appendix

We shall see now that condition (1.2]) (resp. (1.3])) can be perturbed so that Proposition gives

us an infinite number of mutually singular measures on K°.
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Lemma 2.5. — Let vy satisfying (1.4) (resp. (1.3)) and § = {6n}n>1 such that |6,] < e|yn| for every

n > ng. Then for every ¢ € [0,+/2 — 1], the sequence v + & satisfies (1.2) (resp. (.)) (with new
constants).

We do not give the details of the proof. From this Lemma and Proposition we get an infinite
number of measures p., with v satisfying (1.2)) (resp. . Let €; be any sequence such that
Z gj = +oo and limsupe; < V2 -1 and denote by € ® v the sequence €;7;. Then p, and pi,4¢., are
j>1
mutually singular.

2.2.2. Measures on the sphere S;. — Now we consider finite dimensional subspaces &, of K
defined by spectral localizations depending on a small parameter 0 < h < 1 (h~! is a measure of
energy for the quantum Hamiltonian K). In the sequel, we use the notations I;, = [, %’1[, Ny, Ay,
and &), introduced in Section and we assume that is satisfied. Observe that &}, is the spectral
subspace of K in the interval I},: &, = I where I}, is the orthogonal projection on K. For simplicity,
we sometimes denote by N = N, A = Ay, ..., with implicit dependence in h. Our goal is to find
uniform estimates in h €]0, ho[ for a small constant hy > 0.

Let us consider the random vector in &,

(2.7) Uy (W) = vy p(w Z'YJ w)pjs

JEA

and assume that (1.3)) is satisfied. In the sequel we denote by |v|3 = Z 7,21.

neA
Now we consider probabilities on the unit sphere S;, of the subspaces &,. The random vector v,

in (2.7)) defines a probability measure v, 5 on &,. Then we can define a probability measure P j, on Sy,
as the image of by v — ﬁ Namely, we have for every Borel and bounded function f on Sy,

28) [ rwpspam = [ () onatan) = [ 7 () b

Remark that we have

los (@)% = D P15 (@)

JEA

’”"/”IC Z ’7]‘2 "Y’?\

JEA

and

Let us detail two particular cases of interest:

o If |y,| = \/Lﬁ for all j € A and if X, follows the complex normal law N¢(0,1) then P, is the
uniform probability on Sj, considered in [2]. This follows from ({2.8)) and property of Gaussian laws.
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e Assume that for all n € N, P(X,, = 1) = P(X,, = —1) = 1/2, then P, is a convex sum of 2V

Dirac measures. Indeed we have |jv,(w)|Z = ZjeAWJP = |y|3. Denote by (s(k))lgkgzw all the
sequences so that sgk) =+41forall 1 <j <N, and set

1

=
Then

1 2
P'%h - 2W Z 6<I>k‘
k=1

To get an optimal lower bound for L estimates we shall need a stronger normal concentration
estimate than estimate given in (2.1). Hence we make the following assumptions:

Assumption 2. — We assume that
(i) The random variables X; are standard independent Gaussians N¢(0,1).

(ii) The sequence v satisfies (1.5).

Let L be a linear form on &, and denote by e, = Z |L(¢;)|*. The main result of this section is
JEAL
the following
Theorem 2.6. — Let L be a linear form on &,. Suppose that holds and that Assumption ]
satisfied. Then there exist Co,co > 0 so that

ey Y
(2.9) P, [u €Sy |L(u)| > t} < Coe ) WE>0, Vh €0, hol,
Moreover, if holds, there exist C,c1 > 0 and €9, hg > 0 so that
_Clﬂﬂ er,
. e < : > -— .
(2.10) Cre i’ <P, [u €Sy L) > t], vt € [0, \FVN}’ Vh €]0, ho)

Furthermore, if Assumption[dis satisfied, there exist Cy,C2,c1,c2,€0, ho > 0 so that

Ny

—c —co N
(2.11)  Cre e 2§P%h[uesh: |L(u)|2t] < Cye @ Vie|0,e0/en], Yh €]0,hol.

Since P, is supported by Sj, the bounds in the previous result don’t depend on |y|p. The
restriction on ¢ > 0 in (2.11]) is natural, because by the Cauchy-Schwarz inequality we have

|L(u)| < Ver, Yue€Sy,.

In the applications we give, there is some embedding K* — C(M), for s > 0 large enough, where
M is a metric space. We have £ C [),c.g K°, thus we can consider the Dirac evaluation linear form
0z(v) = v(x). In this case we have ef, = Z l;(x)|* = e, which is usually called the spectral function

JEA
of K in the interval I.
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For example, one can consider the Laplace-Beltrami operator on compact Riemannian manifolds,
namely K = —A and K% = H*(M) are the usual Sobolev spaces: this is the framework of [2]. In
Section [3| we will apply the result of Theorem to the Harmonic oscillator K = —A + |z|? on R
In this latter case K is the weighted Sobolev space

K= {ueH R, |z|*v € L*R?) }, s > 0.

Remark 2.7. — In the particular case where P, ;, is the uniform probability on Sj, we have the
explicit computation

P%h[u €Sy |L(u)| > t} -3 (\/’;L) ,

where

(2.12) B(t) = Ty (1)(1 — )N,
and ([2.11]) follows directly. For a proof of (2.12)), see [2] or in Appendix [C| of this paper for an

alternative argument.
For the proof of Theorem [2.6] we will need the following result.

