GEOMETRIC AND PROJECTIVE INSTABILITY FOR THE GROSS-PITAEVSKI EQUATION

by Laurent Thomann

AbStract. - Using variational methods, we construct approximate solutions for the Gross-Pitaevski equation which concentrate on circles in \mathbb{R}^{3}. These solutions will help to show that the L^{2} flow is unstable for the usual topology and for the projective distance.

1. Introduction

In this paper we deal with the equations

$$
\left\{\begin{array}{l}
i h \partial_{t} u+h^{2} \Delta u-|x|^{2} u=a_{h} h^{2}|u|^{2} u, \quad(t, x) \in \mathbb{R}^{1+3}, \tag{1}\\
u(0, x)=u_{0}(x) \in L^{2}\left(\mathbb{R}^{3}\right),
\end{array}\right.
$$

where $h>0$ is a small parameter and a_{h} a constant which depends on h, that can be either positive (defocusing case) or negative (focusing case). In all the paper we assume that there exists a constant $A>0$, independent of h, such that $\left|a_{h}\right| \leq A$.
This equation appears in the study of Bose-Einstein condensates; for more details see [7].
In the following we will refer to the definitions:

[^0]Definition 1.1. - (Geometric instability) We say that the Cauchy problem (1) is geometrically unstable if there exist $u_{h}^{1}, u_{h}^{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ solutions of (1) with initial data $u_{h}^{1}(0), u_{h}^{2}(0) \in L^{2}\left(\mathbb{R}^{3}\right)$ such that $\left\|u_{h}^{1}(0)\right\|_{L^{2}},\left\|u_{h}^{2}(0)\right\|_{L^{2}} \leq C$ where C is a constant independent of h and $t_{h}>0$ such that

$$
\frac{\left\|\left(u_{h}^{2}-u_{h}^{1}\right)\left(t_{h}\right)\right\|_{L^{2}}}{\left\|\left(u_{h}^{2}-u_{h}^{1}\right)(0)\right\|_{L^{2}}} \longrightarrow+\infty \text { when } h \longrightarrow 0
$$

Definition 1.2. - (Projective instability) We say that the Cauchy problem (1) is projectively unstable if there exist $u_{h}^{1}, u_{h}^{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ solutions of (1) with initial data $u_{h}^{1}(0), u_{h}^{2}(0) \in L^{2}\left(\mathbb{R}^{3}\right)$ such that $\left\|u_{h}^{1}(0)\right\|_{L^{2}},\left\|u_{h}^{2}(0)\right\|_{L^{2}} \leq C$ where C is a constant independent of h and $t_{h}>0$ such that

$$
\frac{d_{\mathrm{pr}}\left(u_{h}^{2}\left(t_{h}\right), u_{h}^{1}\left(t_{h}\right)\right)}{d_{\mathrm{pr}}\left(u_{h}^{2}(0), u_{h}^{1}(0)\right)} \longrightarrow+\infty \text { when } h \longrightarrow 0
$$

Here $d_{\text {pr }}$ denotes the complex projective distance defined by

$$
d_{\mathrm{pr}}\left(v_{1}, v_{2}\right)=\arccos \left(\frac{\left|\left\langle v_{1}, v_{2}\right\rangle\right|}{\left\|v_{1}\right\|_{L^{2}}\left\|v_{2}\right\|_{L^{2}}}\right) \text { for } v_{1}, v_{2} \in L^{2}\left(\mathbb{R}^{3}\right)
$$

Notations 1.3. - In this paper c, C denote constants the value of which may change from line to line. These constants will always be independent of h. We use the notations $a \sim b, a \lesssim b, a \gtrsim b$, if $\frac{1}{C} b \leq a \leq C b, a \leq C b, b \leq C a$ respectively. We write $a \ll b, a \gg b$ if $a \leq K b, a \geq K b$ for some large constant K which is independent of h.

The first result of this paper is
TheOrem 1.4. - Let $h^{-1} \in \mathbb{N}$. In each of the following cases, there exist $c_{0}>$ 0 and $u_{h}^{1}, u_{h}^{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ solutions of (1) with initial data $\left\|u_{h}^{2}(0)\right\|_{L^{2}},\left\|u_{h}^{1}(0)\right\|_{L^{2}} \rightarrow$ κ such that if $\left|a_{h}\right| \kappa^{2} \leq c_{0}$, we have:
(i) Assume a is independent of h and $\kappa|a| t \gg 1$,

$$
\frac{\left\|\left(u_{h}^{2}-u_{h}^{1}\right)(t)\right\|_{L^{2}}}{\left\|\left(u_{h}^{2}-u_{h}^{1}\right)(0)\right\|_{L^{2}}} \gtrsim|a| \kappa t .
$$

(ii) Assume $\left|a_{h}\right| t_{h} \longrightarrow+\infty$ when $h \longrightarrow 0$ with $t_{h} \ll \log \frac{1}{h}$, then

$$
\sup _{0 \leq t \leq t_{h}}\left\|\left(u_{h}^{2}-u_{h}^{1}\right)(t)\right\|_{L^{2}} \gtrsim 1
$$

but

$$
\left\|\left(u_{h}^{2}-u_{h}^{1}\right)(0)\right\|_{L^{2}} \longrightarrow 0
$$

In particular, the Cauchy problem (1) is geometrically unstable

Denote by $x=\left(x_{1}, x_{2}, x_{3}\right)$ the current point in \mathbb{R}^{3}. In cylindrical coordinates $\left(x_{1}=r \cos \theta, x_{2}=r \sin \theta, x_{3}=y\right)$, the functions considered in Theorem 1.4 take the form

$$
\begin{equation*}
u_{h}(0, x)=\kappa_{h} h^{-\frac{1}{2}} \mathrm{e}^{i \frac{k^{2}}{h} \theta} v_{0}\left(\frac{r-k}{\sqrt{h}}, \frac{y}{\sqrt{h}}\right) \tag{2}
\end{equation*}
$$

where $k \in \mathbb{N}, v_{0} \in L^{2}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
u_{h}(t, x)=u_{h}(0, x) \mathrm{e}^{-i \lambda_{h} t}+w_{h}(t, x) \tag{3}
\end{equation*}
$$

with w_{h} a small error term in $L^{2}\left(\mathbb{R}^{3}\right)$, at least for times when instability effects occur.
The Ansatz (2) shows that the function u in (3) will concentrate on the circle $\left(x_{1}^{2}+x_{2}^{2}=k^{2}, x_{3}=0\right)$ in \mathbb{R}^{3}.
To prove Theorem 1.4, we consider two initial data of the form (2) associate with κ and κ^{\prime} such that $\left|\kappa^{\prime}-\kappa\right|$ is small, and therefore the initial data are close in the L^{2}-norm, but we will see that the solutions do not remain close to each other after a time t.
The construction of two solutions to (1) of the form (22),(3) which concentrate on disjoint circles yield the following result

THEOREM 1.5. - Let $h^{-1} \in \mathbb{N}$. There exist $c_{0}>0$ and $u_{h}^{1}, u_{h}^{2} \in L^{2}\left(\mathbb{R}^{3}\right)$ solutions of (11) with initial data $\left\|u_{h}^{2}(0)\right\|_{L^{2}},\left\|u_{h}^{1}(0)\right\|_{L^{2}} \rightarrow \kappa$ such that if $\left|a_{h}\right| \kappa^{2} \leq$ c_{0} and $\left|a_{h}\right| t_{h} \longrightarrow+\infty$ when $h \longrightarrow 0$ with $t_{h} \ll \log \frac{1}{h}$, we have

$$
\sup _{0 \leq t \leq t_{h}} d_{p r}\left(u_{h}^{2}(t), u_{h}^{1}(t)\right) \gtrsim 1
$$

but

$$
d_{p r}\left(u_{h}^{2}(0), u_{h}^{1}(0)\right) \longrightarrow 0
$$

In particular, the Cauchy problem (1) is projectively unstable.
The part (i) of Theorem 1.4 shows that there is no Lipschitz dependence between the solutions of equation (1) and the initial data in the regime $\kappa a t \gg 1$, whereas the part (ii) and Theorem 1.5 assert that the dependence is not continuous, but for larger times. Both types of instabilities are nonlinear behaviour, but the first one is weaker than the second.
The instability results of Theorem 1.4 are not new in the case $a>0$. R. Carles [3] shows the instability, for finite times, of the equation

$$
i h \partial_{t} v+h^{2} \Delta v-|x|^{2} v=f\left(h^{k}|v|^{2}\right) v, \quad(t, x) \in \mathbb{R}^{1+n}
$$

