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ON L2 MODULUS OF CONTINUITY OF BROWNIAN
LOCAL TIMES AND RIESZ POTENTIALS

By Aurélien Deya, David Nualart∗ and Samy Tindel†

Université de Lorraine and University of Kansas

This article is concerned with modulus of continuity of Brownian
local times. Specifically, we focus on 3 closely related problems: (a)
Limit theorem for a Brownian modulus of continuity involving Riesz
potentials, where the limit law is an intricate Gaussian mixture. (b)
Central limit theorems for the projections of L2 modulus of continuity
for a 1-dimensional Brownian motion. (c) Extension of the second
result to a 2-dimensional Brownian motion. Our proofs rely on a
combination of stochastic calculus and Malliavin calculus tools, plus
a thorough analysis of singular integrals.

1. Introduction. Let {Bt, 0 ≤ t ≤ 1} be a standard linear Brownian
motion defined on some complete probability space (Ω,F ,P). In the sequel,
we denote by Lt(x) the local time of B at a given point x ∈ R, defined for
t ∈ [0, 1]. A nice combination of stochastic calculus, stochastic analysis and
evaluation of singularities associated with heat kernels have recently led to
a number of interesting limit theorems for quantities related to the family
{Lt(x); t ∈ [0, 1], x ∈ R}. Let us quote for instance the use of Malliavin
and stochastic calculus tools in order to get suitably normalized limits for
L2 modulus of continuity (see [7, 15]) or third moment in space (cf [8])
of Brownian local time. Malliavin calculus tools have also been essential
in order to generalize the notion of self-intersection local time [6, 9] and
to obtain central limit theorems for additive functionals [10] of fractional
Brownian motion.

The current article proposes to take another step into the relationships
between Brownian local time and stochastic analysis. Specifically, we shall
handle the following problems:

(1) One of the motivation alluded to in [15] for the renormalization of L2
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2 A. DEYA, D. NUALART AND S. TINDEL

modulus of continuity of local times comes from the study of the Hamiltonian
(1)

Hh
t (B) =

∫

R

[Lt(x+ h) − Lt(x)]2 dx =

∫

R

[
∫ t

0
(δx+h(Bu) − δx(Bu)) du

]2

dx,

which is involved in the definition of some non-folding polymers. However,
one might wish to consider a slightly weaker repelling self-interaction of the
polymer by introducing the following family of Hamiltonians indexed by
γ ∈ (0, 1):

(2) Hh,γ
t (B) =

∫

R

[
∫ t

0

(|Bv + x+ h|−γ − |Bv + x|−γ) dv

]2

dx.

For this modified Hamiltonian, we shall prove the following limiting theorem:

Theorem 1.1. Consider γ ∈ (3/4, 1) and the family of Hamiltonians

{Hh,γ
t (B); t ∈ [0, 1]} defined by (2). Then one has, as h tends to zero,

(3)
Hh,γ(B) − E

[

Hh,γ(B)
]

cγ h7/2−2γ

(d)−−→ Wα

in the space C([0, 1];R) of real continuous functions on [0, 1]. In relation (3),
cγ stands for a deterministic positive constant depending only on γ, W is a
standard Brownian motion independent of B and α is the self-intersection
local time of B, i.e. (formally)

(4) αt :=

∫ t

0
dv

∫ v

0
du δ0(Bv −Bu),

where δ0 is the Dirac delta function concentrated at 0.

Theorem 1.1 turns out to be interesting for several reasons:

• The Hamiltonian Hh,γ(B) quantifies a weak self-interaction of the Brow-
nian path, detecting if the path self intersects (products of the form |Bv1 +
x|−γ |Bv2 + x|−γ) or has a fold with amplitude h (products of the form
|Bv1 +x+h|−γ |Bv2 +x|−γ). It can thus be related to the polymer model stud-
ied in [5], where a discrete time random walk Sn on Z is weighted according
to the following Hamiltonian:

Hn =
n
∑

i,j=1

1{Si=Sj} −
n
∑

i,j=1

1{|Si−Sj |=1}.
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This relation was also the motivation behind the central limit theorem given
in [15], and other physically relevant models for self-interacting continuous
paths include Brownian filaments (see [3] for a detailed definition of these
objects), motivated by turbulent fluids. We thus hope that the scaling limit
for our quantity Hh,γ(B) can shed some light on the aforementioned models.

• Theorem 1.1 also exhibits an interesting phenomenon in terms of limiting
behavior. Indeed, the reader can easily observe that the limiting process in
the right-hand side of (3) does not depend on the parameter γ in (3/4, 1), the
only difference lying in the normalizing quantity cγ h

7/2−2γ . Furthermore, it
was shown in [7, 15] that relation (3) still holds true in the limiting case
γ = 1. This means that the process Wα, which can be seen as a Gaussian
mixture, might also be considered as a rather canonical object.

• At a methodological level, our proof of Theorem 1.1 is another example
of the interest of stochastic calculus techniques with respect to the method
of moments in this context. We should compare our methodology e.g to the
computationally demanding paper [2]. The advantage of stochastic calculus
methods had already been highlighted in [7, 15], but our proof combines this
approach with an extensive use of Fourier analysis techniques.

(2) Go back now to the Hamiltonian Hh
t (B) defined by (1) and related to

L2 modulus of continuity of the Brownian local time. As mentioned above, it
has been shown in [7, 15] that h−3/2(Hh(B)−E[Hh(B)]) converges in law to
c1Wα for a universal constant c1, that is relation (3) is still formally satisfied
for γ = 1. This non central limit theorem indicates that an interesting
phenomenon might occur as far as limiting behavior of the renormalized
quantity h−3/2(Hh(B)−E[Hh(B)]) on chaoses is concerned. We shall specify
this with the following result:

Theorem 1.2. Let {Hh
t (B); t ∈ [0, 1]} be the process defined by (1). For

a given random variable F ∈ L2(Ω) and for all n ≥ 0, we set Jn(F ) for

the projection of F on the nth chaos of B, and subsequently define Xn,h
t ≡

Jn(Hh
t (B)). Then

(i) For all m ≥ 0 and all t ∈ [0, 1], h > 0 we have X2m+1,h
t = 0.

(ii) For all m ≥ 1 we have, as h tends to zero,

X2m,h

h2[ln(1/h)]1/2

(d)−−→ σmW, with σ2
m =

c (2m− 2)!

22m[(m− 1)!]2
,

where W stands for a Brownian motion independent of B and where the
convergence takes place in the space C([0, 1];R) of real continuous functions
on [0, 1].
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(iii) In particular, the series
∑

m≥1 σ
2
m is divergent.

Putting together the results of [7] and our Theorem 1.2, we thus get the
following picture: on the one hand one can renormalize the process Hh(B) by
h3/2 in order to get a limit which is a mixture of Gaussian processes (a non
central type limit theorem). On the other hand, each projection Jn(Hh(B))
can be properly renormalized (by h2[ln(1/h)]1/2) so as to obtain a limiting
object which is a weighted Brownian motion (corresponding to a central limit
theorem). Nevertheless the sum of the weights σ2

n obtained by projection is
divergent. To the best of our knowledge, this interesting limiting behavior
is exhibited here for the first time. Note that it contrasts for instance with
the situation described in [6, Theorem 3] (and more specifically in the appli-
cations of this result), where, under appropriate variance assumptions, the
normal convergence in each chaos guarantees the normal convergence of the
sum.

(3) Finally we consider a suitable generalization of Theorem 1.2 to a 2-
dimensional Brownian motion B. Namely, we shall obtain the following con-
vergence result:

Theorem 1.3. Let {Hh
t (B); t ∈ [0, 1]} be the process defined by (1), for

a 2-dimensional Brownian motion B. Like in Theorem 1.2, we define Xn,h
t

as the projection on the n-th chaos of Hh
t (B). Then the assertions (i)–(iii)

of Theorem 1.2 are still valid in this situation, with (ii) replaced with the
following statement:

(ii-2d) For all m ≥ 1 we have, as h tends to zero,

X2m,h

|h|
(d)−−→ σmW,

where W stands for a linear Brownian motion independent of B, where the
exact expression of σm will be specified at Section 4.3 and where the conver-
gence takes place in the space C([0, 1];R) of R-valued continuous functions
on [0, 1].

It is worthwhile noting that the equivalent of the main result of [8],
namely the convergence in law of a suitably renormalized version of Hh

t (B),
is not available in the 2-dimensional case. Indeed, one can formally show
that |h|−2(Hh

t (B) − E[Hh
t (B)]) converges to a random variable of the form

c2Wα, with α defined by (4) and a universal constant c2. Nevertheless, α
is a divergent quantity in the 2-dimensional case and the convergence of
h−3/2(Hh

t (B) − E[Hh
t (B)]) is in fact an empty statement.
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In spite of this lack of convergence, the analysis of projections on chaoses
is still a valuable information for two main reasons: (a) It indicates that a
sort of convergence is at least possible for Hh

t (B). (b) We are able to show
that the series

∑

m≥1 σ
2
m is divergent just as in the 1-dimensional case, which

seems to indicate that a non central limit theorem is to be expected for the
quantity (Hh

t (B) − E[Hh
t (B)]).

The methodology we have followed in order to get the results mentioned
above is based on 3 main ingredients: (a) Stochastic calculus is obviously
important in this Brownian context, and Itô formulae of backward type are
invoked in order to control terms of the form

∫ r
0 e

ıξ(Br−Bu)du (throughout
the paper, we will write ı for the complex number (−1)1/2). Theorem 1.1
will also be a consequence of limit theorems for martingales according to
the behavior of their bracket process. (b) An important contribution comes
from stochastic analysis techniques: our chaos decompositions are obtained
through repeated applications of Stroock’s formula and we use representa-
tions of Brownian local times by means of Watanabe distributions. We also
derive central limit theorems on chaoses by analyzing contractions of kernels
for multiple Wiener integrals, as assessed in [12, 13]. (c) After application
of the high level tools mentioned above, our results are reduced to rather
elementary (though intricate) computations, for which we resort to Fourier
analysis and thorough analysis of singularities for integrals defined on sim-
plexes. All those ingredients are detailed in the corresponding sections.

In the remainder of the paper, each section is devoted to the proof of
one of the Theorems given above. Specifically, Section 2 handles the non
central limit Theorem 1.1 for Riesz type potentials. Section 3 is concerned
with the central limit Theorems 1.2 for L2 modulus of 1-dimensional local
time on chaoses, while Section 4 deals with generalizations (Theorem 1.3)
to the 2-dimensional case.

2. L
2 modulus of continuity of Brownian Riesz potentials. This

section is devoted to the proof of Theorem 1.1. We shall first reduce our prob-
lem thanks to an application of Clark-Ocone’s formula, and then identify the
limiting process with a combination of Fourier analysis and stochastic cal-
culus tools.

2.1. Reduction of the problem. In order to proceed with our computa-
tions, let us first settle some useful notation:

Notation 2.1. The Gaussian heat kernel on R is denoted by pt(x),
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6 A. DEYA, D. NUALART AND S. TINDEL

namely

(5) pt(z) = (2π)−1/2 exp

(

−z2

2

)

, z ∈ R.

For β ∈ (0, 1), we call fβ : R∗ → R
∗ the function defined by fβ(x) = |x|−β.

For β ∈ (0, 1) and 0 ≤ r ≤ t ≤ 1, we also consider the quantity
(6)

Qh,β
t,r =

∫ t

r
ds

∫ r

0
du
[

Kβ
s−r(Br −Bu + h) +Kβ

s−r(Br −Bu − h) − 2Kβ
s−r(Br −Bu)

]

,

where Kβ
u stands for the (convolved) Riesz kernel Kβ

u := fβ ∗p′
u for all u ≥ 0.

With these notations in mind, the Hamiltonian Hh,γ
t (B) can be expressed

as follows:

Lemma 2.2. For t ∈ [0, 1], consider the quantity Hh,γ
t (B) defined by (2).

Then
(7)

Hh,γ
t (B) = cγ

∫

[0,t]2
[2fβ(Bv −Bu) − fβ(Bv −Bu + h) − fβ(Bv −Bu − h)] dudv,

with β = 2γ − 1.

Proof. Start from expression (2) and write Hh,γ
t (B) as

∫

R

(

∫

[0,t]2
[fγ(Bv + x+ h) − fγ(Bv + x)] [fγ(Bu + x+ h) − fγ(Bu + x)] dudv

)

dx.

