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Abstract

Let ¢ be the golden ratio. We define and study a continued ¢-fraction algorithm,
inspired by Euclid’s algorithm. We show that any non-negative element of Q(¢) has a
finite continued ¢-fraction.
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Introduction

The S-numeration, introduced by Rényi [26] and Parry [23], is a numeration system in a non-
integral base. Let # > 1. In the same way as in the case of an integral base, one may expand

any € [0,1] as . = Y 7%, where the sequence (vy)ren+, which takes values in Az =
keN*
[0,...,[B]], is called expansion of x in base 3. Among the expansions of x in base 3, the greatest

sequence for the lexicographical order is called 8-ezpansion of x, and is denoted by dg(z). The
B-expansion of  is constructed by the greedy algorithm, that is, dg(x) = 0.e1€2. .., where the
elements of the sequence (ei)gen+ are defined, using the map Tp : [0,1] — [0,1],z — {fz},
by er = [Tg(:z:)] for all £ € N*. Note that the map dg is increasing if Ag* is endowed with the
lexicographical order. When dg(x) = 0.v; ... contains only finitely many non-zero elements,
one may remove the ending consecutive occurences of 0’s, that is, dg(x) = 0.v1 ... v,. In the
particular case where dg(1) is either finite or ultimately periodic, 3 is said to be a Parry
number, respectively simple or non-simple.

Parry showed in [23] that a sequence v = (vg)ren+ is the [-expansion of a real number
x € [0,1] if and only if the following condition, called the Parry condition, holds:

for all i € N, Si(v) <lex (€k)keN+, (1)

where S denotes the shift map, that is, S((vi)ken) = (Vg+1)ken, and where (eg)gen+ is the
greatest sequence for the lexicographical order among the expansions of 1 in base § that are
not finite, denoted by dj(1). A word or a sequence which satisfies (1) is said to be admissible.
The set of admissible words is a language denoted by Lg.

The notion of B-expansion is naturally extended to non-negative real numbers by applying
the greedy algorithm. Note however that we do not use the expansion 1.0% for the real number
1; this expansion seems more natural and does not depend on the base (3, however it does
not allow us to define the condition of admissibility that appears in the Parry condition (1).

n

Any z > 1 may be uniquely expanded as z = Y v_pB* + 3 vpf7F, where (vp_p)gen is an
k=0 keN*



admissible sequence. The sum which consists of non-negative powers of (§ is called B-integer
part of x, and is denoted by [z]z. The sum which consists of negative powers of [ is called
B-fractionary part of x, and is denoted by {z}3.

In the framework of B-numeration, the elements which play the role of non-negative integers
are the non-negative real numbers x such that @ = [z]|3, which are called non-negative 3-
integers. The set of non-negative (-integers is denoted by ZZ. Since ZZ is a discrete set for

any (> 1, one may define the (-successor of x € Z'ﬁ" as sg(p) = min{q € Zg,p < q}. The set
{sp(z) —z,x € ZE} is finite if and only if £ is a Parry number, see for instance (8, 28|.

It is natural to ask whether usual properties in the framework of classical numeration
systems are preserved in a non-integral base. In this article, we are interested in studying a
continued fraction algorithm introduced by Enomoto, where the sequence of partial quotients
consists of G-integers instead of integers. This study is performed with the golden mean, that

is, B = 1"'2—\/5, that we denote by ¢. This choice is accounted for the following properties:
1. ¢ is quadratic over Q,
2. ¢ is a Pisot number,
3. ¢ < 2, hence expansions in base ¢ are defined on the alphabet A = {0, 1}.

The aim of this article is to prove the following result, conjectured by Akiyama [29].

Theorem 5.3 The positive real numbers whose continued ¢-fraction is finite are the
positive elements of Q(¢).

This article is structured in the following way. Section 1 gathers all elementary definitions,
notation and preliminary results. We introduce the notion of ¢-fractions, which are fractions
whose numerators and denominators are ¢-integers, and also the notion of length on ¢-integers.
We use in Section 2 the Dumont-Thomas algorithm (see [13]), which allows us to expand the
prefixes of a fixed point of a primitive substitution in a canonical way. Thus, there is an explicit
one-to-one map between Z' and the set of prefixes of w, the fixed point of the Fibonacci
substitution o defined by o(a) = ab and o(b) = a (Propositions 2.3 and 2.7).

In Section 3, we introduce intervals Zy, defined for any admissible word W. We prove
that Zy, contains the images under the Galois map 7 of ¢-integers whose ¢-expansion admit
W as a suffix. Furthermore, the bounds of Zy are determined by W (Lemmas 3.1 and 3.5).
This provides a geometrical characterization of elements in Z? that are abelianizations of
prefixes of the fixed point of the Fibonacci substitution, as follows: they need to belong to a
particular semi-window By (Theorem 3.8, Corollary 3.9, and see Figure 3). The semi-window
By is in fact defined by a cut-and-project scheme, which admits a Rauzy fractal as a window
of acceptance; this Rauzy fractal, which is | — 1, ¢[ in the Fibonacci case, allows us to define
a self-similar tiling of R. Thanks to this characterization, it is possible to determine whether
any real number constructed by adding, subtracting or multiplying ¢-integers is a ¢-integer.

Section 4 deals with continued ¢-fractions. These are continued fractions, constructed
according to a generalization of Euclid’s algorithm, where the sequence of partial quotients
consists of ¢-integers. First, we study the construction of continued ¢-fractions (Proposition
4.5). Then, we try to extend to positive elements of Q(¢) the following classical result: the
continued fraction of any positive rational number is finite. Having this prospect in mind, we
go back to the approach used in classical continued fractions, in order to apply it to continued
¢-fractions. Since the set of ¢-fractions is Q(¢)" (Proposition 4.6), we define an algorithm A



on pairs of ¢-integers which represents, when it is defined, the action of the map [0, 1] — [0, 1],
T — {%}(z, Hence, starting from a pair (pg, qo) of ¢-integers such that z = ’q’—g, the algorithm
A constructs by iteration a sequence of pairs of ¢-integers (p;, ¢;)ien, such that the sequence
of partial quotients of z is ([%]¢)ieN. Then, using a notion of length on pairs of ¢-integers,
denoted by ¢, we compute an upper bound for the quantity ¢(p,q) — t(A(p,q)) (Lemma 4.8).
Studying more closely several cases which depend on [§]¢, we obtain a more accurate upper
bound for t(A(p,q)) — t(p,q) (Propositions 4.11, 4.14, 4.15).

We prove in Section 5 that the sequence (¢(p;, ¢;)); of lengths of pairs of ¢-integers that
are produced when iterating the algorithm A is bounded. This implies that the continued
¢-fraction of any x € Q(¢)* is either finite or eventually periodic. Finally, we prove by
contradiction that elements having an ultimately periodic continued ¢-fraction are not in

Q(¢), which proves Theorem 5.3.

The definitions introduced in this article may easily be extended to the class of Parry
numbers, and several results obtained in Sections 2, 3, 4 may hold for other numbers than
the golden ratio. However, we do not known for which numbers one can generalize the result
provided by Theorem 5.3.

1 Definitions and notation

1.1 Generalities
For convenience, we define for any set E C R the sets E* = E < {0} and ET = ENR,.

Let A be a finite set, called alphabet. Endowed with the concatenation, A generates a
monoid A*. For any v € A*, we denote by |v| the number of letters of v, and by |v|,, the
number of occurrences of the letter a; in v. The empty word is denoted by e.

Let (€i)ic[1,...q) be the canonical basis of Z% Let f: A — Z% be the morphism of monoid
called abelianization morphism or Parikh map, defined by f(a;) = €; for all i € [1,...,d] (for
more details, see |24]).

A substitution is a map from A to A* which naturally extends to a morphism on A*. Let o
be a substitution defined on A = {a1,...,aq}. The incidence matriz of o is the square matrix
M, of size d, whose coefficients are defined by My, j] = |o(a;)la, for all (i,5) € [1,...,d]>

When dg(1) is either finite or ultimately periodic, [ is said to be a Parry number. Let us
recall that any Pisot number is a Parry number ([7, 27]). When f is a Parry number, one can
define a substitution ¢ associated to § called (3-substitution. The eigenvalues of the incidence
matrix M, of ¢ are the roots of the polynomial whose coefficients are defined by dg(1). In
particular, 3 and its Galois conjugates are eigenvalues of M,. See |28, 15| for more details on
(-substitutions. The notion of admissibility introduced in (1), which depends on d;(l), can
be defined using the associated [-substitution when ( is a Parry number. In this case, the set
of admissible words is the set of words that are recognized by a finite automaton associated
to B called the prefiz-suffix automaton. One may refer to [11, 12] for more details.

1.2 The Fibonacci numeration system

We denote by ¢ the golden mean 1"'2—\/5, which is the positive root of the polynomial X2 —X —1.

Since the Galois conjugate of ¢ is —¢~1, whose modulus is less than 1, ¢ is a Pisot number.
We denote by 7 the field morphism defined on Q(¢) by 7(¢) = —¢~L.



Since Ty(1) = ¢~ and Ty(¢~') = 0, the ¢-expansion of 1 is dy(1) = 0.110% = 0.11, which
means that ¢ is a simple Parry number. Moreover, dj (1) = 0.(10)>°, which implies that any
word is admissible if and only if it is defined on the alphabet A, = {0,1} and it does not admit
the word 11 as a factor. More details about Parry numbers can be found in |7, 14, 22, 27].

Let > 0. When there are only finitely many non-zero elements in dy(z), we say that x
has a finite ¢-expansion. In this case, we omit the ending of consecutive zeros. The set of real
numbers having a finite ¢-expansion is denoted by Fin(¢). Note that ¢ satisfies the finiteness
property (F), that is, Fin(¢) = Z(¢~1). See [17, 1, 2| for more details on the finiteness property.

The set of non-negative ¢-integers is the set of real numbers that can be expanded as

n
v = Y e, where v, € {0,1} for all k € [0,...,n]. Note that Z; is a subset of Z[¢] ~

k=0
Z[X]/(X2 = X —1).

Remark 1.1. Since ¢ is a confluent Parry number ([16]), we may obtain the set of ¢-integers
without using the admissibility condition.