Proposition 2.8. — Assume that vy satisfies (1.2). Let L be a linear form on &,. Then we have the

large deviation estimate
N 2

—K1— >t
]P’[w €Q:|L(v,)| > t} < de HeLhi

where kK1 = 4”701. As a consequence, if vy, denotes the probability law of vy, then

2

_ N
v [w € s L) 2 t] <de IR

Proof. — We have
L(vy) = Z'Yan(W)L(SOn)-
JEA
It is enough to assume that L(v,) is real and to estimate IP’[w €Q: L(vy) > t]. Using the Markov
inequality, we have for all s > 0

P[L(vy) > t] < e *'E (e (")),
and thanks to (|1.2)) we have

ol
s
JEA =
Using Lemma 23 we get
P[L(vy) > ] < e emof3hiRs,
2

N

—Kk1—5—t

and with the choice s = % 2N we obtain P[L(vy) 2 t] <e = MAc . O
A

It will be useful to show that ||v,(w)||% is close to its expectation for large N.
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Lemma 2.9. — Let ~y satisfying the squeezing condition . Then then exists co > 0 (depending
only on Ko and Ki) such that for every e >0

ecgN

]P’[w eQ: oy @)Z - 43| > a} <2 MR

Proof. — Tt is enough to consider the real case, so we assume that v, and X,, are real and {X,,,n > 1}
have a common law v. We also assume that |y|]3 = 1.

We have
lor @) = D 1P X (w) = My ().
JEA

From large number law, ||v,(w)||% converges to 1 a.s. To estimate the tail we use the Cramer-Chernoff
large deviation principle (see e.g. [19, § 5, Chapter IV]). This applies because from we know
that f(s) := E(e*X1) is C2 in | — oo, so[ for some s¢ > 0.

We reproduce here a well known computation in large deviation theory. Define the cumulant
function g(s) = log(f(s)) which is well defined for s < sg. Now, since the X are i.i.d., for t,s > 0 we
have

P[My > ] = P[esNMN > esNt] < E(ePNMw )Nt

H o~ (Nsly;[*t—g(Ns|v;[%))

JEA

Next, apply the Taylor formula to g at 0: g(0) =0, ¢’(0) =1 so t7 — g(7) = (t — 1)7 + O(7?), hence
there exists s; > 0 such that for 0 < 7 < 51, t7 — g(7) > (t — 1)5. Then, with ¢ = 1 + ¢, and since
N|v;]? < Ko we get

P[My >1+¢] < H e=eNsIG2/2 _ gmesN/2,

JEA
provided s > 0 is small enough, but independent of € > 0 and N > 1. The same computation applied
to —My gives as well P[My < 1 —¢] < e =N, <

Proof of (2.9). — By homogeneity, we can assume that |y|x = 1. Denote by
(2.13) A={weQ: |[|loy(w)E -1 <1/2}.

By the Cauchy-Schwarz inequality, for all u € Sy, we obtain |L(u)| <e L/ ?. Thus in the sequel we can
assume that ¢t < elL/ 2, Then, from Proposition and Lemma M we have

(2.14) P, [u €Sy |Llu)| > t} =PlweQ: |Low)] > tow)| ]
=P[(|L(v(w))| > tlv(w)]|L2) N A] +P[(|L(v(w))] > tllv(w)]|2) N A°].

Therefore
PoufueSy: [Lw)|>1] < P[|L(ow))| > t/2] +P(A%)
N N
< Chie et + 2e 2N gCe_Cth,
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which implies (2.9)). O
We now turn to the proof of (2.10). We will need the following result

Lemma 2.10. — We suppose that 7y satisfies (1.3)) and that Assumption |l| is satisfied. Then there

exist C7 > 0,c1 >0, hg > 0, g9 > 0 such that

ey N2
p weQ:\L(vq,(w))IZt] > Cre CE L vie [o,govq\/]‘%“], Vh €]0, ho).

Proof. — Let us first recall the Paley-Zygmund inequalit Let Z € L?(Q2) be ar.v such that Z > 0,
then for all 0 < A < 1,

~ ylZly?
(2.15) P(Z > N|Z|1) > ((1=N) :
1Z]|2
We apply (2.15)) to the random variable Z = |Yy|?, with
VN VN
Vv = ) = SN L),
verlyla T Verlhla j; e

and A = 1/2. By ([L.3), we have ¢y < ||[Yn|l2 < Cp uniformly in N > 1. Next, recall the Khinchin
inequality (see e.g. [3l Lemma 4.2] for a proof) : there exists C' > 0 such that for all real £ > 2 and
(an) € £(N)

| ZX”(W) anHLﬁg < C\/E(Z ]an|2)é_

neA neA
Therefore, there exists C; > 0 such that ||[Yx|[4 < C;. As a result, there exist n > 0 and € > 0 so that
for all N > 1, P(|Yn]| > 1) > €, which implies the result. O

Proof of (2.10). — We assume that |y|p = 1, and consider the set A defined in (2.13]). Then by (2.14])
and the inequality P(B N A) > P(B) — P(A€) we get

Poylu€Sy L@ =t = P[(L@W)] 2 Hl@w)lz) n Al
> P[|L(v(w))| > 3t/2] — P(A%)

—c1 N 42

> Che Pert —2e7N
where in the last line we used Lemma [2.10] and Lemma This yields the result if ¢ < 50% with
€o > 0 small enough. O

We now prove ([2.11). To begin with, we can state

Lemma 2.11. — We suppose that Assumption|d is satisfied. Then there exist C; > 0,¢1 > 0, hg > 0,
eo > 0 such that

N 2

—c1———t
P[w €0 |L(vy(w))] > t} > Cre PR W >0, Vi €]0, hgl.