Next expand the product inside the integral, apply Fubini in order to inte-
grate with respect to the variable x first and apply the identity fγ ∗ fγ =
cγ f2γ−1. Our claim is easily deduced from these elementary manipulations.

We shall now see that Theorem 1.1 can be reduced to the following:

Theorem 2.3. For every β ∈ (1/2, 1], consider the process Qh,β defined
by (6). Then the following limit as h tends to zero holds true in the space
C([0, 1];R) of real continuous functions on [0, 1]:

(8)
Q̃h

h5/2−β

(d)−−→ cβ Wα, where Q̃h
t :=

∫ t

0
Qh,β

t,r dBr.

Here, cβ is a deterministic constant depending only on β, and the process
Wα has been introduced at equation (3).
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Proof of the equivalence between Theorem 1.1 and Thorem 2.3.
Following expression (7), set

Hβ
t (B) = −

∫

[0,t]2
[2fβ(Bv −Bu) − fβ(Bv −Bu + h) − fβ(Bv −Bu − h)] dudv.

Then Lemma 2.2 asserts that Theorem 1.1 is proved once we can show that
the process h−(7/2−2γ)(Hβ(B) − E[Hβ(B)]) converges in law to cβ Wα for a
strictly positive constant cβ . It is obviously easier to express everything in
terms of β = 2γ−1, so that we are reduced to show that h−(5/2−β)(Hβ(B)−
E[Hβ(B)]) converges in law to cβ Wα. It should also be observed that if
γ ∈ (3/4, 1) then β lies into (1/2, 1).

Now along the same lines as in [7], a direct application of Clark-Ocone

formula enables to express Hβ
t (B) in the following way:

Hβ
t (B) − E

[

Hβ
t (B)

]

=

∫ t

0
Qh,β

t,r dBr,

where the process Qh,β is defined at Notation 2.1. This finishes the proof of
our equivalence.

With this equivalence in hand, the remainder of the section is now devoted
to the proof of Theorem 2.3. As mentioned in the introduction, our strategy
to show this result makes use of some convenient simplifications offered by
a Fourier-transform version of the problem. As a last preliminary step, let
us thus write an alternative expression for the quantity Qh,β

t,r :

Lemma 2.4. Let β ∈ (1/2, 1) and 0 ≤ r ≤ t ≤ 1. Then

(9) Qh,β
t,r =

4ı

π

∫

R

[

(

1 − e− 1
2

ξ2(t−r)
)

ψ (hξ)
ξ

|ξ|3−β

∫ r

0
eıξ(Br−Bu)du

]

dξ,

where ψ : R → R stands for the function defined by ψ(ξ) := sin2(ξ/2).

Proof. It is well known that for all x ∈ R
∗ we have

Kβ
t (x) = − ı

2π

∫

R

eıξx ξ

|ξ|1−β
e− tξ2

2 dξ.

Plugging this identity into (6) and applying Fubini’s theorem we get

− ı

2π

∫

R

[(
∫ t

r
e− (s−r)ξ2

2 ds

)
∫ r

0

ξ

|ξ|1−β
eıξ(Br−Bu)

(

eıξh + e−ıξh − 2
)

du

]

dξ,

from which identity (9) is easily deduced.
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We now start by identifying the main contribution in the quantity
∫ t

0 Q
h,β
t,r dBr

appearing in (8) by means of our Fourier representation (9).

2.2. Elimination of some negligible terms. The first term which might
yield a negligible contribution in Q̃h is given by the small exponential term

e− (t−r)ξ2

2 in expression (9). We thus set Qh,β
t,r = Qh,β,1

r −Ah
t,r, with

Qh,β,1
r =

4ı

π

∫

R

[

ψ (hξ)
ξ

|ξ|3−β

∫ r

0
eıξ(Br−Bu)du

]

dξ(10)

Ah
t,r =

4ı

π

∫

R

[

e− 1
2

ξ2(t−r)ψ (hξ)
ξ

|ξ|3−β

∫ r

0
eıξ(Br−Bu)du

]

dξ.(11)

Then the following proposition identifies a first vanishing term:

Proposition 2.5. Let Ah be the process defined by (11), and for t ∈
[0, 1] set

Ãh
t :=

1

h5/2−β

∫ t

0
Ah

t,r dBr.

Then we have:

(i) For every fixed t ∈ [0, 1], Ãh
t → 0 in L2(Ω) as h tends to zero.

(ii) There exists p ≥ 1 and α > 0 such that for all 0 ≤ s < t ≤ 1 and every
h ∈ (0, 1),

E
[
∣

∣Ãh
t − Ãh

s

∣

∣

2p] ≤ cp h
2p(β− 1

2
) |t− s|1+α ,

for some constant cp depending only on p.

(iii) As a consequence, we have Ãh (d)−−→ 0 in C([0, 1];R) as h tends to zero.

Proof. Let us prove the three items separately:

(i) Consider a given t ∈ [0, 1]. One has

E

[

(
∫ t

0
Ah

t,r dBr

)2
]

= 2

∫ t

0
dr

∫

R

dξ

∫

R

dη

∫ r

0
dv

∫ v

0
du

ξ e− 1
2

ξ2(t−r)ψ(hξ)

|ξ|3−β

η e− 1
2

η2(t−r)ψ(hη)

|η|3−β
E
[

eı(ξ+η)(Br−Bv)+ıη(Bv−Bu)].

Furthermore, for u < v < r < t we have

0 ≤ E
[

eı(ξ+η)(Br−Bv)+ıη(Bv−Bu)
]

= e− (ξ+η)2

2
(r−v) e− η2

2
(v−u) ≤ e− η2

2
(v−u).
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Now integrate this inequality in u and invoke the fact that ψ(z) ≤ c z2 in
order to get

(12) E

[

(
∫ t

0
Ah

t,r dBr

)2
]

≤ c h4
∫ t

0
dr

∫ r

0
dv

∫

R

dξ

∫

R

dη ℓtr,v(ξ, η),

where

ℓtr,v(ξ, η) ≡ e− 1
2

ξ2(t−r)e− 1
2

η2(t−r) |ξ|β
|η|2−β

{

1 − e− η2

2
v}.

To see that the integral in the right-hand side of (12) is indeed finite, observe

first that
∫

R
e− a

2
ξ2 |ξ|β dξ = cβa

− 1+β
2 for any a > 0 and β ∈ (0, 1). Thus

∫

R

dξ

∫ 1

−1
dη ℓtr,v(ξ, η) ≤ c

∫

R

e− 1
2

ξ2(t−r) |ξ|β dξ
∫ 1

−1
|η|βdη

≤ c

∫

R

dξ e− 1
2

ξ2(t−r)|ξ|β ≤ c

|t− r| 1+β
2

.

In the same way, since β ∈ (0, 1) we also have

∫

R

dξ

∫

|η|≥1
dη ℓtr,v(ξ, η) ≤ c

∫

|η|≥1
|η|−(2−β)dη

∫

R

e− 1
2

ξ2(t−r)|ξ|β dξ ≤ c

|t− r| 1+β
2

.

Plugging these estimates into (12) and taking into account the fact that
β ∈ (0, 1), we end up with

E

[

(
∫ t

0
Ah

t,r dBr

)2
]

≤ ct,β h
4
∫ t

0

dr

|t− r| 1+β
2

≤ ct,β h
4,

which yields our first claim (i).

(ii) In order to bound the increment Ãh
t −Ãh

s , set kh,t(ξ) := e− 1
2

ξ2tψ(hξ) ξ
|ξ|3−β .

Then it is readily checked that

(13) Ãh
t − Ãh

s =
1

h5/2−β

∫ t

s
dBr

∫

R

dξ kh,t−r(ξ)

∫ r

0
eıξ(Br−Bu)du

+
1

h5/2−β

∫ s

0
dBr

∫

R

dξ
[

kh,t−r(ξ)−kh,s−r(ξ)
]

∫ r

0
eıξ(Br−Bu)du := Ãh,1

s,t +Ãh,2
s,t .

Consider first Ãh,1
s,t and write

Ãh,1
s,t =

1

h5/2−β

∫ t

s
Ht,r dBr, with Ht,r :=

∫

R

dξ kh,t−r(ξ)

∫ r

0
eıξ(Br−Bu)du.
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By using successively Burkholder-Davies-Gundy and Cauchy-Schwarz in-
equalities, we get

(14) E
[|Ãh,1

s,t |2p] ≤ cp

h(5−2β)p

(
∫ t

s
E
[|Ht,r|2p]

1
p dr

)p

,

with

E
[|Ht,r|2p] = cp

∫

R2p
dξ1 · · · dξ2p

∫

0<u1<...<u2p<r
du1 · · · du2p

2p
∏

j=1

kh,t−r(ξj) E
[

eıξj(Br−Buj )
]

,

which can also be expressed as

E
[|Ht,r|2p] = cp

∫

R2p
dξ1 · · · dξ2p

∫

0<u1<...<u2p<r
du1 · · · du2p

2p
∏

j=1

kh,t−r(ξj) e− 1
2

ξ2
1(u2−u1)e− 1

2
(ξ1+ξ2)2(u3−u2) · · · e− 1

2
(ξ1+···+ξ2p)2(r−u2p).

We can then rely on the uniform estimate

|kh,t−r(ξi)| ≤ c h2e− 1
2

ξ2
i (t−r)|ξi|β ≤ c

h2

|t− r|β/2
,

and the fact that
∫

R

dξ1 e
− 1

2
ξ2

1(u2−u1)
∫

R

dξ2 e
− 1

2
(ξ1+ξ2)2(u3−u2) · · ·

∫

R

dξ2p e
− 1

2
(ξ1+···+ξ2p)2(r−u2p)

=

∫

R

dξ1 e
− 1

2
ξ2

1(u2−u1)
∫

R

dξ2 e
− 1

2
ξ2

2(u3−u2) · · ·
∫

R

dξ2p e
− 1

2
ξ2

2p(r−u2p)

= cp (u2 − u1)−1/2(u3 − u2)−1/2 · · · (r − u2p)−1/2

in order to get

E
[|Ht,r|2p] ≤ cp h

4p rp

|t− r|βp
.

Plugging this estimate into (14) we end up with

(15) E
[|Ãh,1

s,t |2p] ≤ cp h
2p(β−1/2) |t− s|(1−β)p .

The bound for Ãh,2
s,t can be derived from a similar procedure. Observe for

instance that

|kh,t−r(ξ)−kh,s−r(ξ)| ≤ h2 |e− 1
2

ξ2(t−r)−e− 1
2

ξ2(s−r)||ξ|β ≤ c h2 |t− s|ε |s− r|(1−ε)/2 ,
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and invoking this bound for ε := (1 − β)/3 one obtains that inequality (15)

also holds true for Ãh,2
s,t . Going back to (13), we see that the bounds on Ãh,1

s,t

and Ãh,2
s,t easily yield our claim (ii). The assertion (iii) is now a standard

consequence of (i) and (ii).

Let us go back to expression (9), as well as the decomposition (10) and
(11) for Qh,β . Proposition 2.5 allows to reduce our study to an analysis

of Q̃h,β,1 defined by Q̃h,β,1
t = h−(5/2−β)

∫ t
0 Q

h,β,1
r dBr, where Qh,β,1 is given

by (10). In order to identify another negligible term within Q̃h,β,1, let us
resort to Itô’s formula applied to the (backward) Brownian motion B̂r =
{Br −Bu; 0 ≤ u ≤ r} and f(x) := eıξx. This gives

(16)

∫ r

0
eıξ(Br−Bu)du = −

2
(

eıξBr − 1
)

ξ2
+

2ı

ξ

∫ r

0
eı(Br−Bu) dB̂r

u,

and plugging this identity into (10) we get Qh,β,1
r = Dh

r −Qh,β,2
r , with

Dh
r =

8ı

π

∫

R

[

ξ ψ(hξ)

|ξ|5−β

(

eıξBr − 1
)

]

dξ(17)

Qh,β,2
r =

8

π

∫

R

[

ψ (hξ)

|ξ|3−β

∫ r

0
eıξ(Br−Bu) dB̂r

u

]

dξ.(18)

We now prove the following Proposition:

Proposition 2.6. Let Dh be the process defined by (17), and for t ∈
[0, 1] set

D̃h
t :=

1

h5/2−β

∫ t

0
Dh

r dBr.

