ON A MODELLED ROUGH HEAT EQUATION

AURELIEN DEYA

ABSTRACT. We use the formalism of Hairer’s regularity structures theory [I3] to study a heat
equation with non-linear perturbation driven by a space-time fractional noise. Different regimes
are observed, depending on the global pathwise roughness of the noise.

To this end, and following the procedure exhibited in [I3], the equation is first "lifted" into
some abstract regularity structure and therein solved through a fixed-point argument. Then we
construct a consistent model above the fractional noise, by relying on a smooth Fourier-type
approximation of the process.

1. INTRODUCTION AND MAIN RESULT

1.1. Introduction. Rough paths theory ([[7, [22]) is now robustly anchored in the probabilistic
scenery and regarded as one of the most effective approaches to ordinary stochastic calculus,
that is to systems of the form

dY; = b(Y;) dt + o(Y;) - dX; (1.1)

where X stands for a finite-dimensional stochastic process. Among many other achievements,
the theory offers a thorough and unprecedented treatment for a large class of Gaussian systems,
beyond the classical semimartingale situation. The most insightful example of such an appli-
cation is probably given by the fractional Brownian motion case X = B which, for a Hurst
index H < 1/2, was essentially out of reach before rough paths came into the picture.

The extension of the rough paths method to SPDE settings is a much sparser field of investi-
gation. If we focus on the standard heat equation model, the objective, in a very general form,
would be to exhibit a natural pathwise interpretation of the equation: w(0,.) = ¢ and for all
t >0,z € R? (or x in the d-dimensional torus),

(Opu)(t,x) = (83u)(t, x) + Fi(t,x,u(t,z), (0zu)(t, x)) + Fo(t, z,u(t,x), (Opu)(t,x)) - £(t, x) |
equivalently

u(t,z) = (G(t,.) * ) (@) + (G * [F1(u(.), (0zu) () + Fa(ul.), (Ou) () - €]) (¢ 2) . (1.2)
when £ represents a stochastic space-time noise, 1 a given initial condition, and G refers to the
heat kernel. Then as a particular spin-off, and motivated by the (one-parameter) rough-path
results, we may expect to get new interpretations of the equation when considering a space-time
fractional noise.

Within the last few years, several rough-path-type methods have thus been developed in this
direction for various types of Fi, F5 and noise {. We can quote for instance [I, [4, 5] [6] for
extensive results in the particular situation where & only depends on time, and more specifically
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when £(t, x) = dw, for a given rough path w. It is also in this context that a series of fundamental
works by Hairer and a few co-authors has recently arisen [15, [16] [I8], 20], culminating with the
so-called theory of regularity structures [13] that will serve us as a guide throughout the paper.
The aim of our study can indeed be summed up as follows: using the formalism of [I3], we wish
to give a reasonable interpretation of (and simultaneously solve) the equation

(D) (t, ) = (O%u)(t, x) + F(z,u(t, x))- (8:0.X)(t,z) , u(0,.)=v , t>0,zcR, (1.3)

where F' : RxR — R is a smooth vector field and X stands for a space-time fractional Brownian
motion. Let us be more specific about the latter designation: what we call here the space-time
fractional Brownian motion, or the fractional sheet, with Hurst index (Hy, Hs) € (0,1)? is the
Gaussian process {X (¢, z), t,x € R} whose covariance function is given by the formula

E[X (s,2)X(t,y)] = Ru, (s, t)Ru,(x,y) , where Ry (s,t) = %{|S|2H + |t|2H —|t— s|2H} . (1.4)

When H; = Hy = %, X is of course nothing but the classical Brownian sheet, so that the above
noise £ = 0,0, X, understood in the sense of distributions, appears as a very natural fractional
extension of the standard space-time white noise.

Before we go further regarding Equation (1.3), let us try to sketch out, at a very heuristic
level, the main steps of the regularity structures procedure to handle (|1.2):

(1) First, one associates the equation with a natural set of elements Z(§), the so-called model,
constructed (when possible!) from the sole noise £, that is, independently of any potential "solu-
tion" u, and which extends to this multi-parametric setting the concept of a rough path. Indeed,
just as its one-parameter counterpart, the model will prove to encode the whole stochastic dy-
namics of the equation, even though this phenomenon can only be revealed at the end of the
procedure.

(2) With a model in hand, one can "lift" the equation in a larger space 7, the so-called
reqularity structure, for which the successive operations involved in , namely composition
with F', multiplication with £ and convolution with G, all make perfectly sense. This is indeed
the major difficulty when trying to give a pathwise interpretation of the equation: although the
solution u is expected to be a function, it is not clear at all how to give sense to the product

F(u(.), (0zu)() - €,

even as a distribution. Lifting the equation in 7 allows us to overcome this difficulty, at the
expense of some mise en abyme of the equation. The procedure of turning an R-valued process
into a J-valued process can actually be compared with the controlled-path transformation of
Gubinelli’s theory ([9), 10]), where processes have to be artificially boosted with "derivatives"
components of some abstract Taylor expansion. As in rough paths/controlled paths theory, a
fundamental ingredient here lies in the extension of the standard Hélder topology to 7 -valued
functions, which gives birth to the spaces of modelled distributions.

(3) Once endowed with a sufficiently regular solution u for the problem in 7, one can (for-
tunately) go back to the real world with the help of another central tool of the theory: the
reconstruction operator Ryz¢), which associates u with a real distribution u = Rz u along a
natural approximation procedure. The machinery turns out to be continuous with respect to
the model Z(&) picked at Step (1), which in some way allows us to loop the procedure.

An important point is that this whole 3-step strategy can be made consistent with the rules of
standard differential calculus: if £ happens to be a smooth process, then there exists a canonical
model Z(€) for which the resulting solution u = Rz(¢)u coincides with the classical solution of
the equation (understood in the Lebesgue sense). Combining this consistency result with the
continuity properties of the procedure gives rise to very readable statements: given a smooth
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approximation " of &, and provided the sequence of canonical models Z(£™) converges to an
element Z(¢), then the sequence of classical solutions u™ associated with £" converges to an
element u. In turn, u legitimately deserves to be called a solution of the equation driven by &.

Note that the above ordering (1)-(2)-(3) is only very schematic and in fact, all the operations
involved in this strategy tend to intermingle through highly technical considerations. Let us also
insist on a few specificities (among others) of the approach:

e Distributions, and especially Besov distributions of negative order, are really at the core
of the machinery, contrary to what one observes in the original rough paths pattern. In order
to make these abstract spaces more easy to handle, the theory leans on the construction of
sophisticated wavelets bases which very subtly account for the local behaviour of the processes
under consideration. We will report an example of such a construction in the proof of Lemma
1. 2l

e The method is based on a multi-parametric formulation of the problem, in contrast with
previous infinite-dimensional pathwise approaches of the equation ([4, 11}, 12]). Otherwise stated,
time and space variables are essentially considered at the same level and merge into a single
variable z € R+,

e The flexibility of the regularity structures formalism allows for possible combination with
renormalization procedures. Indeed, in certain situations where the above sequence Z(£") of
canonical models fails to converge, it may still be possible to renormalize it into some converging
model Z (&™), which in turn can be related to a specific renormalized equation. Such a scheme
was for instance implemented in [I5] for the KPZ equation, solving the long-standing issue of its
well-posedness (see also [13] for two other examples). We will only see a small glimpse of these
possibilities through the exhibition of an It6/Stratanovich-type correction of the equation.

With these (dense) considerations in mind, let us go back to our fractional equation ([1.3]). The
smooth approximation £ of the noise that will serve us as a starting reference is derived from
the following Fourier-type representation of the fractional sheet (see e.g. [24]): for all ¢,z € R,

ezt§ —1e®n_1

€[t s ||t

for some constant cg, p, > 0 and where W is the Fourier transform of a space-time white noise
in R?, defined on some filtered probability space (€, F,P). Then we introduce " along the
formula: £" = 0;0, X™ with

X(t,z) = CHy,Ho /RQ W(df,dn) ) (15)

n W(de. d e — 1 e — 1
X (ta l‘) = CHy,Hy /-Dn W( 3 77) |§|H1+% |77|H2+% ) (16)
where we have set D,, = [—22" 22"] x [-2" 2"]. The reason of this choice mostly lies in the

facilities to compute the moments of such a process, as we will see it through the considerations
of Section [3] It is also worth mentioning that the very same approximation of X has been used
by Chouk and Tindel in [2] to study subtle integration properties of the fractional sheet.

At this point, we are almost ready to state our main result. It only remains us to specify the
class of vector fields F' covered by our analysis. In this context, the following "space-localization"
condition can be compared with the assumptions that prevail in [4]. It is essentially meant to
counterbalance the non-compacity of the space domain under consideration, namely the whole
space R (see also point (3) of Section [L.2)).

Definition 1.1. Given a compact set & C R, we say that a function F : R?> — R belongs to the
class CL(R?) if it admits bounded partial derivatives of any order and if F(z,y) = 0 for every
(z,y) € (R\R) x R.
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We denote by £ the (one-dimensional) heat operator, that is £ = 9; — 92. Also, for v € (0,1),
we denote by C7(R) the space of y-Hélder functions on R, and we refer the reader to Section
for the definition of the parabolic Hélder spaces Cq (R]), & C R?. With these notations in hand,
the main findings of the paper can be summed up as follows.

Theorem 1.2. For every Hi, Hy € (0,1), consider the smooth approximation X™ of the frac-
tional sheet with Hurst index (Hy, Ha) given by @ Fiz the non-linearity F' within the class
CEO(RQ) defined above, for some compact set R C R, and consider a sequence of bounded deter-
ministic initial conditions U™ that converges in L>(R) to some element ¥. Then we have the
following (non-exhaustive) regimes.

(i) Assume that 2Hy + Ho > 2. Then, almost surely, there exists a time T > 0 such that, as n
tends to infinity, the sequence (Y™) of solutions to the equation

{(EY”)(t,:c) = F(x,Y"(t,2)) - 0,0.X"(t,x)

Y0,2) = (), (1.7)

converges in L>°([0,T] xR) to a limit Y. Besides, for any s € (0,T), the latter convergence also
holds in the space CJ ([s,T] x R), for every compact set & C R and every v € (3 —2H; — Ho, 1).