(DWe thank Philippe Sosoe for this suggestion.
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Proof. — Denote by v ® L(p) the vector (v ® L(y)); = v;L(¢;j). Observe that, thanks to (1.3)),

Iv3er Iv3eL
Klijl\\[ <|ly® §:7J|L ) < Ko ]Q[
JEA

Then, using the rotation invariance of the Gaussian law and the previous line, we get

7® L(p) t
PlweQ: |L(vy(w))| >t = P|(——F=.X)| > —F—
[ Loy () } H<”Y®L(<P)\ ) \7®L(w)!}
1 / _ 2/2
= — e */°ds
V21 Jis)2 maty
S Cefe;‘]::l%tz

O

The estimate (2.11]) then follows from Lemma and with the same argument as for Lemma

2.2.3. Concentration phenomenon. — We now state a concentration property for P, j, inherited

from Assumption [1| and condition (|1.3). See [13] for more details on this topic.

Proposition 2.12. — Suppose that the i.i.d. random variables X; satisfy Assumption and suppose
that condition (1.3|) is satisfied. Then there exist constants K > 0, k > 0 (depending only on C*) such

that for every Lipschitz function F : S, — R satisfying
[F(u) = F()| < [|[FllLipllu — vllr2®a), Vu,v € Sp,

we have

KkN72

(2.16) P, [u €Sy |F — Mp| > r] <Ke "iw, vr>0, helo,1],

where Mg is a median for F.
Recall that a median Mg for F' is defined by

1
P, plueSy,: F>Mp] >3 P plueS,: F<Mp|>

l\D\»—t

In Proposition the distance in L? can be replaced with the geodesic distance dg on Sy, since

we can check that

o = ollzemeyy

lu— 0| p2ray < ds(u,v) = 2arcsin ( 5 < §Hu—v\|L2(Rd).

When P, 5, is the uniform probability on Sy, Proposition [2.12]is proved in [13], Proposition 2.10],
and the proof can be adapted in the general case (see Appendix E[) The factor N in the exponential

of r.h.s of (2.16]) will be crucial in our application.
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3. Some spectral estimates for the harmonic oscillator

Our goal here is to apply the general setting of Section [2| to the harmonic oscillator in R?. This
way we shall get probabilistic estimates analogous to results proved in [2] for the Laplace operator in
a compact Riemannian manifold.

In the following, we consider the Hamiltonian H = —A + V(x) with V(z) = |z/?, » € R? for
d > 2. For this model, all the necessary spectral estimates are already known. More general confining
potentials V' shall be considered in the forthcoming paper [17].

A first and basic ingredient in probabilistic approaches of weighted Sobolev spaces is a good knowl-
edge concerning the asymptotic behavior of eigenvalues and eigenfunctions of H. The eigenvalues of
this operator are the {2( Ji+-+ja)+d, j€ Nd}, and we can order them in a non decreasing sequence
{\j, j € N}, repeated according to their multiplicities. We denote by {¢;,j € N} an orthonormal
basis in L?(RY) of eigenfunctions (the Hermlte functlons) so that Hy; = \jp;. The spectral function
is then defined as 7y (\;z,y) Z ©j(x (recall that this definition does not depend on the

A <A
choice of {¢;,7 € N}). When the energy A is localized in I C R™ we denote by Il (I) the spectral
projector of H on I. The range Eg (1) of Il (1) is spanned by {¢;; A; € I} and 11y (]) has an integral
kernel given by

ra(Lizy) = D ei(@)e;y).

[ : A €]

We will also use the notation Eg(A) = Ex ([0, A]), Ng(A) = dim[Ex(N)].

3.1. Interpolation inequalities. — We begin with some general interpolation results which will
be needed in the sequel. In R?, the spectral function mz(\;x,2) is fast decreasing for |z| — 400 so
it is natural to work with weighted L? norms. We denote by (z)* = (1 + |2|?)*/? and introduce the
following Lebesgue space with weight

LP3(RY) = {u, Lebesgue measurable : / lu(z)P(z)’de < +oo} = LP(RY, (z)%dz),

endowed with its natural norm, which we denote by ||ul|,,s. For p = 0o, we set ||ul|c,s = sup (x)*|u(x)|.
TER?
The following interpolation inequalities hold true. Let 1 < p; < p < py < 400 and k €]0, 1] such

1 _ kK 11—k
that S = o T o Then for pyg < +o0o0 we have
pP1—p pbo—DPp

3.1 || ppsray < (||u soray) (|| s1(pdy)”, with s = so + s1.
(3.1) lull ps (may < (llull Lrossomay)” " (llull Lor.s1 (ra)) P —

In the case pg = 400, we have

3:2)  lullpesme) < (Su})<$>s°IU(JU)I)l’pl/p(IIUIlevsl(Rd>)p1/”, with s = (p —p1)so + s1.
R
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3.2. Rough estimates of the harmonic oscillator. — We recall here some more or less standard
properties stated in [10]. To begin with, we state a ”soft” Sobolev inequality.

Lemma 3.1. — For allu € Ey(I)
(3.3) u(@)] < (L, 2)) 2|l p2ray.
Proof. — We have

u(e) =Thu(a) = [ mn(liz.ui)ds
Using the Cauchy-Schwarz inequality

1/2
(3.4) oo < ([ Inntti ) lul

Now we use that Iy () is an orthonormal projector.

(3.5) (L2, y) 2/ (L, 2)ra (L 2,y)dz and 7 (1;x,y) = ng (1 y, ).
Rd
Finally, from (3.4) and (3.5 with y = = we get (3.3)). O

The next result gives a bound on 7.