Then the conclusions of Proposition 2.5 hold true for D̃h.

Proof. The proof goes along the same lines as for Proposition 2.5, and
is left to the reader for the sake of conciseness. Let us just highlight the
following decomposition:

E

[

(

D̃h
t

)2
]

≤ c h2β−1
∫ t

0
E2[B2

r

]

dr

(
∫ 1

−1

dξ

|ξ|1−β

)2

+c h2β−1
(
∫

|ξ|≥1

dξ

|ξ|2−β

)2

,

which allows us to conclude that limh→0 E[(D̃h
t )2] = 0 since 1/2 < β < 1.
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12 A. DEYA, D. NUALART AND S. TINDEL

Remark 2.7. With Proposition 2.5 and Proposition 2.6 in hand, Theo-
rem 2.3 now boils down to the following property:

(19)
Mh

h5/2−β

(d)−−→ cβ Wα in C([0, 1];R), with Mh
t :=

∫ t

0
Qh,β,2

r dBr,

where Qh,β,2 is the process defined by (18). It should be observed that Mh is
now a Brownian martingale, for which specific limit theorems are available.

2.3. Study of the martingale term. Similar to the argument used in [7, 8,
15], our strategy towards (19) is now based on the martingale convergence
criterion summed up in [4, Theorem A.1]. Using the latter result, the proof
of (19) reduces to showing that, as h → 0, we have simultaneously

(20)
〈Mh, B〉t

h5/2−β
→ 0 and

〈Mh〉t

h5−2β
→ cβ αt

in L2(Ω) for every fixed t ∈ [0, 1], with αt defined by (4).

To this aim, let us start by recasting Mh in a suitable way. Indeed, thanks
to a stochastic Fubini theorem we have:

(21)
Qh,β,2

r

h5/2−β
=

∫ r

0
gh(Br −Bu) dB̂r

u,

where

(22) gh = gβ
h := F(fh), with fh(ξ) = fβ

h (ξ) :=
1

h5/2−β

ψ(hξ)

|ξ|3−β
.

In the course of the reasoning, we shall appeal to the following key properties
of gh:

Lemma 2.8. It holds that:

(i) For some cβ independent of h, we have
∫

R
gh(x)2 dx = cβ > 0.

(ii) Recalling that pt stands for the Gaussian heat kernel defined by (5), we
have for every t ∈ (0, 1]:

(23)

∫

R

gh(x)pt(x) dx ≤ c hβ−1/2

tβ/2
.

(iii) The function gh can also be written as

(24) gh(x) =
c

h5/2−β

∫ x+h

x−h

(h− |x− y|)
|y|β dy.
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In particular, gh(−x) = gh(x) and gh(x) ≥ 0 for all x ∈ R.

(iv) For every ε > 0 such that β > 1/2 + ε, every h ≤ 1/4 and every
|x| ≥

√
h,

(25) gβ
h(x) ≤ c hε/2gβ−ε

h (x).

Proof. By Fourier isometry,

‖gh‖2
L2 = ‖fh‖2

L2 =
1

h5−2β

∫

R

ψ2(hξ)

|ξ|6−2β
dξ =

∫

R

ψ2(ξ)

|ξ|6−2β
dξ,

which gives (i). In order to prove (ii) use Fourier isometry again, which
according to (22) yields

∫

R

gh(x)pt(x) dx =
c

h5/2−β

∫

R

ψ(hξ)

|ξ|3−β
e− tξ2

2 dξ ≤ c hβ−1/2
∫

R

e− tξ2

2

|ξ|1−β
dξ ≤ c hβ−1/2

tβ/2
.

For (iii), observe that

fh(ξ) = h1/2ϕ(hξ), with ϕ(u) =
sinc2(u)

|u|1−β
,

where the sinc function refers to sinc(x) = sin(x)
x . Thus, using the fact

F(sinc2(·))(ξ) = 1[−1,1](ξ)(1 − |ξ|), we get

gh(ξ) = F(fh)(ξ) =
1

h1/2
F(ϕ)

( ξ

h

)

=
1

h1/2

[

F
(

| · |−1+β
)

∗F
(

sinc2(·)
) ]( ξ

h

)

=
c

h1/2

∫
ξ
h

+1

ξ
h

−1

dy

|y|β
(

1 −
∣

∣

∣

ξ

h
− y

∣

∣

∣

)

,

which clearly leads to (24).

Now we can use (24) in order to prove (iv): for x >
√
h, write

gβ
h(x) = c hε 1

h5/2−(β−ε)

∫ x+h

x−h

h− |x− y|
|y|ε|y|β−ε

dy ≤ c hεgβ−ε
h (x)

|x− h|ε ≤ c hε/2gβ−ε
h (x),

since |x− h| ≥ 1
2

√
h. By symmetry of gh, this finishes our proof.

Let us develop now the strategy for the convergence of the martingale
term, which has been summarized in (20). We shall prove the first claim of
(20), namely:
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14 A. DEYA, D. NUALART AND S. TINDEL

Proposition 2.9. For all t ∈ [0, 1], the martingale term Mh satisfies

E
[〈Mh, B〉2

t

]

h5−2β
≤ ct h

β−1/2,

where ct is a uniformly bounded function of t ∈ [0, 1].

Proof. According to (19) and (21), one has

〈Mh, B〉t

h5/2−β
=

∫ t
0 Q

β,h,2
r dr

h5/2−β
=

∫ t

0
dr

∫ r

0
dB̂r

u gh(Br −Bu).

Hence

E
[

〈Mh, B〉2
t

]

h5−2β
= 2

∫ t

0
dr1

∫ r1

0
dr2

∫ r2

0
duE

[

gh(Br1 −Bu)gh(Br2 −Bu)
]

,

and furthermore

E
[

gh(Br1 −Bu)gh(Br2 −Bu)
]

= E
[

gh ∗ pr1−r2(Br2 −Bu)gh(Br2 −Bu)
]

=

∫

R

dξ [gh ∗ pr1−r2 ](ξ) gh(ξ) pr2−u(ξ) ≤ c‖gh ∗ pr1−r2‖∞
hβ−1/2

√
r2 − u

,

thanks to (23). In addition, ‖gh ∗ pr1−r2‖∞ ≤ ‖gh‖L2‖pr1−r2‖L2 ≤ c|r1 −
r2|−1/4, and thus

E
[〈Mh, B〉2

t

]

h5−2β
≤ c hβ−1/2

∫ t

0
dr1

∫ r1

0
dr2 |r1 − r2|−1/4

∫ r2

0
du |r2 − u|−1/2,

from which our claim is easily deduced.

Before we proceed with the proof of (20), let us label a technical lemma
on Brownian local times:

Lemma 2.10. Let {Lt(a); t ∈ [0, 1], a ∈ R} be the local time process of
Brownian motion on the interval [0, 1]. Then there exists ε > 0 and a strictly
positive constant c such that

sup
x∈R,t∈[0,1]

E[|Lt(x+Bt)|2] ≤ c, and sup
t∈[0,1]

E

[

sup
|x−y|<h1/2

|Lt(x) − Lt(y)|2
]

≤ c hε.
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Proof. By applying Tanaka’s formula to the backward Brownian motion
B̂, we get, for all x ∈ R,

(26) |Lt(x+Bt)| ≤ 2|Bt| + 2

∣

∣

∣

∣

∫ t

0
1{B̂t

s<−x}dB̂
t
s

∣

∣

∣

∣

,

and the first assertion immediately follows. The second assertion of our
Lemma can be derived from [1, item (ii)].

We are now ready to prove the second part of assertion (20), that is

Proposition 2.11. Let t be an arbitrary time in [0, 1]. Then we have:

(27) L2(Ω) − lim
h→0

〈Mh〉t

h5−2β
= cβ αt,

where α is the self-intersection local time defined by (4).

Proof. Let us start by applying again the backward Itô formula (16) in
order to get the decomposition

〈Mh〉t =

∫ t

0
dr

(
∫ r

0
dB̂r

u gh(Br −Bu)

)2

:= Nh,1
t +Nh,2

t ,

with

Nh,1
t =

∫ t

0
dr

∫ r

0
du [gh(Br −Bu)]2

Nh,2
t = 2

∫ t

0
dr

∫ r

0
dB̂r

u

(

gh(Br −Bu)

∫ r

u
dB̂r

s gh(Br −Bs)

)

.

We shall now divide our proof in two steps.

Step 1: Nh,2 vanishes as h → 0. Specifically, we shall prove that L2(Ω) −
limh→0N

h,2
t = 0. Indeed, it is readily checked that

E

[(
∫ t

0
dr

∫ r

0
dB̂r

u

(

gh(Br −Bu)

∫ r

u
dB̂r

s gh(Br −Bs)
)

)2]

= 2

∫ t

0
ds

∫ t

s
du

∫ t

u
dr1

∫ r1

u
dr2 E

[

gh(Br1 −Bs)gh(Br1 −Bu)gh(Br2 −Bs)gh(Br2 −Bu)
]

.(28)

Furthermore, using the fact that gh is positive (Lemma 2.8 item (iii)), we
have, for fixed 0 < s < u < r2 < r1 < t,

E
[

gh(Br1 −Bs)gh(Br1 −Bu)|Fr2

]

=

∫

R

gh(x+Br2 −Bs)gh(x+Br2 −Bu)pr1−r2(x) dx

≤ ‖pr1−r2‖∞‖gh‖2
L2 ≤ c√

r1 − r2
,
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16 A. DEYA, D. NUALART AND S. TINDEL

where we have used Lemma 2.8 item (i), and

E
[

gh(Br2 −Bs)gh(Br2 −Bu)
]

= E
[

gh(Br2 −Bu)(g ∗ pu−s)(Br2 −Bu)
]

≤ ‖gh ∗ pu−s‖∞

∫

R

gh(x)pr2−u(x) dx

≤ c ‖gh‖L2‖pu−s‖L2

hβ−1/2

√
r2 − u

,

with the help of Lemma 2.8 item (ii). Going back to (28), the result easily
follows.

Step 2: Limit of Nh,1. We will show the following property:

(29)

∫ t

0
dr

∫ r

0
du [gh(Br −Bu)]2

h→0−−−→ cβ

∫ t

0
dr Lr(Br) in L2(Ω),

where cβ is the constant defined at Lemma 2.8. To this aim, observe that
according to the occupation density formula we have

∆h :=

∫ t

0
dr

∫ r

0
du [gh(Br −Bu)]2−cβ

∫ t

0
dr Lr(Br) =

∫ t

0

(
∫

R

Zr(x) dx

)

dr,

where Z is the process defined by

Zr(x) = gh(Br − x)2[Lr(x) − Lr(Br)
]

.

Next we decompose ∆h as ∆1
h + ∆2

h, where

∆1
h =

∫ t

0

(

∫

|x−Br|<h1/2
Zr(x) dx

)

dr, and ∆2
h =

∫ t

0

(

∫

|x−Br|≥h1/2
Zr(x) dx

)

dr.

We now estimate those two terms separately.

The term ∆1
h can be bounded as follows: owing to Lemma 2.8 item (i),

we have

∆1
h ≤ c

∫ t

0
sup

|x−y|<h1/2

|Lr(x) − Lr(y)| dr.

Owing to Lemma 2.10, we thus get

E
[

|∆1
h|2
]

≤ c sup
t∈[0,1]

E

[

sup
|x−y|<h1/2

|Lt(x) − Lt(y)|2
]

≤ c hε,

for some constant ε ∈ (0, 1).
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As far as ∆2
h is concerned, invoke Lemma 2.8 item (iv) in order to conclude

that for any ε > 0 such that β > 1
2 + ε and every h ≤ 1/4, we have

E
[

|∆2
h|2
]

≤ c hε
∫ t

0
E

[

(

∫

|x−Br|≥h1/2
|gβ−ε

h (x−Br)|2 |Lr(x) − Lr(Br)| dx
)2 ]

dr

≤ c hε
∫ t

0
E

[
∫

R

|gβ−ε
h (x−Br)|2 |Lr(x) − Lr(Br)|2 dx

]

dr ≤ c hε,

where we have appealed to Lemma 2.10 for the last inequality.