(i) Assume that 2 > 2H; + Hy > % Then, almost surely, there exists a time T > 0 and a

sequence of positive reals (C?ILHZ) such that, as n tends to infinity,

1 . 92n(2—2H;—H>) £ 5
c 2 if <2H1+ Hy <2,
Cliy by ~ { St 3 (1.8)

CHl’HZ-TL Zf 2H1+H2:2 5
]t‘?r some constants c}h,Hz’ C%LHQ, and the sequence Y™ of solutions to the (renormalized) equa-
ion

(LY™)(t,z) = F(z,Y"(t,x)) 0.0, X"(t,x) — Cy iy F(z,Y™(t,x)) - OoF(x,Y"™(t,x)) ,
Y™(0,x) U (z) ,

(1.9)
converges in L>°([0,T] xR) to a limit Y. Besides, for any s € (0,T), the latter convergence also
holds in the space C ([s,T] x R), for every compact set & C R and every v € (3, —142H, + Ha).
Finally, when Hy = % and Hy > %, the limit process Y almost surely coincides with the solution
of the equation

XY =Y + F(,Y) 0. X , Yo=1 , (1.10)
understood in the classical It6 sense (see Section for further details).

Thus, as the global pathwise smoothness of the noise decreases (if we consider (Hy, H2) ~ (1,1)
as the "starting" point), a change of regime is to occur at the frontier 2H; + Hy = 2, with the
emergence of some explosion phenomenon to be corrected with a specific drift term. As far as
we know, such a behaviour has not been observed in the fractional-SPDEs literature up to now.

It is worth noting it right now: the difficulty of Theorem is concentrated in point (i7), the
proof of which will occupy most of the paper. On the opposite, the arguments toward point (7)
will be condensed in a few lines. Let us briefly elaborate on this organization.

In Section [2| we review in detail, under the assumptions of point (i7), the successive results
toward the "lift" of the equation, following the lines of [13]. Thus, the procedure morally corre-
sponds to the steps (2) and (3) of the above-described machinery: we recall how the equation
can be transposed into an appropriate regularity structure (endowed with a suitable model) and
therein solved with a basic fixed-point argument. The reasoning will in particular enable us
to exhibit the central components of the model in this situation, that we have gathered within
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the concept of an («, K)-rough path. Note that the theoretical considerations of Section [2f are
independent of the choice of the approximation £” of the noise.

In Section [} and in a somewhat retrospective manner, we will focus on the construction of
the model, or equivalently of the («, K)-rough path, above the fractional noise. We obtain it
as the limit of the (renormalized) canonical model associated with the smooth approximation
&" = 0,0, X"™. The argument relies on a distributional variant of the classical Garsia-Rodemich-
Rumsey Lemma (Lemma , combined with suitable moments estimates. Together with the
results of Section [2] it will lead us to the proof of the convergence property in Theorem [T.2]
point (ii) (as summed up in Section [3.2). We will then devote Section [] to the proof of the
identification statement when H; = %, by relying on arguments borrowed from [19].

Section [5| will consist in a survey of the proof of the (much easier) point (i), that we call the
Young case in analogy with its one-parameter counterpart (morally, if Ho ~ 1, the condition
indeed reduces to Hy > %) Finally, the appendix contains details regarding the proof of a
technical result in Section [21

Acknowledgements. 1 am deeply grateful to two anonymous referees: their remarks and
stimulating questions have led to numerous significant improvements, both in the content and
in the presentation of my results. I also thank David Nualart for his help during my bibliographic
searches.

1.2. Further work. We are aware that the results in this paper are only a first step toward a
thorough understanding of the fractional heat model through the machinery of regularity
structures. Let us try to record a few natural questions (amongst many others) that arise from
the statement of Theorem [I.2] and the study of which we postpone to future works for the sake
of conciseness.

(1) The two situations described in Theorem only cover the domain 2H; + Hy > % Our
guess is that the subsequent strategy could be extended (through highly technical constructions)
up to the frontier 2H; + Hs = 1. Actually, this extension would certainly require to consider

successive slices of [0,1)? of the form 2 > 2H; + Hy > ]]z—ﬁ (k > 1), to be compared with
11

the usual rough paths splitting H € (k—ﬂ, #]: a slice of higher order appeals to more a priori
constructions, that is to a more sophisticated model. In parallel, the equation is of course likely
to involve additional renormalization terms.

It is worth mentioning here that the particular case of a space-time white noise in
(equivalently, take X a Brownian sheet, i.e., H; = Hy = %) has been recently treated by
Hairer and Pardoux [19], in a setting which only slightly differs from ours (the equation is
therein studied on the torus, with approximation given by a mollifying procedure). As expected,
the authors have to consider a much richer mode: with the above splitting of [0, 1]? in mind
(% > 2H, + Hy > ﬁ—ﬁ’), the situation they focus on corresponds to a "fourth-slice" example,
that is to k = 4.

(2) The results of Theorem could certainly be extended to a (d + 1)-parameter fractional
Brownian motion (defined along a natural extension of ), by replacing the condition 2H; +
Hy > 2 (respectively 2 > 2H; + Hy > %) with 2Hy + 2221 H; > d + 1 (respectively d + 1 >
2H, + Zf;l H;, > d+ %) We have not checked the numerous technical details behind this
assertion though.

(3) The equation we study here is defined on a non-compact space domain, which, at first
sight, prevents us from using numerous "topological" tools from [I3] (observe for instance the
compactness assumption in the general convergence result [13, Theorem 10.7]). As we mentioned
it earlier, this is the reason for our compactly-supported assumption on the vector field F' (see
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Definition . In other words, and as we will see it in detail throughout the expansions of
Section [2| the fact that F' € C°(R?) will enable us to bring the study of the noise (and the
model) back to some compact domain.

A significant improvement would then consist in getting rid of this compactly-supported
assumption by allowing for more general F', which supposes to handle the (spatial) asymptotic
behaviour of the processes throughout the machinery of regularity structures. Given the high
technicality of the theory and its constructions, such an asymptotic follow-up happens to be a
very hard task, although first results in this direction have recently been obtained by Hairer and
Labbé [17] for the parabolic Anderson model. The latter study, together with other works in
progress by the same authors, give us hope that a similar strategy could be implemented for our
non-linear fractional heat equation.

(4) Through the above formulation of the problem, we have therefore chosen to provide an
interpretation of Equation as the limit of ordinary differential calculus, in the spirit of
rough-path-type results (see e.g. [7, Definition 10.34] or the statements in [I3, Section 1.5]). In
fact, as we evoked it earlier, this passing-to-the-limit approach will be seen as a consequence
of a (much) more abstract reading of the equation in some "modelled" space. Thus, by antici-
pating the considerations of Section [2] the regularity-structure solution Y in Theorem [I.2] could
equivalently be defined in a more intrinsic (but more abstract) way as the reconstruction of the
unique (local) solution of the equation modelled along an appropriate (o, K)-rough path & (see
also Remark .

In the case of a white-in-time noise, that is when H; = %, it turns out that Y also coincides
with the classical It6 solution of the equation, as stated in Theorem , point (i) (note that
this property somehow extends the main identification result in [I9] to a colored-in-space noise).
Beyond this It6 situation, and based on the considerations of Section [4] we suspect that our
solution Y could be identified with some mild Skorohod-type solution of the equation, with
convolutional integral understood via an appropriate divergence operator of Malliavin calculus
(in the spirit of [21]). Nevertheless, the comparison procedure might be a complicated task here,
simply because "stochastic" approaches to the non-linear model have not been studied
much in the literature for H; # % Therefore, we have prefered to defer such a comparative
analysis to a future study.

(5) A well-identified drawback of this passing-to-the-limit approach is that, just as in [I3] (or
more generally throughout the rough-path literature), we cannot guarantee that the convergence
results in Theorem are independent of our choice of the approximation £" of £ = 9,0, X (with
the considerations of Section [2]in mind, the convergence actually relies on the whole underlying
(o, K)-rough path &). Another natural approximation procedure, used for instance in [13], is
given by the convolution £" := pon * 9,0, X, with pon a (dyadic) sequence of smooth mollifiers.
Our guess is that, using suitable Fourier transforms, such an approximation of the noise would
lead to the very same "Skorohod-type" limit, with correction term of the same form and of the
same order.

1.3. Hairer-Besov spaces. Let us conclude this first section by introducing the spaces of
functions at the core of our study, along the ideas of [I3]. From now on, and for the rest
of the paper, we fix the parabolic scaling s = (2,1) of R?, and set, for every multi-index
k= (k1,k2) € N2 |k|s := 2k; + ko, while for z = (21, 72) € R?, we will use the scaled norm

lzlls = (jaa] + |2*)1/2
with balls Bs(x,r) centered at z with radius r.

For every integer £ > 0 and every set & C R?, we denote by C/(R) the space of functions
¢ : R? = R with compact support in &, which are k-times differentiable for every multiindex
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k = (K1, k2) such that |k|s < ¢, with continuous bounded derivatives. Set

lellcemy = Y ID"@llpe@e2)y and CHR?) := Ug compactC' (8)-
[k|s <l

Then, as usual, we define Dj(R?) as the set of linear forms on C(R?) whose restriction to every
C(R) (R compact) is continuous.
We first transpose the classical Holder spaces in this setting:

Definition 1.3. For every o € (0,1) and every set & C R?, we say that a function § : & — R
belongs to C*(R) = C&(R) if the following quantity is finite:

0 -0
10l = sup [0(z)| +  sup A =W (L.11)
TER T,YyeER HJ: - y”fo-l
lz—ylls<1

Then we denote by C2(R?) the space of functions 0 : R?> — R whose restriction to every compact
set & C R? belongs to C*(R).