when $n \geq 2,1<k<n$, and $f \in \mathcal{C}^{\infty}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ with $f^{\prime}>0$.
In [1, N. Burq, P. Gérard and N. Tzvetkov have pointed out geometric instability for the cubic Schrödinger equation $i \partial_{t} u+\Delta_{\mathbb{S}^{2}} u=a|u|^{2} u$ on \mathbb{S}^{2} when $a>0$. This phenomenon doesn't occur on $L^{2}\left(\mathbb{R}^{3}\right)$ for the equation $i \partial_{t} u+\Delta u=a|u|^{2} u$ in $L^{2}\left(\mathbb{R}^{3}\right)$, it is therefore strongly related to the geometry of the operator and
of the manifold we work on. Here there is no semiclassic parameter in the equations, but we could obtain similar results in this latter case with a scaling argument, as these instability effects are local. There are stronger instability phenomenona in H^{s} norm, for $0<s<\frac{1}{2}$ or for s negative, for more details see [5] or [4] for the one dimensional case.
In [2], N. Burq and M. Zworski prove Theorem 1.4 in the case $a>0$. To obtain geometric instability, they expand the solution on the Hilbertian basis given by the eigenfunctions of $-h^{2} \Delta+|x|^{2}$. The nonlinear term in (1) induces a phase shift in time for the groundstate and this yields the result. We will give a more precise description of the solution by solving a pertubated eigenvalue problem for the harmonic oscillator and this will also treat the focusing case. They also obtain projective instability for the equation

$$
i h \partial_{t} u+h^{2} \Delta u-V(x) u=a h^{2}|u|^{2} u
$$

where V is a cylindrically symmetric potential with respect to the variable $y=x_{3}$, but they have to add the following assumption: Denote by $r=$ $\sqrt{x_{1}^{2}+x_{2}^{2}}$ then the function $(r, y) \longmapsto V(r, y)+r^{-2}$ has two distinct absolute non-degenerate minima $\left(r_{j}, y_{j}\right), j=1,2$, and its Hessian at $\left(r_{j}, y_{j}\right)$ are equal. We use a variational method to construct quasimodes which are localized on circles in \mathbb{R}^{3}, which allows to remove such an hypothesis. This idea comes from an unpublished work from N. Burq, P. Gérard and N. Tzvetkov.

Thanks to the form $F\left(|u|^{2}\right) u$ of the nonlinearity in (1), we look for a solution u which writes $u(t, x)=\mathrm{e}^{-i \lambda t} f(x)$. Then f has to satisfy

$$
\left(-h^{2} \Delta+|x|^{2}\right) f=h \lambda f-a_{h} h^{2}|f|^{2} f .
$$

In the case $a_{h}=0, f$ is an eigenvector of the operator $-h^{2} \Delta+|x|^{2}$ associate with the eigenvalue $h \lambda$. In the general case, the term $a_{h} h^{2}|f|^{2} f$ will be treated as a perturbation of the linear problem

$$
\left(-h^{2} \Delta+|x|^{2}\right) f=h \lambda f
$$

In fact, we will find a development in powers of h of $h \lambda$ and f

$$
h \lambda \sim \sum_{k \geq 0} \mu_{k} h^{k}, \quad f \sim \sum_{k \geq 0} f_{k} h^{k}
$$

by solving a cascade of equations. This will be done in cylindrical coordinates: Write $x=\left(x_{1}, x_{2}, x_{3}\right)$ and make the cylindrical change of variables $x_{1}=r \cos \theta$, $x_{2}=r \sin \theta$ and $x_{3}=y$ with $(r, \theta, y) \in \mathbb{R}_{+}^{*} \times[0,2 \pi[\times \mathbb{R}$. Then the Laplace operator takes the form

$$
\Delta=\frac{1}{r^{2}} \partial_{\theta}^{2}+\partial_{r}^{2}+\frac{1}{r} \partial_{r}+\partial_{y}^{2}
$$

Let κ be a positive constant and k a positive integer, we want to find a solution of (1) of the form

$$
\begin{equation*}
\tilde{u}=\kappa h^{-\frac{1}{2}} \mathrm{e}^{-i \lambda t} \mathrm{e}^{i \frac{k^{2}}{h} \theta} \tilde{v}(r, y, h) \tag{4}
\end{equation*}
$$

where λ is a constant to be determined, and \tilde{v} a real function which therefore has to satisfy

$$
-h^{2}\left(\partial_{r}^{2}+\partial_{y}^{2}\right) \tilde{v}+\left(\frac{k^{4}}{r^{2}}+r^{2}+y^{2}\right) \tilde{v}=\lambda h \tilde{v}-a_{h} h^{2} \kappa^{2} \tilde{v}^{3}+h^{2} \frac{1}{r} \partial_{r} \tilde{v}
$$

Notice that we have to choose $h^{-1} \in \mathbb{N}$ so that (4) makes sense for all $k \in \mathbb{N}$. We try to construct \tilde{v} which concentrates exponentially at the minimum of the potential $V=\frac{k^{4}}{r^{2}}+r^{2}+y^{2}$, i.e. at $(r, y)=(k, 0)$.
Thus we make the change of variables $r=k+\sqrt{h} \rho, y=\sqrt{h} \sigma$ and set $\tilde{v}(r, y, h)=$ $v\left(\frac{r-k}{\sqrt{h}}, \frac{y}{\sqrt{h}}, h\right)$.
We write the Taylor expansion of V in h :

$$
\begin{aligned}
\frac{k^{4}}{(k+\sqrt{h} \rho)^{2}}+(k+\sqrt{h} \rho)^{2}+h \sigma^{2}= & 2 k^{2}+\left(4 \rho^{2}+\sigma^{2}\right) h-\frac{4}{k} \rho^{3} h^{\frac{3}{2}} \\
& +\frac{5}{k^{2}} \rho^{4} h^{2}+R(\rho, h) h^{\frac{5}{2}}
\end{aligned}
$$

Then v has to be solution of

$$
\begin{align*}
E q(v):= & P_{0} v-\frac{\lambda h-2 k^{2}}{h} v+a_{h} \kappa^{2} v^{3}-h^{\frac{1}{2}}\left(\frac{1}{k+\sqrt{h} \rho} \partial_{\rho} v+\frac{4}{k} \rho^{3} v\right) \\
& +\frac{5}{k^{2}} \rho^{4} h v-h^{\frac{3}{2}} R v=0, \tag{5}
\end{align*}
$$

where $P_{0}=-\left(\partial_{\rho}^{2}+\partial_{\sigma}^{2}\right)+\left(4 \rho^{2}+\sigma^{2}\right)$. Now, write

$$
\begin{aligned}
v(\rho, \sigma, h) & =v_{0}(\rho, \sigma)+h^{\frac{1}{2}} v_{1}(\rho, \sigma)+h v_{2}(\rho, \sigma)+h^{\frac{3}{2}} w(\rho, \sigma, h) \\
\frac{\lambda h-2 k^{2}}{h} & =E_{0}+h^{\frac{1}{2}} E_{1}+h E_{2}+h^{\frac{3}{2}} E_{3}(h) .
\end{aligned}
$$

By identifying the powers of h we obtain the following equations:
(6) $\quad P_{0} v_{0}=E_{0} v_{0}-a_{h} \kappa^{2} v_{0}{ }^{3}$,

$$
\begin{align*}
P_{0} v_{1}= & E_{0} v_{1}+E_{1} v_{0}-3 a_{h} \kappa^{2} v_{0}^{2} v_{1}+\frac{1}{k} \partial_{\rho} v_{0}+\frac{4}{k} \rho^{3} v_{0}, \tag{7}\\
P_{0} v_{2}= & E_{0} v_{2}+E_{1} v_{1}+E_{2} v_{0}-3 a_{h} \kappa^{2}\left(v_{0}^{2} v_{2}+v_{0} v_{1}^{2}\right)+\frac{1}{k} \partial_{\rho} v_{1} \\
& +\frac{4}{k} \rho^{3} v_{1}-\frac{1}{k^{2}} \rho \partial_{\rho} v_{0}-\frac{5}{k^{2}} \rho^{4} v_{0} . \tag{8}
\end{align*}
$$

Remark 1.6. - In the sequel we only mention the dependence in k, κ and a of the v_{j} and E_{j} when necessary. Moreover we write $a=a_{h}$.

2. Construction of the quasimodes

Proposition 2.1. - There exists a constant $c_{0}>0$ such that if $|a| \kappa^{2} \leq c_{0}$, there exist $E_{0}>0$ and $v_{0} \in L^{2}\left(\mathbb{R}^{2}\right)$ satisfying $v_{0} \geq 0$ and $\left\|v_{0}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=1$, which solve (6).