Step 3: Conclusion. Putting together the bounds on ∆1
h and ∆2

h, we have
proved our assertion (29), which easily yields

L2(Ω) − lim
h→0

〈Mh〉t

h5−2β
= cβ

∫ t

0
Lr(Br) dr.

In order to prove (27), we now just have to observe that
∫ t

0
Lr(Br) dr =

∫ t

0

(
∫ r

0
δBr(Bu) du

)

dr =

∫ t

0

(
∫ r

0
δ0(Br −Bu) du

)

dr = αt.

This concludes our proof.

3. L
2 modulus of 1-dimensional local time on chaoses. In this

section, we go back to the study of the L2 modulus of the Brownian local
time, that is to the study of the quantity Hh

t (B) defined by (1) with the
global aim of proving Theorem 1.2. Before we go on with the proof, let us
introduce some additional notation:

Notation 3.1. For any t > 0 and n ≥ 1 we write Sn
t for the simplex of

order n on [0, t], i.e., Sn
t = {(t1, . . . , tn) ∈ [0, t]n : t1 < . . . < tn}. For every

n ≥ 2 and every h > 0, we also define a function Φh(t1, t2) as

Φh(t1, t2) = Φh,n(t1, t2) :=

∫ h

0
p

(n−2)
t2−t1

(y)(h− y) dy , 0 ≤ t1 ≤ t2 ≤ t.

From the classical uniform estimate supy∈R |p(2m)
t (y)| ≤ cmt

−m− 1
2 , we can

already derive the following bounds on Φh,2m, which will be used in the
course of our reasoning:

Lemma 3.2. Fix m ≥ 1. Then there exists a constant cm such that for
every h ∈ (0, 1) and all 0 ≤ t1 < s < t < t2, one has

(30) |Φh,2m(s, t)| ≤ cmh
2 |t− s|−m+ 1

2
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18 A. DEYA, D. NUALART AND S. TINDEL

and for any λ ∈ (0, 1),

(31) |Φh,2m(t1, t) − Φh,2m(t1, s)| ≤ cmh
2 |t− s|λ |s− t1|−m+ 1

2
−λ ,

(32) |Φh,2m(t, t2) − Φh,2m(s, t2)| ≤ cmh
2 |t− s|λ |t2 − t|−m+ 1

2
−λ .

The proof of Theorem 1.2 is decomposed in four main steps: after some
preliminary material, we write an explicit chaos decomposition for each
Hh

t (B). Then we study the asymptotic behavior of the variance in each
chaos, and the central limit theorem for the finite-dimensional distributions
of Jn(Hh

. (B)) is obtained by analyzing the contractions of its sequence of
kernels. Finally, we study the tightness of the process {Jn(Hh

t (B)); t ∈ [0, 1]}
properly normalized.

3.1. Stochastic analysis preliminaries. We will consider here the Brow-
nian motion B as an isonormal process B ≡ {B(h); h ∈ H} defined on
(Ω,F ,P), with H = L2([0, 1]). Recall that it means that B is a centered
Gaussian family with covariance function E[B(h1)B(h2)] = 〈h1, h2〉H. We
also assume that F is generated by B.

At this point, we can introduce the Malliavin derivative operator on the
Wiener space (Ω,H,P). Namely, we first let S be the family of smooth
functionals F of the form

F = f(B(h1), . . . , B(hn)),

where h1, . . . , hn ∈ H, n ≥ 1, and f is a smooth function having polynomial
growth together with all its partial derivatives. Then the Malliavin derivative
of such a functional F is the H-valued random variable defined by

DF =
n
∑

i=1

∂f

∂xi
(B(h1), . . . , B(hn))hi.

For all p > 1, it is known that the operator D is closable from Lp(Ω) into
Lp(Ω; H). We still denote by D the closure of this operator, whose domain is
usually denoted by D

1,p and is defined as the completion of S with respect
to the norm

‖F‖1,p := (E [|F |p] + E [‖DF‖p
H])

1
p .

We shall also denote by D
∞,p the intersection ∩k≥1D

k,p.
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Consider the nth Hermite polynomial Hn defined on R, that is

(33) Hn(x) =
(−1)n

n!
e

x2

2 ∂n
xe

− x2

2 ,

and let Hn be the closed linear subspace of L2(Ω) generated by the random
variables {Hn(B(h)); h ∈ H, ‖h‖H = 1}. Then Hn is called Wiener chaos of
order n, and L2(Ω) can be decomposed into the orthogonal sum of the Hn:
we have L2(Ω,F ,P) = ⊕∞

n=0Hn (see [11, Theorem 1.1.1]). In the sequel we
denote by Jn(F ) the projection of a given random variable F ∈ L2(Ω) onto
Hn for n ≥ 0, with J0(F ) = E[F ]. In this context Stroock’s formula (see
[16]) states that, whenever F ∈ D

∞,2, one can compute Jn(F ) explicitly as
follows for n ≥ 1:

(34) Jn(F ) = In(fn), with fn(t1, . . . , tn) =
E [Dt1,...,tnF ]

n!
,

where In(fn) stands for the multiple Itô-Wiener integral of fn with respect
to B. We also label the value of H2m(0) here for further use: for m ≥ 1 we
have

(35) H2m(0) =
(−1)m

2mm!
.

Let now fn be a symmetric function in L2([0, 1]n). The contraction of
order p of fn is the function defined on [0, 1]2(n−p) as follows:

(36) [fn ⊗p fn] (t1, . . . , t2(n−p))

=

∫

[0,1]p
fn(u1, . . . , up, t1, . . . , tn−p) fn(u1, . . . , up, tn−p+1, . . . , t2(n−p)) du1 · · · dup.

With this definition in hand, let us state the following theorem (borrowed
from [12]), which will be crucial in order to establish the convergence of our
renormalized local times:

Proposition 3.3. Let {Fh = In(fn,h); h > 0} be a family of random
variables belonging to a fixed Wiener chaos Hn, for which we assume that
the kernels fn,h are symmetric. We also suppose that

(i) We have limh→0 E[F 2
h ] = σ2 > 0.

(ii) For all p ∈ {1, . . . , n− 1} the relation limh→0 ‖fn,h ⊗p fn,h‖H⊗2(n−p) = 0
holds true.

Then Fh converges in law to a Gaussian random variable N (0, σ2) as h → 0.
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In order to obtain convergence in law for processes we shall also invoke a
CLT for multidimensional vectors in a fixed chaos, originally proved in [13]:

Proposition 3.4. Consider a family of d-dimensional random variables
{Fh; h > 0} with Fh = (F 1

h , . . . , F
d
h ), such that F j

h belongs to a fixed Wiener
chaos Hn for each j ∈ {1, . . . , d} and h > 0. Suppose furthermore that for a
symmetric matrix Γ we have:

(i) Each F j
h converges in law to a Gaussian random variable N (0,Γ(i, i)) as

h → 0.

(ii) For each (i, j) ∈ {1, . . . , d}2 one has limh→0 E[F i
h F

j
h ] = Γ(i, j).

Then Fh converges in law to a Gaussian random variable N (0,Γ) as h → 0.

3.2. Chaos decomposition of Hh
t (B). In order to compute the chaos de-

composition of Hh
t (B), we first recall a relation taken from [7], whose proof

is similar to our identity (7): we have
(37)

Hh
t (B) =

∫

[0,t]2
[δ0(Bv −Bu + h) + δ0(Bv −Bu − h) − 2δ0(Bv −Bu)] dudv,

where δ0(Bv −Bu +h) has to be understood as a distribution on the Wiener
space in the sense of Watanabe (see [17]). One can also show that the right-
hand side of (37) is the L2(Ω)-limit of the sequence obtained by replacing
δ0 with the Gaussian approximating kernel pε (see [7, Section 2] for further
details).

Let us also give an elementary yet useful lemma:

Lemma 3.5. Let pt be the Gaussian kernel defined by (5), and N be a
real valued random variable such that N ∼ N (h, σ2) with h ∈ R and σ2 > 0.
Then for all n ≥ 0 we have

(38) E
[

p
(n)
t (N)

]

= p
(n)
t+σ2(h).

Proof. Taking into account the analytic form of expected values with

respect to N , we have E[p
(n)
t (N)] = [p

(n)
t ∗ pσ2 ](h). Furthermore, elementary

relations for convolutions and the semi-group property for p yield:

p
(n)
t ∗ pσ2 = [pt ∗ pσ2 ](n) = p

(n)
t+σ2 ,

from which relation (38) is easily deduced.
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Recall now that the projection Jn(F ) of a L2 random variable F onto a
fixed chaos Hn has been defined at Section 3.1. For our Hamiltonian Hh

t (B)
we get the following:

Proposition 3.6. For every n ≥ 1 and every h > 0, recall that we have
set Xn,h

t = Jn(Hh
t (B)) for the projection of Hh

t (B) onto the n-th Wiener
chaos. Then we have
(39)

Xn,h
t = 0 if n is odd , Xn,h

t =
16

n!
In
(

(fh + gh,t) · 1[0,t]n
)

if n is even,

where fh ∈ L2(Rn
+), gh,t ∈ L2([0, t]n) are the symmetric functions defined by

(40) fh(t1, . . . , tn) := Φh(min(t1, . . . , tn),max(t1, . . . , tn)),

(41)
gh,t(t1, . . . , tn) := −Φh(min(t1, . . . , tn), t) + Φh(0, t) − Φh(0,max(t1, . . . , tn)),

and where we recall that the function Φh has been defined at Notation 3.1.

Proof. We divide this proof in two steps:

Step 1: Computation of the projection. Let us first compute the chaos decom-
position of δ0(Bv −Bu +h). To this aim, recall that, as a distribution on the
Wiener space (see [17]), we have δ0(Bv −Bu+h) = limε→0 pε(Bv −Bu+h) for
the Gaussian kernel pε defined at (5). Furthermore, according to Stroock’s
formula (34) we have Jn(pε(Bv −Bu + h)) = In(ϕε

n) with

ϕε
n(t1, . . . , tn) =

1

n!
E [Dt1,...,tnpε(Bv −Bu + h)] =

1

n!
E
[

p(n)
ε (Bv −Bu + h)

]

n
∏

i=1

1[u,v](ti).

We now compute E[p
(n)
ε (Bv − Bu + h)] by means of formula (38), which

yields

ϕε
n(t1, . . . , tn) =

p
(n)
v−u+ε(h)

n!

n
∏

i=1

1[u,v](ti).

Taking limits as ε → 0 we end up with Jn(δ0(Bv −Bu +h)) = In(ϕn), where

ϕn(t1, . . . , tn) =
p

(n)
v−u(h)

n!

n
∏

i=1

1[u,v](ti).

The same kind of computations is valid for δ0(Bv −Bu −h) and δ0(Bv −Bu)
and thus going back to (37), we have obtained:

Xn,h
t = Jn(Hh

t (B)) =
2

n!
In

(

∫

S2
t

n
∏

i=1

1[u,v](ti)
[

p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0)

]

dudv

)

,
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where we recall that S2
t stands for the simplex of order 2 on [0, t] (see Nota-

tion 3.1). Moreover, observe that p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0) ≡ 0 when

n is odd, which yields the first claim in (39). Therefore only even ns are
considered from now on.

Step 2: Simplification of the expression for the projection. Notice first that,
since we are dealing with a linear Brownian motion B, one can write Xn,h

t

as

Xn,h
t = 2

∫

Sn
t

(

∫

S2
t

n
∏

i=1

1[u,v](ti)
[

p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0)

]

dudv

)

dBt1 · · · dBtn

= 2

∫

Sn
t

(
∫ t1

0

∫ t

tn

[

p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0)

]

dvdu

)

dBt1 · · · dBtn .

(42)

Let us transform now the expression p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0). First,

since n is an even number and p is symmetric, we have

p
(n)
v−u(h) + p

(n)
v−u(−h) − 2p

(n)
v−u(0) = 2

[

p
(n)
v−u(h) − p

(n)
v−u(0)

]

.