Lemma 3.2. — The following bound holds true

2
(3.6) Nz, x) < CA\2 exp (—c’ﬂ) ., VzeR¥A>1.
Proof. — Let K(t;x,%) be the heat kernel of e *. It is given by the following Mehler formula
tanh ¢ —y)?
(3.7) K(t;z,y) = (2rsinh 2t) "2 exp (—mjlkn +y|? — ftan?ﬁt) .
So we have
(3.8) K(t;x,x) = / e M dny(p;z, x) = (2r sinh 2t) Y2 exp(—|z|? tanh t).
R

We set t = A™1, integrate in u on [0, \] and get
g\, z) <eK(A\ Lz, x).
Assuming \ > Ay, A\g large enough, we easily see that is a consequence of . O
Let u € Eg(A). From and we get
o)) < O exp (2 ) oy
where ¢, C' > 0 do not depend on z € R% nor A > 1.

(2The Mehler formula can also be obtained from the Fourier transform computation of the Weyl symbol of e~ ¥

[16], Exercise IV-2]).

(see
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Remark 3.3. — From , we can deduce that for every 6 > 0 there exists Cy > 0 such that
mr(hz,x) < CoAH0/2(z) =0,
which by implies with the semiclassical parameter h = A\ ™1
()R ()] < Cpllull gy, Vu € En(h).

We can easily see that this uniform estimate is true for u € £(I;) where I, = [%, 2] with a < b. For
smaller energy intervals we can get much better estimates, as we will see in Lemma

Remark 3.4. — Let us compare the previous results with the case of a compact Riemannian mani-
fold M, and when H = —A is the Laplace operator. We have the uniform Hérmander estimate [7]:

(3.9) ra(\ ) = cq(x) Y2 + OAED/2),
where 0 < c¢4(x) is a continuous function on M. Thus from (3.4) and (3.9) we get for some con-
stant Cg > 0,
[l o ary < CsAYH|ullp2ary, Y € E(N).
Let us emphasis here that it results form the uniform Weyl law (3.9)) that 7wz (\; x, ) has an upper
bound and a lower bound of order \%2. For confining potentials like V' the behavior of g (\; z, x)

is much more complicated because of the turning points: { lz|2 = A } This behavior was analyzed
in [10].

3.3. More refined estimates for the spectral function. — From the Weyl law for the harmonic
oscillator we have

Nu(\) = cad + ONTY), ¢q >0,
we deduce that if (1.1]) is satisfied with § = 1 then we have

(3.10) ah~ (b, —ap) < Nj, < Bh™%(by, — ap), a>0,8>0.

The main result of this section is the following lemma. It is a consequence of the work of Thangavelu
[22] Lemma 3.2.2, p. 70] on Hermite functions. This was proved later Karadzhov [10] with a different
method. It could also be deduced from much more general results by Koch, Tataru and Zworski [11,
12] and it is also related, after rescaling, with results obtained by Ivrii [8] Theorem 4.5.4].

Lemma 3.5. — Let d > 2 and assume that |u] < ¢y, 1 < p < +oo and @ > 0. Then there exists
C > 0 so that for all A > 1

|7 (N + w2, 2) — mrr (A $,$)||Lp,(p—l)9(]Rd) < C\%,

with a = §(1+3) =1+ 4(1-1).
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Proof. — Recall the following estimates proved in [10, Theorem 4]: For d > 2 and = € R

(3.11) T\ + iz, z) — gz, @) < XYL N> 1, |ul < 1.

and for every €9 > 0 and every N > 1 there exists C,, v such that

(3.12) (N2, x) < Cop ||, for [z)? > (1+ o).

From we get that for every Cp > 0 there exists C' > 0 such that

(3.13) A+ @, ) — 7 (N2, @) < COU+ [)AYY 0 A > 1, | < Cor

Then from and we get that for every 6 > 0 there exists C such that

(3.14) Im A+ sz, ) — mg (N, x)| < C(1+ |p))AY271H02() 70 X > 1, || < CoA.
Therefore, by/ , to get the result of Lemma it is enough to integrate the previous inequality
on |z| < coA/2. O

From (3.14)), we easily get an accurate estimate for the spectral function

Lemma 3.6. — Assume that is satisfied with 0 < § < 1. For any 0 > 0 there exists C' > 0 such
that

(3.15) (z)%e, < CNRh =012,

er = mH(

Using (3.3) and interpolation inequalities we get Sobolev type inequalities for u € &, 0§ > 0, p > 2.
B 1/2
(3.16) lull ooty < € (Nah072) " ull gy,

which in turn implies, by (3.1)

1_1
2 p

(3.17) el o5 gty < C (Nh@/2) > ]z gay.

By (3.10f), the previous inequality can be written as

a+6

1_1 1_1
ull o2y gy < Clon — an)2 2 h™ 2 GT8) u) ogay,  Vp € [2,+00], VO € [0,d].

Remark 3.7 — For similar bounds for eigenfunctions or quasimodes, we refer to [12].

4. Probabilistic weighted Sobolev estimates

We apply here the general probabilistic setting of Section 2] when K = H is the harmonic oscillator,
K = L?(R%) and {¢j, j € N} an orthonormal basis of Hermite functions. Recall that S is the unit
sphere of the complex Hilbert space &, identified with CV or R?V, and that P, ;, is the probability
on Sy, defined as in Section
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We divide this section in two parts: in the first part, under Assumption [I| we establish upper
bounds and in the second part we obtain lower bounds, but only in the case of Gaussian random
variables (Assumption [2)), and under the condition 0 < § < 2/3.

4.1. Upper bounds. — We suppose here that Assumption |1, (1.2]) and (1.1)) with 0 < § < 1 are
satisfied. Our result is the following

Theorem 4.1. — There exist hg €]0,1], ca > 0 and C > 0 such that if c; = d(1 + d/4), we have
(4.1) P%h u € Sy : hi%HUHLWﬂ/Q(Rd) > A:| < ChiclechAQ, YA >0, Vh E]O, ho].