For $\psi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$, denote by $\hat{\psi}$ its Fourier transform, with the convention

$$
\hat{\psi}(\zeta)=\int_{\mathbb{R}^{2}} \mathrm{e}^{-i \zeta \cdot x} \psi(x) \mathrm{d} x
$$

for $\psi \in L^{1}\left(\mathbb{R}^{2}\right)$.
We use a variational method based on Rellich's criterion.
Proposition 2.2. - (8, p 247) The set
$S=\left\{\left.\psi\left|\int_{\mathbb{R}^{2}}\right| \psi(x)\right|^{2} d x=1, \int_{\mathbb{R}^{2}}\left(1+|x|^{2}\right)|\psi(x)|^{2} d x \leq 1, \int_{\mathbb{R}^{2}}\left(1+|\zeta|^{2}\right)|\hat{\psi}(\zeta)|^{2} d \zeta \leq 1\right\}$, is a compact subset of $L^{2}\left(\mathbb{R}^{2}\right)$.

Proof of Proposition 2.1 - We minimize the functional

$$
J(u, a)=\int\left(|\nabla u|^{2}+\left(4 \rho^{2}+\sigma^{2}\right)|u|^{2}+\frac{1}{2} a \kappa^{2}|u|^{4}\right)
$$

on the space

$$
H=\left\{u \in H^{1}\left(\mathbb{R}^{2}\right),\left(\rho^{2}+\sigma^{2}\right)^{\frac{1}{2}} u \in L^{2}\left(\mathbb{R}^{2}\right),\|u\|_{L^{2}}=1\right\}
$$

Now, on H we have the inequality

$$
\|u\|_{L^{4}} \leq C\|u\|_{H^{\frac{1}{2}}} \leq C\|u\|_{L^{2}}^{\frac{1}{2}}\|\nabla u\|_{L^{2}}^{\frac{1}{2}} \leq C\|\nabla u\|_{L^{2}}^{\frac{1}{2}} .
$$

Thus, there exists $c_{0}>0$ such that

$$
\frac{1}{2} a \kappa^{2} \int|u|^{4} \leq \frac{1}{2} \int|\nabla u|^{2},
$$

as soon as $|a| \kappa^{2} \leq c_{0}$, which we suppose from now.
Let $\left(u_{n}\right)_{n \geq 1}$ be a minimizing sequence. First, we can choose $u_{n} \geq 0$, because $\left|u_{n}\right|$ is also minimizing, as $|\nabla| u_{n}| | \leq\left|\nabla u_{n}\right|$. We have

$$
\int\left(\frac{1}{2}\left|\nabla u_{n}\right|^{2}+\left(4 \rho^{2}+\sigma^{2}\right) u_{n}^{2}\right) \leq J\left(u_{n}, a \kappa^{2}\right) \leq C
$$

with C independent of a, κ and n. We are able to apply Rellich's criterion: there exists $v_{0} \in H$ with $v_{0} \geq 0$ such that, up to a subsequence, $u_{n} \longrightarrow v_{0}$, and the lower semi-continuity of J ensures

$$
J\left(v_{0}, a \kappa^{2}\right)=\inf _{u \in H} J\left(u, a \kappa^{2}\right)
$$

Then there exists a Lagrange multiplier E_{0} such that

$$
P_{0} v_{0}=-\left(\partial_{r}^{2}+\partial_{y}^{2}\right) v_{0}+\left(4 \rho^{2}+\sigma^{2}\right) v_{0}=E_{0} v_{0}-a \kappa^{2} v_{0}^{3}
$$

and E_{0} is given by

$$
E_{0}=\int\left(\left|\nabla v_{0}\right|^{2}+\left(4 \rho^{2}+\sigma^{2}\right) v_{0}^{2}+a \kappa^{2} v_{0}^{4}\right) .
$$

Proposition 2.3. - Let $|a| \kappa^{2} \leq c_{0}$. There exist constants $C, c>0$ independent of a, κ such that for $0 \leq j \leq 2$

$$
\begin{equation*}
\left|(I-\Delta)^{\frac{j}{2}} v_{0}(\rho, \sigma)\right| \leq C e^{-c(|\rho|+|\sigma|)} . \tag{9}
\end{equation*}
$$

Proof. - We denote by $\xi=(\rho, \sigma)$, and we define $\varphi_{\varepsilon}(\xi)=\mathrm{e}^{\frac{|\xi|}{1+\varepsilon|\xi|}}$. The function φ_{ε} is bounded and

$$
\begin{equation*}
\left|\nabla \varphi_{\varepsilon}\right| \leq \varphi_{\varepsilon} \quad \text { a.e. } \tag{10}
\end{equation*}
$$

We multiply (6) by $\varphi_{\varepsilon} v_{0}$ and integrate over \mathbb{R}^{2} :

$$
\int \nabla\left(\varphi_{\varepsilon} v_{0}\right) \nabla v_{0}+\int \varphi_{\varepsilon}|\xi|^{2} v_{0}^{2} \leq E_{0} \int \varphi_{\varepsilon} v_{0}^{2}+|a| \kappa^{2} \int \varphi_{\varepsilon} v_{0}^{4}
$$

We compute $\nabla\left(\varphi_{\varepsilon} v_{0}\right)=v_{0} \nabla \varphi_{\varepsilon}+\varphi_{\varepsilon} \nabla v_{0}$, and use (10) to obtain

$$
\int\left(\varphi_{\varepsilon}\left|\nabla v_{0}\right|^{2}+\varphi_{\varepsilon}|\xi|^{2} v_{0}^{2}\right) \leq E_{0} \int \varphi_{\varepsilon} v_{0}^{2}+|a| \kappa^{2} \int \varphi_{\varepsilon} v_{0}^{4}+\int \varphi_{\varepsilon} v_{0}\left|\nabla v_{0}\right|
$$

We set $w_{0}=\varphi_{\varepsilon}^{\frac{1}{4}} v_{0}$, then

$$
\begin{equation*}
\nabla w_{0}=\frac{1}{4} \varphi_{\varepsilon}^{-\frac{3}{4}} \nabla \varphi_{\varepsilon} v_{0}+\varphi_{\varepsilon}^{\frac{1}{4}} \nabla v_{0} \tag{11}
\end{equation*}
$$

From the Gagliardo-Nirenberg inequality in dimension 2

$$
\left\|w_{0}\right\|_{L^{4}}^{4} \leq C\left\|w_{0}\right\|_{L^{2}}^{2}\left\|\nabla w_{0}\right\|_{L^{2}}^{2}
$$

together with (11) we deduce

$$
\int \varphi_{\varepsilon} v_{0}^{4} \leq C \int\left(\varphi_{\varepsilon}^{\frac{1}{2}} v_{0}^{2}\right) \int \varphi_{\varepsilon}^{\frac{1}{2}}\left(v_{0}^{2}+\left|\nabla v_{0}\right|^{2}\right) .
$$

As $\int v_{0}^{2}=1$ and $\int\left|\nabla v_{0}\right|^{2} \leq C$, Jensen's inequality gives

$$
\begin{align*}
\int \varphi_{\varepsilon} v_{0}^{4} & \leq C\left(\int \varphi_{\varepsilon} v_{0}^{2}\right)^{\frac{1}{2}}\left(\int \varphi_{\varepsilon}\left(v_{0}^{2}+\left|\nabla v_{0}\right|^{2}\right)\right)^{\frac{1}{2}} \\
& \leq \frac{1}{16 c_{0}} \int \varphi_{\varepsilon}\left|\nabla v_{0}\right|^{2}+C \int \varphi_{\varepsilon} v_{0}^{2} \tag{12}
\end{align*}
$$

We also have

$$
\begin{equation*}
\int \varphi_{\varepsilon} v_{0}\left|\nabla v_{0}\right| \leq \frac{1}{4} \int \varphi_{\varepsilon}\left|\nabla v_{0}\right|^{2}+C \int \varphi_{\varepsilon} v_{0}^{2} \tag{13}
\end{equation*}
$$

Now, write for $R>0$

$$
\int \varphi_{\varepsilon} v_{0}^{2}=\int_{|\xi|<R} \varphi_{\varepsilon} v_{0}^{2}+\int_{|\xi| \geq R} \varphi_{\varepsilon} v_{0}^{2} \leq \mathrm{e}^{R} \int v_{0}^{2}+\frac{1}{R^{2}} \int \varphi_{\varepsilon}|\xi|^{2} v_{0}^{2}
$$

and deduce that for R big enough, independent of ε, there exists a constant C independent of ε satisfying

$$
\int \varphi_{\varepsilon}\left(\left|\nabla v_{0}\right|^{2}+|\xi|^{2} v_{0}^{2}\right) \leq C
$$