Let us now turn to the definition of the Besov-type spaces of distributions involved in the
theory of regularity structures. To this end, we need to recall the following notation for the
"scaling" operator: for all § > 0, z,y € R? and ¢ : R> — R, denote

(S2,0)(y) == 0"2p(62(yr — 1), 0 (y2 — 22)) - (1.12)

Definition 1.4. For every o < 0, every ro > 1 and every set & C R?, we say that a distribution
¢ € D'(R?) belongs to C*™(R) if it belongs to D,(R?) with £ = — |«] and if the quantity

o (€, 82 ,.0)
[€llar; := sup sup Sup sy
TER peCt (B (0,10)) 5€(0,1] 0% |pllee

is finite. In the sequel, we will essentially deal with C%'(8), that we denote by C®(R), and we
write ||€]|ag for [[€]la1.5- Also, we denote by CX(R?) the set of distributions & € D'(R?) such
that & € C*(R) for every compact set R.

The radius parameter rg actually has a limited impact in this definition, due to the following
elementary property that we label for further use:

Lemma 1.5. Fiz o < 0. For every ro > 1, there exists a constant C,, such that, for any
distribution & € D)(R?) (with { = — |a]) and any set & C R?,

1€llazs < [1€llaroie < Cro - (€]

Proof. Consider a finite cover (Bs(zj,1))ier (with z; € Bs(0,7r9)) of Bs(0,79), together with
a smooth partition of unity (p;)ier associated with it (meaning that suppp; C Bs(x;,1) and
S pi =1 on Bs(0,70)). For any ¢ € C¥(Bs(0,70)), set @i = p; - ¢ and @;(y) = @i(y + ;). Then
@; € CY(Bs(0,1)) and

(€, 82200 = Y (6, 8020i) = Y (6,80 1 (5201 502) Pi) -

i€l i€l

a;R+Bs(0,r9) -

The result immediately follows. O

The subsequent analysis will also appeal to some "lifted" version of these spaces, with "fibers"
locally given by C%(R?):
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Definition 1.6. For every o < 0 and every set & C R?, we say that a map ¢ : R? — D'(R?)
belongs to C*(R) if for every x € R?, ¢, belongs to Dy(R?) with £ = — |« and if the quantity

_ (o Soatf)]
IClla;s :==sup  sup SUp
2E€R peCt (B, (0,1)) 6€(0,1] 0% ll@llee
is finite. We denote by C%(R?) the set of maps ¢ : R? — D'(R?) such that { € C*(R) for every
compact set R.

Remark 1.7. One can obviously identify C¢(R?) with the subspace of constant map in C¥(R?).

2. MODELLED EQUATION

In this section, we propose to review in detail the successive steps of the "lift" procedure at the
core of the regularity structures machinery, under the assumptions of Theorem |1.2] point (i7),
that is when 2 > 2H; 4+ Hy > % Thus, the subsequent reasoning is essentially a particular case
of the general procedure exhibited in [I3]. To be more specific, the assumptions that prevail in
our study are not exactly the same as in [13], since we have chosen to work on the whole space
R (rather than a bounded domain) and rely on a localization-in-space argument based on the
vector field F. We will also slightly revisit the localization-in-time argument by using smooth
cut-off functions. Therefore, it is our duty to check that these technical changes do not affect
the method and the results of [L3].

Beyond the consideration of these minor differences, we have seen the problem as an op-
portunity to provide a detailled application (with explicit parameters and expansions) of the
regularity structures procedure, whose general formulation may look very dense and abstract to
a non-initiated reader. In some way, the forthcoming process can actually be considered as a
PDE counterpart of the usual rough paths "2-step" situation, that is when the Holder coefficient
of the driving process in belongs to (%, %] and one thus needs to involve a Lévy area in the
procedure (see e.g. [9]). In this regard, observe that if we "smoothen" the noise in space by let-
ting Hy tend to 1, the condition for the time-regularity parameter H; turns to Hy € (%, %] With
these preliminary comments in mind, we can now turn to the introduction of our framework.

A first observation regarding the lift procedure is that it only depends on the global pathwise
smoothness of the noise ¢ = 9,0, X, measured in terms of some Besov-Hairer space C%(R?).
Therefore, we need to slightly anticipate the next section, and especially Corollary in
the situation we are interested in, we know that (almost surely) & € C2(R?) for any a €

(—%, —3+ 2H; + Hj). Accordingly, from now on and for the rest of the section, we fix

=1 (2.1)

2.1. Setting. Let us first introduce the space (or regularity structure) in which the equation
will be transposed for better reading. Namely, we define successively

A={a,2a0+2,a0+ 1,0, + 2,1} ,
To =span{Z} |, Dot =span{ZZ(=2)} ,
To+1 = span{=Xa} , o2 =span{Z(E)} , 7 =span{Xs},
and set 7 = @rca ). For the time being, all these symbols Z, EZ(Z),... must be considered as

abstract words that we turn into independent basis vectors of the space 7. We also endow 7
with a natural commutative product x by setting

ExI(E)=ZI(E) , ExXo=EXy , lxr=r1
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for all basis vector 7, and 7+ 7' = 0 in every other situation. For any u € .7 and 8 € A, we will
denote by Z3(u) the projection of u onto Z3.

Then, in order to introduce the set of elements (the model) that will make a link between
7 and more common spaces of distributions, a few technical preliminaries are in order. To
start with, note that the machinery is to behave very differently for the heat kernel around the
singularity 0 and away from it. Along this idea, the strategy will heavily rely on the following
splitting.

Lemma 2.1. ([I3, Lemma 5.5]) There erxists a smooth function py : R? — R with compact
support such that we can decompose the heat kernel G as a sum
G=p-G+(1—py) - G=K+G* (2.2)

with K, G* satisfying the following properties:
o G* is smooth in R? and supported in R*\B,(0, 3) ,
e K is supported in Bs(0,1) and it can be decomposed as a sum K = 3, <o Ky with K,(z) =
2_2"(852’6nK0)(x) for some smooth function Ko with support in Bs(0,1). In particular, for every
distribution 1 and every multiindex ¢ = ({1, 02) € N2, one has the identity

[D' Ky xn)(a) = 20072y, 82" (D" Ko)) (2.3)
where we recall that 0| = 201 + lo.

Let us see to what extent convolution with the singular part K allows to regularize our starting
noise &.
Lemma 2.2. For every & € CY(R?), it holds that K x & € C&2(R?) and for every compact set
R CR?,
HK*gua—FQﬁ Hg”a rect(8) »
where rect(R) stands for the smallest rectangle [x1,z2] X [y1,y2] that contains K.

Proof. First, for x € &, one has by (12.3))
(K« &) (x)] < > 27(6, 82, Ko) | S [[€llags -y 27" +?)

n>0 n>0

and hence sup,cgq |(K *&)(2)| S ||€|la;s- Then fix z # y € K such that ||z —y|ls < 1 and let i >0
be such that 270+ < ||z — y||, < 277 Decompose the difference (K x &)(x) — (K % &)(y) as

S [(Knx&)(@) — (Kn+&)] + > (K — (Kn % §)(y)] =t Loy + I Loy .

0<n<i n>i
As above, we can rely on the bound |(K,, * €)(2)| < [|€]lasa - 272 to derive that
[ Ly S 1€l - 277 S (1€l - Il — ylle* -
In order to deal with I,,, we decompose each summand as
(K &)(x) — (Kn* &) (y)
= [(Knx&)(z1,22) — (Ku % &)(y1, x2)] + [(Kn * &) (y1, v2) — (Ku % €)(y1, y2)]

— /01 dr {(z1 —y1) - (DYOK, % &) (y1 + r(z1 — y1), 22)

+(wz —ya) - (DOVE, &) (y1, 52 + (22 — 12))} -
Therefore, by (2.3),
‘(Kn * é‘)(‘r) - (Kn * §)(y)| 5 HgHoc;rect {’xl 227 |.’IJ2 - Z/2’ o OH_l)} )
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and since both o and a + 1 are negative, we can conclude that
|Izy| 5 ||£Ho¢;rect(ﬁ) : {|$1 - yl’ : 2—ioz + ‘1'2 - y2| : 2—i(a+l)} 5 ”gna;rect(ﬁ) : ||£L' - y||?+2 .
g

With this property in hand, we can define the central element (on top of ¢ itself) at the core
of the forthcoming model.

Definition 2.3. Let K be defined as in Lemma and fir & € CY(R?). We call a K-Lévy area
above ¢ any map A : R? — D'(R?) satisfying the two following conditions.

(i) K-Chen relation: For all v,y € R?, A, — A, = [(K *&)(y) — (K x&)(z)]- €
(i3) Besov regularity: A belongs to C2*+2(R?) (see Deﬁm’tion@ .

Remark 2.4. In the benchmark situation where £ actually defines a function, there exists a
"canonical" K-Lévy area above it given by the formula

Az (2) i= [(K #&)(2) — (K +&)(x)] - £(2) - (2.4)

However, just as with the classical Lévy area of rough-path theory, there is of course no sys-
tematic way to extend to any distribution £. Section |3| will actually be devoted to the
construction of such a process above the fractional noise involved in Theorem Note also
that, like its one-parameter counterpart, a K-Lévy area is not unique: for instance, any constant
C gives rise to another K-Lévy area by setting A, (z) :== A.(z) + C.

We call an (a, K)-rough path any pair € = (£,£2) where € € CY(R?) and €2 is a K-Lévy area
above &, and we denote, for every compact set & C R?,

€llass = [1€]lass + 1€ |2a-+2:5 - (2.5)

Also, if € = (£,€2) and ¢ = (¢, ¢?) are two (o, K)-rough paths, we denote, for every compact set
R CR?,

HE?C”a;ﬁ = ||€ - CHa;ﬁ + H§2 - Cz”2a+2;ﬁ : (2-6)

Now, given an («, K)-rough path &, define
¢:R2xR2— £(T) , I¢:R%— L(T,S'(R?)),
along the following formulas: for all z,y € R?,
r$,E =2, rf,) =1, T5ZE)=IE) +{(K=)@) - (K=)y}1, (27)
8, (X2) = Xo+ (32— y2) 1, (2.8)
5, (B1(2) = T5,(B) x5, (Z()) , T5,(EX2) =T5,(E) x5, (X2) (2.9)
and
() =¢, IE(EL(E) = &, M5(1) =1, IE(Z(E))(y) = [K +&](y) - [K «&](x) ,  (2.10)
T (X2)(y) = yo — 2 , T§(EX2) = TI§(Xa) - TE(E) (2.11)

By combining Lemma with the definition of an («, K)-rough path, the following property
is readily checked.
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Proposition 2.5. For every (o, K)-rough path &, the pair Z(€§) = (II§,T%€) defined along For-
mulas (2.7)- is a model for the reqularity structure 7, in the sense of [13, Definition 2.17].
In particular, it satisfies the relation: for all xz,y € R?