Proof. — We adapt here the argument of [2]. To begin with, by and , there exists co > 0
such that for every 6 € [0,d], every = € R, and every A > 0 we have
(4.2) P, [u €Sy (2)8h T |u(z)] > A} < eme2h?,
Now, we will need a covering argument. Our configuration space is not compact but using we
have, for every u € Sy,
lu(z)| < Cnlz|™, for |z| > (1 +eo)h ™'/

So choosing R > 0 large enough it is sufficient to estimate u inside the box Bg, = {z € RY, |z]s <
Rh~Y 21, We divide Bpg, in small boxes of side with length 7 small enough. We use the gradient
estimate

\Veu(z)] < Ch™V2=44 vy e Sy,
and at the center of each small box to get the result.
For z,2’ € R% we have

[(2)"u(x) — ()" Pu(a’)] < C((2)"2lu(z) — u(@)| + (2)"|z — 2/ ||u(2))]).

Let {Qr}rca be a covering of Bg, with small boxes @ with center =, and side length 7 small enough.
Then for every x € Q- we have

(4.3) RO 2)"Pu(e) = (r)Puer)| < CTh7HEZ,
We choose
eA
4.4 ~ S p1/24d/4
( ) T 2Ch

and he > 0 such that

(4.5) |Z|oo > RA™Y2 = pl0=D/4(2)6/2)y(2)| < % Vh €]0, he].

Then using , , and we get

46) P,y [u €S W T ull g may > A} < #Ae=21=°A% A S 0 R €]0, ).

Using now that #A ~ Ch™ with ¢; = d(1 4 d/4) we get from ([4.6). O

We can deduce probabilistic estimates for the derivatives as well. Recall that the Sobolev spaces
WHP(R?) are defined in ((1.4)).
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Corollary 4.2. — For any multi index o, B € N? there exists ¢ such that

P, ueS,: B 0| oo ey > A] < Chere @ VA > 0, VR €]0, hol,
In particular we have, for every s > 0,
P, [u €8t h3 1 ullyyeco ) > A] < Ch~1e=®N | YA >0, Vh €]0, o).
Proof. — We apply using that from the spectral localization of u € &, we have

N _lal+18]
|2 3§U|’L2(Rd) <Ch™ 2 J|ull 2y,

| H ull p2(ray < Ch_S/ZHUHL?(Rd)-
O

The following corollary shows that we get a probabilistic Sobolev estimate improving the deter-
ministic one (3.16)) with probability close to one as h — 0. The improvement is ”almost” of order

N,i/Q ~ ((by, — ap)h™%) vz Choosing A = /=K logh for K > 0 we get

Corollary 4.3. — Let c1,c9 > 0 be the constants given by Theorem . Then for every K > < we

c2
have

P, [u € S+ |lulljwssomay > KT |log h|1/2} < hfe=er i €]0, hol, VO € [0, d).

P, [u €Sh: [[ullypeceqey > Khi~3|log h|1/2} < hiee=er i €]0, hl, Vs > 0.

Let us give now an application to a probabilistic Sobolev embedding for the Harmonic oscillator.
We shall use a Littlewood-Paley decomposition with h; = 277, Let 6 a C™ real function on R
such that 6(t) = 0 for ¢t < a, 6(t) = 1 for t < b/2 with 0 < a < b/2. Define _1(t) = 1 — (1),
Y;(t) = 0(hjt) — O(hjqit) for j € N. Notice that the support of v, is in [h%, %]

For every distribution u € S'(R%) we have the Littlewood-Paley decomposition
U= Z uj, with wuj = Z%‘(Ak)@, k) Pk
j>—1 keN
and we have u; € &p;.
The Besov spaces for the Harmonic are naturally defined as follows: if p,r € [1,00] and s € R,
u € Bj . if and only if
1/r
[ullss, == Z ZjST/QHUjHEP(Rd) < +00.
j>—1

We shall use here the spaces B3 . For every s > 0 we have

Bs . C L*(RY) C BY .
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Another scale of spaces is defined as
" ={ue SR : > jlujll 2@ < +oo}, m>0.
Jj=21
Then for every s >0, m > 0 we have B3 ., € " C LQ(Rd).
It is not difficult to see that G™ can be compared with the domain in L?(R%) of the operator log® H.
This domain is denoted by Hfog, the norm being the graph norm. For every s > 1/2 we have
H?ggs C g™ C Hipy
Notice that we do not need that the energy localizations v; are smooth and we can define the same
spaces with 1(t) = Ij; 5((t) so that the energy intervals [27, 271 are disjoint.

Let us now define probabilities on G™ as we did for Sobolev spaces H®. Let «; be a sequence of
complex numbers satisfying (1.2)) and such that

(4.7) > ™A, < oo,
>0

where A; = Ap; and
W=y vyw) =Y %X (w)e,
Jj=0 Jj=0

so that v, is a.s in G and its probability law defines a measure ,uﬁ/” in G™. This measure satisfies also
the following properties as in Proposition

(i) If the support of v is R and if 7; # 0 for all j > 1 then the support of u' is G™.

.o 0 0 _ . _

(ii) If uy € g™ and vy ¢ G° where s > m then p7'(G®) = 0. In particular p'(H*) = 0 for every

s> 0.

(iii) Under the assumptions (i) in Proposition [2.4 we can construct singular measures p" and '

Now we can state the following corollary of Theorem [4.1

Corollary 4.4. — Suppose that v satisfies with a < b and with m = 1/2. Then for the

measure ;ﬁ/? almost all functions in the space G/ are in the space CE{W] where

Chr(RY) = {u € C'R) + [[1°0ful| o ey < +00, Vlal + 18] < £].