Letting ε tend to 0 yields

$$
\begin{equation*}
\mathrm{e}^{\frac{|\xi|}{2}} \nabla v_{0} \in L^{2} \quad \text { and } \quad \mathrm{e}^{\frac{|\xi|}{2}}|\xi| v_{0} \in L^{2} . \tag{14}
\end{equation*}
$$

With the help of equation (6), compute

$$
\begin{aligned}
\Delta\left(v_{0} \mathrm{e}^{\frac{1}{4}(\rho+\sigma)}\right)= & a \kappa^{2} v_{0}^{3} \mathrm{e}^{\frac{1}{4}(\rho+\sigma)}+\left(4 \rho^{2}+\sigma^{2}-E_{0}\right) v_{0} \mathrm{e}^{\frac{1}{4}(\rho+\sigma)} \\
& +\frac{1}{2}(1,1) \cdot \nabla v_{0} \mathrm{e}^{\frac{1}{4}(\rho+\sigma)}+\frac{1}{16} v_{0} \mathrm{e}^{\frac{1}{4}(\rho+\sigma)} .
\end{aligned}
$$

According to 14 , each term of the right hand side is in L^{2}, excepted maybe the first one. But denote by $\tilde{v}_{0}=v_{0} \mathrm{e}^{\frac{1}{12}(\rho+\sigma)}$, then shows that $\tilde{v}_{0} \in H^{1}\left(\mathbb{R}^{2}\right)$ and consequently $v_{0} \in L^{6}\left(\mathbb{R}^{2}\right)$.
Hence, with the inequality $\|w\|_{L^{\infty}}^{2} \lesssim\|w\|_{L^{2}}\|\Delta w\|_{L^{2}}$ applied to $w=v_{0} \mathrm{e}^{\frac{1}{4}(\rho+\sigma)}$ we deduce $v_{0} \leq C \mathrm{e}^{-\frac{1}{4}(\rho+\sigma)}$.
The same can be done with σ replaced with $-\sigma$ or ρ by $-\rho$. Therefore $v_{0} \leq$ $C \mathrm{e}^{-\frac{1}{4}(|\rho|+|\sigma|)}$. Equation (6) and the previous estimate give

$$
\left|\Delta v_{0}(\rho, \sigma)\right| \leq C \mathrm{e}^{-c(|\rho|+|\sigma|)}
$$

To obtain the last estimation of Proposition 2.3, use the interpolation inequality

$$
\|\nabla w\|_{L^{\infty}}^{2} \leq\|w\|_{L^{\infty}}\|\Delta w\|_{L^{\infty}}
$$

applied to $w=v_{0} \mathrm{e}^{c(\pm \rho \pm \sigma)}$.
We are now able to describe the behaviour of $E_{0}\left(a \kappa^{2}\right)$ and $v_{0}\left(a \kappa^{2}\right)$ when $a \kappa^{2} \longrightarrow 0$:

Proposition 2.4. -

$$
v_{0}\left(a \kappa^{2}\right) \longrightarrow \frac{2^{\frac{1}{4}}}{\pi^{\frac{1}{2}}} e^{-\left(\rho^{2}+\frac{1}{2} \sigma^{2}\right)} \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right) \text { when } a \kappa^{2} \longrightarrow 0
$$

and

$$
\begin{equation*}
E_{0}\left(a \kappa^{2}\right)=3+\frac{\sqrt{2}}{2 \pi} a \kappa^{2}+o\left(a \kappa^{2}\right) \tag{15}
\end{equation*}
$$

Proof. - The function $u_{0}=\frac{2^{\frac{1}{4}}}{\pi^{\frac{1}{2}}} \mathrm{e}^{-\left(\rho^{2}+\frac{1}{2} \sigma^{2}\right)}$ is the unique positive element in H that realises the infimum of $J(u, 0)$, and is the first eigenfunction of $P_{0}=$ $-\Delta+\left(4 \rho^{2}+\sigma^{2}\right)$ associate with the eigenvalue $E_{0}(0)=3$. See [6], p 7 for details. For $|a| \kappa^{2} \leq c_{0}$ we have

$$
\begin{equation*}
\left\|v_{0}\left(a \kappa^{2}\right)\right\|_{L^{2}}=1,\left\|\nabla v_{0}\left(a \kappa^{2}\right)\right\|_{L^{2}} \leq C, \text { and }\left\|\xi v_{0}\left(a \kappa^{2}\right)\right\|_{L^{2}} \leq C \tag{16}
\end{equation*}
$$

By Rellich's criterion, $\left(v\left(a \kappa^{2}\right)\right)_{|a| \kappa^{2} \leq c_{0}}$ is compact in H; let \mathcal{A} be its adherence set. If $u \in \mathcal{A}$, there exists a sequence $b_{n}=a_{n} \kappa_{n}^{2} \longrightarrow 0$ satisfying $v_{0}\left(b_{n}\right) \longrightarrow u$ in L^{2}. As $v_{0}\left(b_{n}\right)$ realises the infimum of $J\left(v, b_{n}\right)$:

$$
J\left(v_{0}\left(b_{n}\right), b_{n}\right) \leq J\left(u_{0}, b_{n}\right)=3+\frac{1}{2} b_{n} \int\left|u_{0}\right|^{4}
$$

therefore, $J(u, 0) \leq 3$. As $u \geq 0$, we conclude $u=u_{0}$, i.e. $\mathcal{A}=\left\{u_{0}\right\}$ and

$$
v_{0}\left(a \kappa^{2}\right) \longrightarrow u_{0} \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right) \text { when } a \kappa^{2} \longrightarrow 0
$$

Moreover $\left|v\left(a \kappa^{2}\right)\right|,\left|u_{0}\right| \leq C$, then the convergence in also in L^{4}.
Now, the self-adjointness of P_{0} gives

$$
0=\left\langle\left(P_{0}-3\right) u_{0}, v\left(a \kappa^{2}\right)\right\rangle=\left(E_{0}\left(a \kappa^{2}\right)-3\right) \int v(a) u_{0}-a \kappa^{2} \int v^{3}(a) u_{0}
$$

then from $\int v\left(a \kappa^{2}\right) u_{0} \longrightarrow \int u_{0}^{2}=1$ and $\int v\left(a \kappa^{2}\right)^{3} u_{0} \longrightarrow \int u_{0}^{4}=\frac{\sqrt{2}}{2 \pi}$ we conclude $E_{0}\left(a \kappa^{2}\right)=3+\frac{\sqrt{2}}{2 \pi} a \kappa^{2}+o\left(a \kappa^{2}\right)$.

Proposition 2.5. - Let $\left|a \kappa^{2}\right| \leq c_{0}$. There exist $E_{1}, E_{2} \in \mathbb{R}$ and $v_{1}, v_{2} \in$ $L^{2}\left(\mathbb{R}^{2}\right)$ satisfying $v_{1}, v_{2} \geq 0$ and $\left\|v_{1}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)},\left\|v_{2}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \sim 1$, which solve 7 (7) and (8).
Moreover there exists $c>0$ such that for $l=1,2$ and $0 \leq j \leq 2$

$$
\begin{equation*}
\left|(I-\Delta)^{\frac{j}{2}} v_{l}(\rho, \sigma)\right| \leq C e^{-c(|\rho|+|\sigma|)} . \tag{17}
\end{equation*}
$$

Proof. - Equation (7) writes

$$
\left(P\left(a \kappa^{2}\right)-E_{0}\right) v_{1}=\left(-\left(\partial_{\rho}^{2}+\partial_{\sigma}^{2}\right)+V\right) v_{1}=E_{1} v_{0}+\frac{1}{k} \partial_{\rho} v_{0}+\frac{4}{k} \rho^{3} v_{0}
$$

where we denote by $P\left(a \kappa^{2}\right)=P_{0}+3 a \kappa^{2} v_{0}^{2}$ and $V=4 \rho^{2}+\sigma^{2}+3 a \kappa^{2} v_{0}^{2}-E_{0}$. The potential V is so that $V \longrightarrow \infty$ as $|(\rho, \sigma)| \longrightarrow \infty$, then the spectrum
$\sigma(P(a))$ of $P\left(a \kappa^{2}\right)$ is purely discrete and the eigenvalues are given by the minmax principle (see 8 p. 120).
The first eigenvalue of $P\left(a \kappa^{2}\right)$ is therefore given by

$$
\mu_{0}\left(a \kappa^{2}\right)=\inf _{u \in H} \int\left(|\nabla u|^{2}+\left(4 \rho^{2}+\sigma^{2}\right) u^{2}+3 a \kappa^{2} v_{0}^{2} u^{2}\right)-E_{0}\left(a \kappa^{2}\right),
$$

and there exists $w_{0} \in H$ with $w_{0} \geq 0$ satisfying

$$
\left(P\left(a \kappa^{2}\right)-E_{0}\right) w_{0}=\left(P_{0}-E_{0}\left(a \kappa^{2}\right)+3 a \kappa^{2} v_{0}^{2}\right) w_{0}=\mu_{0}(a) w_{0}
$$