I =18 oT%, . (2.12)
Also, for every compact set & C R%, and with the notation of [I3, Section 2.3], it holds that
1T, T lass S 1€llasso > (T8, T); (T, T8 o S 1163 € lassty »

for some larger compact set Ry.
Proof. For instance, due to the K-Chen relation,
% (1%, (BZ(2)) = Hé (~I ) +{ (K 5 ) (K*i)( )} I (2)

]

We thus have the following picture: in the situation we are interested in, providing an (a, K)-
rough path is enough to construct (and control) a natural model above £. To this extent, the
present introduction of the setting offers some compromise between a rough-path formulation
("process + Lévy area') and a regularity-structure formulation ("regularity structure + model")
of the assumptions required by the procedure.

At this point, and as we mentionned it in the introduction, another important ingredient
consists in "lifting" the classical Holder topology to .7 -valued functions. Along this idea, and
given an (a, K)-rough path &, we define the spaces DV (€) (v,n € R) of singular modelled
distributions as follows. Introduce

P:={(s,2) eR*: s=0},
and then for every set & C R?, define (following [I3, Definition 6. 2})

| T (u(z))] [ Ts(u() — TS, (u(y))|

— +sup sup
N0 By s ux—yus Bnm,yup

[ull,m5 = sup su , (2.13)

B<y z€R\P ||z
where [|z]|p := inf(L, |z1]), [lz; yllp := inf(L, |z1], [y1]) and
fp = {(z,y) € (R\P)*: [z —yls < llz;9llp} -
In the sequel, we will denote by DV(£) the space of functions u : R? — T for which the global
norm [[ull, g2 (written [[ufly,) is finite. Also, we denote by D}"(£) the set of elements in
DY) which take values in J3, = @)>p9.
When comparing two elements u € D" (£) and u’ € D7"(¢’), we use the natural quantity

' T, —-1¢ —u ré (o
50) D] |y gy, 17300 Ty () ~ W) + T WD
El4 B<Y (w.y)ERP Il — ylld "l vl

sup sup
B<y zeR\P
(2.14)

Remark 2.6. Asreported in [14, Remark 5.1], the essential component in the two quantities (2.13))

and (2.14)) lies in the Holder smoothness property of the process, that is in the consideration of

the increment ||z —y||7~”. Controlling the sigularity at time 0 (through the term |||/ m=AIN0 oy

llz;y||57) is of minor importance as far as the global dynamics of the structures is concerned,
although this lever will prove to be necessary in order to settle a fixed-point argument or to lift
the initial condition.
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It turns out that under suitable regularity assumptions, we can reconstruct, from a given
modelled distribution, a real distribution (understood in the classical sense) along a procedure
which continuously extends the "smooth" case, that is the situation where £ is a differentiable
noise. This result, which defines the so-called reconstruction operator, is one of the cornerstone
of the regularity structures theory. The thorough statement that we provide here is obtained by
combining Theorem 3.10, Remark 3.15, Lemma 6.7 and Proposition 6.9 of [13].

Theorem 2.7. (Reconstruction operator) Let € be an (o, K)-rough path and u € Dg’n(f), for
some parameters v > 0, n < v and 8 € [a,0]. Then there exists a unique element Reu €
COM(R?) which satisfies the two following properties:

(i) ("Globally") For every compact set & C R?,

IRe (W)l gansg S €Nzl - (2.15)
where R stands for the 1-fattening of K.

i) ("Locally") For every compact set & C R?, every x € R\P, every § € (0, 1|z Y2y and every
4 P
o € C%(Bs(0,1)),

|(Reu — 115, (u(2))) (S 0)| S 5 elle2 B - 1€l aegllallyy - (2.16)
Besides, if &' is another (a, K)-rough path and u’ € Dg’”(é’), one has, with similar notations,

IRew — Rert'l| sams < Qegrum - {16 o g + I u'll, 5} (2.17)

as well as
[(Reu — I (u(z)) — R +I1,(0'(2))) (S ,0) |
< Qe - lollca o3 (€€ g+ T} o (238)

where in both inequalities, Qg ¢, stands for a polynomial expression in ||§||a;§, ||£’||a;§, [[ul|
and |||

¥R
R

Corollary 2.8. If £ is smooth, in the sense that & (resp. &2) defines a smooth function & :
R%2 — R (resp. €2 : R? x R?2 — R), then, except on P, Reu is a continuous function given by
the formula: for all x € R?\P,

(Reu)(z) =TI (u(x))(z) . (2.19)

Remark 2.9. Here and in the sequel, the "smoothness" terminology is more of an additional
reference to the vocabulary commonly used in rough-path theory, and in this previous statement,
such a regularity assumption can of course be alleviated in a drastic way (see [13, Remark 3.15]).
This being said, for fixed n, the approximation £ which we shall then apply this particular result
to does define a smooth (i.e., infinitely differentiable) function.

We now have all the tools in hand to be more specific about the objective of the next subsec-
tions. Namely, we intend to show how the equation can be naturally transposed and solved in
the space DO’O (&), where the parameter v is henceforth fixed as follows:

y=20+4 €(1,2)]. (2.20)

To get a clear insight into the topology induced by such parameters, observe that, by definition,
the space DO’O (&) corresponds to the set of functions

u=u’14+u'ZE) +u’ X, (2.21)
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such that

sup, (0’ (@), [ut (@)] - 2] 72, [u?(@)] - [l2]p) < oo, (2.22)
e

and for all (z,y) € R? satisfying z1 # 0, y1 # 0 and ||z — y||s < ||lz; y||p,
u(2) —u’(y) —u' (y)- [(K*&) (x) — (K +&) (y)] —u?(y) - (z2—y2)| < C- e —ylI- |25yl p" , (2.23)
ul (@) —u'(y)| < Ol —ylg™ - syl p (2.24)
ju?(z) — ()| < C- e —yl3 ™" llzsyllp” (2.25)
for some finite constant C.
An important remark here is that, due to the uniqueness property contained in Theorem

and given the above regularity conditions, the reconstruction R¢(u) of such an element
ueD] 0(£) is actually very easy to identify (see [I3, Proposition 3.28] for further details):

Proposition 2.10. For every (o, K)-rough path € and every u € Dg’o(é) with decomposition
2.21)), it holds that Re(u)(z) = u®(z) for every x € R?.

Remark 2.11. Let us try to give a better idea about what we mean by 'lifting" the equation
in 7. In fact, with Proposition in mind, it is natural to consider u as a "lift" of u® in
7, with u' and u? playing the role of artificial "derivatives" components. The objective can
now be stated as follows: we wish to turn the ("ill-posed") equation into a ("well-posed")
equation in DO’O(§) (with internal operations in .77) and therein exhibit a solution u. Also,
the procedure must be performed in such a way that, if £ happens to be smooth and £ is the
canonical (a, K)-rough path defined by , then the reconstructed process u := Reu is the
solution of the original equation driven by £ (and understood in the classical sense). Such a
consistency will therefore offer a strong evidence in favor of the viability of the modelling, which
will be confirmed a posteriori thanks to the continuity properties of the procedure (see Section

3.2).

To conclude with these preliminaries, note that, since we are only interested in solutions on a
small interval [0, 7] (with say 0 < T' < 1), we will rely on a localization-in-time of the equation
based on cut-off functions. To be more specific, we recast the target equation as follows:

w(z) = (Ga, V) (22) + pr(21) - (G = [p4 - Fu) - {])(2) (2.26)
where:

o pi(x) := p(x1) - 1g, (21) for some smooth function p : R — [0, 1] with support in [-2;2] and
such that p=1on [-1,1] ;

e pr : R — [0,1] is a smooth function with support in [—3T’; 37T such that pr = 1 on [T, T
and ||pp |l e ry ST (see Lemma [2.12));

o F(u)(z) := F(x2,u(z)) for some function F' € CZ°, (R?) (see Definition ;
e we have set (G, V)(22) = [rdyG(z1,22 — )V (y) .

Lemma 2.12. For any T > 0, there exists a smooth function pp : R — [0, 1] with support in
[—3T; 3T such that pr =1 on [=T,T] and ||pp|l ooy S T

Proof. Consider a mollifier ¢ on [—1,1], that is a smooth function ¢ : R — R with support in
[—1,1] and such that [; o(u)du = 1. Set ¢r(u) = £p(%). Then it is easy to check that the
function pr = 1[_s727) * o1 meets the required conditions. O
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Given a smooth p: R — R and a function u : R? — .7, we will denote by p-u:R? — .7 the
function whose coordinates in .7 are simply given by Z3(p - u)(z) = p(x1) - T3(u)(z), B € A.

For compactness reasons that will prove to be fundamental in Section [3] we will also need to
control the support of the process at each step of the procedure, both in time and in space.

Definition 2.13. We call the support of a modelled distribution g, and we denote by supp g,
the union of the supports of its components J3(g), B € A.

Lemma 2.14. For every g € Dg’"(f) withy > 0,n < v and 8 € [o,0], it holds that suppRe(g) C
suppg.