In particular if Ug € H%0 5o >0 and if US ¢ H®, s > sg, then we have ,ui/Q(ngoo) =1 for every o >0
[d/2]

and we have an a.s embedding of the Besov space B3 . in Cy' ™.

Proof. — Let u = Z un € GY? with uy, € En,, . For k > 0 (chosen large enough) denote by
n>—1

By = {v € &p, ||:L‘a8£’UHLOO(Rd) < ivnllvllp2ray,  Val + (8] < [d/2] }
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We have, using Corollary
yn(B) 2 1 — o nlearten),

So if B* = {u eGl/?: ye Enys Un € By, Yn > 1}, then we have

p/2(B7) = [T (1= o)) > 1 —e()

n>1
with lilll e(k) = 0. More precisely we have (k) &~ ¢~ for some ¢ > 0.
KR——+400
Now if u € B" we have
HﬂfaaquLoo(Rd) < Z HxaaﬁunHLw(Rd) Sk Z Vllun |l p2ray = Kllullgie.
n>—1 n>—1

So the corollary is proved. O

Remark 4.5. — In the last corollary, for every s > 0 we can choose - such that p}/ 2(7{8) = 0. So
the smoothing property is a probabilistic effect similar to the Khinchin inequality.
From the proof we get a more quantitative statement. There exists ¢ > 0 such that

i/ Tlhwarso > rllullguss| < o™,

Remark 4.6. — The proof of the corollary depends on the squeezing assumption on 7. For
example if is satisfied for by — ap =~ h then we can consider the energy decomposition in intervals
[2n,2(n + 1)[ instead of the dyadic decomposition. So when applying Theorem [4.1| with A of order 1
we get hc1e—c2A? — gc1logn—caA?

Then taking A = k+/logn with x large enough, in the construction of Bf we have to replace v/n by
VIogn. In the conclusion the space G1/2 is replaced by G2 where

" ={uecS®RY: > log" jllujllpamey < +o0}, wi= > (u, ;)@
Jj=1 25 <A <2(341)
4.2. Lower bounds in the case of Gaussian random variables. — Here we suppose that the

stronger Assumption [2 and (1.1) with 6 < 2/3 are satisfied. We are interested to get a lower bound
fOI' HUHLOO,O/Q(RCI).
The spectral condition 6 < 2/3 is needed here because it seems difficult to estimate from below the

variations of the spectral function of the harmonic oscillator in intervals of length < h=1/3.

A first step is to get two sides weighted L estimates for large r which is a probabilistic improvement

of (3.17)). Denote by
d—=0 2

(4.8) 57",9 = T(l - ;)

Theorem 4.7. — Assume that 6 € [0,d], and denote by M, a median of ||u||;ro@/2—1). Then there
exist 0 < Cy < C1, K >0, ¢1 >0, hg > 0 such that for all r € [2, K|logh|] and h €]0, ho| such that

(49) P%h [’U, S Sh : )HUHLT,G(T/?*U - Mr

> A} < 2exp ( — CQN}?/T}Z_BT’GA2).
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and where
da—=o 2 a—=o 2
Cov/rh @ =% < M, < C1v/rh™ T U3 vr e [2, K log N].

This result shows that ||u||;re(/2-1) has a Gaussian concentration around its median.

From (4.9) we deduce that for every x €]0, 1[, K > 0, there exist 0 < Cy < C1, ¢; >0, hg > 0 such
that for all € [2, K|log h|"], h €]0, ho] and A > 0 we have

P,y [u €Sy Coﬁh%(l_%) < |lull groe2-1 < Cl\/;h%g(l_%)} >1- e—crllog b=

As a consequence of Theorem for every 6 € [0,d] we get a two sides weighted L> estimate

showing that Theorem and its corollary are sharp.

Corollary 4.8. — After a slight modification of the constants in Theorem [{.7, if necessary, we get
that for all 6 € [0,d] and h €]0, ho

(4.10) P, [u € S, : Collog h|V2h\A=0/% < |lu|| foc0s2 < C1|log h\l/Qh(d_e)/ﬂ >1—ho
To prove these results we have to adapt to the unbounded configuration space R? the proofs of [2]

Theorems 4 and 5] which hold for compact manifolds. The concentration result stated in Proposi-
tion [2.12] will prove useful.

Proof of Theorem[{.7 — Denote by Fy.(u) = ||ul| ;ro¢/2-1) and by M, its median. Thanks to ([3.17)
we have the Lipschitz estimate

S l=

1
2

1Fo(u) — Fo(v)] < C (Nhh”’%e) lu — vl p2ay, Va0 € Sh.
Therefore, by (2.16)) and (4.8]), we have for some co > 0
(4.11) P, [u €Sy : |Fp(u) — My| > A] < 2exp (— eaN/ThBroA2).