and one shows, as in the proof of 2.4 that $w_{0} \longrightarrow u_{0}$ in $L^{2} \cap L^{4}$.
Multiply (6) by u_{0} and integrate

$$
3 a \kappa^{2} \int v_{0}^{2} w_{0} u_{0}+\left(3-E_{0}\left(a \kappa^{2}\right)\right) \int w_{0} u_{0}=\mu_{0}\left(a \kappa^{2}\right) \int w_{0} u_{0}
$$

then according to $15, \mu_{0}\left(a \kappa^{2}\right) \sim \frac{\sqrt{2}}{\pi} a \kappa^{2}$ when $a \kappa^{2} \longrightarrow 0$. If $a>0$ and $a \kappa^{2}$ is small enough we can conclude that $0 \notin \sigma(P(a))$.
Let's look at the case $a<0$:
According to the min-max principle, the second eigenvalue of $P\left(a \kappa^{2}\right)$ is

$$
\mu_{1}\left(a \kappa^{2}\right)=\inf _{u \in H, u \perp w_{0}} \int\left(|\nabla u|^{2}+\left(4 \rho^{2}+\sigma^{2}\right) u^{2}+3 a \kappa^{2} v_{0}^{2} u^{2}\right)-E_{0}\left(a \kappa^{2}\right)
$$

and let w_{1} realise the infimum.
We also have

$$
5=\inf _{u \in H, u \perp u_{0}} \int\left(|\nabla u|^{2}+\left(4 \rho^{2}+\sigma^{2}\right) u^{2}\right)=\inf _{u \in H, u \perp u_{0}} J(u, 0),
$$

realised for u_{1}, the second normalised Hermite function. Now, define $\tilde{u}=$ $\alpha w_{1}+\beta w_{0}$ with α, β such that $\|\tilde{u}\|_{L^{2}}=\alpha^{2}+\beta^{2}=1$ and $\alpha \int w_{1} u_{0}+\beta \int w_{1} u_{0}=0$, then $\tilde{u} \in H$ and $\tilde{u} \perp u_{0}$. Notice that $|\alpha| \longrightarrow 1$ and $\beta \longrightarrow 0$ as $a \kappa^{2} \longrightarrow 0$.
One has $5=J\left(u_{1}, 0\right) \leq J(\tilde{u}, 0)$, then we obtain $5 \leq \mu_{1}\left(a \kappa^{2}\right)+\varepsilon\left(a \kappa^{2}\right)$ with $\varepsilon\left(a \kappa^{2}\right) \longrightarrow 0$ as $a \kappa^{2} \longrightarrow 0$, therefore $\mu_{1}\left(a \kappa^{2}\right) \geq 4$ for a small enough, and $0 \notin \sigma\left(P\left(a \kappa^{2}\right)\right)$.
As a conclusion, for each choise of E_{1}, equation (7) admits a solution $v_{1} \in L^{2}$ as the second right hand side f is in L^{2}. However, if we choose E_{1} so that $f \perp v_{0}$, we also have $\left\|v_{1}\right\|_{L^{2}} \leq C$ uniformly in $|a| \kappa^{2} \leq c_{0}$, as the eigenvalue $E_{0}\left(a \kappa^{2}\right)$ is simple.
The estimations (17) are obtained as in the proof of Proposition 2.3 .
By the same argument we infer the existence of v_{2} and E_{2} which solve equation (8) and satisfy the estimates 17 .

Take $\chi \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ such that $\chi \geq 0, \operatorname{supp} \chi \subset\left[\frac{1}{2}, \frac{3}{2}\right]$ and $\chi=1$ on $\left[\frac{3}{4}, \frac{5}{4}\right]$. Set $v=\chi(\sqrt{h} \rho)\left(v_{0}+h^{\frac{1}{2}} v_{1}+h v_{2}\right), \tilde{v}(r, y, h)=v\left(\frac{r-k}{\sqrt{h}}, \frac{y}{\sqrt{h}}, h\right)$ and $\lambda=\frac{2 k^{2}}{h}+$ $E_{0}+h^{\frac{1}{2}} E_{1}+h E_{2}$, and define

$$
\begin{equation*}
u_{a p p}=\kappa h^{-\frac{1}{2}} \mathrm{e}^{-i \lambda t} \mathrm{e}^{i \frac{k^{2}}{h} \theta} \tilde{v} \tag{18}
\end{equation*}
$$

Recall that, according to (15),

$$
E_{0}\left(a \kappa^{2}\right)=3+\frac{\sqrt{2}}{2 \pi} a \kappa^{2}+o\left(a \kappa^{2}\right)
$$

Proposition 2.6. - The function $u_{\text {app }}$ defined by 18) satisfies

$$
\begin{equation*}
i h \partial_{t} u_{a p p}+h^{2} \Delta u_{a p p}-|x|^{2} u_{a p p}=a h^{2}\left|u_{a p p}\right|^{2} u_{a p p}+R(h) \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\|\left(|x|^{2}+1\right) R(h)\right\|_{L^{2}} \lesssim h^{\frac{5}{2}} \quad \text { and } \quad\|\Delta R(h)\|_{L^{2}} \lesssim h^{\frac{1}{2}} . \tag{20}
\end{equation*}
$$

Proof. - By construction, $w=v_{0}+h^{\frac{1}{2}} v_{1}+h v_{2}$ satisfies $E q(w)=h^{\frac{5}{2}} R_{1}(h)$ where $E q$ is defined by (5), and according to Propositions 2.4 and 2.6

$$
\left|R_{1}(h)\right| \lesssim\left(\frac{1}{(k+\sqrt{h} \rho)^{2}}+|\rho|^{3}\right) \mathrm{e}^{-c_{1}(|\rho|+|\sigma|)}
$$

and

$$
\begin{equation*}
\left|\Delta R_{1}(h)\right| \lesssim\left(\frac{1}{(k+\sqrt{h} \rho)^{4}}+|\rho|^{3}\right) \mathrm{e}^{-c_{2}(|\rho|+|\sigma|)} \tag{21}
\end{equation*}
$$

Now,

$$
\begin{aligned}
E q(v)= & E q(\chi(\sqrt{h} \rho) w) \\
= & \chi(\sqrt{h} \rho) E q(w)-h \chi^{\prime \prime}(\sqrt{h} \rho) w-2 h^{\frac{1}{2}} \chi^{\prime}(\sqrt{h} \rho) \partial_{\rho} w \\
& +a \chi\left(\chi^{2}-1\right) w^{3} \\
= & h^{\frac{5}{2}} \chi(\sqrt{h} \rho) R_{1}+R_{2}+R_{3}+R_{4}:=R(h) .
\end{aligned}
$$

Set $I=\left[\frac{1}{2}, \frac{3}{4}\right] \cup\left[\frac{5}{4}, \frac{3}{2}\right]$ and observe that $\operatorname{supp} \chi^{\prime} \subset I, \operatorname{supp} \chi^{\prime \prime} \subset I$, $\operatorname{supp} \chi\left(\chi^{2}-1\right) \subset I$ and if $\sqrt{h} \rho \in I$ we have

$$
|w|,\left|\partial_{\rho} w\right| \lesssim \mathrm{e}^{-c / \sqrt{h}} \mathrm{e}^{-c|\sigma|},
$$

then it follows

$$
\begin{equation*}
\left\|\Delta^{j} R_{p}\right\|_{L^{2}} \lesssim \mathrm{e}^{-c / \sqrt{h}} \tag{22}
\end{equation*}
$$

for all $0 \leq j \leq 1$ and $2 \leq p \leq 4$. According to (21) we also have

$$
\left\|\chi(\sqrt{h} \rho) R_{1}\right\|_{L^{2}}^{2} \lesssim \int\left(1+|\rho|^{6}\right) \mathrm{e}^{-2 c_{1}(|\rho|+|\sigma|)} \leq C
$$

Therefore, coming back in variables $(r, y, \theta),\|R(h)\|_{L^{2}} \lesssim h^{\frac{5}{2}}$. Because of the fast decay of w we also have $\left\|\left(r^{2}+y^{2}\right) R(h)\right\|_{L^{2}} \lesssim h^{\frac{5}{2}}$, hence $\left\|\left(|x|^{2}+1\right) R(h)\right\|_{L^{2}} \lesssim$ $h^{\frac{5}{2}}$.