Proof. Recall that by its very construction (see the beginning of the proof of [I3, Theorem 3.10]),
Reg is the limit of a sequence of continuous functions R’gg of the form:

(Reg)(y) = > (Ma(g(x),vn) - ¥i(y) = > (a(g(@)), v) -5 ()

TzEAY zEAINsupp g

where 7 (y) = 2% . ©0(22"(y1 — x1)) - ©(2"(y2 — x2)), for some compactly supported function .
If for instance supp ¢ C [—C, C], then it is readily checked that

supp R¢ (g) C supp g + Bumax(0,C - 27")

where Bpnax refers to the ball with respect to the supremum norm in R2?. The result is now
immediate as we let n tend to infinity. O

2.2. Composition and multiplication with the noise. The first operation involved in ([2.26)
consists in composing u with the vector field F. Let us see how the procedure can be lifted in
DI0(€), by following the ideas of [I3, Theorem 4.16].

Proposition 2.15. (Composition) Consider an (o, K)-rough path & (resp. €'), and for every
compact set & C R, every F € CF(R?) and every u = u’1 + u'Z(E) + u?X, € DO’O(f), define

F(u) = v'1 4 vl Z(
with v0(x) = F(x2,u’(2)), vi(z) = (02F)(z2,u’(x))
v2(x) = (82F) (22, u’(2)) - w?(z) + (81 F) (22,0’ (2)) .

Then p4 - F(u) € Dg’o(@ and
lp+ - F(w)ly0 < Qg - {1+ [[ull? o} - (2:27)
Besides, for every u’ € Dg’o(f’), it holds that
19+ F(): o - F@)ll0 < Qe - Ll w0 + 6 s} (2.28)
In , Q¢ is a polynomial expression in ||€|la;q,, for an appropriate compact set & C R?

depending only on (F,p). In (2.28), Q¢ uw is a polynomial expression in |ullyo, |[u']y0,
1€llasn, and [1€']] ;s -

Proof. First, let us introduce a compact £y C R? such that [-2,2] x & C £, which implies in
particular that supp(p+ - F(u)) C . By the very definition of || - ||,0, one has

=) + v Xo

~ul(z) and

lov - F@llvo = o5 - F@IL o5 = I PO o500 0

where we have denoted by £y the 1-fattening of K. Set K1 := Ko N (R4 x R). Then it is easy
to check that due to the smoothness of p,

lp - F()l5 0.8 S IFW@)y00
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and so ||p4 - F(u)ly (u)|l4,0:4,- The rest of the proof of now consists in a natural
Taylor-expansion procedure. We only focus on the increment term in %, that is the one cor-
responding to (2.23)). Pick z,y € (R1)p and set v := F(u), 0§ := K % £. Then decompose the
increment

vO(z) = vO(y) = vi(y) - [B(x) = 6(y)] = v(y) - (w2 — y2) (2.29)
as a sum of three terms I,11, 111, with
I = F(z5,u’(2)) = F(y2,u’(x)) — (22 — 32) - (01 F) (y2,u°(2)) ,
IT = (z3 — y2) - [(01F) (y2,u’(x)) — (D1 F) (y2,u’ ()] ,

IIT = F(yp,u’(2)) — F(y2,u’(y))
— (02F) (y2,u’(y)) - u' (y) - [0(x) — O(y)] — (02F) (y2, u°(y)) - u*(y) - (w2 — v2) -
The estimation of I is immediate:
11| S e — 2l Sz —yl2 S Ml =yl - =yl
For II, one has trivially
1] S |2 —yo| - [u’(2) —u(y)] S llz = ylls - [u°(z) —u’(y)] - (2.30)

The key observation at this point is that we can combine ([2.22)-(2.23)) with the result of Lemma
2.2 to derive the bound:

+2)
[0(@) = @) S [ullyo - o — vl sl p @ {1+ [€llarectonn } - (2.31)
and hence, going back to (2.30)),
111 S Qe - l[allyo - lz = wlld - =5 wllp"

where we have used the fact that 2a + 4 < o + 3. Finally, as far as II] is concerned, we
decompose it in a natural way as a sum of two terms I1TM and III(Z), with

I = /1dr{<62F><y2,u0<y>+r<u0<a:>—u0< D) = (2F) (2, u’ ()} - {u’ () — ()}

IT1®? = (0, F) (2, u’(y)) - {u’ () — u’(y) — u'(y) - [0(x) — 0(y)] — w’(y) - (w2 — 2)} -
The bound for I7T1? is 1mmed1ate For IITM | we can use 1} again to assert that
T S (@) = (W) S Qe - ull3o - llz = ylly - llzsyllp”
which completes the estimation of ([2.29 .

The argument leading to (2.28|) follows the same general scheme (localization plus Taylor
expansion), and we therefore omit it for the sake of conciseness.
O

We can now turn to the second operation in , namely the pointwise multiplication with
the noise £&. Observe that the well-posedness of such a product is not clear at all in the real
world. In the "modelled" space, the operation becomes an elementary multiplication with the
"modelled" noise =.

Proposition 2.16. (Multiplication with the noise) Consider an («, K)-rough path € (resp. €').
Then, for every u € DO’O(S), the (pointwise) product ux = belongs to D7T**(€) and

ax Elly+an = [ully0 - (2.32)
Besides, for any u’ € Dg’o(f’), it holds that

||U*E§u,*EHv+a,a = |l u/H%O . (2.33)
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Proof. The statement immediately follows from the two relations contained in ([2.9)). O

2.3. Integration. Lifting convolution with the heat kernel G is clearly the most tricky step of
the procedure. In fact, as we mentionned it earlier, and with the decomposition (2.2) of G in
mind, convolution with K and convolution with G will receive distinct treatments.

First, since G is smooth on R?, convolving with this kernel is an easy-to-handle task in our
situation, due to the following elementary property.

Lemma 2.17. Consider a distribution ( € C%(R?) with support included in a ball Bs(0,70), for
some g > 1. Then G % ( defines a smooth function and one has

IDM(G o Q)| pe(rz) < Crrg 1€ o (2.34)
for every multiindex k.

Proof. Consider a smooth function ¢ with support in B;(0, 9 + %) such that ¢ =1 on B,(0,79),

and for every 2 € R?, set G%(y) = G*(y — x). Then, with Definition in mind, and as G* is a
smooth function on R?,

[(D*GH) * ()] = [¢(DFGE) - 9)| = [(¢, Sao((D*GE) - 0))|
S Claryrtme - I(D*GL) - ¢llc2me) -
From here, we can conclude by using Lemma [I.5] together with the uniform estimate
I(D*G) - @llcarey S I1DFGH|c2rey < o0

for every multiindex k, which follows from the classical properties of the heat kernel (away from
0).
O

Proposition 2.18. Consider an («, K)-rough path & (resp. €'), and for every v € DIT*(£)
with compact support included in R x R, define

Giv == [GF + Re(v)] 1+ [(DOVGF) 5 Re (v)] X2 . (2.35)
Then pr - Qg(v) € DO’O(ﬁ) and

lor - GE(V)llv0 < Qe - T% - [Vl taa » (2.36)

for some constant k > 0. Besides, for any v/ € D7T**(¢") with compact support included in
R+ X R,

o7 - GEv): 1 - G (Vo < Qe - T - {1V Ve + 1€ Nl } - (2.37)

In , Q¢ is a polynomial expression in ||€||a.x,, for an appropriate compact set Ry C R2?,
and T (2T, Qe s @ polynomial ezpression i [hysaas IVl aas 1Ellassy and 1€ s,

Proof. Note first that from the very definition of || - [0 (and especially due to the condition
lz—ylls < ||2; y||p in the second summand of (2.13))), it holds that for any function u : R? — 5,

HPT “Uljy0 = HPT : uH'y,O;[leT,12T]><R . (2‘38)

Also, a close examination of the conditions (2.22)-(2.24), combined with the bound || p7 | oo () <
T—1, shows that

o - u”’y,();[—lQT,12T]><]R S HuH-y,O;[—12T,12T]><R . (2.39)
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Indeed, observe for instance that for all z,y with 0 < |z1] < 127, 0 < |y1| < 127 and ||z —y||s <
lz; yll P,
HPT(»’Ul) — pr(y1)]- u0($)| S Tt 21 — 1l - Hquy,O;[712T,12T]><R
S T llz = yll2 - lully o -1omaom<e - (lzsyllp" - T7)
S HuH'y,O;[—12T,12T]><R e =yl Hﬂﬁ;y”? T
As a conclusion of this localization procedure, we can assert that
lor - Gg¥) 0 S IGEV) 1y 0127127 xR - (2.40)

Then another ingredient toward (2.36)) lies in the fact that as v is compactly supported in Ry xR,
the same property holds true for R¢(v) by Lemma So, since G*(x) = 0 as soon as 21 < 0,
we can assert that, for any multiindex k,

[(D*G*) + Re(v)](z) =0 if a1 <0. (2.41)
Together with Lemma [2.17) and using basic Taylor estimates, it easily entails that
Hgg(v)H'y,O;[—12T,12T]x]R = ”gg(V)H'y,O;[O,mT]xR ST HRé(V)”a;R ) (2.42)
for some parameter x > 0 and some compact set & C R2. For instance, if z € [0,127] x R,
(GF % Re(v))(@)] = [(G* Re(v)) (w1, 22) — (GF  Re(v)) (0, 22)]

S T [DUV(GE *Re(W))lle ey S T IIRe(V)llas
where the last inequality is derived from ([2.34)).

By combining (2.40)) and (2.42)) with the property (2.15)) of the reconstruction operator, we get
the bound ([2.36)).

The proof of (2.37)) goes along the same lines (localization, non-anticipativity (2.41]) and use
of Lemma [2.17)), and we leave it to the reader as an exercice.
(|

Convolving a modelled distribution with K is a much more intricate issue due to the singularity
of G at the origin: in [13], it gives rise to the so-called multi-level Schauder estimates, which are
more specifically spread out in [I3, Section 5, 6.5 and 7.1]. In our situation, the result can be
summed up through the following statement.