Definition 1.2. Let dy(x) = vyuN—1...v1V0.0—1 ... v_N/, where x € Fin(¢), x # 0. We call
¢-integer length of = the quantity |dg([z]s)| = N +1, that we denote by to(x), and ¢-fractional
length of x the quantity |dy({x}s)| = N’, that we denote by t_(x). We call global length of
the quantity |dg(x)| = N+ N'+1, that we denote by t(x). We set t(0) =t_(0) = t(0) = —o0.

Remark 1.3. The positive real number x belongs to Z; if and only if t4(z) = t(x).

Definition 1.4. Let p,q € Z; with ¢ > 0. Then g € Q(¢) s called ¢-fraction. The pair (p,q)
15 called ¢-fractionary expansion of x. The set of ¢-fractions is denoted by Q(‘;

Definition 1.5. Let p,q € Z;. We define the length of (p,q) as t(p,q) = t(p) +t(q) — 1. We

define the length of x € Q; as min+{t(p) +1t(q) — 1,z = %}_
D€Ly

Let x € Q;; When (p,q) is a ¢-fractionary expansion of x such that t(x) = t(p) +t(q) — 1,
(p,q) is called reduced ¢-fractionary expansion of x.

Example 1.6. A ¢-fractionary expansion of 2 is (¢> +1,$?). One checks that (¢° +1,¢?) is
i fact the unique reduced ¢-fractionary expansion of 2.

Remark 1.7. Any ¢-fraction has a unique reduced ¢-fractionary expansion. Since we do not
need this property for our study, we do not include its proof. See [6] for more details.

The ¢-substitution associated to ¢ is defined by o(a) = ab and o(b) = a. This substitution
is called the Fibonacci substitution; the eigenvalues of the incidence matrix M, of o are exactly
the roots of X2 — X — 1, namely ¢ and 7(¢) = —¢~!. We denote by w the unique fixed point of
o. For all k € N*, we denote by wy, the prefix of w such that |wy| = k. The following proposition
is a particular case of Theorem 1.5 in [13].

Proposition 1.8. Let k € N*. Then wy can be uniquely expanded as wy = 0" (gy) ... 0% (gp),
with:

1. e, =aqa;

2. foralli€[0,...,n], & € {e,a};



3. for alli €[0,...,n], gigit1 # aa.

The expansion 0" (e,,) . ..c%(gp) is called the Dumont-Thomas expansion of wy. We denote
by 0%(¢) the Dumont-Thomas expansion of wg = .

Let (F,)nen be the Fibonacci sequence. This sequence is defined by the following linear
recurrence, which may be extended to Z: for all ¢« € N*, F; ;1 = F; + F;_1, with the initial
conditions Fy = 1 and F} = 2.

Remark 1.9. We use later the following relations: for all n € N, |6™(a)| = F,, |0"(a)|s =
F,—1 and |o™(a)|p = Fr—2.

2 Link between expansions, ¢-integers and the prefixes of w

The aim of this section is to find connections between Z' and the set of prefixes of w, using the
abelianization map f and the projections defined by the eigenvectors of the matrix M, . This
study allows us to define and construct the algorithm of expansion in continued ¢-fraction.
We will use several results proved in [5] as well.

2.1 Abelianization of the prefixes of w

The sequence (f(wi))ren defines a path in Z2, where the k-th vertex is (|wg|q,|wrlp). This
path is depicted in Figure 1. Let ||.|| denote the euclidean norm on Z2.

s : J(wk)
Proposition 2.1. The vector klggollf(wk)ll

1s an eigenvector of M, whose eigenvalue is ¢.

This property is a direct consequence of the fact that the substitution o is of Pisot type,
that is, the dominant eigenvalue 3 of M, the incidence matrix of ¢, is such that, for any other
eigenvalue A of Mg, one has 0 <A <1 < B (see [5] for more details). As a consequence, we
define (fl, fg) a new basis of R?, where f1 and f2 are eigenvectors whose associated eigenvalues
are respectively ¢ and —¢ 1, such that €] = f1 + fg. Since M, is symmetric, this new basis is
orthogonal. We denote by A; and A, the subspaces respectively generated by fi and fé

Definition 2.2. We denote by 71 (X) and wy(X) the coordinates of X in the basis (f1, f2).

Proposition 2.3. Let 0" () ... 0%(g) be the Dumont-Thomas expansion of wy. The following
relations hold:

n

Lom(f(we)) = Ylesl(=¢) 7",

=0

2. mo(f(wr)) = ZIEZW

i=0

Proof. The vectors of the basis (fi, f;) are eigenvectors of the matrix M,. We additionally
check the equality foo = M, o f on A*; since f and ¢ are morphisms, we only have to check
this relation on A. As f(o(a)) = €1 + €3 = M, f(a) and f(o(b)) = €i = M, f(b), the equality
holds. Since we have aho fla) = f1 + fa, we deduce f(o™(a)) = (—@) ™ f1 + ¢" fo. Hence

f(o"(en) ... 0%e0)) = (Zlé‘z\( ¢)” ,Z;)IEZW)- O
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Figure 1: Abelianizations of w and the basis (fl, fé)

2.2 Relation between expansions of ¢-integers and prefixes of w

Let I" be the map defined by
I': ,C¢ — {wk,k S N*},vn...vo — Wk,

where wy, = 0" (e,) ... 0%(gg) is such that for all i € [0,...,n], |¢;| = v;. Note that ' is defined
on expansions in base ¢ of ¢-integers, and that I'(W’) = I'(dy(x)) for any expansion W’ in
base ¢ of x. If we restrict I' to the set of admissible words which admit 1 as a prefix, we
obtain an invertible map, with I'” Yo™(epn)...0%e0)) = |en] .- |eo|. Since ‘rhe coordinates of
61 and €35 in the basis (fl,fg) are rationally independent, the projections 7 : Z?> — A; and
75 : Z2 — A5 are one-to-one. Hence the following maps 71 and 7o are bijections:

m 1 Z* — Z[¢], (p,q) — p — g,

T 1 22 — Z[¢], (p,q) — p+ ¢ g =p —q + ¢q.

Remark 2.4. These projections are not exactly those uwalh/ defined in the associated cut-
and-project scheme, see for example [19]. The basis (fl,fg) may be seen as the image of the
canonical basis under the action of a dilatation and a rotation. This explains why we do not
retrieve exactly the usual notation for this scheme.



n n
Let z € Z;r, dy(r) = vy ...vg. Then 772_1(33) = (D viFi—1, Y viFi_9).
=0 1=0
Notation 2.5. The map 71 o7, ' coincides with T on Z[¢).

2.3 Basic properties of Z;

The set Z; is not stable under addition and multiplication. For instance, one checks that 1
and ¢* +1 € ZJ; however 1 +1=2=¢+¢ > ¢ Z and (¢> +1)* = ¢° + ¢+ ¢ > ¢ Z].
However, it is proved in [17] that the finiteness property (F) holds in the case of the Fibonacci
numeration system, that is, Fin(¢) = Z[¢~!]. Hence the sum and the product of two ¢-integers
may be expanded as a finite sum of powers of ¢ whose coefficients satisfy the admissibility
condition.

One may define two laws @& and ® on Z;r, such that Z; is stable under @ and ®. This
point of view is developed for instance in [4, 9, 10]. We do not use such a point of view, because
we need to work with usual laws.

Proposition 2.6. Let x € Z;f. Then:
1. sg(x) = =+ 1 if and only if dy(z) admits 0 as a suffiz,
2. sg(x) =z + ¢ ' if and only if dy(x) admits 1 as a suffiz.

One can easily deduce this particular result from [8]. Note that the successor function s
has been extensively studied, see for instance [18].

Proposition 2.7. One has Z; = {mo(f(wg)), k € N}.
Proof. Let = be a ¢-integer. Let dy(z) = vy, ... vg. Then, using Remark 1.9, one has:

n n n
r = Z%‘(Fi—1 + F9p™t) = 7T2(ZWF¢—1, ZUin‘—z)
=0 =0

i=0
=m0 f(6™(en). ..o (ep)) with for all i € [0,...,n], |&] = vi.

Since v;v;y1 # 11 implies g;6,41 # aa, there exists k € N such that ¢"(g,)...0%(gg) is
the Dumont-Thomas expansion of wy. Conversely, if the Dumont-Thomas expansion of wy is

o™(ep)...0%e0), then z = ma(f(wy)) can be expanded as > |e;|¢" € Z;f. O
i=0

Hence 7o o f defines a bijection between Z; and the set of prefixes of w.

3 Algebraic and geometric characterization of Z(“;

The aim of this section is to establish relations between ¢-integers and their images under
the Galois map 7. We prove below that, if z € Fin(¢)", then x is a ¢-integer if and only if
7(x) €] — 1,¢[. In this case, f(I'(dy(x))) fulfills a geometrical condition, that is, f(I'(dy(x)))
belongs to an open semi-band B; that we define in Section 3.3.



3.1 Repartition of the image under 7, o f of admissible words on A,

Due to Propoqition 2.3, the images under 71 o f of the prefixes of w belong to the interval

Jmin{ 3 vp(—¢) " (vk)keN € {0, 13"}, max{ Z vk (=8) 7", (v ke € {0, 11N} [=]—1, ¢[. More
keN
generally, given S € Ly, we define an 1nterval Zg which satisfies the following property: if

n .
x € Z(‘g is such that dy(z) admits S as a suffix, then 7(x) = %vi(—@_z belongs to Zg.
7=

Lemma 3.1. Let W = w, ... wg € Ly. Let U be an expansion in base ¢ which admits W as
a suffis. Then: —¢75) < my (f(DU))) = m(FT(W))) < 67215

Proof. Let W = .wg € Lg. Let U = wy, ... wp be an expansion in baw ¢ which
admits W as a suffix. Then: =1 (f(T'(U))) = Z i(—) = Zwi(—@_l + Z wi(—¢)~" =
i=0 i=0 i=n+1
n’ )
m(fTW)) + > wi(=¢)™"
1=n+1
n .
If n is even, then —¢™" < > w;(—¢)™" < ¢~ "L. On the other hand, if n is odd, then
i=n+1
n’ )
—¢" < 3 wi(=d) T <o
i=n+1

We deduce that 7, (f(D(W)) — ¢~ < m (F(OU)) < m(FOOV)) + 672571 O

3.2 Cylinders and intervals: a tiling of | — 1, ¢|

Due to Lemma 3.1, any S € L4 defines an interval Zg such that, if any expansion in base ¢
of z € Z; admits S as a suffix, then 7(x) € Zg. It is natural to ask whether we can establish
a reciprocal property. Thus, if S € L4, and if z is a ¢-integer such that 7(z) belongs to Zg,
we want to determine whether there exists an expansion in base ¢ of & which admits S as a
suffix.