Differentiating $u_{\text {app }}$ costs at most h^{-1}, then together with 21 and 22 we obtain $\|\Delta R(h)\|_{L^{2}} \lesssim h^{\frac{1}{2}}$.
Proposition 2.7. - Let $|a| \kappa^{2} \leq c_{0}$ fixed, let $u_{\text {app }}$ be given by 18) and let u be solution of

$$
\left\{\begin{array}{l}
i h \partial_{t} u+h^{2} \Delta u-|x|^{2} u=a h^{2}|u|^{2} u, \tag{23}\\
u(0, x)=u_{\text {app }}(0, x),
\end{array}\right.
$$

then $\left\|\left(u-u_{\text {app }}\right)\left(t_{h}\right)\right\|_{L^{2}} \longrightarrow 0$ with $t_{h} \ll \log \left(\frac{1}{h}\right)$, when $h \longrightarrow 0$.
Proof. - Denote by $w=u-u_{\text {app }}$ and by $f=a h^{2} g+R(h)$ with $g=\mid u_{\text {app }}+$ $\left.w\right|^{2}\left(u_{\text {app }}+w\right)-\left|u_{\text {app }}\right|^{2} u_{\text {app }}$, then

$$
\begin{equation*}
i h \partial_{t} w+h^{2} \Delta w-|x|^{2} w=f \tag{24}
\end{equation*}
$$

We define

$$
\begin{equation*}
E(t)=\int\left(\frac{1}{2}\left(|x|^{4}+1\right)|w|^{2}+h^{4}|\Delta w|^{2}\right) \tag{25}
\end{equation*}
$$

- Multiply 24 by $\frac{1}{2}\left(|x|^{4}+1\right) \bar{w}$, integrate and take the imaginary part:
(26) $\frac{1}{2} h \frac{\mathrm{~d}}{\mathrm{~d} t} \int \frac{1}{2}\left(|x|^{4}+1\right)|w|^{2}=\operatorname{Im} \int \frac{1}{2}\left(|x|^{4}+1\right) f \bar{w}+2 h^{2} \operatorname{Im} \int|x|^{2} \bar{w} x \nabla w$,
- Multiply $\Delta 24$ by $h^{4} \Delta \bar{w}$, integrate and take the imaginary part:

$$
\begin{equation*}
\frac{1}{2} h \frac{\mathrm{~d}}{\mathrm{~d} t} \int h^{4}|\Delta w|^{2}=h^{4} \operatorname{Im} \int \Delta f \Delta \bar{w}-2 h^{4} \operatorname{Im} \int \Delta w x \nabla \bar{w} . \tag{27}
\end{equation*}
$$

With an integration by parts, we can show that

$$
h^{2} \int|x|^{2}|\nabla w|^{2} \lesssim \int|x|^{4}|w|^{2}+h^{4} \int|\Delta w|^{2}
$$

therefore

$$
\begin{equation*}
\left.\left.h^{2}\left|\int\right| x\right|^{2} \bar{w} x \nabla w\left|\lesssim h \int\right| x\right|^{4}|w|^{2}+h^{3} \int|x|^{2}|\nabla w|^{2} \lesssim h E, \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{4}\left|\int \Delta w x \nabla \bar{w}\right| \lesssim h^{5} \int|\Delta w|^{2}+h^{3} \int|x|^{2}|\nabla w|^{2} \lesssim h E . \tag{29}
\end{equation*}
$$

Then the inequalities 26 -29 yield

$$
\begin{equation*}
h \frac{\mathrm{~d}}{\mathrm{~d} t} E(t) \lesssim \operatorname{Im} \int\left(\frac{1}{2}\left(|x|^{4}+1\right) f \bar{w}+h^{2}|x|^{2} \nabla f \nabla \bar{w}+h^{4} \Delta f \Delta \bar{w}\right)+h E . \tag{30}
\end{equation*}
$$

Using the expression of $u_{\text {app }}$

$$
\begin{gather*}
\left\|u_{a p p}\right\|_{L^{2}} \lesssim 1, \quad\left\|u_{a p p}\right\|_{L^{\infty}} \lesssim h^{-\frac{1}{2}} \\
\left\|\nabla u_{a p p}\right\|_{L^{2}} \lesssim h^{-1}, \quad\left\|\nabla u_{a p p}\right\|_{L^{\infty}} \lesssim h^{-\frac{3}{2}} \tag{31}
\end{gather*}
$$

and by definition of E

$$
\begin{equation*}
\|x \nabla w\|_{L^{2}} \lesssim h^{-1} E^{\frac{1}{2}}, \quad\|\Delta w\|_{L^{2}} \lesssim h^{-2} E^{\frac{1}{2}}, \tag{32}
\end{equation*}
$$

and the Gagliardo-Nirenberg inequalities in dimension 3 yield

$$
\begin{array}{r}
\|w\|_{L^{4}} \lesssim h^{-\frac{3}{4}} E^{\frac{1}{2}}, \quad\|\nabla w\|_{L^{4}} \lesssim h^{-\frac{7}{4}} E^{\frac{1}{2}}, \\
\|w\|_{L^{\infty}} \lesssim\|w\|_{L^{2}}^{\frac{1}{4}}\|\Delta w\|_{L^{2}}^{\frac{3}{4}} \lesssim h^{-\frac{3}{2}} E^{\frac{1}{2}} . \tag{33}
\end{array}
$$

- First, the estimates 20 on $R(h)$ give

$$
\begin{gather*}
\left|\int\left(\frac{1}{2}\left(|x|^{4}+1\right) R(h) \bar{w}+h^{4} \Delta R(h) \Delta \bar{w}\right)\right| \\
\lesssim\left\|\left(|x|^{2}+1\right) R(h)\right\|_{L^{2}} E^{\frac{1}{2}}+h^{2}\|\Delta R(h)\|_{L^{2}} E^{\frac{1}{2}} \\
\lesssim h^{\frac{5}{2}} E^{\frac{1}{2}} . \tag{34}
\end{gather*}
$$

- Then, as $g=\left|u_{\text {app }}+w\right|^{2}\left(u_{\text {app }}+w\right)-\left|u_{\text {app }}\right|^{2} u_{\text {app }}$, and according to 31 and (33)

$$
\begin{align*}
\left|\operatorname{Im} \int\left(|x|^{4}+1\right) g \bar{w}\right| & \lesssim \int\left(|x|^{4}+1\right)\left(\left|u_{a p p}\right|^{2}|w|^{2}+\left|u_{a p p} \| w\right|^{3}\right) \\
& \lesssim\left\|u_{a p p}\right\|_{L^{\infty}}\left(\left\|u_{a p p}\right\|_{L^{\infty}}+\|w\|_{L^{\infty}}\right) E \\
& \lesssim h^{-1} E+h^{-2} E^{\frac{3}{2}} . \tag{35}
\end{align*}
$$

- Compute

$$
\begin{aligned}
|\Delta g| \lesssim & \left|u_{\text {app }}\right|^{2}|\Delta w|+\left|u_{\text {app }}\right|\left|\nabla u_{\text {app }}\right||\nabla w|+\left|\nabla u_{\text {app }}\right|^{2}|w| \\
& +\left|u_{\text {app }}\right|\left|\Delta u_{\text {app }}\right||w|+\left|\Delta u_{\text {app }}\right||w|^{2}+|w|^{2}|\Delta w|+|w||\nabla w|^{2}
\end{aligned}
$$

hence

$$
\begin{aligned}
\|\Delta g\|_{L^{2}} \lesssim & \left\|u_{\text {app }}\right\|_{L^{\infty}}^{2}\|\Delta w\|_{L^{2}}+\left\|u_{a p p}\right\|_{L^{\infty}}\left\|\nabla u_{a p p}\right\|_{L^{\infty}}\|\nabla w\|_{L^{2}} \\
& +\left\|\nabla u_{a p p}\right\|_{L^{\infty}}^{2}\|w\|_{L^{2}}+\left\|u_{a p p}\right\|_{L^{\infty}}\left\|\Delta u_{a p p}\right\|_{L^{\infty}}\|w\|_{L^{2}} \\
& +\left\|\Delta u_{a p p}\right\|_{L^{\infty}}\|w\|_{L^{4}}^{2}+\|w\|_{L^{\infty}}^{2}\|\Delta w\|_{L^{2}}+\|w\|_{L^{2}}\|\nabla w\|_{L^{4}}^{2} \\
\lesssim & h^{-3} E^{\frac{1}{2}}+h^{-4} E+h^{-5} E^{\frac{3}{2}}
\end{aligned}
$$

then

$$
\begin{align*}
h^{4}\left|\int \Delta g \Delta \bar{w}\right| & \lesssim h^{4}\|\Delta g\|_{L^{2}}\|\Delta w\|_{L^{2}} \\
& \lesssim h^{-1} E+h^{-2} E^{\frac{3}{2}}+h^{-3} E^{2} \tag{36}
\end{align*}
$$