Proposition 2.19. Consider an («, K)-rough path € (resp. €'), and define, for every
v=v'E4+VvIZZ(E) + v EX, € DY 0(§) (2.43)
with compact support included in Ry X R,
(Kev)(2) := [K * (Rev)](z) 1+ vO(2) Z(E) + [(DOVK) % {(Rev) — vO(x) - €}](z) X2 . (2.44)
Then pr - Ke(v) is a well-defined element of DO’O(E) and
lpz - Ke(V)ll0 < Qe - T7 - [Vl taa (2.45)

for some constant k > 0. Moreover, for any v/ € D7T**(&') with decomposition of the form
and compact support included in Ry x R, it holds that

lor - Ke(v); pr - K (V)0 < Qegrvav - T - {1 vi Vil + 1165 o } - (2.46)

In (2.49), Q¢ is a polynomial expression in ||| gy, for an approriate compact set Ky C R?, and
in (2.46), Qg gg s a polynomial expression in ||V]|yraa: [V v+ [1€llaso and [|€ ||, -




18 AURELIEN DEYA

Remark 2.20. At first sight, Formula (2.44)) is not very different from (2.35): the v’-component
has just "slipped" from X5 to Z(E) in order to counterbalance some lack of regularity. And yet,

the estimation of K¢v is much more knotty than the estimation of ng, not only because of this
modification, but mostly due to the singular behaviour of K at the origin.

Proof. First, the localization procedure exhibited in the proof of Proposition (that is the

combination of (2.38)-(2.39)) allows us to assert that ||pr - Ke(v)l[1.0 S 1Ke(V)ll5,05—127,127 xR
Besides, since both K and v are compactly supported, this holds true for K¢(v) as well, and we

can thus conclude that

o1 - Ke(v) 70 S [1Ke(v)
for some appropriate compact set £ C R.

|,0i[— 127,127 x £ >

At this point, we are essentially in the same setting as in [I3, Theorem 7.1], which theoretically
provides us with the bound . However, for the paper to stay relatively self-contained, we
have decided to provide details on this estimation in the appendix, and we therefore refer the
reader to Lemmafor further details regarding the arguments of the rest of the proof of .

For the sake of conciseness, we do not elaborate on the proof of (2.46)), but the patient reader
could check that (as usual) the estimate goes along the very same lines as for (2.45)).
O

2.4. Initial condition. With formulation (2.26|) in mind, it only remains us to deal with the
lift of GV in DO’O(§), which can actually be done in the most natural way, as follows.

Proposition 2.21. For every ¥ € L°(R), define
(GU)(z / d> G(a1, 22 — 2)0(2) 1 +/ &z (DOVG) (21,00 — 2)U(z) Xa . (2.47)
R
Then for any («, K)-rough path &, GU € DO’O(S) and
1GY |0 S Y] Loe(r) (2.48)
where the proportionality constant is independent of §.

Proof. The control relies on the basic formula

lk|s

/Rdxg (D*G) (21, 29)| = g - |1 |~ 5"

for every A > 0, 11 # 0 and |k|s < 3. For instance, for all 2,y € R?\ P satisfying |z — y||s <
lz; 9| p, one has

| /Rdz [G(21,22 = 2) = Gyr,y2 = 2) — (@2 = 32) - (DY) (1,92 = 2)] - ¥ (2)]
< Wy - { [ 421G n2) ~ Gl 2)

Hoa =l [ dr [ 2 1(DOG) 32 — 2+ (o — ) — (DD a2 - )1}

S Nl - {lz1 = yil - llzsyllp! + |22 — y2l* - [l ylp' )
1—
S Il -l = ylld -z yllp -

As for the supremum norms, one has obviously

sup ( / dzG(z1, 29 — 2) - V(2) |, ||z|lp - / dz (DOVG) (21, x5 — 2) - U(2)
T€R2\ P R R

) S 1l
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O

2.5. Solving the modelled equation. Given an («, K)-rough path £ and an initial condition
U € L*(R), we can now combine successively Propositions [2.15] [2.16 [2.18] [2.19| in order to
transpose Equation {i in the space Dg’o(f ) as

u= GV +pr-[Ke+G]((p+ - F(w) +E) . (2.49)

Remark 2.22. Let us go back here on the "consistency" condition raised in Remark and
which explains why we call the procedure a "lift" of the equation. Assume that £ is a smooth
function and that &2 is given by the canonical expression (2.4). Then if u satisfies (2.49)) and if

we set u(z) := (Re(u))(z) = (I (u(z)))(z) (by (2.19)), we can first conclude from (2.35)), (2.44)
and (2.47)) that

u(@) = (GoyV)(w2) + pr(a) - (K * Rev)(@) + pr(a1) - (GF  Rev)(z)
= (Go,¥)(22) + pr(z1) - (G * Rev) () (2.50)
where v := p, - (VOE+ v ZZ(2) + v? 2X3) with v?, vl v? defined as in Proposition Then
(Rev)(a) = (I(v(x)))(x)
= pi(x) V(@) - &(2) + pi(2) - V! (2) - () + pi(2) - VP (2) - TS (EX) ()
= pi(2) - V(2) - &(2) = pi() - Flaz,u(z)) () .

By injecting this expression back into (2.50]), we get that w is a classical solution of (2.26)), and
hence the consistency condition is indeed satisfied by the above constructions.

Proposition 2.23. For every fized (o, K)-rough path & and initial condition ¥ € L>®(R), there
exists a time Ty = To(&, V) > 0 and a radius R = R(€, V) > 0 such that for every 0 < T < Ty,

. . . . g7 e 7,0
Equation admits a unique solution ®(&§,V,T) within the ball B¢(R) := {u € Dy (§) :
[ully,0 < R}

Proof. As expected, we resort to a fixed-point argument based on the previous estimates. For
every u € DO’O(E), denote by Mgy r(u) € Dg’o(ﬁ) the right-hand side of 1j By using
successively (2.48]), (2.45)), (2.36]), (2.32) and (2.27)), we get that

1
IMe 7)o < QLY {1+ T - [[ul2 o},

for some parameter k; > 0. Here, Qél\)p stands for a polynomial expression in |||z r) and

€] a0, Where £ is a compact set in R? depending only on F. With this notation, set

(1) (1)\2) a7 (1)
T =T V) = (Qgy - (1+Qgy)’) ™ >0 and R=R(EV):=1+Q;y -

Thus, for any 0 < 7' < Ty and u € B¢(R), it holds that [[Mg g r(u)lly0 < R, that is, Be(R) is
invariant through the action of Mg ¢ 7.

Then, given two elements u,u’ € B¢(R), we can combine, for the fixed model £, the bounds
(2.46), (2.37), (2.33), (2.28), and assert that for every 0 < T' < T7,

2
IMe 7 (1); Mgy r(0) 40 < Q- T72 - s ||,

for some parameter ko > 0 and some polynomial expression Q?) in ||€||a;,- Finally, set

Ty = To(€, ¥) = inf (T4, (2 Qf))*%) >0.

In this way, for every 0 < T' < Tp, the restriction Mg g 1 : Be(R) — B¢(R) is a contraction map,
which ensures the existence of a unique fixed point u in Bg(R).
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O

Remark 2.24. Repeating the above fixed-point argument could actually lead us to the exhibition
of a unique mazimal solution for the modelled equation (given a fixed («, K)-rough path &). In
other words, we could show the existence of a time T' > 0, a growing sequence of times T}, — T
and a sequence (u") € Dg’o(f ) such that for every n, the three following conditions are satisfied:
(7) (u™) satisfies the modelled equation on [0,7T,]; (i) ifu € Dg’o(ﬁ) satisfies the modelled
equation on [0, 7], then w7, = Wi s (4i1) limp oo [Re(u™)(T™,.)|| Loor) = 00. Roughly
speaking, the strategy of this extension goes as follows: once endowed with a local solution u up
to some (small) time T}, the equation is reloaded with new starting time 7p and initial condition
Re(u)(Tp,.) € L>®(R) (due to Proposition , using additionally "time-shifted" topologies
(where the hyperplane {z € R? : 21 = 0} is replaced with {z € R?> : 21 = Tp}). The success of
the procedure relies on the patching result stated in [13, Proposition 7.11].

We are finally in a position to state the main result of this section.

Proposition 2.25. Consider a sequence of (o, K)-rough paths € and initial conditions ¥™ &
L>®(R) such that, for every compact & C R?,

1€ €llase = 0 and  [[U" — W[ ooy = 0, (2.51)
for some (o, K)-rough path & and initial condition ¥. Then, with the notations of Proposition

there exists a time T* = T*(&, V) > 0 such that ®(&", V", T*) is well defined for every n
large enough, as well as ®(&, V¥, T*), and

(€™, ", T7); (€, 0, T%) [0 — 0 . (2.52)

In particular, if we set ®(§", V", T) = Ren (R(E",¥™,T%)) and (&, V,T*) = Re(®(E, ¥, T7)),
it holds that
Hq)(fn, \Iln7T*) - q)(fv \IlvT*)”Loo(]l@) —0, (253)
as well as
H(I)(EH’ \Ilnv T*) - ‘I)(f, \Ijv T*) Ha—l—?;[s,T*}Xﬁ —0 (254)
for every compact set R C R and every fized s € (0,T).

Proof. A quick examination of the proof of Proposition [2.23] shows that we can choose Ty and
R in a such a way that, due to (2.51)), one has

TO(Ena \Ijn) - TO(E) \Il) and R(€n¢ \Ijn) - R(fa \Ij) :

Then, for N (fixed) large enough, set T7(§,¥) := Tp(&, U) A inf,> N To(€", ™) > 0, so that for
every 0 < T < T} and n > N, &(&", V", T) and ¥(§, ¥, T) are both well defined. Now combine
(2.48), (2.46), (2.37), (2.33) and finally (2.28)) to deduce that

H(I)(£n7 \Iln7 T)v (I)(£7 \1/7 T)H’Y,O
< QE), AT ||, U™, T): ®(E, U, T) 0 + 10" — U ooy + €7 Ellesso

for some parameter k3 > 0. As in the proof of Proposition [2.23] Qg’\)l, stands for a polynomial

expression in | ¥|| foo(r) and [[€]a.q,, Where £ is a compact set in R? depending only on F. The
convergence result (2.52)) follows immediately for the value
. 3)\— =~
T*(6, W) := inf (T} (6, 0), (2Q5)) ™) >0,
As for the convergence results ([2.53))-(2.54)), they are now mere consequences of Proposition
529 [229).

and the conditions involved in (|
O
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3. CONSTRUCTION OF AN (a, K)-ROUGH PATH

With the result of Proposition in hand, the route toward Theorem (1.2} point (i), is now
quite clear: we need to construct a K-Lévy area above the fractional noise £ = 0;0, X involved
in the equation, which is the purpose of the present section.