The next step is to estimate M,. Denote by Al = E;(F;) the moment of order » and compute, with

s=0(r/2—1),
B ([ @ hura)

too
= r x)° s" TPy plu € Sy u(z)| > s| ds) da.
/Rd<></0 'y{ [u(z)] } )
Thus by (2.11)) we get

cov/ex +o0
ClT’/ <x>s(/ s le e ds) dr < A7 < 027“/ <:L‘>S</ s lem e ds> dx.
R 0 Rd 0

Performing the change of variables ¢ = cjﬂs2 we obtain that there exist C1,Cy > 1 such that

(4.12) -
eN
&) 7"(01N)_r/2 (/ (x>se;/2d3:) / /271t gt < Al < Oy 7“(02]\7)_’"/2 </ <x>se;/2dx> I'(r/2),
R4 R4

0

A



24 AURELIEN POIRET, DIDIER ROBERT & LAURENT THOMANN

with e = c163. We need to estimate the term anN t"/2=1e~tdt from below. Using the elementary
estimate

+oo
/ 2 emtdt < 72T (r)2), T > 1,
T

we get that there exists €1 > 0 such that for N large and r < Elﬁ then we have

/EN /21—t 4t > I'(r/2)
0 -2

ol

So we get the expected lower bound, Vr € [1, Ellog N

e 20y (/ (:c>se;/2da:> N7"20(r/2) < AT < CyrN~/2 (/ <x>seg/2d:c> '(r/2).
R4 R4
and where I'(r/2) can be estimated thanks to the Stirling formula: there exist 0 < Cy < Cy such that
(Cor)™/? <T(r/2) < (Cyr)™/?, Vr>1.

Now we need the following lemma which will be proven in Appendix [B] The upper bound can be
seen as an application of Lemma with A = h~! and p = (by, — ap)h™' ~ Nph¢ L.

Lemma 4.9. — Assume that @ > —d/(p — 1). Then there ezist 0 < Cy < Cy and hg > 0 such that
1/p
CoNphParo < ( / ()P~ Dep dx> < Oy NyhP2vo,
Rd

for every p € [L,00[ and h €]0, ho] where B,y = S2(1 — 2).

From this lemma we get

(4.13) CoVrhPre < A, < C1VrhPro, Yr>2, h €0, hgl.
Now we have to compare A, and the median M,.. We have
A =M™ = [I1E sy = M|

o0
<F = My, = r/ S L [|Fy — M| > s]ds.
0
Then using the large deviation estimate (4.11) we get

A, — M| < CN7Y™\/rhbro, vr > 2.
Choosing r < K'log N, (K < 1) and N large, from (4.13) we obtain

(4.14) CoVrhPro < M, < C1VrhPro, Vr € [2, K log N]
and the proof of Theorem follows using (4.14) and (4.11)). O

Remark 4.10. — The upper-bound in Lemma [4.9]is true for § = 1. This is proved in Appendix

Now let us prove Corollary
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Proof of Corollary[{.8 — For simplicity we assume that § = d. Using (4.1]) it is enough to prove that
there exist Cy > 0, hg > 0, ¢; > 0 such that

(4.15) P, [u €Sy 1 [[ufl pooras> < Co|log h|1/2} < het, VY €]0, ho).

Let u € Sp,, then by (3.2) we have the interpolation inequality

1-2
et o) gy < Null s 2500

So we get

1/2 1/2 1-2/r]
P [u € Sy [[ull sz < Collog A2 < Pop |u € Syt ullpracrzsy < (Colloghl'?) ],

and choosing r = r;, = g¢o|log h| we obtain

Co 1/2) 1=2/ra]

P, [u € S ¢ |l peortr2 < Collog h|1/2} <Py |weSy: |ull ez < <

\/* Th
Then choosing hg > 0, \%)T) small enough and A = ¢|log h|1/ 2 we can conclude that (4.15)) is satisfied
using (4.9). O

Remark 4.11. — Concerning the mean Mo, of Foo(u) := ||uf|foc.as2 it results from Corollary
(4.1) and (3.16)) that we have the two sides estimates

Collog h|'? < My < Ci|logh|V2,  Vh €]0, ho).

It is not difficult to adapt the proof of (4.9) and (4.10)) for the Sobolev norms ||ul]yys.pge)- It is enough
to remark that considering Lou(z) = H%/?u(z) we have

€L, = Z)‘JSOJ

JEA

But for j € A, \; is of order h™! hence there exists C' > 0 such that
C'h=%e, < er, < Ch™%ey

Using this property we easily get the next result, which in particular implies Theorem Let M,
be the median of u — ||ull)ys.rga), and recall the definition (4.8). Then

Theorem 4.12. — Let s > 0. There exist 0 < Cy < C1, K > 0, ¢1 > 0, hg > 0 such that for all
r € [2, K|loghl|] and h €]0, ho]

(416) P’Y,h |:u E Sh . ’HUHWS,T(Rd) - Mr’s

> A} < 2exp ( — CQNZ/Th_ﬁT’OJ’_SAQ).

where

—s

C’o\[h <Mrs<01fh , Vrel2,KlogN].
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In particular, for every k €]0,1[, K > 0 , there exist Cy > 0, C1 > 0, ¢1 > 0 such that for every
r € [2, K|logh|"] we have

P, [u € Sp 1 Cov/rh i Dh™5 < J[uflyysr gay < Clﬁh%ﬂ—%)h—ﬂ >1 - galloghl™
For r = +00 we have for all h €]0, ho)

P, [u € S : Collog h|"/2h T < [[ullyyeco ey < C|log h|1/2h%} >1 - e,

Namely,
[ullyys.rmay = h_S/ZHU”LnO(Rd) + lull pros (ray
and
Bl roggay ~ B3CTORTE, lull ey ~ R3OTDRTE
4.3. Lower bounds in the general case. — Under Assumption [I] we prove a weaker version of
Theorem .12

Theorem 4.13. — Suppose that Assumption is satisfied. Let s > 0, k €]0,1[, K > 0. There exist
0<Cy<Ci, K>0,c >0, hg >0 such that for all r € [2, K|logh|"] and h €]0, ho]
2

P, [u € Sp: Cohs " Dh™5 < [lullyyergay < Cry/rhi0- Ufﬂ > 1 — eclloghl'™"

For r = 400 we have for all h €]0, ho]

d—

P, [u € Sh: Coh "5 < [|ullyyee (e < Ci| log h|1/2h%} > 1 - e,

Therefore, we have optimal constants in the control of the W*"(R%) norms when r < +oc and for
general random variables which satisfy the concentration property, but when r = +o0o we lose the

factor |log h|*/? in the lower bound.