Then write

p
(n)
v−u(h)−p(n)

v−u(0) =

∫ h

0
p

(n+1)
v−u (x) dx =

∫ h

0

∫ x

0
p

(n+2)
v−u (y) dydx = 2

∫ h

0

∫ x

0
∂vp

(n)
v−u(y) dydx,

which yields

∫ t1

0
du

∫ t

tn

dv
[

p
(n)
v−u(h) − p

(n)
v−u(0)

]

= 2

∫ t1

0
du

∫ t

tn

dv

∫ h

0
dx

∫ x

0
dy ∂vp

(n)
v−u(y)

= 2

∫ t1

0
du

∫ h

0
dx

∫ x

0
dy
[

p
(n)
t−u(y) − p

(n)
tn−u(y)

]

= −4

∫ t1

0
du

∫ h

0
dx

∫ x

0
dy
[

∂up
(n−2)
t−u (y) − ∂up

(n−2)
tn−u (y)

]

= −4

∫ h

0

[

p
(n−2)
t−t1

(y) − p
(n−2)
tn−t1

(y) − p
(n−2)
t (y) + p

(n−2)
tn

(y)
]

(h− y) dy.

Plugging this expression into (42) and symmetrizing again, relation (39)
easily follows.

3.3. Asymptotic behavior of the variance. In this section we compute the
correct amount of normalization needed for the convergence of each X2m,h

t =
J2m(Ht(B)) for m ≥ 1. This will be obtained thanks to an asymptotic
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analysis of the variance of those random variables and recall that we have
shown that X2m,h

t = 16
(2m)!I2m

(

(fh +gh,t) ·1[0,t]2m

)

, which means in particular
that

(43) E
[

X2m,h
t X2m,h

s

]

=
162

(2m)!
〈(fh+gh,t)·1[0,t]2m , (fh+gh,s)·1[0,s]2m〉L2(R2m

+ ).

Our aim is to prove the following:

Proposition 3.7. Fix m ≥ 1. Then for all 0 ≤ s ≤ t ≤ 1, it holds that

(44) lim
h→0

E
[

X2m,h
t X2m,h

s

]

h4 ln(1/h)
= σ2

ms with σ2
m =

c (2m− 2)!

22m[(m− 1)!]2

for some strictly positive universal constant c.

The strategy for the proof of Proposition 3.7 is rather simple. Namely,
with the expression (43) in mind, our calculations will be decomposed into
the following facts:

• The norm ‖gh,t‖2
L2([0,t]2m) is of order at most h4 as h tends to 0, and

thus is negligible with respect to h4 ln(1/h).
• The quantity 〈fh · 1[0,t]2m , fh · 1[0,s]2m〉L2(R2m

+ ) scales as in relation (44).

Let us thus start by identifying the negligible terms:

Lemma 3.8. Fix m ≥ 1, and recall that for every t > 0, gh,t = gh,t,2m is
defined by (41). Then there exists a constant cm such that for every h > 0,

sup
t∈[0,1]

‖gh,t‖2
L2([0,t]2m) ≤ cm h4.

Proof. Write

‖gh,t‖2
L2([0,t]2m)

= (2m)!

∫

S2m
t

[

Φh(t1, t) − Φh(0, t) + Φh(0, t2m)
]2
dt1 · · · dt2m

≤ cm

{

∫

[0,t]
(t− t1)2m−1Φh(t1, t)

2 dt1 + t2mΦh(0, t)2 +

∫

[0,t]
t2m−1
2m Φh(0, t2m)2 dt2m

}

and the bound is then easily derived from (30).

We can now turn to the proof of the main proposition of this section:
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Proof of Proposition 3.7. Thanks to Lemma 3.8, we only have to
focus on

Ah(s, t) ≡ 〈fh · 1[0,t]2m , fh · 1[0,s]2m〉L2(R2m
+ ).

An easy integration over the simplex gives

Ah(s, t) = (2m)!

∫

S2m
s

[Φh,2m(t1, t2m)]2dt1 · · · dt2m

= (2m)!

∫

S2
s

(t2m − t1)2m−2

(2m− 2)!
[Φh,2m(t1, t2m)]2dt1dt2m.

Then, using the classical formula for the 2m-th derivative of pt, that is

(45) p
(2m)
t (y) = (2m)! t−mpt(y)H2m

(

y

t1/2

)

,

where H2m is defined by (33), we deduce that

Ah(s, t) = (2m)!(2m− 2)!

∫

S2
s

(t2 − t1)2m−2

×







∫ h

0
(t2 − t1)−(m−1) e

− y2

2(t2−t1)

(2π(t2 − t1))1/2
H2m−2

(

y

(t2 − t1)1/2

)

(h− y) dy







2

dt1dt2

= (2m)!(2m− 2)!

∫

S2
s







∫ h

0

e
− y2

2(t2−t1)

(2π(t2 − t1))1/2
H2m−2

(

y

(t2 − t1)1/2

)

(h− y) dy







2

dt1dt2.

Perform the change of variable t2 − t1 = τ and t1 = σ, which yields

Ah(s, t) = (2m)!(2m−2)!

∫ s

0
(s−τ)





∫ h

0

e− y2

2τ

(2πτ)1/2
H2m−2

(

y

τ1/2

)

(h− y) dy





2

dτ.

Now set y/τ1/2 = z in order to get

Ah(s, t) =
(2m)!(2m− 2)!

2π
h2
∫ s

0
(s−τ)

[

∫ h/τ1/2

0
e− z2

2 H2m−2 (z)

(

1 − τ1/2z

h

)

dz

]2

dτ.

Finally let u = h/τ1/2, so that we end up with Ah(s, t) = 1
π (2m)!(2m −

2)!h4 a(h), where

a(h) ≡
∫ ∞

h/s1/2
u−3

(

s− h2

u2

)

[
∫ u

0
e− z2

2 H2m−2 (z)

(

1 − z

u

)

dz

]2

du.
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It is now readily checked that the main singularity in the integral defining
a(h) is due to a term u−3u2 = u−1 integrated close to 0, so that for small h,
a(h) is of order ln(1/h).

In order to quantify this fact, let us apply l’Hopital’s rule to a(h)/ ln(1/h).
We get

lim
h→0

a(h)

ln(1/h)
= lim

h→0

b(h)

h−2
, with b(h) = 2

∫ ∞

h/s1/2
u−5

[
∫ u

0
e− z2

2 H2m−2 (z)

(

1 − z

u

)

dz

]2

du.

It is now easily seen that b′(h) is equivalent to − s
2 h

−3[H2m−2(0)]2 in a
neighborhood of the origin, so that a second application of l’Hopital’s rule
to b(h)/h−2 yields

lim
h→0

a(h)

ln(1/h)
=
s

4
[H2m−2(0)]2.

In order to conclude recall that Ah(s, t) = 1
π (2m)!(2m−2)!h4 a(h), and thus

with the value of H2m−2(0) in mind (see (35)) we end up with

lim
h→0

Ah(s, t)

h4 ln(1/h)
=
s

4
[H2m−2(0)]2 (2m)!(2m− 2)! =

(2m)!(2m− 2)!

22m−1[(m− 1)!]2
s,

which finishes the proof of relation (44) since

lim
h→0

E
[

X2m,h
t X2m,h

s

]

h4 ln(1/h)
=

128

π(2m)!
lim
h→0

Ah(s, t)

h4 ln(1/h)
.

Remark 3.9. The fact that
∑

σ2
m = ∞, mentioned at Theorem 1.2 item

(iii), follows at once from relation (44). Indeed, using Stirling’s formula, we
can easily conclude that σ2

m is asymptotically equivalent to c√
m

for some
constant c > 0.

3.4. Contractions. In this section we shall prove that for a fixed t ∈ [0, 1]
the random variable Ht(B)/[h2 ln(1/h)1/2] converges in law to a Gaussian
random variable as h goes to 0. Owing to Proposition 3.3 and with Proposi-
tion 3.7 in hand, this boils down to the study of contractions for the functions
fh, gh involved in the definition of Jn(Ht(B)) given at (39). Those contrac-
tions are evaluated in the following proposition:

Proposition 3.10. Fix n = 2m ≥ 2, and recall that fh, gh,t also depend
on n as highlighted in (40)-(41). Then for every r ∈ {1, . . . , n− 1}, one has

(46)
1

h8 ln2(1/h)
‖(fh + gh,t) ⊗r (fh + gh,t)‖2

L2([0,t]2n−2r) → 0
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as h tends to 0.

Proof. Due to Lemma 3.8, the proof of Proposition 3.7 and thanks to
the fact that

‖fh ⊗r gh,t‖L2([0,t]2n−2r) ≤ ‖fh‖L2([0,t]2m)‖gh,t‖L2([0,t]2m),

it is readily checked that as h tends to 0,

1

h8 ln2(1/h)
‖(fh+gh,t)⊗r(fh+gh,t)‖2

L2([0,t]2n−2r) =
1

h8 ln2(1/h)
‖fh⊗rfh‖2

L2([0,t]2n−2r)+o(1).

We are thus reduced to prove that

(47) lim
h→0

‖fh ⊗r fh‖2
L2([0,t]2n−2r)

h8 ln2(1/h)
= 0.

In order to compute ‖fh ⊗r fh‖2
L2([0,t]2n−2r), let us consider the following

general problem: fix an integrable function ϕ defined on S2
t and compute

the contraction norm:

Rn,r(ϕ) =

∫

[0,t]2(n−r)

(

∫

[0,t]r
ϕ(max(s, t1),min(s, t1))ϕ(max(s, t2),min(s, t2)) ds

)2

dt1 dt2,

where we have set

max(s, t) = max(s1, . . . , sr, t1, . . . , tn−r), min(s, t) = min(s1, . . . , sr, t1, . . . , tn−r).

Note that Rn,r(ϕ) can also be written as

Rn,r(ϕ) =

∫

[0,t]2(n−r)

∫

[0,t]2r

2
∏

i,j=1

ϕ
(

max(si, tj),min(si, tj)
)

ds1 ds2 dt1 dt2.

In order to evaluate this integral, the following simple transformations can
be performed: (i) Replace max(si, tj) by max(si) ∨ max(tj). (ii) Integrate
on simplexes such as 0 < s1 < · · · < sr < t. For 2 ≤ r ≤ n−2, this simplifies
the above expression into

Rn,r(ϕ) = [(n− r)!r!]2
∫

(S2
t )2

∫

(S2
t )2

2
∏

i,j=1

ϕ
(

max(σi
2, τ

j
2 ),min(σi

1, τ
j
1 )
)

×
2
∏

k=1

[

(σk
2 − σk

1 )r−2(τk
2 − τk

1 )n−r−2

(r − 2)!(n− r − 2)!

]

dσk
1 dσ

k
2 dτ

k
1 dτ

k
2 ,
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that is

(48) Rn,r(ϕ) = Pr(n)

∫

(S2
t )2

∫

(S2
t )2

2
∏

i,j=1

ϕ
(

max(σi
2, τ

j
2 ),min(σi

1, τ
j
1 )
)

×
2
∏

k=1

(σk
2 − σk

1 )r−2(τk
2 − τk

1 )n−r−2 dσk
1 dσ

k
2 dτ

k
1 dτ

k
2 ,

where we have set Pr(n) = [(n− r)(n− r − 1)r(r − 1)]2.

We now recall that fh is defined by (40), which means that we shall apply
identity (48) to the function ϕ = Φh where Φh is introduced at Notation 3.1.
Towards this aim, observe that one can write Φh(u, v) = ℓn,h(v − u) with

ℓn,h : R+ → R+ given by ℓn,h(w) :=
∫ h

0 p
(n−2)
w (y) (h − y) dy. Thanks to the

expression (45) we have already recalled for p
(n−2)
w we thus get

ℓn,h(w) =
(−1)n(n− 2)!√

2π

∫ h

0

e− y2

2w

w(n−1)/2
Hn−2

(

y

w1/2

)

(h−y) dy ≤ cn
h2

w(n−1)/2
.

Plugging this relation into (48), we obtain that for 2 ≤ r ≤ n− 2,

‖fh ⊗r fh‖2
L2([0,t]2n−2r)

≤ cn,r h
8
∫

(S2
t )2

∫

(S2
t )2

2
∏

i,j=1

(

max(σi
2, τ

j
2 ) − min(σi

1, τ
j
1 )
)−(n−2)/2

×
2
∏

k=1

(σk
2 − σk

1 )r−2(τk
2 − τk

1 )n−r−2 dσk
1 dσ

k
2 dτ

k
1 dτ

k
2

≤ cn,r h
8
∫

(S2
t )2

∫

(S2
t )2

2
∏

i,j=1

(

max(σi
2, τ

j
2 ) − min(σi

1, τ
j
1 )
)−3/2

2
∏

k=1

dσk
1 dσ

k
2 dτ

k
1 dτ

k
2 .(49)

This kind of integral will be handled in Lemma 5.1, which allows to conclude
that ‖fh ⊗r fh‖2

L2([0,t]2n−2r) ≤ cn,r h
8. Hence relation (47) obviously holds

true, which in turn implies (46).