Definition 3.2. For W € Ly, we define the cylinder Cy as the set of expansions in base ¢
which admit W as a suffiz. Let Py = {m(f(T(W'))),W’' € Cw}. We define the interval Iy,
as the convex hull of Py .

Remark 3.3. One has Io =] — 1, ¢! and Z; =]¢~ 1, ¢|.
Proposition 3.4. The following properties are fulfilled:

1. the set Py 1s dense in Ly ;

2. we get Ty =] — 6?7 4w (F(C(W))), 231~ 4+ 1y (F(D(W)))].

Proof. First, we show that Py is dense in Zy if and only if P. is dense in | — 1,¢[. Let
W =w,...00 € Ly Let x e] o2 4 (F(DOW))), 621 4 7y (F(T(W)))]. Using Lemma
3.1, we get mi (f(I'(W))) = Zvi(—Qﬁ)_’. We note that (v;);>n is an admissible sequence such

o0

that > v(—¢)~" €] — ¢

1=N+1

[ H] ), ¢~ 22171 if and only if (v])ien is an admissible sequence



0 .
such that Y vl(—¢)~" €] — 1, [, where the sequences (v;);>n and (v});en are in relation by
i=0

v} = viyn4+1 for all 4 € N. Hence, in order to prove the first assertion, we prove now that P,
is dense in | — 1, ¢].

Let 2’ €] — 1, ¢[. We define zg = 2/, and v, = 0 if 29 €] — 1,¢ 7], v, = 1 otherwise. Then,
since wg — v €] — 1,071, we have 1 = —¢(z9 —v}) €] -1, ¢]. By induction, if the terms of the
sequences (v;)ic[o,...,n—1] and (:L“Z)Ze[o .n] are defined, we set v, = 0 if x,, €] — 1 Lo vl =1
otherwise, and z,+1 = —¢(x,, — v),). Then (mn)neN is a sequence with values in | — 1, ¢[, and
(vl )nen is an admissible sequence. Since x — sz( )" = (—¢)" o, for all n € N, we

1=0
o0

have constructed an admissible sequence (v;);ey such that o = > v;(—¢)~¢, which proves the
i=0

density of Py in | — p*"F ) + m (F(D(W))), ¢ 2371 + my(F(T(W)))
interval which contains Py contains also the interval | — <;32 (3] + m

We deduce that any
FW)), e 2+
M (W), hence | — 651 4 m (FD(W))), 6251 4 o (F(T(W)))[C Ty Since Ty is
the intersection of all intervals that contain Py, Zy C] — ¢2[n+ I+ m1(f(T(W))), o2zl 4
m (f(T(W))L[ O

[
(

Lemma 3.5. Let W € Ly. Then:

1. for any prefiz P of W = PS, the word W' = P 015! is admissible and Ty, —m1(f((S))) C
Twr;

2. for all k €N, Tyyor = (—0) " Tyy;
3. for any suffiz S of W, Iy C ZLg.

Proof. Let W = PS, and let 0" (¢,)...0" P (epr11)0™ (ens) ... 0%(e0) and o™ () ... 0(e0)
be respectively the Dumont-Thomas expansions of I'(W) and I'(S). Using the linear properties
of f and 7y, it follows:

T (f(0"(en) - 0%(e0)) = m1(f (0™ (w) - 0%(£0))) = m(f(0"(en) - 0™ (enrs1)e))
= m o fol(POSh.

Thus, 71 (f(T(W))) — 1 (f(T'(S))) belongs to {m(f(T'(W'))), W' € Cpgyis} for any admissible
word W = PS, which ends the proof of the first assertion.
Let W = w,, ... wp and W’/ = WO0F. One has :

7'('1 Zw —(i+k) kzwz = _¢)_k771(f(r(w)))'

Hence Zyyor = (—¢) ¥ Ty, which proves the second assertion.
Finally, if S is a suffix of W, then Cy C Cg, hence Zyy C Zg. O

Proposition 3.6. If W and W' are expansions in base ¢ of ¢-integers such that Tyy NIy # &,
then either Cyy C Cyw or Cyyr C Cyy.



Proof. Suppose that W and W' are expansions in base ¢ of ¢-integers such that none of them
is a suffix of the other. Let S be the common suffix of W and W’ which is of maximal length.
Then W = PS, W/ = P'S, where P and P’ have a different suffix of length 1 (for instance, 1
is a suffix of P).

Suppose that Zyy and Zyy are not disjoint. Using successively the three assertions of Lemma
3.5, this implies, first that Zpys) and Zp,gs) are not disjoint, second that Zp and Zp/ are not
disjoint, and finally that Z; and Zy are not disjoint. This is absurd, since Zy =] — 1, [ and
T, =|¢ 1, ¢[, see Remark 3.3. O

Thus, the image of the set of admissible expansions having W as a suffix under 71 0 fo I
is dense in Zyy. Additionally, Proposition 3.6 establishes that Zy and Zyy+ are disjoint when
W and W' are distincts admissible words of the same length. Hence, for k& € N*, the sets Py,
form a partition of P., where {Wy, }ic1... ;] denotes the set of admissible words of length k.
We deduce a subdivision of Z. into Fj, intervals Zyy, . When k£ = 2, the associated subdivision
is depicted in Figure 2. '

-1 —¢% 0 ¢! ¢

T1o Zoo Zo1

Figure 2: Tiling of Z. =] — 1, ¢[= Z10 U Zoo U Zo1

Any admissible word W admits either 0 or 01 as a suffix, and, due to the first assertion
of Lemma 3.5, the maps C. — Cp,v —— v0 and C. — Cy1,v —— 01 are in one-to-one cor-
respondance. Hence Z, satisfies the relation 7. = 7 UZg; = (—¢'Z.) U (1 4+ ¢~2Z.). This
relation provides a tiling of the self-similar set Z.. A closer study of such tilings is performed
in [1, 3, 28|. The tiling of Z. =] — 1, ¢[ defined by the cylinders is a self-similar tiling of | — 1, ¢].
The dual tiling defined by kLEJNm (f(wg)) is a discrete tiling of R, which corresponds to the

quasicrystal associated to ¢, see [9].

As it is possible to extend the tiling of | — 1, ¢[ to R, we deduce that sums and products
of the images under 7 of ¢-integers belong to unions of tiles of the tiling defined by 7. These
tiles can be geometrically characterized, and have a combinatorial signification. The property
of defining an associated tiling remains true for any Pisot number; in particular, when 3 is
the positive root of the polynomial X2 — X2 — X — 1 (called then the Tribonacci number),
we get a Rauzy fractal 7 which is a subset of the hyperplane generated by the eigenvectors
of the incidence matrix having an associated eigenvalue of modulus less than 1. One may
find more details about Rauzy fractals in chapter 7 of |24| and in [25]. Note that, from a
general point of view, the Rauzy fractal 7 has a fractal structure; however, when ( is a
quadratic unit, the Rauzy fractal 7 defined by the associated §-substitution is an interval. As
a consequence, many studies, including the one performed in this article, are less complicated
when we consider quadratic unit numbers.

Corollary 3.7. Let v € Fin(¢), + > 0 with dy(x) = vy ...vo.v—1...v_ns. Then 7(x) €

(=0) Vo' 0l
N , .
Proof. If z = Y v;¢! with v_ps = 1, then ¢V z is a ¢-integer whose expansion admits
i=—N'

1 as a suffix. Since Z; =o', @[, one gets 7(¢™V'z) = 7(¢)V 7(z) €]p~", ¢[, which implies

10



7(z) € (—o) Mg, 4. 0

3.3 Characterization of ¢-integers

Due to Corollary 3.7 and Proposition 3.4, knowing a suffix S of the ¢-expansion of x € Fin(¢)
provides an interval Z, which depends on S, such that 7(z) € Zg. Conversely, we want to
determine whether, knowing an interval Z which contains 7(x) € Q(¢), one may find k € N, in
the case where such an integer does exist, such that ¢Fz € Z;f. This problem is closely related
to determining the ¢-fractional length of the ¢-expansion of z € Fin(¢).

Let B;r be the semi-window of R? defined by m(X) €] — 1,¢[ and mo(X) > 0, which is
depicted in Figure 3. We have the following property.

Figure 3: Geometrical representation of B;

Proposition 3.8. Let X € Z?. Then m(X) € Zg if and only if X € B(’;.
One can find the proof of this proposition in [5|, and in [6] as well.

Corollary 3.9. Let X € Z? such that wa(X) > 0. There exists N € Z such that m1(X) belongs
to (—p)N¢™t, ¢[. Moreover, if N € N*, then dy({m2(X)}s) = 0.2_1...2N.

Proof. One has NUZ(—Qﬁ)N/]d)_l, dl=R~ ZUN_ (—¢)N. Suppose that there exists N € Z such
€ €

that 71 (X) = —(—¢)V. Then m(X) = 7(m1(X)) = —¢", hence m2(X) < 0. We deduce that,
if m3(X) > 0, there exists N € Z such that m(X) € (—¢)V]o~1, ¢].

11



If m1(X) € (=)o, 9], then m (X)(~ ¢)N € ]¢> ;¢ and m (X)7(¢7N) €lo™, o],
Let x = mo(X). Since 7(x)7(¢™N') €]lo™1, ¢[, o' = 29~V fulfills the relatlon T(2') €]o™ 1,¢[
Additionally, since M, is invertible, there exists X’ € Z? such that m, Ly = MU_N X =

X'. Since m(X’) > 0, we may use Proposition 3.8; there exists wr = 0"(ey) .. 00(50) such

n .
that X' = f(wg), hence m(X') = > lei|¢". Thus, z = z|€ "N, hence dy(
=0 =0
|€n|...|€0|.|€_1|...|€_N/|. ]

=

,\

d
|

Corollary 3.10. Let x,y € Z). Then ¢*(x +vy), ¢*(x —y) and ¢*zy € Z.