Before we go into the details, let us say a few words about our strategy. Considering the
approximation (X™) of the (H1, Hy)-fractional sheet given by (L.6), we are going to show that
there exists a sequence £" of («, K)-rough paths above £" := 0,0, X™ such that £" converges to
an element & with respect to the (set of) norms involved in . Given the smoothness of X",
and accordingly the smoothness of £”, the canonical choice for such an approximating sequence

is given (see Remark [2.4)) by & = (£7,£27), with

() = (00 X") () , EX"(y) = [(K +E")(y) — (K +&")(w)] - € (y) -
It turns out that the sequence £2™ defined in this way fails to converge in the case we focus
on, that is when 2 > 2H; + Hy > % To this extent, the situation can be compared with the
issue raised by the two-dimensional Brownian parabolic Anderson model, as it is presented in
[13, Section 1.5.1]. Just as in the latter example, we are going to show that there exists positive
deterministic constants C, p, such that the sequence of renormalized (o, K)-rough paths given

for all z,y € R? by
&'(@) = (00 X" (), M) =K *&")(y) — (K +&)(@)] - €"(y) = Chrygy s (31)

does converge to an («, K)-rough path E above £. We will then see how this renormalization
trick reverberates on the equation itself, through the emergence of the correction term in (|1.9)

(see Section [3.2).

3.1. Preliminaries and main statements. Denote by £X the set of (o, K)-rough paths, that
is

ex =

{€=(6,€%) € CO(RY) x C2*T2(R?) : for all z,y € R?, 2 —¢2 = [(K+&)(y) — (K x&)(x)] - ¢ },

and define d, : EX x X — R along the classical globalization procedure:

g €
doleg) = Y ot (&8
€8 = 2 2 e,

where ||€;€’||a.5 is defined by (2.6) and we have set Ry := [—4k, 4k]%.

Proposition 3.1. (£X.d,) is a complete metric space.

Proof. Although the reasoning only appeals to elementary arguments, we have found it useful
to provide a few details here, insofar as Besov-Hairer (semi-)norms are not exactly standard
topologies. Let us first check that d, does define a metric on (X, d,). To this end, let £ = (£, £2)
and n = (n,n?) represent two («, K)-rough paths such that d,(€,m) = 0. The identification of
the first components is easy, because due to Lemma if ¢ € C3(R?) is a test function with
support in a ball B,(0, k), one has

< ||90||C2 ’ ”g - 77”04,16;{0}
< G- lellez - 1€ = llasoor) < Cr-llellez - 1€ = nllars (3.2)

and hence £ = n. The identification of the second components now follows from the K-Chen
relation. Indeed, we can proceed as in the proof of Lemma [1.5| and decompose ¢ as a finite sum
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¢ = Yier, So, i With supp ; C Be(0,1), [[@ille2 < lllle2 and ; € By(0, k). Then, since £ = 1,
one has, for any x,

|<§x nm’(p|_’Z§m 77337 527,901 _’2511 77% 5x1901>

i€l i€y,

< Cr-llellc2- 1€2 =02l 2a-2:5. (0,k)

3.3

which allows us to conclude that & = 7. 33

Consider now a Cauchy sequence £ = (£7,¢2") in (X, d,,). For every test-function ¢, it is
clear by that (£, ) defines a Cauchy sequence in R, which accordingly converges to some
element (&, ¢). Also, for every k > 0 and £ > 0, there exists an integer N (e, k) such that for all
n,m > N(k,¢),

(" = €™, Soppd] < e 6% [lpllcz

where the bound holds uniformly over all ¢ e C?(Bs(0,1)), 6 € (0,1] and x € Ry,. By letting m
tend to infinity, we retrieve that [(¢" — &, S x(p ) < e 8% |l¢llez, which allows us to conclude
that £ € C2(R?) and [[€" — &||a;r, — O for every k > 0.

Then, with the same notation as above, we can rely on the decomposition

(€2m —e2m gy = > {(ehm — 2™, Shu i)

i€,
+[0"(x) = 0™ (2) — 0™ (23) + 0™ ()] - (€7, Sg 0y 1) + [0 () — 0™ (23)] - (€7 — €™, 840, >}

where we have set 0" := K % £", to assert (via Lemma that for every z € R2, (€27 o) is
a Cauchy sequence converging to some element (£2,¢). The K-Chen relation for £ = (£, £2) is
immediately derived from the K-Chen relation satisfied by £". Finally, we can use the same
limit procedure as with & to deduce that ¢2 € C2*F2(R?) and [|€2™ — £2||2a12.r, — O for every
k > 0, which completes the proof of the lemma.

O

The following important property, which somehow will play the role of the Garsia-Rodemich-
Rumsey Lemma in this setting, is essentially a reformulation of the results of [13, Section 3].
We recall that the notation D4(R?) in this statement has been introduced in Section

Lemma 3.2. Fix o € (—2,0). Then there exists a finite set ¥ of compactly supported functions
in C?(R?) such that, if ¢ : R? — D4(R?) is a map with increments of the form

G—CG= > [0°(x)— 0 ()¢

i=1,...,r

for some 0" € CX(R?), X € [0, —), and (¥ € C2(R?), one has, for every k > 1,

HCHOA+>\;R1€ S sup sup sup 2n (at2) ’<CI782,;nw>| + Z Hei”)\§Rk+1 H
YW n20 z€AFNRy 1y i=1,...,7

(3.4)

where we have set AT := {(272"k1,2 k), k1, ko € Z}

Proof. Since our formulation of the statement slightly differs from the abstract estimates given
in [I3, Section 3], let us briefly emphasize the main ideas leading to the bound . Actually,
regarding these particular considerations, the essential contribution of [13] lies in the construction
of a basis

{zp“:—T*s? “th n>0,¢pcTandyec A}
of L?(R?) which satisfies the following properties:
(i) W is a finite set of functions in C?(R?) with support included in Bs(0,1) ;
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(ii) For every ¢ € C?(Bs(0,1)), every n > 0 and 6 € (0, 1], it holds that

3n
|< ;’53355,:390” S, ||(70||L1(]R2) <272 ) (35)
and
8 85 < .575.2777” 3.6
{< y 5,x§0>| ~ H‘P”C2 ) ( . )
uniformly over all z,y € R2.

Once endowed with such a basis, pick ¢ € C3(Bs(0,1)), € Ry, § € (0,1] and decompose
(Cor S2ap) as

(G Sap) = 30 D2 D0 (G ¥)) +107(2) = ' ()] (G, 00} - (™, Saate) -
n>0 el yeAl
In particular, if we denote by M the right-hand side of (3.4)), it holds that
—n(o 3 'ﬂ (0%
(G SSp)| S M- 33 S0 {2 D) g — g2 27D (e ST (3.7)

n>0yew ye Al
At this point, the key observation is that, for support reasons,
(0, 82a0) =0 i lz —ylls > 27" +56. (3.8)

Now choose ng > 0 such that 2-("0+1) < § < 2770 On the one hand, we can use (3.5)) and (3.8))
to assert that

—n(a 2 —n(a+3 n
oD > {eetMY e — gyl 27O} (), S0

0<n<ng YpeW¥ yeAy
S el Y 27V g (AR N By(x, 277 Y))

0<n<ng
S llelleny Y. 27N < ol gz - 27O < gl pigre) - 00T
0<n<ng

where we have used the fact that & + A < 0. On the other hand, by combining (3.6} and ( .,
we get

—n(a 4 —n(at+3 n
DD >0 e e —y 3 27D} (0?8 L0)

n>ng el yeA?
< el 670 3T {2 n(etMD) L omn(atD) AL g (AT N By(x, 26))

~

n>ngo

< ellez 072 Y7 {2t gAY < jgf|on - 62T

~Y
n>ngo

where this time we have used the fact that o + 2 > 0. Going back to (3.7)), this achieves the

proof of (3.4)).

O
The main result of this section now reads as follows:

Proposition 3.3. Fiz (Hy,Hs) € (0,1)% such that 3 < 2Hy + Hy < 2. Then there exists
a sequence of positive deterministic reals Cpy, p, such that, if én = (5”,52’") is defined along

, one has, for all £>1, allm >n > 1, all z € R? and all compactly supported 1) € C*(R?)
with ||[Y|lcz < 1,

E[(€", 82, ) 2] 5 222t (3.9)

E[[(¢" — €™, 82, ¥)?] S 2mep B2 Hve) (3.10)
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E[K €2m 82 'l/)>‘2:| S 27n€22€(474H172H2+26) 7 (311)

for some small € > 0, and where the proportional constants are uniform in €,m,n > 1, x € R2.

For the sake of clarity, we postpone the proof of this statement to Sections and we
first examine how these estimates entail the desired conclusions.

Corollary 3.4. Fiz (Hy, Hs) € (0,1)? such that % < 2H1+Hy <2 and let o € (—%, —3+2H;+
Hj). Then there exists a sequence of positive deterministic reals CZH,HQ such that, for allp > 1,
allk>1 and allm >n > 1,

[H& %3 HQRJ < Cp- k27 (3.12)
for some small € > 0, and where the proportional constant C, is uniform in n,m,k > 1.

Proof. Note first that since the processes involved in (3.9))-(3.10) all belong to a finite sum of
Wiener chaoses, we can immediately turn the latter bounds into L?P()-estimates.