Putting the estimates (34), (35), and (36) together with (30), we obtain

$$
\begin{equation*}
h \frac{\mathrm{~d}}{\mathrm{~d} t} E(t) \lesssim h^{\frac{5}{2}} E^{\frac{1}{2}}+h E+E^{\frac{3}{2}}+h^{-1} E^{2} . \tag{37}
\end{equation*}
$$

Set $F=E^{\frac{1}{2}}$, then F satisfies $F(0)=0$ and

$$
\begin{equation*}
h \frac{\mathrm{~d}}{\mathrm{~d} t} F(t) \lesssim h^{\frac{5}{2}}+h F+F^{2}+h^{-1} F^{3} \tag{38}
\end{equation*}
$$

As long as $h^{-1} F^{3} \lesssim h F$, i.e. for times such that $F \lesssim h$, we can write

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(t) \lesssim h^{\frac{3}{2}}+F .
$$

Using Gronwall's inequality, $F \lesssim h^{\frac{3}{2}} \mathrm{e}^{C t}$. The non linear terms in 38) can be removed with the continuity argument for times t_{h} such that $\mathrm{e}^{C t_{h}} \lesssim h^{-\frac{1}{2}}$, i.e. $t_{h} \ll \log \left(\frac{1}{h}\right)$ and one has $F\left(t_{h}\right) \longrightarrow 0$ when $h \longrightarrow 0$, hence the result.

We are now able to prove Theorem 1.4 and Theorem 1.5

3. Geometric instability

Let $|a| \kappa^{2} \leq c_{0}$. Consider the function $u_{\text {app }}$ defined by (18) associate with κ with $k=1$ (k will be equal to 1 in all this section).

$$
u_{a p p}=\kappa h^{-\frac{1}{2}} \mathrm{e}^{-i \lambda t} \mathrm{e}^{i \frac{\theta}{h}} \tilde{v}
$$

Similarly, let the function $u_{\text {app }}^{\prime}$ defined by (18) associate with $\kappa^{\prime}=\kappa+h^{\frac{1}{2}}$. Then there exists $\lambda^{\prime} \in \mathbb{R}$ and $\tilde{v}^{\prime} \in L^{2}\left(\mathbb{R}^{3}\right)$ such that

$$
u_{a p p}^{\prime}=\left(\kappa+h^{\frac{1}{2}}\right) h^{-\frac{1}{2}} \mathrm{e}^{-i \lambda^{\prime} t} \mathrm{e}^{i \frac{\theta}{h}} \tilde{v}^{\prime}
$$

define the functions $\left.f, f^{\prime} \in L^{(} \mathbb{R}^{3}\right)$ by

$$
\begin{equation*}
f=h^{-\frac{1}{2}} \mathrm{e}^{i \frac{\theta}{\hbar}} \tilde{v}, \quad f^{\prime}=h^{-\frac{1}{2}} \mathrm{e}^{i \frac{\theta}{h}} \tilde{v}^{\prime} \tag{39}
\end{equation*}
$$

Notice that by construction, $\|f\|_{L^{2}},\left\|f^{\prime}\right\|_{L^{2}} \sim 1$.
We now need the following
Lemma 3.1. - The functions defined by (39) satisfy

$$
\begin{equation*}
\left\|f^{\prime}-f\right\|_{L^{2}} \lesssim h^{\frac{1}{2}} \tag{40}
\end{equation*}
$$

Proof. - To construct f^{\prime}, we have to solve the system (6)-(8) with $\kappa^{\prime}=\kappa+h^{\frac{1}{2}}$. We reorganize this system by identifying the powers of h, and as equation (6) remains the same, we deduce 40 .

Proof of Theorem 1.4 (i). - Denote by u (resp. u^{\prime}) the solution of (23) with initial condition $u_{\text {app }}(0)$ (resp. $\left.u_{\text {app }}^{\prime}(0)\right)$. We have

$$
\begin{align*}
\left\|\left(u^{\prime}-u\right)(0)\right\|_{L^{2}} & =\left\|\left(u_{a p p}^{\prime}-u_{a p p}^{\prime}\right)(0)\right\|_{L^{2}} \\
& \leq \kappa\left\|f^{\prime}-f\right\|_{L^{2}}+\kappa h^{\frac{1}{2}}\left\|f^{\prime}\right\|_{L^{2}} \lesssim \kappa h^{\frac{1}{2}} \tag{41}
\end{align*}
$$

by Lemma 3.1. The triangle inequality gives
$\left\|\left(u_{\text {app }}^{\prime}-u_{a p p}\right)(t)\right\|_{L^{2}} \geq \kappa\left|\mathrm{e}^{i\left(\lambda^{\prime}-\lambda\right) t}-1\right|\left\|f^{\prime}\right\|_{L^{2}}-\kappa\left\|f^{\prime}-f\right\|_{L^{2}}-\kappa h^{\frac{1}{2}}\left\|f^{\prime}\right\|_{L^{2}}$

$$
\begin{equation*}
\geq \kappa\left|\mathrm{e}^{i\left(\lambda^{\prime}-\lambda\right) t}-1\right|-C \kappa h^{\frac{1}{2}} \tag{42}
\end{equation*}
$$

As $\left(\lambda^{\prime}-\lambda\right) t \sim \frac{\sqrt{2}}{2 \pi} a\left(\left(\kappa+h^{\frac{1}{2}}\right)^{2}-\kappa^{2}\right) t \sim \frac{\sqrt{2}}{\pi} a \kappa t h^{\frac{1}{2}}$, with 42) we obtain, when $|a| \kappa t \gg 1$

$$
\left\|\left(u_{a p p}^{\prime}-u_{a p p}\right)(t)\right\|_{L^{2}} \geq c|a| \kappa^{2} t h^{\frac{1}{2}}
$$

hence, using 41,

$$
\frac{\left\|\left(u^{\prime}-u\right)(t)\right\|_{L^{2}}}{\left\|\left(u^{\prime}-u\right)(0)\right\|_{L^{2}}} \gtrsim|a| \kappa t .
$$

which was the claim.
Proof of Theorem 1.4 (ii). - First notice that every parameter or function involved in this part depends on h even though we do not write the subscripts. We define

$$
\begin{align*}
u_{a p p}^{\prime \prime} & =\left(\kappa+\varepsilon_{h}\right) h^{-\frac{1}{2}} \mathrm{e}^{-i \lambda^{\prime \prime} t} \mathrm{e}^{i \frac{\theta}{\hbar}} \tilde{v}^{\prime \prime} \\
& :=\left(\kappa+\varepsilon_{h}\right) \mathrm{e}^{-i \lambda^{\prime \prime} t} f^{\prime \prime} . \tag{43}
\end{align*}
$$

with $\varepsilon_{h} \longrightarrow 0$ when $h \longrightarrow 0$, and denote by $u^{\prime \prime}$ the solution of 23 with initial condition $u_{\text {app }}^{\prime \prime}(0)$. Then

$$
\begin{align*}
\left\|\left(u^{\prime \prime}-u\right)(0)\right\|_{L^{2}} & =\left\|\left(u_{a p p}^{\prime \prime}-u_{a p p}\right)(0)\right\|_{L^{2}} \\
& \leq \kappa\left\|f^{\prime \prime}-f\right\|_{L^{2}}+\kappa \varepsilon_{h}\left\|f^{\prime \prime}\right\|_{L^{2}} \tag{44}
\end{align*}
$$

The right hand side of (44) tends to 0 with h because $\left\|f^{\prime \prime}-f\right\|_{L^{2}} \longrightarrow 0$ and $\left\|f^{\prime \prime}\right\|_{L^{2}} \sim 1$. But when h is small enough

$$
\left\|\left(u_{a p p}^{\prime \prime}-u_{a p p}\right)(t)\right\|_{L^{2}} \geq \kappa\left|\mathrm{e}^{i\left(\lambda^{\prime \prime}-\lambda\right) t}-1\right|\left\|f^{\prime \prime}\right\|_{L^{2}}-\kappa\left\|f^{\prime \prime}-f\right\|_{L^{2}}-\kappa \varepsilon_{h}\left\|f^{\prime \prime}\right\|_{L^{2}}
$$

$$
\begin{equation*}
\geq \frac{1}{2} \kappa\left|\mathrm{e}^{i\left(\lambda^{\prime \prime}-\lambda\right) t}-1\right| \tag{45}
\end{equation*}
$$

Now use $\left(\lambda^{\prime \prime}-\lambda\right) t_{h} \sim \frac{\sqrt{2}}{2 \pi} a\left(\left(\kappa+\varepsilon_{h}\right)^{2}-\kappa^{2}\right) t_{h} \sim C_{0} a \kappa t_{h} \varepsilon_{h}$. Take $\varepsilon_{h}=\left(C_{0} \kappa a t_{h}\right)^{-1 / 2}$ which tends to 0 , then if $h \ll 1,\left|\lambda^{\prime \prime}-\lambda\right| t_{h} \geq \pi$ and

$$
\sup _{0 \leq t \leq t_{h}}\left\|\left(u_{a p p}^{\prime \prime}-u_{a p p}\right)(t)\right\|_{L^{2}} \geq \kappa .
$$

Now, according to Proposition 2.7. which can be used as we assume $t \ll \log \frac{1}{h}$, we have for h small enough

$$
\sup _{0 \leq t \leq t_{h}}\left\|\left(u^{\prime \prime}-u\right)(t)\right\|_{L^{2}} \geq \kappa
$$

This last inequality together with (44) proves the second part of Theorem 1.4 .