Proof. Since ¢?(z +y), ¢*(z —y) and ¢%xy are positive, we can use Corollary 3.9. Then:
L T(z+y) €] —2, 20[=] — ¢ — ¢ 2,¢* + ¢ '], hence 7(¢*(z +y)) €] — 1, ¢[.
2. T(z —y) €] =1 - ¢, 1+ ¢[=] — ¢%, ¢°[; this implies 7(¢*(z — y)) €] — 1, ¢].
3. 7(zy) €] — ¢, ¢?|, hence T(¢?zy) €] — ¢~ 1, 1[C] — 1, 9].

Remark 3.11. These results were first proved in the framework of quasicrystals in [9, 10].

Note that images under 7 of the sum, the subtraction or the product of two non-negative
¢-integers belong in fact to an interval which is strictly included in | — ¢2, ¢3[. This provides
additional information about the suffixes of the ¢-integers ¢?(z +y), ¢?(x —y) and ¢p>xy, when
x,y € Z;f. For instance, since 7(¢%(z — y)) €] — 1,1[, then, as a consequence of Lemma 3.1,

101 is not a suffix of dy(¢?(z — y)).

4 Continued ¢-fraction algorithm

Notation 4.1. Let (p;)ien be a sequence which consists of poeitive real numbers. We denote

by [po;P1 - - Pn—1,Dn] the finite continued fraction py + ﬁ

4.1 Definition of the generalized Euclid’s algorithm

We explain here how to generalize Euclid’s algorithm which generates the expansion in con-
tinued fraction of a positive real number. This study is very similar to the classical one with
usual continued fractions, that can be found for instance in |20] or in |21].

We define the representation of x € Ry by a continued ¢-fraction using the following
algorithm. Let xy = . Since xo — [zg]s € [0,1[ according to Proposition 2.6, we define

1= if zg — [x0]g > 0, otherwise the algorithm ends. More generally, at step i € N, we

1
xzo—[zolg

define x;41 = m if x; is not a ¢-integer, otherwise the algorithm ends. The constructed

sequence (z;); is generated using the function 7" defined as follows.

7101012 — {é}(p.
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Hence, while z; ¢ Z;, that is, while T%(xg) > 0, x4+ is defined by xi1+1 = T(x%) = Ti“(x—lo).
1

If the sequence (x;); is finite, then the representation of x is [x0]y + Otherwise, we get:

“.+L'

1 1 1
fo =l TG = loole o = ol AT
1
T R e

Definition 4.2. We define the n-th partial ¢-quotient of x as the ¢-integer a, = [xy]4, and

the n-th ¢-convergent of x as ¢, = [agp; a1 ..., ay]. The expansion ag + 15 called the

O

continued ¢-fraction of x.

Lemma 4.3. Let (a;); be the sequence of partial quotients of x € Ry. Let k € N be such that
ap and a4 are defined. If dy(a) admits 1 as a suffiz, then apq > ¢.

Proof. Let (a;); be the sequence of partial quotients of = € Ry. Suppose that a; and aj are
defined, and that dg(ax) admits 1 as a suffix. Then, due to Proposition 2.6, x;, — a;, belongs
to [0, '[. Since aj, 1 is defined, 2 # ay, and —— > ¢. Hence aj;1 > 6. O

Ti—a;

Remark 4.4. We deduce that there exist sequences of ¢-integers that are not sequences of
partial quotients. For instance, [1;1%°], which is the classical continued fraction of ¢, is not a
continued ¢-fraction. Since ¢ € Z;, the continued ¢-fraction of ¢ is [¢; 0°].

Proposition 4.5. The sequence of ¢-convergents of x tends to x.

Proof. Let m,n € N with m > n. Then:
1 1

‘[al;...an] [a1;. .. am]

llao; ... an] —[ao;. .. am]| = |[0;a1,...an] —[0;a1,...,an]| =

[‘Il%---an]—[al;...am]‘ 1
- < —llag;. .. —lay;... .
‘ [a1; ... ap]lag; . .. am] a? las; ... an] = [as;. .. an]]

Due to Lemma 4.3, a; = 1 implies a;+1 = ¢. Hence the inequality:

U} 1 1
aos - .-, an] —lao;- .., am]| < (E a_f) X lan = [an; ant1s- - am]| < a_lizl m
< gl
Thus, the sequence of ¢-convergents of z is a Cauchy sequence. Since [[ag; . . . a,]—2| < 1™
holds as well, the sequence ([ag;. .. an])nen tends to . O

It is clear that a finite continued ¢-fraction represents a positive element of Q(¢), and
it is natural to ask whether the reciprocal property holds. Thus, we will prove the following
result, conjectured by Akiyama [29]: any positive element of Q(¢) can be represented by a
finite continued ¢-fraction.

We remark that we need first to define a canonical way to expand elements of Q(¢)*.
The following proposition allows us to expand any positive element of Q(¢) as a quotient of
positive ¢-integers.
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Proposition 4.6. One has Q;ﬁ =Q(o)".

Proof. Let © € Q(¢)*. There exist a and b € Z[¢], both positive real numbers such that
x = %. There exist k and k' € N such that the quantities 7(¢*a) and 7(¢¥'b) both belong to
]—1, ¢[. Due to Proposition 3.8, it implies that ¢*a and #*'b are ¢-integers. Let | = max{k, k'}.
Then, x = %, sox € Q; Since Q(‘; is a subset of Q(¢)*, the required equality is proved. [
Remark 4.7. The result provided by Proposition 4.6 may easily be extended to the class of

numbers such that the finiteness property (F) holds. Indeed, since Q(3)t = Q(B71)T, any
element © € Q(B) can be expanded as %, where p,q € Z[B7]. If the finiteness property (F)
holds, p and q have a finite B-expansion. Let | = max{|dz({p}s)|,|ds({q}s)|}. Then p' = pp’
and ¢ = qB' are B-integers which satisfy x = g.

4.2 An algorithm applied on ¢-fractions

We are interested in studying the sequence of partial ¢-quotients when we apply the contin-
ued ¢-fraction algorithm on x € Q(¢)*. Since [0,1] \ Q(¢)* is stable under T, and due to
Proposition 4.6, it is possible to expand the elements of the sequence (x;); as ¢-fractionary
expansions (p;, ¢;). Thus, we define an algorithm A that constructs a sequence of ¢-fractionary

expansions (p;, g;)i, such that for all i, x; = Z. Then, we establish connections between t(p;, ¢;)

Q"
and ¢(pi+1, ¢it+1)-
Lemma 4.8. Let p,q € Z; with ¢ # 0. Then ¢>(p — [§]¢q) € Z;.

Proof. Since p, [§]¢ and ¢ are ¢-integers, their images under 7 belong to | — 1, ¢[. Hence
T(p— [§]¢q) €]l —¢>—1,¢*+ ¢t C (—¢)3] — 1, ¢[. Using Corollary 3.9, we get ¢>(p — [§]¢q) €
Zj. O

Due to the previous properties, we define an algorithm on the set of pairs of ¢-integers
which performs the following operations.

1. Tt subtracts from the first element of the pair (p,q) the quantity [§]¢q .

2. It multiplies each element of the pair (p — [g](z)q,q) by ¢M | choosing M minimal among
the integers k € Z such that ¢*(p — [%]qﬁQ) € Z; .

3. Tt exchanges the elements of the pair (¢ (p — [§]¢q), Mq) .

Remark 4.9. As a consequence of Lemma 4.8, the value of M defined at step 2. of the
algorithm A satisfies M < 3. Moreover, by definition of M, 0 cannot be a common suffiz of

dg(¢™ (p — [E]sq)) and dy(6™q).

Example 4.10.

Letp=¢>+1andgq=¢*>+1. Thenp=qx1+¢, hence M =0,p =qg=¢*+1 and ¢ = 1.
Letp=¢® and q=¢?>+1. Thenp=qx1+¢~ ' hence M =1,p = pq=¢>+ ¢ and ¢ = 1.

Letp=¢* and q=¢> +1. Thenp=qx ¢+ ¢+ ¢~2, hence M =2, p = ¢*’q = ¢* + ¢* and
¢ =¢+1
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Letp=¢"4+¢° +¢ and q= ¢* + > +1. Thenp=qx (0> +1)+¢*> +1+¢~3, hence M = 3,
P =¢q=0¢"+¢+ ¢ and ¢ = ¢® + > + 1.

We recall that Definition 1.2 introduces the notion of positive length and global length,
respectively denoted by ¢, and ¢, which are defined for elements that belong to Fin(¢)*.
By construction, if (p,q) is a pair of ¢-integers, then A(p,q) = (p/,q’) is a pair of ¢-integers
such that g—: = T(%). Thus, the sequence of partial ¢-quotients of x € Q(¢)* is finite if and
only if (t(pi,¢i))i = (t(pi) + t(¢:) — 1);, the sequence of the lengths of the pairs of ¢-integers
constructed by iteration of the algorithm A, that is, such that (p11,¢i+1) = A(pi, ¢;) for all
1 € N, is decreasing.

In the rational case, when we iterate Euclid’s algorithm on §= we get a fraction ﬁ. The

sequence of fractions constructed by iteration of Euclid’s algorithm is such that the sequence
of the numerators, or of the denominators, is decreasing. This proves that, for any z € QT
the continued fraction of x is finite.

There is an additional difficulty in comparison with the classical rational case. By definition
of the algorithm A, the operations performed at steps 1. and step 3. do not increase the sum
of the positive lengths of the studied elements. However, since we have to multiply at step 2.
each element of the pair (p — [§]¢q,q) by ¢M, the sum of the positive lengths of the studied
elements may increase by 2M. Since M belongs to {0,1,2,3}, we deduce the inequality:

t(A(p,q)) < t(p,q) + 6. (2)

Hence (t(p;,q;)); may be a sequence which does not decrease.