Proof. — We can follow the main lines of the proof of Theorem Here compared to (4.12)) we get

Al > CrNTT/? (/ <3:)Seg/2dx>/ /2 et dt
Rd 0

> CN~T/? </ (a:)se;ﬂd:z) g2,
Rd

and this explains the loss of the factor /r. O

4.4. Global probabilistic LP-Sobolev estimates. — Here we extend the L°°- random estimates
obtained before to the L"-spaces for any real » > 2, and we prove Theorem Let us recall the
definition of the Besov spaces, where we use the notations of Subsection for the dyadic
Littlewood-Paley decomposition.
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Proof of Theorem — Recall that for every o > m we can choose v such that p(H?) = 0.
Denote by F; ¢(u) = |lul[yysr. The Lipschitz norm of F;. , satisfies

S

:‘21\3\H

|FrsllLip < CR™5HG=0)

Let us denote by M, s the median of F. s on the sphere S; for the probability P, and by A7 ; the
mean of F . From Proposition we have, for some 0 < ¢y < ¢y,

K2

(4.17) P olueS:|Fy— M| > K} < exp ( Y —
sl 7.

) Sexp(—coNl/rK2>.

With the same computations as for (4.14]) we get
(4.18) Ars~+r and |An.s — M, < VrN7YT

These formulas are obtained from ([2.9)) applied to the linear form Lsu := H%u(x) noticing that
er, = Z |H5pj(z)|* ~ h™*%ey.
JEAR

Then taking cgp > 0 small enough that we have
(4.19) Vo [v e & |vflwer > KHU||L2(R4)} < exp (—CONQ/’"KQ) . VK > 1.

Then from (4.19) we proceed as for the proof of Corollary For simplicity we consider here the
usual Littlewood-Paley decomposition. Then we have N2/" ~ 2274/ So the end of the proof follows
by considering

Bi={ve&: |v|wsr < KHUHLQ(W)}_
So for a fixed r > 2 we infer ((1.6)) from (4.17)) and (4.18)), taking ¢y > 0 small enough, we get

2
Ly HBff > 1 — e K7,
n>0

O

Using the isometry u +— H~™/2y between B5  and Bg”f“ * for all real m > 0, we can get the following

corollary to Theorem
Corollary 4.14. — Let m > 0 and assume that v satisfies (1.2]) and

Z 2" 5|, < 4o00.

n>0

Then for s = d(3 — 1) +m and r > 2, we have

_ 2
iy [u € BY ¢ [lullypmear > K||u||,3§31} < o~0K?,
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5. Application to Hermite functions

We turn to the proof of Theorem and we can follow the main lines of [2 Section 3]. We use
here the upper bounds estimates of Section in their full strength. Firstly, we assume that for all
JEAL v = N}Zl/Q and that X; ~ N¢(0,1), so that Pj, := P., j is the uniform probability on S;. We
set hy = 1/k with k € N*, and

Qh,, =2+ dhy, bhk =2+(2+d)hk.
Then ((1.1)) is satisfied with § = 1 and D = 2. In particular, each interval

_ [ b ]
I, = [ e [_[2k+d,2k:+d+2[

only contains the eigenvalue A\, = 2k + d with multiplicity NVj, ~ ck?1 and &En, is the corresponding
eigenspace of the harmonic oscillator H. We can identify the space of the orthonormal basis of &},

with the unitary group U(Np, ) and we endow U(Np, ) with its Haar probability measure p;. Then
the space B of the Hilbertian bases of eigenfunctions of H in L?(R?) can be identified with

B = xkenU(Ni,),
which can be endowed with the measure
dp = Qpen dpg-
Denote by B = (‘Pk,é)keN,fe[[l,Nhk}] € B a typical orthonormal basis of L?(R?) so that for all & € N,

(SOk,z)ee[[LNth € U(Np, ) is an orthonormal basis of &, .

Then the main result of the section is the following, which implies Theorem

Theorem 5.1. — Let d > 2. Then, if M > 0 s large enough, there exist ¢,C > 0 so that for all
r>0

2
p| B = (ro)ren ceqng, ] € B Ik, 6 | onellyarzcemay > M(log k) + r} < Ce™ .
We will need the following result

Proposition 5.2. — Let d > 2. Then, if M > 0 is large enough, there exist ¢c,C > 0 so that for all
r>0andk>1

(51) Pk [Bk = (1/}@)@6[[1,]\7)%]] S U(Nhk) 3l e [[LNhk]]; waHWd/Q’OO(Rd) > M(log k)l/Q —+r
< Ck 2.

Proof. — The proof is similar to the proof of [2, Proposition 3.2]. We observe that for any ¢y € [1, Ny, ],
the measure p;, is the image measure of Pj, under the map

U(Nny) 2 B = (Ye)eepi v, 1 = Yty € Shy.-



RANDOM WEIGHTED SOBOLEV INEQUALITIES ON R¢ 29

Then we use that S;, C &, is an eigenspace and by Theorem we obtain that for all £y € [1, Ny, |
Pi| Be = (Ye)eeqing, ) € UNny) < ltbeollyarzoomay = M (log k)2 4+ 7“}
=Py, [u € Spy. ¢ [ullyyarz.cogay = M(log k)2 + 7"}

—

w € Sny + kY ul| poo ey = M(log k)2 + 7‘}

2
’