4. Projective instability

We conserve the notations of the previous section, but here f_{j} and f_{j}^{\prime} are constructed with $k=j$ in (4).
Define $U_{a p p}=\kappa \mathrm{e}^{-i \lambda_{1} t} f_{1}+\kappa \mathrm{e}^{-i \lambda_{2} t} f_{2}$ and $U_{\text {app }}^{\prime}=\left(\kappa+\varepsilon_{h}\right) \mathrm{e}^{-i \lambda_{1}^{\prime} t} f_{1}^{\prime}+\kappa \mathrm{e}^{-i \lambda_{2} t} f_{2}$.
Lemma 4.1. - Let $V_{a p p}=U_{a p p}$ or $V_{a p p}=U_{\text {app }}^{\prime}$, and v be solution of

$$
\left\{\begin{array}{l}
i h \partial_{t} v+h^{2} \Delta v-|x|^{2} v=a h^{2}|v|^{2} v \tag{46}\\
v(0, x)=V_{a p p}(0, x)
\end{array}\right.
$$

then $\left\|\left(v-V_{\text {app }}\right)\left(t_{h}\right)\right\|_{L^{2}} \longrightarrow 0$ with $t_{h} \ll \log \left(\frac{1}{h}\right)$, when $h \longrightarrow 0$.
Proof. - Write $V_{a p p}=v_{a p p}^{1}+v_{a p p}^{2}$ with $v_{a p p}^{1}=\kappa \mathrm{e}^{-i \lambda_{1} t} f_{1}$ or $v_{a p p}^{1}=(\kappa+$ $\left.\varepsilon_{h}\right) \mathrm{e}^{-i \lambda_{1}^{\prime} t} f_{1}^{\prime}$ and $v_{a p p}^{2}=\kappa \mathrm{e}^{-i \lambda_{2} t} f_{2}$. As the supports of $v_{a p p}^{1}$ and $v_{a p p}^{2}$ are disjoint we have

$$
\begin{aligned}
& i h \partial_{t}\left(v_{a p p}^{1}+v_{a p p}^{2}\right)+h^{2} \Delta\left(v_{a p p}^{1}+v_{a p p}^{2}\right)-|x|^{2}\left(v_{a p p}^{1}+v_{a p p}^{2}\right) \\
& =a h^{2}\left(\left|v_{a p p}^{1}\right|^{2} v_{a p p}^{1}+\left|v_{a p p}^{2}\right|^{2} v_{a p p}^{2}\right)+R^{1}(h)+R^{2}(h) \\
& =a h^{2}\left|v_{a p p}^{1}+v_{a p p}^{2}\right|^{2}\left(v_{a p p}^{1}+v_{a p p}^{2}\right)+R^{1}(h)+R^{2}(h),
\end{aligned}
$$

where for $j=1,2, R^{j}(h)$ is the error term given by Proposition 2.6 and therefore satisfies $\left\|\left(|x|^{2}+1\right) R^{j}(h)\right\|_{L^{2}} \lesssim h^{\frac{5}{2}}$ and $\left\|\Delta R^{j}(h)\right\|_{L^{2}} \lesssim h^{\frac{1}{2}}$. We conclude with the help of Proposition 2.7.

Proof of Theorem 1.5. - Consider the function u (resp. u^{\prime}) the solution of equation 46) with Cauchy data $U_{\text {app }}(0)\left(\right.$ resp. $\left.U_{\text {app }}^{\prime}(0)\right)$.
First notice that, for $t \geq 0,\left\|V_{\text {app }}(t)\right\|_{L^{2}}^{2} \sim 2 \kappa^{2}$. Compute

$$
\begin{equation*}
U_{a p p}(t) \overline{U_{a p p}^{\prime}}(t)=\kappa\left(\kappa+\varepsilon_{h}\right) f_{1} \overline{f_{1}^{\prime}} \mathrm{e}^{i\left(\lambda_{1}^{\prime}-\lambda_{1}\right) t}+\kappa^{2}\left|f_{2}\right|^{2} \tag{47}
\end{equation*}
$$

Then for $t=0$ we have

$$
\int U_{a p p} \overline{U_{a p p}^{\prime}}(0) \sim 2 \kappa^{2}
$$

hence

$$
d_{\mathrm{pr}}\left(u(0), u^{\prime}(0)\right)=d_{\mathrm{pr}}\left(U_{a p p}(0), U_{a p p}^{\prime}(0)\right) \longrightarrow 0
$$

Let $t_{h} \ll \log \frac{1}{h}$, then as $\left(\lambda_{1}^{\prime}-\lambda_{1}\right) t_{h} \sim C_{0} a \kappa \varepsilon_{h} t_{h}$, we now choose

$$
\varepsilon_{h}=\frac{\pi}{C_{0} a \kappa t_{h}}
$$

then we have $\left(\lambda_{1}^{\prime}-\lambda_{1}\right) t_{h} \longrightarrow \pi$, as $h \longrightarrow 0$. Thus

$$
\int U_{a p p} \overline{U_{a p p}^{\prime}}\left(t_{h}\right) \longrightarrow 0
$$

and

$$
d_{\mathrm{pr}}\left(U_{a p p}\left(t_{h}\right), U_{a p p}^{\prime}\left(t_{h}\right)\right) \longrightarrow \arccos (0)=\frac{\pi}{2}
$$

Finally, from Lemma 4.1 we deduce

$$
d_{\mathrm{pr}}\left(u\left(t_{h}\right), U_{a p p}\left(t_{h}\right)\right), d_{\mathrm{pr}}\left(u^{\prime}\left(t_{h}\right), U_{a p p}^{\prime}\left(t_{h}\right)\right) \longrightarrow 0,
$$

and therefore

$$
\begin{aligned}
d_{\mathrm{pr}}\left(u\left(t_{h}\right), u^{\prime}\left(t_{h}\right)\right) \geq & d_{\mathrm{pr}}\left(U_{\text {app }}\left(t_{h}\right), U_{\text {app }}^{\prime}\left(t_{h}\right)\right)-d_{\mathrm{pr}}\left(u\left(t_{h}\right), U_{\text {app }}\left(t_{h}\right)\right) \\
& -d_{\mathrm{pr}}\left(u^{\prime}\left(t_{h}\right), U_{\text {app }}^{\prime}\left(t_{h}\right)\right) \\
\geq & \frac{\pi}{4},
\end{aligned}
$$

for $h \ll 1$; hence the result.

BIBLIOGRAPHY

[1] N. Burq, P. Gérard, and N. Tzvetkov. An instability property of the nonlinear Schrödinger equation on S^{d}. Math. Res. Lett., 9(2-3):323-335, 2002.
[2] N. Burq and M. Zworski. Instability for the semiclassical nonlinear Schrödinger equation. Comm. Math. Phys. 260 no. 1, 45-58, 2005.
[3] R. Carles. Geometric optics and instability for semi-classical Schrodinger equations. To appear in Arch. Ration. Mech.
[4] M. Christ, J. Colliander, and T. Tao. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math., 125(6):1235-1293, 2003.
[5] M. Christ, J. Colliander, and T. Tao. Ill-posedness for nonlinear Schrödinger and wave equation. To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
[6] B. Helffer. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.
[7] L. Pitaevskii and S. Stringari. Bose-Einstein condensation, volume 116 of International Series of Monographs on Physics. The Clarendon Press Oxford University Press, Oxford, 2003.
[8] M. Reed and B. Simon. Methods of modern mathematical physics. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978.

[^0]: Laurent Thomann, Université Paris-Sud, Mathématiques, Bât 425, Tel 0169155785, 91405 Orsay Cedex. - E-mail : laurent.thomann@math.u-psud.fr
 Url : http://www.math.u-psud.fr/~ ${ }^{\text {thomann }}$

 2000 Mathematics Subject Classification. - 35Q55; 35B35; 81Q05.
 Key words and phrases. - non linear Schrödinger equation, instability .