There exist examples for which t(A(p, ¢)) < t(p, q) does not hold. For instance, t(A(p, q)) =
t(p,q)+1 for the third and the fourth cases of Example 4.10. Hence, contrarily to the classical
rational case, we cannot directly prove that the sequence of the numerators (p;); produced
when we iterate the algorithm A decreases. Instead, we study the sequence of the sum of
lengths (t(p;)+1t(g;)); when we iterate the algorithm A starting from a ¢-fractionary expansion
(o, q0)-

We see in Section 4.3 that, starting a closer study of ¢ which depends on [§]¢, we may im-
prove (2). More precisely, t(p', q') > t(p,q) may hold in a small number of particular cases. As
a consequence, the sequence of the lengths of the ¢-fractionary expansions that are produced
by the generalized Euclid’s algorithm A is almost decreasing. By studying in Section 5.1 the
particular cases for which ¢ does not decrease, we prove that the sequence (t(p;) + t(g:) — 1);
of the lengths of the ¢-fractionary expansions produced by iteration of A is bounded. Finally,
a closer study performed in Section 5.2 allows us to prove that (¢(p;) + t(g;) — 1); tends to 0,
hence (t(p;) + t(g;) — 1); is finite.

4.3 Study of the sequence (t(p;, ¢;))ien

In this section, we show that the way t(A(p, q)) —t(p, ¢) may decrease depends closely on [§]¢.

More precisely, we give a better upper bound for t(A(p,q)) — t(p,q) than 6, which depends,
first on ¢([2]), and second on the suffixes of dy([£],). Let us recall that, when z € Fin(¢)*
with dg(x) = vNUN—1...V1V0.V—1...v_pnv, then, according to Definition 1.2, ¢4 (z) and t(x)
denote respectively the length of the ¢-integer part of dg(x) and the length of dg(x), that is,
ty(x)=N+1land t(z) =N+ N+ 1.

Proposition 4.11. Let p,q € Zy withp > q > 0. Let A = [§]¢.
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1. One has t(A\) =t(p) —t(q) + 1 or t(p) —t(q).

2. If dg(N) admits 0 as a suffiz, then t4(p — Aq) < t(q).

3. If dy(\) admits 1 as a suffiz, then t1(p — Aq) < t(q) — 1.
)—

Proof. For p and g € Z+ the relations gzbt(p L<p< gzﬁt(p and qbt(q <qg< ¢t(q) hold. Thus,

PP ~UD=1 < B gtP)=HD+] hence t(p) — t(q) < t(A) < t(p) — t(q) + 1, which proves the
first assertion.
If 0 is suffix of dy(\), then, due to Proposition 2.6, one has sg(A) = XA + 1. Since 0 <

p_—qu <1, we get t4(p — Ag) < t(q).

Suppose now that 1 is a suffix of dy(A). Due to Proposition 2.6, s4(A) = A + ¢~L. Thus,
AS % < A+ ¢t Since 0 < p_T)\q < ¢t we get t1(p— Aq) < ti(gop~t). As we have also
t(qpt) = t(q) — 1, then ty(p — Aq) < t(q) — 1. -

Let (p,q) be a ¢-fractionary expansion of x. Then, due to Proposition 4.11, one gets the
following relation, where M is set at step 2 of the algorithm A:

HA(pq) < 2M —1+|dy(g)| + |dy(lp — [§1¢q1¢>|
< 2M — 14 2/dy(g)|
< 2M — 1+ |dy(p)| + |do(@)] — (1do(p)] — |ds()])
< 2M +t(p,q) — \d¢<[§]¢>|.

Hence t(A(p,q)) —t(p, q) depends on [§]¢; more precisely, the quantity ¢(A(p, q)) —t(p, q) may
be non-negative in only a small number of cases. The following proposition starts the study
in a more precise way.

Remark 4.12. Starting from now on, we use some specific properties of ¢. If we replace ¢ by
any number which satisfies the finiteness property (F), it is still possible to define the algorithm
A, introduced in Section 4.2. In this case, (2) becomes t(A(p,q)) < t(p,q)+2(Lg + Lg ), where
Lg and Lg respectively denote the mazimal possible length for the (B-fractional part of the
sum, or of the product, of two B-integers. There is still a finite number of cases for which the
quantity t(A(p,q)) — t(p,q) may be positive, but the study of this set of possibilities is more
complicated than the present study performed in the Fibonacci case. In particular, we do not
know for which numbers G the result provided by Theorem 5.3 holds, or even for which numbers
the weaker result that, for any p,q € Z; with ¢ > 0, the continued B-fraction ()f%7 1s either
finite or ultimately periodic, holds.

Remark 4. 13 NOfP that, when B satisfies dg(1) = 0.41, then B = ¢>. Since ¢ = ¢*> — ¢ — 1,

one has ¢ = , hence Q(B) = Q(¢). We check that the continued B-fraction of ¢ corresponds
i this case to the classical continued fraction of ¢, that is, ¢ = [1;1°°]. Hence Theorem 5.8
does not hold for the numeration system defined by dg(1) = 0.41.

Proposition 4.14. Let p,q € Z, with p > q > 0. Let \ = [2]¢
1. If dp(N) = (10)* with k € N*, then ti(p — Aq) < t(p) — t(N).
2. If dg(N) = (10)%1 with k € N, then t4(p — A\q) < t(p) —t(\) — 1.
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Proof. Assume that dy(\) = (10)*. Since t()\) = 2k, t(p) — t(¢) = 2k or 2k — 1 according to
Proposition 4.11. If t(p) — t(q) = 2k, then, since t.(p — A\q) < t(q), t+(p — N\q) < t(p) — 2k
holds, and we get the required inequality. Otherwise, suppose that t(p) — t(q) = 2k — 1. Since
k.
ti(p—Aq) > t(p) — 2k, we get t o (p— A\q) = t(q) = t(p) — 2k + 1. Moreover, \g = >_¢* " 1q =
i=1
q(¢?* — ¢71). Let t(q) = n. Then ¢ > ¢"~! by definition of t. Hence A\q > ¢"T2k—1 — 72,
Since t(p—Aq) = t(q) =n, p—Ag = ¢" ' and p > ¢"T* 1 which implies ¢t(p) > n + 2k. This
contradicts the relation t(p) — t(q) = 2k — 1.

The second assertion can be proved in the same way. If dy(\) = (10)*1, then ¢t(\) = 2k +1,
thus t(p) — t(q) = 2k + 1 or 2k, using the first point of Proposition 4.11. Since 1 is a suffix
of dg(A) = (10)*1, we get t1(p — Aq) < t(g) — 1, using the second point of Proposition 4.11.
Thus, we need t(p) — t(q) = 2k and t4(p — A\q) = t(q) — 1 to fulfill the relation ¢4 (p — Aq) >
t(p) — 2(k + 1). However we prove, as in the first assertion, that t(p) =t (p — A\q) + 2k + 2,
which contradicts ¢(p) =t (p — A\q) + 2k + 1. Hence t4(p — Aq) < t(p) — 2(k + 1). O

Proposition 4.15. Let p,q € Z}, with p > q > 0. Let A = [%’](b. Letr =p— \q.

1. If dy(X) = 1,10 or 100, then to(r) < t(p) — 2.
2. If dg(X) = 1000, then t(r) < t(p) — 3.
3. In all other cases, t4(r) < t(p) — 4.

Proof. Since t(q) > t4(r), we assume that t(p) — t(q) < 3, otherwise t4(r) < ¢(p) — 4 holds.
Using the first point of Proposition 4.11, we get t(A) < 4. Hence the only possible values for A
are 1, ¢, ¢2, > +1, ¢, ¢>+1 and ¢+ ¢. The case where dy () belongs to {1, 10,101, 1010} is a
particular case of Proposition 4.14. We get the inequalities ¢, (r) < t(p) —2 for dy(X\) € {1, 10},
and t4(r) < t(p) — 4 for dy(N\) € {101,1010}. Assertions 1 and 2 of Proposition 4.11 provide
the inequalities ¢, (r) < t(p) — 2 when dg(\) = 100, and ¢ (r) < t(p) — 3 when dg(\) = 1000.
Finally, if dg(\) = 1001, then ¢(q) < t(p) — 3 according to the first assertion of Proposition
4.11. Using the second assertion of this proposition, we deduce t(r) < t(p) — 4. O

Corollary 4.16. Let g € Q(';, A= [§]¢ and (p',q") = A(p,q). Then t(p',q") > t(p,q) can only
hold in the following cases:

1. dg(N) € {1,10,100,1000} and 7(p — \q) €]¢, d* + ¢~ 1],
2. 7(p— \q) €] — ¢* — 1, —¢?[, and, either t(X) < 5, or t(\) = 6 with 0 suffiz of ds(\).

Proof. If 7(p—Aq) €]—¢%, [, then t(p',¢') < 2+t(p—Aq,q) < 2411 (p—Aq)+t(q) < t(p)+t(q),
where the last inequality follows from Proposition 4.15. We deduce that t(p’,q’) > t(p,q) only
holds when 7(p — Aq) €] — ¢?, ¢[. This is possible when either 7(p — Aq) €] — ¢* — 1, —¢?[ or
T(p — Aqg) €]d, 6% +o7'[.

First, note that p — Ag > 0 by definition of \. Since 7(z) = —¢* or 7(z) = ¢ implies
respectively = —¢~2 or x = —¢~!, then 7(p — A\q) cannot be equal to —¢? or ¢.

If 7(p—\q) €], 9>+ ¢~ L[, then, using Corollary 3.9, ¢?(p—\q) € Z;, hence 2—: = %,
and t(p',q') — t(p,q) < 4+t (p— [L]pq) — t(p). If dy(N) ¢ {1,10,100,1000}, then, using the
third point of Proposition 4.15, we get the relation 4 4+ ¢4 (p — Aq) — t(p) < 0. In this case,

t(p',q') > t(p, q) can only occur when dy(A) € {1, 10,100, 1000} .
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If 7(p — Aq) €] — ¢* = 1,—¢%[, we get t(p',¢') — t(p,q) < 6+t (p — Ag) — t(p). Using
Propositions 4.11, 4.14 and 4.15, this proves that ¢(p’,q') — t(p,q) > 0 can only occur when
either t(\) < 6, or t(A) = 6 with 0 suffix of dg(\). O

5 Proof of Theorem 5.3

The proof of Theorem 5.3 consists of two steps. First, we prove that the continued ¢-fraction
of any x € Q(¢)* is either ultimately periodic or finite. Since an ultimately periodic continued
¢-fraction occurs only if the algorithm A produces a sequence of ¢-fractions of bounded length,
this means that there exist cycles in the automaton which represent the action of the algorithm
A. Then, we compute these cycles, and we check that they correspond to quadratic numbers

over Q(¢) which do not belong to Q(¢) itself.