We have thus proved relation (46) for n ≥ 4 and 2 ≤ r ≤ n − 2. The
remaining possibilities can be treated applying the same reasoning: in the
case (n ≥ 4, r ∈ {1, n− 1}) we have

‖fh ⊗r fh‖2
L2([0,t]2n−2r)

≤ cr,nh
8
∫

(S2
t )2

∫

[0,t]2

2
∏

i,j=1

(

max(σi, τ j
2 ) − min(σi, τ j

1 )
)−1

dσ1dσ2
2
∏

k=1

dτk
1 dτ

k
2
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and we recognize here the second (finite) integral involved in Lemma 5.1.
Finally, the case (n = 2, r = 1) reduces to

‖fh ⊗r fh‖2
L2([0,t]2n−2r)

≤ cr,nh
8
∫

[0,t]2

∫

[0,t]2

2
∏

i,j=1

(

max(σi, τ j) − min(σi, τ j)
)−1/2

dσ1dσ2dτ1dτ2,

so that we can conclude with Lemma 5.1 as well.

Summarizing our considerations up to now, we have obtained the following
convergence in law for the finite-dimensional distributions of X2m,h:

Proposition 3.11. Taking up the notations of Theorem 1.2, consider
t1, . . . , td ∈ [0, 1] and m ≥ 1. Then as h → 0 we have

1

h2[ln(1/h)]1/2
(X2m,h

t1
, . . . , X2m,h

td
)

(d)−−→ σm N (0,Γ) where σ2
m =

c (2m− 2)!

22m[(m− 1)!]2

and N (0,Γ) is the centered Gaussian law in R
d with covariance matrix

Γ(i, j) = min(ti, tj).

Proof. We shall simultaneously apply Propositions 3.3 and 3.4 to the
random vector h−2[ln(1/h)]−1/2(X2m,h

t1
, . . . , X2m,h

td
), which is of course a se-

quence of random vectors in (H2m)d. Moreover:

(i) According to Proposition 3.7, we have for every ti, tj ,

lim
h→0

E[X2m,h
ti

X2m,h
tj

]

h4 ln(1/h)
= σ2

m Γ(i, j).

(ii) For each fixed ti, one can write X2m,h
ti

= I2m(k2m,h) with k2m,h =
16

(2m)!(fh + gh,ti) · 1[0,ti]2m . Then Proposition 3.10 asserts that, for all r ∈
{1, . . . , 2m− 1},

lim
h→0

1

h4 ln(1/h)
‖k2m,h ⊗r k2m,h‖H⊗2(n−r) = 0.

We can thus combine Propositions 3.3 and 3.4 so as to conclude.
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3.5. Tightness. Now endowed with Proposition 3.11, the proof of Theo-
rem 1.2 reduces to showing that the sequence of processes {h−2 ln(1/h)−1/2X2m,h

t , t ∈
[0, 1]} is tight. This is the contents of the following proposition:

Proposition 3.12. Fix m ≥ 1. Then:

(i) There exists λ > 0 and a constant cm such that for all 0 ≤ s ≤ t ≤ 1,

(50) sup
h∈(0,1)

1

h4 ln(1/h)
E
[|X2m,h

t −X2m,h
s |2] ≤ cm |t− s|λ .

(ii) The family {h−2 ln(1/h)−1/2X2m,h; h > 0} is tight in C([0, 1]).

In order to prove Proposition 3.12, recall that X2m,h
t = 16

(2m)!I2m((fh +

gh,t) ·1[0,t]2m) with fh, gh defined by (40)-(41). We will also use the following
additional property of gh, which can be readily checked with the help of
(31)-(32), as in the proof of Lemma 3.8 :

Lemma 3.13. Fix m ≥ 1, and recall that we write gh,t instead of gh,t,2m

for notational sake. Then there exists λ > 0 and a constant cm such that for
all 0 ≤ s ≤ t ≤ 1, one has

sup
h∈(0,1)

‖gh,t − gh,s‖2
L2([0,s]2m) ≤ cmh

4 |t− s|λ .

We can now turn to the proof of the main proposition of this section:

Proof of Proposition 3.12. We prove the two claims of the proposi-
tion separately:

Step 1: Proof of assertion (i). Let us write

X2m,h
t −X2m,h

s = cm

{

In
(

(fh+gh,t)·{1[0,t]2m−1[0,s]2m})+In
(

(gh,t−gh,s)·1[0,s]2m

)

}

.

The second term of this decomposition can be treated with Lemma 3.13. As
for the first term, we clearly have

E

[

(

In
(

(fh + gh,t) · {1[0,t]2m − 1[0,s]2m})
)2
]

≤ cm

(

Ah
s,t +Bh

s,t

)

,

with

Ah
s,t =

∫

0<t1<...<t2m
s<t2m<t

Φh(t1, t2m)2 dt1 · · · dt2m

Bh
s,t =

∫

0<t1<...<t2m
s<t2m<t

gh,t(t1, . . . , t2m)2 dt1 · · · dt2m.
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We now bound those two terms: first, split up Ah
s,t into Ah

s,t = cm{Ah,1
s,t +

Ah,2
s,t } with

Ah,1
s,t ≡

∫

0<t1<s<t2m<t
(t2m − t1)2m−2Φh(t1, t2m)2 dt1 dt2m,

and

Ah,2
s,t ≡

∫

s<t1<t2m<t
(t2m − t1)2m−2Φh(t1, t2m)2 dt1 dt2m

=

∫

0<t1<t2m<t−s
(t2m − t1)2m−2Φh(t1, t2m)2 dt1 dt2m.

Then by (30), one has for any small ε > 0,

Ah,1
s,t ≤ cmh

4
∫

0<t1<s<t2m<t
(t2m − t1)−1 dt1 dt2m

≤ cmh
4
∫

0<t1<s
(s− t1)−1+ε dt1

∫

s<t2m<t
(t2m − t1)−ε dt2m ≤ cmh

4 |t− s|1−ε .

As far as Ah,2
s,t is concerned, we can follow the lines of the proof of Proposition

3.7 and conclude that lim 1
h4 ln(1/h)

Ah,2
s,t = cm |t− s| as h tends to zero, which

gives us a proper estimate.

Finally, the bound for Bh
s,t is easily derived as follows: first notice that,

according to the definition (41) of gh,t, we have

Bh
s,t ≤ c

∫

0<t1<...<t2m
s<t2m<t

[

Φ2
h(t1, t) + Φ2

h(0, t) + Φ2
h(0, t2m)

]

dt1 · · · dt2m.

The three terms above are handled easily, and along the same lines, thanks
to (30). For the first one, we get for instance

∫

0<t1<t2m<t
s<t2m<t

(t2m − t1)2m−2 Φ2
h(t1, t) dt1 · · · dt2m

≤ cmh
4
∫

0<t1<t2m<t
s<t2m<t

(t2m − t1)2m−2(t− t1)−2m+1 dt1 dt2m

≤ cmh
4 (t− s)

∫

0<t1<s
(t− t1)−1 dt1 + cmh

4
∫

s<t1<t
(t− t1)2m−1(t− t1)−2m+1 dt1

≤ cmh
4 |t− s|1−ε

for any small ε > 0. Gathering now our estimates on Ah
s,t and Bh

s,t, we have
proved our claim (50).
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Step 2: Proof of assertion (ii). With inequality (50) in hand, the tightness

result is easily deduced. Indeed, the random variable X2m,h
t −X2m,h

s living
in a finite chaos, we are in a position to use hypercontractivity (see [11]) and
assert that for all p ≥ 1,

sup
h∈(0,1)

1

h4p ln(1/h)p
E
[|X2m,h

t −X2m,h
s |2p] ≤ cm,p |t− s|λp .

As we have done before, Kolmogorov’s tightness criterion is therefore verified
for every p such that λp > 1, which finishes our proof.

4. L
2 modulus of 2-dimensional local time on chaoses. We now

carry on the task of proving Theorem 1.3 for projections of the quantity
Hh

t (B) defined by (1) when B is a 2-dimensional Brownian motion. For
the sake of simplicity, we shall take up most of the notations introduced
at Section 3, starting from the fact that our Hamiltonian is written Hh

t (B)
independently of the fact that B is a one-dimensional or a two-dimensional
Brownian motion. Like in [8], we shall also invoke the following important
representation formula for Hh

t (B):
(51)

Hh
t (B) =

∫

[0,t]2
[δ0(Bv −Bu + h) + δ0(Bv −Bu − h) − 2δ0(Bv −Bu)] dudv.

Remark 4.1. The reader should be aware of the fact that expression
(51) is formal, since the self-intersection local time is a divergent quantity
for a 2-dimensional Brownian motion. Notice however that only projections
on fixed chaoses will be considered in the sequel, and all projections of the
random distribution defined by (51) are well-defined.

Next we introduce the equivalent of the functions Φ introduced at Nota-
tion 3.1. In the 2-d case, we will let this set of functions appear in a Fourier
transform procedure, as follows:

Notation 4.2. For every n ≥ 2, every i = (i1, . . . , in) ∈ {1, 2}n and
every h ∈ R

2, we define a function Φi(t1, t2) as

Φi(t, s) = Φi,h(t, s) :=

∫

R2
dξ
(

∏n

k=1
ξik

){1 − cos(〈h, ξ〉)}
|ξ|4 e−(t−s)|ξ|2/2.

Remark 4.3. In order to draw a link between Φi and the function Φ =
Φ1-d introduced at Notation 3.1, observe that, at least for n = 2m even (the
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only cases of interest in our study), one can also write Φ1-d as

Φ1-d
h,2m(t, s) =

∫ h

0
p

(2m−2)
t−s (y)(h− y) dy

= p
(2m−2)
t−s (h) − p

(2m−2)
t−s (0)

=
1

2
{p(2m−2)

t−s (h) + p
(2m−2)
t−s (−h) − 2p

(2m−2)
t−s (0)}

= c

∫

R

dξ ξ2m−2{1 − cos(hξ)}e−(t−s)ξ2/2,

where we have used the Fourier representation pt−s(x) = c
∫

R
dξ eıxξe−(t−s)ξ2/2.

The continuity properties of the functions Φi, mimicking (30)–(32), are
summarized below:

Lemma 4.4. Fix m ≥ 1 and α ∈ (0, 2). Then there exists a constant
cm,α such that for every h ∈ R

2 and all 0 ≤ t1 < s < t < t2,

(52) max
i∈{1,2}2m

|Φi,h(t, s)| ≤ cm,α |h|α |t− s|−m+1− α
2 .

(53) max
i∈{1,2}2m

|Φi,h(t, t1)−Φi,h(s, t1)| ≤ cm,α |h|α |t− s|λ |s− t1|−m+1− α
2

−λ .

(54) max
i∈{1,2}2m

|Φi,h(t2, t)−Φi,h(t2, s)| ≤ cm,α |h|α |t− s|λ |t2 − t|−m+1− α
2

−λ .

The strategy of the proof for Theorem 1.3 is now similar to the one-
dimensional case of Theorem 1.2: exact computation of the chaos decompo-
sition, analysis of the variance and contraction properties for Hh

t (B). This
is why we shall skip some details below, and mainly stress the differences
between the 1-d and the 2-d case.

4.1. Stochastic analysis in dimension 2. The Malliavin calculus setting
we shall use in this section is very similar to the one explained at Section
3.1. However, we stress here some differences between stochastic analysis for
1-d and 2-d Brownian motions.

Notice first that our standing Wiener space is now the space of R2-valued
continuous functions C(R+; R2), while the related Hilbert space is H ≡
(L2([0, 1]))2. We set B = (B1, B2) for the 2-dimensional Wiener process and
for h = (h1, h2) ∈ H we define B(h) = B1(h1) +B2(h2). Starting from this
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definition of Wiener integral the Malliavin derivatives and Sobolev spaces
are defined along the same lines as in Section 3.1.