5.1 Ultimately periodicity of the continued ¢-fraction of = € Q(¢)"

When p and g are ¢-integers, any pair (7(p),7(q)) belongs to | — 1, ¢[x] — 1, ¢[. We define a
subdivision of | — 1, #[x] — 1, ¢[ into three parts Eq, E5 et Ej3 in the following way:

Ei=]-1,¢"'[x] =107,

By =] = ¢~ o7 x]o 1],
Es is the complement of B3 U Es in | — 1, ¢[x] — 1, ¢][.

Let us note that, using Proposition 3.4, it is possible to give a symbolic definition of the sets
of pairs (p, q) of non-negative ¢-integers such that (7(p),7(q)) € E1, E5 or E3. We do not give
this definition, since we do not need it in the following.

Remark 5.1. The study of t(A(p, q))—t(p, q) needs to define an appropriate partition of T xT
in the general case of a number 3 which satisfies the finiteness property (F). Let us remind
that the Rauzy fractal T is particularly easy to describe in the case of the Fibonacci numeration
system, since T is then the interval [—1, ¢]. The partition (Ey, Eq, E3) is particularly well fitted
for the computations performed in this section; however we do not know whether it is possible,
given B which satisfies the finiteness property (F), to construct a canonical partition of T x T
suited for the study of t(A(p,q)) — t(p,q).

Proposition 5.2. Let % and Zqi; be two ¢-fractions such that (p',q') = A(p,q). Then:

1.(r(p),7(d)) ¢ Er;

2. if (1(p),7(q)) € E3 and (7(p'), 7(¢")) € Es, then t(p',q') < t(p,q) +2;
3. if (T(p),7(q)) € Bz and (7(p'), 7(q')) € B2, then t(p',q') < t(p, q);

4. if (r(p),7(q)) € E3 and (7(p),7(¢)) € E3, then t(p',q') < t(p,q);

5. 1f (1(p),7(q)) € E2 and (7(p'),7(¢')) € E3, then t(p',q') < t(p,q) — 2.
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Proof. The first assertion is a consequence of the definition of M at step 2 of the algorithm
A, and of Remark 4.9.

Let (p,q) be a pair of ¢-integers. Let (p/,q¢') = A(p, q). We prove now, first that t(p/,q¢’) <
t(p,q) + 2, second that ¢(p', ¢') > t(p, q) implies (7(p),7(q)) € E3 and (7(p'),7(¢")) € E.
Let A = [2]4. Using Corollary 4.16, t(p’,q') > t(p,q) may hold only in one of the two

q
following cases:

1. when 7(p — Aq) € (=¢)*]¢™", ¢[ and ¢(\) < 4;
2. when 7(p — \q) € (—#)%]¢~ 1, ¢[ and t(\) < 6.

1. The first case can only occur when dy(\) € {1,10,100,1000}. Then, 7(\) € [—¢ 1, 1],
and it follows that 7(p — A\q) < ¢?. Hence 7(p') €] — ¢~ 2,071, and 7(¢') €]~ 1, 1], that
is, (1(p'), 7(¢")) € Ea. We remark that 7(—\g) < 1 and 7(p— \q) > ¢ imply 7(p) > ¢ 1,
hence (7(p),7(q)) € Es.

Since 7(p — A\q) € (—¢)?]¢~1, ¢[, step 2. of the algorithm A sets M = 2. Hence we get
the relation ¢(p', ¢') — t(p,q) = t(p') + t(¢') — t(p) — t(q) = 4 +t1(p — Aq) — i(p) < 2.

2. In the second case, step 2. of the algorithm A sets M = 3. Then, we deduce 7(p') €
|—¢7 2,0 3[and 7(¢') €l¢p~, ¢~ +¢ 73], hence (7(p'), 7(¢")) € Ea. Moreover, 7(p—\q) <
—¢? with 7(p) > 1 implies 7(—\q) < —¢, hence 7(¢) > 1 and (7(p),7(q)) € Es.

Since 7(p — A\q) €] — ¢? — 1,—¢?*[ implies 7(—\q) < —¢, we deduce 7(\) > 1 and
A {1,¢,¢%, ¢>}. Hence t, (p— Aq) < t(p) — 4, using the third point of Proposition 4.15.

Thus, if t(p', ¢')—t(p,q) > 0, then (7(p),7(q)) € E5 and (7(p'),7(¢")) € E>. Hence t(p',q')—
t(p,q) < 2, which proves the second, the third and the fourth assertion of the theorem.

We prove now the last point. Suppose that (7(p),7(q)) € E3. We distinguish the two
following cases: dy(X) € {1,10,100,1000} and dy(N) ¢ {1,10,100,1000}.

1. If dg(N\) € {1,10,100,1000}, then 7(\) € [—¢~1,1], so 7(p — Aq) €] — ¢,1 + ¢73].
Since t4(r) < t(p) — 2 always holds, the relation ¢(p’,¢") = t(p,q) only holds when the
value M computed at step 2. in the algorithm A satisfies M < 1. In the case M =1
and 7(p — A\q) €] — ¢, —1], one has 7(¢') €]¢~L,1[ and 7(p/) €] — ¢, —¢ 2], hence
(7(p'),7(¢")) € E5. Thus, when dy(\) € {1,10,100,1000}, then, either p— Aq € Z7, and
t(p',q) —t(p,q) =t (r)—t(p) < —2,0or M =1 and (7(p'),7(¢")) € E2. We have proven
that (7(p'),7(¢’)) € E3 can only occur when p — A\q € Z;r, with t(p/,¢') — t(p,q) < —2.

2. If dy(N\) ¢ {1,10,100,1000}, then, since 7(p) €] — ¢~ 1, ¢! and 7(q) €]p~, 1], we get
the relation 7(p — A\q) €] — ¢ — ¢~ 1, ¢[. This means that ¢(p — \q) € Z;, and we obtain
t(p') + t(¢) < 2+ ty(r) + t(g). Using the third point of Proposition 4.15, we deduce
tr',q) —tp,q) <2+1t(r) —t(p) < —2.

We have proven that, when (7(p),7(¢q)) € Es and (7(p'),7(¢")) € Es, then t(p/,q') —
t(p,q) < —2 holds, which proves the fifth assertion of the theorem. O

It is interesting to give a representation of these computations using a graph G. The vertices
of G are the subsets E;, and the set of edges of G is defined as follows: the edge (Ej, Ey),
indexed by i € Z, belongs to G if, for any pair of ¢-integers (p, q) such that (p’,¢’) = A(p, q),
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(1(p),7(q)) € Ej and (7(p), 7(¢")) € E, the relation t(p,q’) — t(p, ¢) < ¢ holds. The graph G
is depicted in Figure 4, §; denoting the index of the associated edge, that is, the upper bound

for the quantity t(pit1, gi+1) — t(pi, @)

7(p)
®
qb_l
0; =2
0 =—2
0; =0 0; =0
El E2 ES
_(]571
-1 7(q)
-1 ¢! 1 ¢

Figure 4: Partition of Z2 and upper bound for t(A(p, q)) — t(p, q)

We deduce from Proposition 5.2 that, starting from a ¢-fractionary expansion (po,qo)
of x € Q(¢)*, the algorithm A produces by iteration a sequence (p;,q;)ien of pairs of ¢-
integers which satisfy for all ¢ € N, t(p;) + t(¢;) < t(po) + t(qo) + 2. This implies that, for
all i € N, p; and ¢; are ¢-integers less than ¢f(P0)+t(@)+2 Hence there exist m,i € N such
that A™(p;, ;) = (pi,q;). This proves that any x € Q(¢)" can be represented by a continued
¢-fraction that is either eventually periodic or finite. We prove in the next paragraph that the
eventually periodic case is not possible.

5.2 Finiteness of the continued ¢-fraction of x € Q(¢)"

According to the last remark, if z € Q(¢)", then the algorithm A constructs by iteration
a sequence of pairs of ¢-integers (p;, ¢;);, either finite or eventually periodic. It is clear that
the sequence of partial ¢-quotients is also respectively finite or eventually periodic. Assume
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that this sequence is infinite, and let (p;,¢;)ien be the sequence of the pairs of ¢-integers
constructed by A. Since the lengths of the ¢-fractions constructed are integers, the sequence
(2;)ien can only be infinite when the inequalities of Proposition 5.2 become equalities from a
certain index on. Then, there are four possible cases:

L (7(pi), 7(@:)) € E2 and (7(pi41), 7(qi+1)) € Eo with ¢(pi, ¢;) = t(pit1, Giv1)

2. (7(pi), 7(q:)) € Ez and (7(pit1), 7(qi+1)) € Ea with ¢(pi, ¢i) = t(piy1, giv1) + 2,
3. (7(pi),7(qi)) € Es and (7(pi+1),7(gi+1)) € B3 with t(pi, ¢i) = t(pit1,Gi+1)

4. (7(pi), 7(@:)) € Bz and (7(pit1), 7(gi+1)) € E3 with ¢(pi, ¢;) = t(piy1, Giv1) —

We see below that the study of such possibilities can be represented by a graph G’. The
vertices of G’ define a partition of | — 1,¢[x] — 1,¢[. The set of edges of G’ consists of the
edges (Ej, Ei,) that are indexed by i € Z such that, if (p,q) is a pair of ¢-integers such that
(1(p),7(q)) € Ej and (7(p'),7(¢")) € Ex, where (p/,q') = A(p, q), then t(p',q') — t(p,q) < i

We show that there is no infinite path in G’ that uses the allowed edges defined by the
relations 1., 2., 3., 4., which proves the following result:

Theorem 5.3. The continued ¢-fraction of x is finite if and only if v € Q(¢)T

In the following computations, we use for convenience the notation \; = [p—] We associate
graphs to the computations, where the vertices are subsets of | — 1, ¢[x]| — qb[ and the edges
(Ej, Ey) are now indexed by the possible values for \; such that A(pi,q;) = (Dit1,4i+1)
(7(pi), 7(¢:)) € Ej and (7(pi+1), 7(gi+1)) € Eg.

Proof. The proof is based on a closer study of the four cases 1., 2., 3., 4. that are defined
above.

Q

1. Suppose that (7(p;), 7(q;)) € Ea, (T(pi+1),7(qir1)) € Eo and t(p;, q;) = t(pi+1, ¢it1)-
Since 7(p;) €] — ¢, ¢ [ and 7(g;) €]o™, 1[, we get T(pi — Nigi) €] — ¢ — o7, [ If

7(pi — Xigi) €] — 1, [, then, since (p; — \igi, ¢i) € (2))?, t(pis1,gi+1) = t(pi, i) is not
possible, and t4(r) < t(p) — 2 implies t(pi+1,Gi+1) — t(pi, ¢) = t4(r) —t(p) < —2.
Thus, 7(p; — A\iqi) €] — ¢ — ¢~ 1, —1[. In this case, the step 2 of the algorithm A sets
M = 1. Hence t, (r) = t(p) — 2, which implies, due to Proposition 4.15, \; € {1, $, ¢*}.

However, 7(\;) < ¢~ 2 implies 7(\ig;) < ¢~2 and 7(p; — A\ig;) > —1. This contradicts
7(pi — Niqi) €] — & — ¢4, —1[. We deduce that 7()\;) > ¢~2, hence \; = 1.

We have shown that Case 1. can only occur when \; = 1.

We additionally remark that, since 7(g;) €]¢ =1, 1[, then 7(p;y1) €] — ¢~1, —¢2[. More-
over, if 7(p; — ¢;) €] — ¢, —1[, then 7(p;) < 0. The graph associated to Case 1. is depicted
in Figure 5.

2. Suppose that (7(p;),7(¢i)) € Es, (T(pi+1),7(gi+1)) € E2 and t(ps, ¢;) = t(pit1,qi+1) +2.

Due to Corollary 4.15, one of the two following possibilities occurs:

(a) T(pi — Nigi) €l¢, ¢° + ¢~ with \; € {1, ¢, ¢%};
(b) T(pz_)\z%) < _¢27 with )\2 € {qu) ¢27¢2+17¢37¢3+1)¢3+¢7 ¢4)¢4+¢7 ¢4+¢2}
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Figure 5: Graph associated to Case 1.

(a) Suppose that 7(p; — X\igi) €]¢, ¢>+ ¢~ and \; € {1, ¢, ¢?}. Since 7(gi1) €)o7, 1],
T(pi — Migi) €6, ¢* + ¢~ [ belongs in fact to ¢?] — ¢~ 1, 1[=]¢, $*|. Let us consider
the three possibilities \; = 1, \; = ¢ and \; = ¢2.

i. If \; = 1, then 7(p; — ¢;) > ¢ only occurs when 7(¢;) €] —1,0[ and 7(p;) > ¢ L.
This implies 7(p;4+1) €] — ¢~ 2,0[.

ii. If \; = ¢, then 7(—)\;q;) €] — ¢4, 1[. Thus, 7(p; — \ig;) €]b, ¢?[, which implies
7(pi) > ¢~ and 7(—N\iq;) €]0, 1[. We thus have 7(g;) > 0 and 7(p;11) €]0, ¢ 1[.

iii. If \; = ¢, and if 7(p;) < 1 holds, then, since 7(—X\;q;) €] — ¢~ 1, ¢~ 2|, this
implies 7(p; — \iq;) < ¢, which contradicts 7(p; — \iqi) €]#, ¢* + ¢~ 1[. Thus,
7(p;) > 1. As in the case 2(a)i., we deduce from 7(p; — \;q;) > ¢ the relations
T(qi) E] — 1,0[, T(pi) > (b_l and T(pi+1) E] - ¢_2,0[.

(b) Conmsider now that 7(p; — \iq;) €] — #* — 1,—¢?[. This implies 7(p;) < 0 and
T(—=Xigi) < —¢, hence 7(g;) > 1 and 7(A;) > 1. We deduce that the only possibility
for \; is \; = 1 + ¢2. Moreover, since 7(—X\;q;) €] — ¢ — ¢~ 1,1 + ¢?[, we get
T(pi) < =672
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The possibilities related to the cases studied in 2(a)i., 2(a)ii., 2(a)iii. and 2b. show that
Case 2. can only occur when one of the following conditions holds:

(a) A\ =1, with 7(g;) <0, 7(p;) > ¢~ and 7(pis1) €] — ¢~ 2,0[;

(b) A\ = ¢, with 7(¢;) > 0, 7(p;) > ¢~ and 7(piy1) €]0, 07 ;

(c) i = ¢?, with 7(¢;) <0, 7(p;) > 1 and 7(p;i+1) €] — ¢~ 2,0];

(d) N\ = ¢% + 1, with 7(p;) < —¢72, 7(¢;) > 1 and 7(pis1) €] — ¢ 2,0].

We note that, if \; = ¢, the relations 7(p;) < 1 and 7(¢;) < 1 cannot both hold, since
this would contradict 7(p; — A\jq;) > ¢. The set of the four edges is depicted in Figure 6.

7(p)

A=¢?+1

-1 0 ¢! 1 ¢

Figure 6: Graph associated to Case 2.

3. Suppose that (7(p;), 7(q:)) € E3, (T(piv1), 7(¢iv1)) € E3 and t(p;, ¢;) = t(pit1, qir1)- We
have to distinguish three following possibilities:
(a) 7(pi — Nigi) €] — ¢%, —1[ and \; € {1, 6,¢%},
(b) T(pl - Aqu) €]¢7 ¢2 + (b_l[ and )\7, S {17¢7 ¢27¢2 + 17¢37¢3 + 17¢3 + ¢7 ¢47¢4 +
¢, 0" + 9%},
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(c) T(pi — Nigi) €] — ¢ —1, —¢2[.

(a) Suppose that 7(p; — \iq;) ] — ¢?,—1[ and \; € {1,6,¢*}. This implies 7(gi11) €

]~ ¢[ and 7()\;) € [—¢~1,1]. Additionally, since 7(p;) €] — 1,¢][, the relation
T(pi — Niqi) < —1 implies 7(—X\;q;) < 0.

If \; = 1, then 7(¢;) > 0 and 7(p;) < ¢~ L. But (p;,¢;) ¢ E1 implies 7(g;) > ¢~ L.

Thus, we have additionally the conditions 7(p;) < ¢!, 7(¢;) > ¢! and 7(p;11) €

] -1, _¢_2['

If \; = ¢, then 7(=Niq;) €] — ¢~ 1,1, so 7(p; — \igi) €] — ¢, —1[. This implies

7(¢;) < 0 and 7(p;) < 0, hence (7(p;),7(g;)) € Ei, which is impossible. Thus,

Ai # ¢.

If \; = ¢?, then 7(— Zq) €] — ¢, ¢ 2[, which implies 7(p; — N\ig;) €] — ¢, —1[. We

deduce 7(gir1) €]¢~ 1], 7(p;) < —¢~2 and 7(—N\ig;) < 0. Thus, 7(¢;) > 0, and

since 7(p;) < ¢~ and (7(p;), 7(q:)) & E1, we deduce 7(g;) > ¢~ 1. Moreover, 7(g;) €

o=, #[ implies 7(p;i11) €] — 1, —¢2[. But (7(pis1),7(¢ir1)) ¢ E2 and 7(gir1) €

J¢~1, 1] implies 7(p;j11) €] — 1, —¢~ [, that is, 7(g;) €]1, 8[.

(b) Suppose that 7(p; — X\igi) €]d, ¢> + ¢~ 1] and \; < ¢°. This implies 7(p; — \ig;) > ¢,
hence 7(p;) > 0 and 7(—X;¢;) > 0. Then, 7(pi11) € (—¢)7?] = 1,8[C] — ¢~ L, 67}
and 7(gir1) € (—¢) 7 2|¢, ¢* + ¢ L[Clo™L, @ Since (piy1,qir1) ¢ E2, we have addi-
tionally 7(g;+1) > 1, which implies 7(p; — \iq;) > (—¢)%. We deduce that 7(p;) > 1
and 7(—\;q;) > 1. This inequality only holds when 7()\;) and 7(g;) are such that one
of them belongs to | — 1, —¢~![ and the other one belongs to |1, ¢[. This condition
gives the set of possible values for \; as well, that is, \; € {¢? + 1, ¢ + ¢}.

(c) Suppose that 7(p; — \ig;) €] — #? — 1, —¢?[. This implies 7(p; — \iq;) € ]¢2 1, —¢?[
implies 7(p;) < 0, 7(¢;) > 1 and T()\i) > 1. Hence 7(pj11) €] — ¢~ 1, ¢! and
7(gi+1) €)1, 1. This means that (7(pit1),7(gi+1)) € Fa, which contradicts the
hypothesis (7(pi+1), 7(gi+1)) € F3, thus this possibility do not occur.

We have shown that Case 3. can only occur when one of the following conditions is
satisfied:

(a) A\ =1, with 7(p;) < 071, 7(q;) > ¢! and 7(pis1) €] — 1, -0 2[;
(b) )\7, = ¢2, with T(pi) < —(15_2, T(qi) 6]1,¢[, T(pi_H) E] — 1,—¢_1[ and T(qi+1) S

Jo=11[;

(C) ])‘2 :[ ¢2 + 17 with T(pi) 6]17 (b[, T(Qi) E] - 1’ 0[/ T(pi-l-l) 6] - gb_l) ¢_1[ and T(Qi—l—l) €
Lol

(d) ])\Z :[ 3 + ¢, with 7(p;) €]1, [, 7(q;) €]0,9[, T(pix1) €] — ¢, ¢! and 7(gis1) €
1, 4]

The set of these conditions is depicted in Figure 7.