Stroock’s formula takes the following form in the 2-dimensional situa-
tion: designate by i = (i1, . . . , in) a generic element of {1, 2}n. Then for a
functional F ∈ D

∞,2 we have Jn(F ) = In(fn), with
(55)

In(fn) =
∑

i∈{1,2}n

∫

[0,1]n
fi(t1, . . . , tn)dBi1

t1
· · · dBin

tn
, fi(t1, . . . , tn) =

E
[

Di
t1,...,tn

F
]

n!
.

Finally Propositions 3.3 and 3.4 are still valid in our 2-d Wiener space
context, except for the fact that the expression for the r-th contraction
(r ∈ {1, . . . , n}) of a given kernel f reads as follows: for k1,k2 ∈ {1, 2}n−r

and t1, t2 ∈ [0, 1]n−r,

(56) (f ⊗r f)(k1,k2)(t
1, t2) :=

∑

l∈{1,2}r

∫

[0,1]r
ds f(k1,l)(t

1, s)f(k2,l)(t
2, s).

4.2. Chaos decomposition of Hh
t (B). We are now ready to compute the

projections Xn,h of Hh(B) on chaoses, which is the analogous statement to
Proposition 3.6 in the 2-d situation.

Proposition 4.5. For every n ≥ 1 and every non-zero h ∈ R
2, recall

that we have set Xn,h
t = Jn(Hh

t (B)) for the projection of Hh
t (B) onto the

n-th Wiener chaos. Then we have Xn,h
t = 0 if n is odd and

(57)

Xn,h
t =

c

n!

∑

i∈{1,2}n

∫

[0,t]n

{

fi(t1, . . . , tn)+gi,t(t1, . . . , tn)
}

dBi1
t1

· · · dBin
tn

if n is even,

for some universal constant c. In the previous equation, the symmetric func-
tions fi ∈ L2(Rn

+) and gi,t ∈ L2([0, t]n) are defined for each i ∈ {1, 2}n by

(58) fi(t1, . . . , tn) = fh
i (t1, . . . , tn) := Φi(min(t1, . . . , tn),max(t1, . . . , tn)),

and

(59) gi,t(t1, . . . , tn) = gh
i,t(t1, . . . , tn)

:= −Φi(min(t1, . . . , tn), t) + Φi(0, t) − Φi(0,max(t1, . . . , tn)),

where we recall that the functions Φi are introduced at Notation 4.2.
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Proof. By applying Stroock’s formula (55) to expression (51) in a similar

manner as in the proof of Proposition 3.6, we obtain that Xn,h
t is equal to

=
c

n!

∑

i∈{1,2}n

∫

[0,t]n

(

∫

S2
t

[

∂npv−u

∂xi

(h) +
∂npv−u

∂xi

(−h) − 2
∂npv−u

∂xi

(0)

] n
∏

i=1

1[u,v](ti) dudv

)

× dBi1
t1

· · · dBin
tn

= c
∑

i∈{1,2}n

∫

Sn
t

(
∫ t1

0

∫ t

tn

[

∂npv−u

∂xi

(h) +
∂npv−u

∂xi

(−h) − 2
∂npv−u

∂xi

(0)

]

dudv

)

dBi1
t1

· · · dBin
tn
,

where pt(x) stands here for the 2-dimensional Gaussian kernel and where we
have set ∂xi := ∂xi1 · · · ∂xin . Observe first that ∂npv−u

∂xi

(h) + ∂npv−u

∂xi

(−h) −
2∂npv−u

∂xi

(0) vanishes when n is odd, which yields our claim Xn,h
t = 0 in this

situation. In the case where n is even, use the Fourier representation

pv−u(x) = c

∫

R2
eı〈x,ξ〉e−(v−u)|ξ|2/2 dξ

and Fubini’s theorem in order to derive

Xn,h
t = c

∑

i∈{1,2}n

∫

Sn
t

[Φi(tn, t1) − Φi(t1, t) + Φi(0, t) − Φi(tn, 0)] dBi1
t1

· · · dBin
tn
.

Formula (57) follows by symmetrization.

4.3. Asymptotic behavior of the variance. With expression (57) in hand,

we now proceed as for the one-dimensional case, and compute E[X2m,h
t X2m,h

s ]
in order to see how this kind of quantity scales in h. Let us first label the
following analytic lemma which will feature in our future computations:

Lemma 4.6. Fix m ≥ 1 and ϕ : R2 → R such that

(60) |ϕ(x, y)| ≤ c {|x|1−ε|y|1−ε + |x|1+ε|y|1+ε}

for some small ε > 0. For every non-zero e ∈ R
2, set

(61) Lϕ
2m,e :=

∫

R2
dξ

∫

R2
dη

〈ξ, η〉2m

|ξ|4|η|4 ϕ(〈ξ, e〉, 〈η, e〉) exp

(

−1

2
(|ξ|2 + |η|2)

)

.

Then Lϕ
2m,e is well-defined and for all unit vectors e, ẽ ∈ R

2, one has Lϕ
2m,e =

Lϕ
2m,ẽ. We denote by Lϕ

2m this common quantity.
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Proof. The fact that Lϕ
2m,e is well-defined can be easily checked using

(60). As for the second assertion, introduce the rotation A which sends e to
ẽ and then use the isometric change of variables ξ = A∗ξ̃, η = A∗η̃, so as to
turn Lϕ

2m,e into Lϕ
2m,ẽ.

We will also make use of the following uniform estimate for gh
i,t, which (as

in the proof of Lemma 3.8) can be easily derived from the bound (52):

Lemma 4.7. Fix m ≥ 1, and recall that for every t > 0 and every
i ∈ {1, 2}2m, gi,t is defined by (41). Then there exists a constant cm and a
small ε > 0 such that for every h ∈ R

2,

sup
t∈[0,1],i∈{1,2}2m

‖gh
i,t‖2

L2([0,t]2m) ≤ cm |h|2+ε.

We can now compute the correct order of E[X2m,h
t X2m,h

s ] as follows:

Proposition 4.8. Fix m ≥ 1. Then for all 0 ≤ s ≤ t ≤ 1, it holds that

lim
h→0

|h|−2E
[

X2m,h
t X2m,h

s

]

= σ2
ms with σ2

m =
cLϕ

2m

(2m− 2)!
,

where c is a universal constant, where ϕ is defined for every (x, y) ∈ R
2 by

ϕ(x, y) :=

∫ ∞

0

du

u3
{1 − cos(ux)}{1 − cos(uy)},

and where we recall that Lϕ
2m has been introduced at relation (61).

Proof. Recall that

E
[

X2m,h
t X2m,h

s

]

=
c

(2m)!

∑

i∈{1,2}2m

〈(fi+gi,t)·1[0,t]2m , (fi+gi,s)·1[0,s]2m〉L2(R2m)

and thanks to Lemma 4.7, we only have to focus on the sum of the terms

Ai

s,t := 〈fi · 1[0,t]2m , fi · 1[0,s]2m〉L2(R2m).

An integration over the simplex gives

Ai

s,t =
(2m)!

(2m− 2)!

∫

∆2
s

Φi,h(t2m, t1)2(t2m − t1)2m−2 dt1dt2m.
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The change of variables t2m − t1 = τ and t1 = σ easily leads us to

Ai

s,t =
(2m)!

(2m− 2)!

∫ s

0
(s− τ)Φ

i, h

τ1/2
(1, 0)2 dτ.

Setting eh ≡ h
|h| , the change of variable u = |h|/τ1/2 now gives

Ai

s,t =
2(2m)!

(2m− 2)!
|h|2

∫ ∞

|h|/s1/2
u−3

(

s− |h|2
u2

)

Φi,ueh
(1, 0)2 du.

By using (52), one can check that |h|2 ∫∞
|h|/s1/2 u−5Φi,ueh

(1, 0)2 du → 0 as
h → 0, so that the main contribution will come from the terms

Âi

s,t :=
2(2m)!

(2m− 2)!
|h|2s

∫ ∞

|h|/s1/2
u−3Φi,ueh

(1, 0)2 du.

Now write

Φi,ueh
(1, 0)2 =

∫

R2
dξ

∫

R2
dη

∏2m
k=1 ξik

ηik

|ξ|4|η|4 {1−cos(u〈eh, ξ〉)}{1−cos(u〈eh, η〉)}e− 1
2

(|ξ|2+|η|2)

and observe that
∑

i∈{1,2}2m

∏2m
k=1 ξik

ηik
= 〈ξ, η〉2m. Thus, thanks to Lemma

4.6 and using Fubini theorem, we deduce that

|h|−2
∑

i∈{1,2}2m

Âi

s,t =
2(2m)!

(2m− 2)!
s · Lϕh

2m,

where ϕh is defined as

ϕh(x, y) :=

∫ ∞

|h|/s1/2

{1 − cos(ux)}{1 − cos(uy)}
u3

du.

Finally, the convergence of Lϕh
2m towards Lϕ

2m easily follows from the fact
that ϕ satisfies relation (60) for some small ε > 0, and this achieves the
proof.

4.4. Contractions. We now turn to the contractions estimation for the
functions fh, gh, where our 2-dimensional contractions are defined by (56).
The following is of course an analog of Proposition 3.10 in our 2-d setting:

Proposition 4.9. For every r ∈ {1, . . . , n− 1}, one has

‖(f. 1[0,t]n + g.,t) ⊗r (f. 1[0,t]n + g.,t)‖2

=
∑

i∈{1,2}2n−2r

‖((f. 1[0,t]n +g.,t)⊗r (f. 1[0,t]n +g.,t))i‖2
L2([0,t]2n−2r) = o(|h|4).
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Proof. Thanks to Lemma 4.7, it suffices to focus on the sum

∑

k1,k2∈{1,2}n−r

‖((f. 1[0,t]n) ⊗r (f. 1[0,t]n))(k1,k2)‖2
L2([0,t]2n−2r).

Assume first that 2m ≥ 4 and 2 ≤ r ≤ 2m− 2. Then we can follow the lines
of the proof of Proposition 3.10 and deduce that

∑

k1,k2∈{1,2}n−r

‖((f. 1[0,t]n) ⊗r (f. 1[0,t]n))(k1,k2)‖2
L2([0,t]2n−2r)

= cm

∑

k
1,k2∈{1,2}n−r

l
1,l2∈{1,2}r

∫

(S2
t )2

∫

(S2
t )2

2
∏

i,j=1

Φ(ki,lj),h(max(σi
2, τ

j
2 ),min(σi

1, τ
j
1 ))

×
2
∏

k=1

(σk
2 − σk

1 )r−2(τk
2 − τk

1 )n−r−2 dσk
1dσ

k
2dτ

k
1 dτ

k
2 .

Now, plugging the bound (52) (uniformly over (ki, lj)) into the latter ex-
pression yields, similarly to (49): for any small ε > 0,

∑

k1,k2∈{1,2}n−r

‖((f. 1[0,t]n) ⊗r (f. 1[0,t]n))(k1,k2)‖2
L2([0,t]2n−2r) ≤ cm |h|4+4ε Jε,

with

Jε :=

∫

(∆2
1)2

∫

(∆2
1)2

2
∏

i,j=1

(

max(σi
2, τ

j
2 )−min(σi

1, τ
j
1 )
)−3/2−ε/2

2
∏

k=1

dσk
1dσ

k
2dτ

k
1 dτ

k
2 .

By Lemma 5.1, we know that this integral is finite for ε > 0 small enough,
which achieves the proof of the proposition in the case (2m ≥ 4, 2 ≤ r ≤
2m− 2).

The two situations (2m ≥ 4, r ∈ {1, 2m − 1}) and (2m = 2, r = 1) can
also be handled with the same arguments as in the proof of Proposition 3.10
(with the help of Lemma 5.1 as well). Details are left to the reader.

Like in Section 3.4, by combining Propositions 4.8 and 4.9 we end up with
the following convergence in law result for the finite-dimensional distribu-
tions of X2m,h:
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Proposition 4.10. Taking up the above notations, consider t1, . . . , td ∈
[0, 1] and m ≥ 1. Then as h → 0 we have

1

|h|(X
2m,h
t1

, . . . , X2m,h
td

)
(d)−−→ σm N (0,Γ) where σ2

m =
cLϕ

2m

(2m− 2)!

and N (0,Γ) is the centered Gaussian law in R
d with covariance matrix

Γ(i, j) = min(ti, tj). Recall that the quantity Lϕ
2m has been defined in Propo-

sition 4.8.