4. Suppose that (7(p;), 7(¢;)) € Ea, (T(pit1), 7(gi+1)) € Es and t(pi, ;) = t(pit1, iv1) — 2.
We distinguish two possibilities:

(a‘) T(pl - >\Zq2) E] - 1)¢[ and >\Z € {17¢7 ¢2}7

24



(b)
(a)

7(p)

A=¢"+¢
A=¢>+¢
A=1
A=¢?+1 _ =
A#1
A=¢?+1 \L
B N 0}
(q)
-1 0 ot 1 ¢
Figure 7: Graph associated to Case 3.
T(pz_)\ZQZ) E]_¢27 _1[ and )‘Z € {17 ¢7 ¢27 ¢2+17 ¢37 ¢3+17 ¢3+¢7 ¢47 ¢4+¢7 ¢4+¢2}

Suppose that 7(p; — Aig;) €] — 1,¢[, with X; € {1,¢,¢*}. Then 7(pi11) = 7(q;) €
Jo~t 1.

If \; =1, then 7(=)\;q;) €] —1,—¢~[. Since 7(p;) €] — ¢~ 1, ¢ 71|, we have 7(p; —
Aigi) €] — 1,0[. This implies T(pz) > —¢~2 and 7(g;41) €] — 1,0].

If \; = ¢, then T( qu) ]¢ Nos [ thus T(Qz’—i—l) = T(pz qu) 6] o 3 1+~ [
Moreover, if 7(p;) > —¢~2, then 7(p; — \igs) = 7(gip1) > 0.

If \; = ¢?, then 7(—\;q;) €] — ¢~2, —¢ 73], hence 7(gi11) €] — 1,672

Suppose that 7(p; — \ig;) €] —#?, —1[ and \; < ¢°. This implies 7(p;) €] — ¢, ¢ 71|
and 7(¢;) €], 1[. Hence 7(p; — \igi) €] — ¢ — ¢~ 1, —1[. Since 7(p;) > —¢~"

have 7(=X\;q;) < —¢~2. Thus, 7(\;) > % > ¢ 2. The only possible values for \;

that fulfill this inequality and belong to [1, ¢* + ¢?] are 1,¢? +1,¢3 + 1 and ¢* + ¢2.
Additionally, if 7()\;) < 1, then 7()\;) € [¢~2, 1], hence 7(—=\;q;) €] —1, —¢3[. Thus,
T(pi — Nigi) €] — ¢, —1[, and 7(gi11) €]¢~ 1, 1[. Since 7(g;) €]d 1, 1[, T(piy1) €
] — ¢~ —¢72[, we get (T(piz1),7(gir1)) € Ez. This contradicts the hypothesis
(7(pit+1),7(¢i+1)) € Es. Thus, T()\Z’) > 1, and this implies \; = 1 + ¢2 Then,
T(_)\iQi) 6] —-1- ¢_2’_¢_1 - (b_ [7 hence (pz - Az‘]z) 6] »— 9 7_1[ and
T(giv1) €lo™H 1+ 077

Moreover, 7(pir1) €] — ¢~ L, —¢72[ and (7(pit1),7(gir1)) ¢ Eo implies that the
relation 7(g;11) €]¢ 1, 1[ cannot hold. Hence 7(g;41) €]1,1 + ¢~3[; this implies
7(pi — Xigi) < —¢ and 7(p;) < —¢ .
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We have proven that Case 4. can only occur when one of the following conditions is
satisfied:

(a) Ai =1, with 7(p;) €] — ¢~ 2,67, 7(pit1) €l¢~ ", 1] and 7(gi41) €] - 1,0],

(b) A\ = ¢, with 7(p;11) €]¢~1, 1], and 7(gix1) < 0 implies 7(p;) < —¢~2,

(c) i = ¢?, with 7(pi11) €]lo~ 1, 1],

(d) N\ = @+ 1, with 7(p;) < —¢~3, 7(pix1) €] — 0L, —¢ [ and 7(g;y1) €]1, 1+ 03[

The set of these conditions is depicted in Figure 8.

7(p)
®
1
A=¢ A=0¢ A=0¢
A\ = @2 \ = ¢? A\ = @2
¢! i
A=1 A=¢>+1
_¢—2
A= ¢? A=¢>+1
_(]571
-1 T(Q)
-1 0 e 1 o

Figure 8: Graph associated to Case 4.

We have considered all the possibilities that the algorithm A may eventually encounter
when we obtain by iteration of the algorithm A a ultimately periodic sequence (p;,@;)ien
that is not finite. This is equivalent to the possibility of constructing a ultimately periodic
continued ¢-fraction.

Now, let us study more closely the possible cycles in the graph obtained when we stack
the graphs depicted by Figures 5, 6, 7 and 8. We obtain in this way a graph G’, whose
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vertices are the intersection of the vertices of the graphs depicted by Figures 5, 6, 7 and 8.
The edges of G’ are obtained by splitting the edges in any of these Figures, that is, if there
exists an edge (Ej, E) indexed by X in any of the graphs depicted by Figures 5, 6, 7 or 8,
and if {Fj,h € [1,...,N;]} and {F},l € [1,...,Ng]} are respectively partitions of E; and
Ej. which consists of vertices of ', we create in G’ the edges (F},, F}) indexed by X for any
(h,0) € [1,...,N;] x [1,..., Ni]. We gather then all possible edges, removing some of them
thanks to the following remarks.

1. For any vertex of G’, there may exist at least one incoming edge and one outgoing edge.
Otherwise, this vertex cannot be used by any cycle. Thus, we remove the vertices of G’
that are not used in any connected subgraph, and we remove the edges that use any of
these vertices as well.

2. Due to Lemma 4.3, if dy(\;) admits 1 as a suffix, then \;11 > ¢. This means that there
is no cycle in G’ constituted by two consecutives edges (V;,Vi11) and (Vi41, Viye) such
that 8¢(}\2‘) =X+ (15_1 and >‘i+1 =1.

It is possible to remove other edges in G’. For instance, we note that the conditions
7(pis1) €] — 1,—¢~2[ and 7(gi+1) €]1, ¢[ may be satisfied in only two cases:

1. (pit1,qit1) = A(pi, qi), with \; = ¢> + 1 and (p;, ¢;) € Es;
2. (pit1,4i+1) = A(pi, qi), with A\; =1 and (p;, ¢;) € Es.

1. If (pis1,git1) = A(pir ¢i), with X; = ¢*+1 and (p;, ¢;) € Eo, then 7(piy1) €]— ¢!, —¢ 2]
and 7(g;11) €]1,1 4+ ¢77[.

2. If (pi—i—h%'—i—l) = A(pi,qi), with )\z = 1 and (pi,qi) S Eg, then (T(pi),T(qi)) 6] -
1, —¢~[x]¢~", 1] implies 7(p; — Aigi) €] —p—¢~%, —1[. Thus, we get 7(gi1) €]1,1+¢%]
and 7(pi11) €] — oL, —072.

However, if 7(p;j11) €]—¢ 1, —¢72[ and 7(g;+1) €]1, 1+¢ 73], then, with ;11 = ¢?+1, we
obtain T(pi_H - )\i+1qi+1) > —qb_l — (1 +¢_3)(1 +¢_2). Thus, T(pz‘+1 —)\¢+1qi+1) > —¢2.

We have proven that the edge indexed ¢+ 1, having its initial vertex in | — 1, —¢~2[x]1, ¢|
cannot be preceded by any edge among the remaining ones. Thus, this edge cannot be used
in any cycle.

Using the same method, we remark that the subset defined by (7(p), 7(q)) €]¢~1, 1[x]0, ¢|
contains only one initial vertex among the remaining edges, and this vertex is included in fact in
J¢~1, 1[x]1, ¢[. Since any pair of ¢-integers (p;, q;) satisfying 7(p;) €] — ¢~2,0[, 7(q;) €]~ 1, 1]
and 7(\) € [—1,1] is sent under the action of the algorithm A on (p;t1,qi+1) such that
7(gi+1) < 1 holds, we get another simplification of possible edges. Thus, there are only three
possible cycles, depicted in Figure 9.

There exists three possible cycles that may represent the iteration of A starting from a
¢-fractionary expansion (pg,qo) of z € Q(¢)T. Among these cycles, one of them is associated
to a sequence of partial ¢-convergents (\;);en such that, from an index N on, the value of
\; is alternately 1 or ¢2. This sequence provides the continued ¢-fraction of the positive real
number y which satisfies y = ¢? + 1il' However, y is quadratic over Q(¢) but does not belong
to Q(¢). The two remaining cycles dyeﬁne cases for which (\;);en is stationary. However, one
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Figure 9: Only 3 possible cycles may occur under the iteration of A

checks that any positive real number whose sequence of partial ¢-convergents is stationary is
quadratic over Q(¢).

Since the three possible cycles cannot occur, the sequence t(p;, ¢;)ien cannot have a positive
lower bound. It means that this sequence ¢(p;, ¢;)ien tends to 0, which implies that there exists
io such that p;, = 0. This ends the proof of the theorem. O

Remark 5.4. Let us detail the action of the algorithm A on a particular case for the numera-
tion system introduced in Remark 4.13, that is, when dg(1) = 0.41. As we have seen, the con-
tinued [-fraction of ¢ is in this case the classical continued fraction [1;1°°]. It means that there

exists a sequence of pairs of B-integers ((pi, qi))ien such that ¢ = B2, A(p;,¢;) = (piv1, ¢it1)
for all i € N, and [%]@ =1 for all i € N,
We check that the following relations hold:

36+1 = (28) x1+8+1,
28 = B+1)x1+3+81=p"1(B+0)x1+36+1),
BE+p = (38+1)x1+28.
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This means that A(33+1,28) = (26, 6+1), A(28,8+1) = (82+3,38+1) and A(B*+ 3,35+
1) = (36 + 1,203). The associated values for M, which are set at step 2. of the algorithm A,
are respectively 0,0 and 1, since one has to multiply the elements of the pair (34 1,3 + 371)
by B to get a pair of B-integers. For all these cases, the corresponding value of A = [g]g 1s 1.

- 341 _ 28 _ BP+B _ - -
Hence the corresponding cycle represent 55— Bl T~ 3541 ¢, whose continued 3-fraction

is [1;1°°]; one may define either (po, qo) = (33+1,208), (28,8+1) or (8% +3,38+1) to obtain
a sequence of pairs of B-integers which produces the continued B-fraction of ¢ by iteration of

the algorithm A. Note also that ¢ does not admit an unique reduced B-fractionary expansion,
introduced in Definition 1.5, since t(35 + 1,206) = t(26,5+ 1) = 3.
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