Let us briefly check point (iii) of Theorem 1.3, i.e., the divergence of the
series of variances, as it is less obvious than in the 1-d case.

Proposition 4.11. With the notations of Proposition 4.10, it holds that
∑∞

m=1 σ
2
m = ∞.

Proof. One has

∞
∑

m=1

σ2
m = c

∞
∑

m=1

Lϕ
2m

(2m− 2)!

= c

∫

R2
dξ

∫

R2
dη

〈ξ, η〉2

|ξ|4|η|4 {e〈ξ,η〉 + e−〈ξ,η〉}ϕ(ξ1, η1)e− 1
2

(|ξ|2+|η|2)

≥ c

∫

R2
dξ

∫

R2
dη

〈ξ, η〉2

|ξ|4|η|4ϕ(ξ1, η1)e− 1
2

|ξ−η|2

≥ c

∫

[R,∞)2
dξ

∫

Bξ

dη
〈ξ, η〉2

|ξ|4|η|4ϕ(ξ1, η1)(62)

for every R > 0 and where the notation Bξ refers to the unit ball around ξ.
Now observe that for R large enough, ξ ∈ [R,∞)2 and η ∈ Bξ, one has

ϕ(ξ1, η1) = ξ2
1 · ϕ(1, η1

ξ1

) ≥ ξ2
1 · cϕ with cϕ = inf

1
2

≤x≤2
ϕ(1, x) > 0,

and also 〈ξ, η〉2 ≥ 1
2 |ξ|4. Therefore, going back to (62), one has for R large

enough and a suitable (finite) R̃,

∞
∑

m=1

σ2
m ≥ c

∫

[R,∞)2

ξ2

|ξ|4 dξ ≥ c

∫

R̃

dr

r
,

which achieves the proof.
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4.5. Tightness. In order to complete the proof of Theorem 1.3, we are
now left with the tightness property for the family of processes {h−1X2m,h

t , t ∈
[0, 1]}. The following proposition is thus the equivalent of Proposition 3.12
in our 2-d context:

Proposition 4.12. Fix m ≥ 1. Then:

(i) There exists λ > 0 and a constant cm such that for all 0 ≤ s ≤ t ≤ 1,

(63) sup
|h|∈(0,1)

1

|h|2 E
[|X2m,h

t −X2m,h
s |2] ≤ cm |t− s|λ .

(ii) The family {X2m,h; |h| > 0} is tight in C([0, 1]).

Proof. We use the same arguments as in the proof of Proposition 3.12.
First, observe that

E
[|X2m,h

t −X2m,h
s |2] ≤ cm

∑

i∈{1,2}2m

{

Ai

s,t +Bi

s,t + ‖gi,t − gi,s‖2
L2([0,s]2m)

}

,

where

Ai

s,t :=

∫

0<t1<...<t2m
s<t2m<t

Φi(t1, t2m)2 dt1 · · · dt2m,

Bi

s,t :=

∫

0<t1<...<t2m
s<t2m<t

gi,t(t1, · · · , t2m)2 dt1 · · · dt2m.

By using both (53) and (54), it is readily checked that

max
i∈{1,2}2m

|h|−2‖gi,t − gi,s‖2
L2([0,s]2m) ≤ c |t− s|λ

for some λ > 0. Then the treatments of
∑

i∈{1,2}2m Ai
s,t and

∑

i∈{1,2}2m Bi
s,t,

as well as the derivation of assertion (ii), follow the lines of the proof of
Proposition 3.12. For the sake of conciseness, we do not repeat the details
of the procedure.

Acknowledgement. We are grateful to the associate editor and to an
anonymous referee for stimulating questions and comments, which helped
us to clarify several crucial points of the paper.
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5. Appendix: a technical lemma. It only remains to prove the tech-
nical result on which the contraction computations of Propositions 3.10 and
4.9 rely.

Lemma 5.1. The three following integrals

(64)

∫

[0,1]2

∫

[0,1]2

2
∏

i,j=1

(

max(σi, τ j) − min(σi, τ j)
)−3δ

dσ1dσ2dτ1dτ2,

(65)

∫

(∆2
1)2

∫

[0,1]2

2
∏

i,j=1

(

max(σi, τ j
2 ) − min(σi, τ j

1 )
)−5δ

dσ1dσ2
2
∏

k=1

dτk
1 dτ

k
2 ,

and

(66)

∫

(∆2
1)2

∫

(∆2
1)2

2
∏

i,j=1

(

max(σi
2, τ

j
2 ) − min(σi

1, τ
j
1 )
)−7δ

2
∏

k=1

dσk
1dσ

k
2dτ

k
1 dτ

k
2

are convergent if and only if δ < 1/4.

We only focus on (66), since (64) and (65) can be treated with similar
arguments (see Remark 5.3 at the end of the proof). In order to ease no-
tations, we shall also change our time indices and set (σ1

1, σ
1
2) = (x1, x5),

(σ2
1, σ

2
2) = (x2, x6), (τ1

1 , τ
1
2 ) = (x3, x7), (τ2

1 , τ
2
2 ) = (x4, x8). Our integral of

interest can thus be written as

(67) Iα :=

∫

D
[(x7 ∨ x5) − (x3 ∧ x1)]−α [(x8 ∨ x5) − (x4 ∧ x1)]−α

× [(x7 ∨ x6) − (x3 ∧ x2)]−α [(x8 ∨ x6) − (x4 ∧ x2)]−α dx,

where D = {x ∈ [0, 1]8 : xi < x4+i, 1 ≤ i ≤ 4}. and α < 7/4.

The necessity of the condition α < 7/4 for the convergence of (67) stems
from the following fact: observe that if

S := {x ∈ [0, 1]4 : 0 < x1 < x5 < x2 < x6 < x3 < x7 < x4 < x8 < 1},
one has

I7/4 ≥
∫

S
(x7 − x1)−7/4(x8 − x1)−7/4(x7 − x2)−7/4(x8 − x2)−7/4dxdy

≥ c

∫

[0,1]3
(u1 + u2)−7/4(u1 + u2 + u3)−7/4u

−7/4
2 (u2 + u3)−7/4u1u

2
2u3 du1du2du3

≥ c

∫ 1

0

dr

r
,
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by using spherical coordinates.

In order to prove the convergence of Iα when α < 7/4, we propose to
rely on some block-type representation of the integral, described as follows.
First, given x ∈ D, denote J1 := [x3 ∧ x1, x7 ∨ x5], J2 := [x4 ∧ x1, x8 ∨ x5],
J3 := [x3 ∧ x2, x7 ∨ x6], J4 := [x4 ∧ x2, x8 ∨ x6], so that

Iα =

∫

D

4
∏

i=1

ℓ(Ji)
−α where ℓ([a, b]) = b− a.

Now and for the rest of the proof, we fix a generic permutation σ ∈ S8 and
consider the simplex Sσ generated by σ, i.e., Sσ := {x ∈ [0, 1]8 : xσ(1) <
. . . < xσ(8)}, assuming that Sσ ⊂ D. If Ji = [xσ(mi), xσ(ni)] on Sσ (for
mi < ni ∈ {1, . . . , 8} depending on σ as well), we introduce the block Bσ

i :=
{mi,mi +1, . . . , ni} and set Bσ := {Bσ

1 , . . . , B
σ
4 }. Then, using an elementary

change of variables, it is readily checked that

Iα,σ :=

∫

Sσ

4
∏

i=1

ℓ(Ji)
−α =

∫

Sσ

4
∏

i=1

(xσ(ni) − xσ(mi))
−α = Iα,Bσ ,

where we have used the following general notation:

Notation 5.2. Given Bi := {mi,mi + 1, . . . , ni} (i = 1, . . . , 4) with
mi < ni ∈ {1, . . . , 8} and B := {B1, . . . , B4}, we set

Iα,B :=

∫

0<x1<...<x8<1

4
∏

i=1

(xni − xmi)
−α ∈ [0,∞].

Of course, Iα =
∑

σ: Sσ⊂D Iα,σ =
∑

σ: Sσ⊂D Iα,Bσ . Our key argument to prove
that Iα,Bσ < ∞ for every σ ∈ S8 and α < 7

4 lies in the following three basic
observations regarding the four blocks Bσ

i composing Bσ:

(i) Card(Bσ
i ) ≥ 4 (Ji involves the min/max over four points);

(ii) Card(Bσ
i ∪Bσ

j ) ≥ 6 if i 6= j (Ji ∪ Jj involves the min/max over at least
six points);

(iii) Each of the extremum points 1 and 8 appears exactly twice in Bσ.
Indeed, on Sσ, the minimum xσ(1) (resp. maximum xσ(8)) appears exactly
twice as a left (resp. right) bound in J1, . . . , J4.

Let us now discriminate the possible situations for Bσ according to this last
condition (iii) (see Figure 1 for a representation in each case):
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Case 1: 1 and 8 never appear in the same block Bσ
1 , . . . , B

σ
4 . Then, by

focusing on the possibilities for the two blocks with left-hand side 1 (resp.
the two blocks with right-hand side 8), and given the above constraints
(i)-(ii), we end up with Iα,Bσ ≤ Iα,B0 where

B0 := {{1, . . . , 4}, {1, . . . , 6}, {5, . . . , 8}, {3, . . . , 8}}.

Case 2: 1 and 8 appear once and only once in a same block (and so each
of them appears once ‘alone’ in another block). Then it remains to pick
one block over the points {2, . . . , 7}, and given the constraints (i)-(ii) on
this block, we can easily conclude that there exists k ∈ {1, 2} such that
Iα,Bσ ≤ Iα,Bk

where

B1 := {{1, . . . , 8}, {1, . . . , 4}, {5, . . . , 8}, {2, . . . , 5}},

B2 := {{1, . . . , 8}, {1, . . . , 4}, {5, . . . , 8}, {3, . . . , 6}}.

Case 3: 1 and 8 appear twice in a same block (necessarily {1, . . . , 8}).
Then we have to pick two blocks over the points {2, . . . , 7}, and given the
constraints (i)-(ii) on these two blocks (note for instance that, given (ii), 2
and 7 are necessarily involved in the union of these blocks), we can easily
conclude that there exists k ∈ {1, 2} such that Iα,Bσ ≤ Iα,B2+k

, where

B3 := {{1, . . . , 8}, {1, . . . , 8}, {2, . . . , 5}, {4, . . . , 7}},

B4 := {{1, . . . , 8}, {1, . . . , 8}, {2, . . . , 7}, {3, . . . , 6}}.

As a consequence of this reasoning, the problem is now reduced to the sole
consideration of the five ‘extremal’ integrals Iα,Bk

(k ∈ {0, . . . , 4}), which
can be very easily done with basic estimates. For instance, if α = 7

4 − ε with
ε > 0, one has

Iα,B0 =

∫

0<x1<···<x8<1
dx (x4 − x1)−α(x6 − x1)−α(x8 − x5)−α(x8 − x3)−α

= c

∫

[0,1]5
du (u1 + u2)−α(u1 + · · · + u4)−α(u4 + u5)−α(u2 + · · · + u5)−αu1u5

≤ c

∫

[0,1]5
duu−1+ε

1 u−1+ε
5 u

−1+ 2
3

ε
2 u

−1+ 2
3

ε
3 u

−1+ 2
3

ε
4 < ∞,
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Case 1

Case 2

Case 3

• • • • • • • •

• • • • • • • •

• • • • • • • •

Fig 1. Representation of the ‘extremal’ situations in each case, i.e. the Bk (k ∈ {0, . . . , 4}).
Each line connects the extremities of a block in Bk. In Case 2 (resp. Case 3), the black
lines are the ones common to B1 and B2 (resp. B3 and B3).

where we have used the elementary bounds

(u1+u2)−α ≤ u−α
1 , (u4+u5)−α ≤ u−α

5 , (u1+. . .+u4)−α ≤ u−α+3κ
1 u−κ

2 u−κ
3 u−κ

4

with κ := 1
2 − ε

3 .

Remark 5.3. This reduction of the problem, based on a block represen-
tation of the integral, can be easily adapted to prove the convergence of (64)
(resp. (65)), by working with blocks in {1, . . . , 4} (resp. {1, . . . , 6}) made of
at least two (resp. three) elements. Thus, for relation (64) (resp. (65)), one
can check that the situation reduces to the sole consideration of two (resp.
three) easy-to-handle integrals on specific simplexes.
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