Let us now exhibit a useful intermediate bound on ||£"||q;r,. By using Lemma [3.2| with {, = £"
(and so @ = ¢* = 0), we derive that

2pl 2-¢ 2
n R S « n, o
€M%, < supsup  sup  2%PPY(En, SZ )|
¢qu EZO $€A£0Rk+1

4
S DD D PRSI ).
PeW >0 zeAlNRyy 1

Consequently, we can invoke (3.9)) and conclude that, for p large enough,

E[ll€712,, ] S k2 30 3 2¥ailem (-3t < ¢ g2 (3.13)
PeW £>0

It is readily checked that we can use the same argument to deal with &) .= ¢n — ¢m (take
Co = ™M) 9 = ¢t =0 and replace (3.9) with (3.10), which yields
n,m) |2 —ne
E[lm™ )%, ] < Cp- k227, (3.14)

for € > 0 small enough. As far as 62’(”’7”) = §A2’” — é2,m is concerned, observe that it also fits
the pattern of Lemma since

Eulnm) — 0 — (1 gm™)(y) — (K + €M) (@))€ 4 (K + €7)(y) = (K +€™)@)] €7
Therefore, as above, we deduce that
E[|E0m)2 . p ]

< ZZ Z 22p€(20+2)E[|<£ (n,m) 52 ¢ >|2p]

YeW £>0 IEAZﬁRk+1
+E{||K* mm) Ha+2 Rk+1||§n||a Rkﬂ} +IE[HK meoH_z RHIHf |2 Rk+1}

ZZ Z 22p[(2a+2)E[|<§3, n,m)’SE’Q’;e¢>|2P]

e £>0 J,’EAZPIR]C_‘_l

1 1
FE[E™™ 25, 12 - {ENIEM 2, 17 + ENE™ 25, )% )
thanks to Lemma The conclusion easily follows from (3.11]), (3.13)) and (3.14).

A
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Corollary 3.5. Fiz (Hy,H,) € (0,1)% such that 3 < 2Hy + Hy < 2 and let a € (-3, -3 +
2H, + Hs). Then there ezists a sequence of positive deterministic reals Ch, m, such that, almost

surely, the sequence én defined by converges in (EX,d,) to an (a,K)—roughé = (5,52)
Besides, £ = 0,0, X in the sense of distributions.

Proof. As a consequence of l , we can assert that, for every p > 1, (én) is a Cauchy sequence
in L?(Q, (X ,d,)). Therefore, due to Proposition it converges to an element £ and one has,
for every p > 1,

Eda(€",€)] < Cp-27"P .

The conclusion easily follows from Borell-Cantelli Lemma. g

3.2. Proof of Theorem point (ii). We are now in a position to prove the main statement
of the paper. First, by combining Proposition with Corollary 3.5 we get that, almost surely,
there exists a time T'= T > 0 such that, ifg is defined by 1) the flows u™ := <I>(£n, v T)
are all well defined through Proposition , as well as u := <I>(é ,U,T). Besides, if we set
u = Rén(u”) and u := Ré(u), it holds that

0"l oy "0 and [~ ullagaguryen "0

for every compact set & C R and every s € (0,7).

It only remains us to identify u™ with the classical solution of Equation on [0,7]. To do
so, recall that since én is smooth, the reconstruction operator Rén is explicitly given by (2.19),
that is, for all (s,z) € R? with s # 0,

an

R (u)(5,2) =TI, (u(s, 2))(s,7)
Therefore, just as in Remark by applying Rgn to the modelled equation l’ we derive
that for all (s,z) € R? with s # 0,
w(s,2) = [ Glsa =) W"(9)dy+ pr(s) - [G+ Ren(v)] (5,2)

where v := py - (VO 2+ v EZ(Z) + v ZX3) with v°, v, v defined as in Proposition Then

Ren(v)(ty) = T, (v(t,))(t,)
= pi(ty) -VO(ty) T, (E)(t,y) + p (ty) - Vi (1, y) - T ) (ET(2))(ty)
= p+(ty) - Fy,u"(t,y)) - " (t,y)
— Oty - P (6,9)% - pr(t) - Fy,u"(t,9)) - (32F)(y, u"(t,y)) - (3.15)
In particular, if s € [0, T,

u"(s,x) = /RG(s,x—y)\Il”(y)dy—l—/osG(s—t,x—y)

[Fy,u"(t,y)) - €"(t,y) = Ch, - Fly,u(t,y)) - (0:2F)(y, u" (t,9))]
which is precisely the mild formulation of Equation ((1.9).

Finally, and as we announced it in the introduction, the identification of u with the It6 solution
of 1D in the case where Hy = % is the purpose of Section
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3.3. Proof of (3.9)-(3.10)). We will use the notation A to represent the rectangular incremental
operator, that is,

(A(t,y)X)(S7 J}) = X(S +t,x+ y) - X(87 T+ y) - X(S +1, iL') + X(Sv .’IJ) (316)
Let us first focus on the estimates for the approximated sheet itself.

Lemma 3.6. Let (X™) be the approzimation of the (Hy, Hs)-fractional sheet given by (@ For
every (Hy, Hs) € (0,1)2, every (s,x), (t,y) € R? and every m > n > 1, one has

E[[(A¢ ) X™)(s,2)[] S [t [y]*2 (3.17)

E[[(Agy[X" = X" (s, 2)?] S 27 {72y 2 4 [e2H [y 22728} (3.18)

for every e € (0,Hy A Ha), and where the proportional constants are uniform in m,n > 1,
(s,2), (t,y) € R*.

Proof. 1t is readily checked that

et — 1 e — 1

)

(A(t,y)X”)(S, x) = CHy ,Hy /D ﬁ\/(d& dn) o168 g

N |§‘H1+% |H2+%

n
and hence

it 1 2\ ,iny _ 112
n 2 2 e G 1
E[’(A(t,y)X )(va)| ] = CHy,H, /Dn dfdn ‘§|2H1+1 ‘77|2H2+1

|€i§t _ 1’2 |€iny _ 1’2

S [ déd sl 17
< [ dein e e P

Similarly,
E[|(Aqy[X™ = X™)(s,2)|?]
i&t_12 ny _ 112
2 e “ le 1]
= i [, 40 g

it 1’2 |einy _ 1|2
< 2Ho |67 2H> / .
= /£|>22n % ¢ |2+ 1 Ip|>2n an || 2H2+1

1
< |4|2H1—2¢|, 12H> 2Hy |, |2Hy—2¢
S PP [ e e+ P [

[n]>2n

1
dn i+

Proof of (@—. By definition, one has
(€ 820at) = 2 [[ ardy (DUD9)(221,2) X7t + .y + 2)

’ 57(S7w)
= 2% [ dtdy (DOD9)(22,2') (A1) X")(s:3) |
R

SO

(€™, 82 o) ? < 21 |Bs(0,C - 274 /R dtdy [(DUD9)(2%4,2%) (A 1) X ™) (s, 2)

1 s (s,x

and the conclusion easily follows from (3.17]). Thanks to (3.18]), (3.10) can be derived from the
same argument.

g
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3.4. Proof of (3.11)).

Lemma 3.7. For every a,b € [0,1] such that a +b < 1, one has, for every £,n € R,

K& m)] < el m= .

Proof. Tt follows immediately from the decomposition K = 7,5, K/ introduced in Lemma
and the three bounds

IKelpiwey $27% , IDYOK ey 1, [IDOYEK| ey S 1,
for every ¢ > 0. g

We set from now on @Z)Z = 82 1 for every x € R2.

By definition, one has, for every (s, x) € R?,
n m 2,(n,m n,m
RNy /R dtdy (DUDY( ) (6 y) (XG0 (hy) - O, oy}, (3.19)

(nm) . m m 2,(n,m) ._ 2.n 2.m
where we have set CH17H2 = C’HhH2 - CHLHQ, X2(mm) .= X2n _ X and

(Sm (t,y) / du/ dz (DY X™) (u, 2)-
, drdw K (r,w) - [(D(I’I)X")(u —rz—w)— (DYVXY) (s —r z — w)].
R
Using the representation lj of X", we can also write X2(m) a9

X(2577(;L)7m) (ta y) - = /D2 D2 d€dnd&adns W(dfa dn)W(df% d772) A(s,x),(t,y)((§17 771)7 ({27 772)>7 (320)

m\ n
where
A(sac ((57 ) (527772))
2 §1-m §2 - 12 —
K(&1,m) Pls,z),(t,9) ((§1.m), (§2,m2))

Crr JH: 1 s,x),(t,

R |tz | e |y [t 3 | a2 !
and

t Y
P(s z),(t,y) ((517771) (&2,m2)) = /S du/m dz e'82tet2? {6251“6“712 — e’&se’mx}.
Going back to (3.19)), it holds that

E[[(ER0™, 6] = / dtydyrdtady (DD, ) (1, 91) - (DUDB( ) (b, 0):
{E[X?s(z) (1, yl)X(s(x) )(t2,y2)} - C}ZW;IL o yo - E[X( n )’m) (t1,11)]
— C}ZTIZ)Z t1 - -E{X(z;f:)’m) (tg,yg)} (C’gllyz,)z) tyyp -t - yQ}. (3.21)
At this point, let us apply Wick’s formula to decompose IE[X( (n)m) (t1, yl)X(S(m) )(tg, yQ)} as
E [X?;(Z)’m) (t1, yl)Xé%m) (t2, 92)}

= E[X(s(x) (1, y1)]E{X(28($) )(tz,yQ)] +S((Z}Z?)((t17yl)a (t2,92)) »
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with
S((Z}Z?)((tbyl), (t2,2)) =

—/D2 . d§1dmd§adng As 2y (ty 1) ((§1:M1), (§2,M2)) A(s.), (t2,y2) (E1, M), (§2,m2))

—/[)2\ d€dndSadnz As 2, (t1,y1) ((§1,M), (25 12)) As ), (t2,y2) (§25m2) 5 (§1,11))- (3.22)
Therefore, by choosing C, Hy as in the subsequent Lemma we can rewrite 1 as

2,(n,m) n,m) |2 n,m
E[[E20™, gl ) [F] = [RI™ P + 805, 2)
with

Stgn’m)(s,x) = /11@4 dtdy, dtadys (D(l’l)ﬂ)fs,z))(tl,yl)(D(l’l)@Z’fs,x))(tz,m) S((Zf;)((thm)a (t2,2)) -
Using Lemma [3.8 again, the proof of our assertion reduces to showing that

S (5, )| S 241~ 2Hate)gne (3.23)

for some small € > 0. To this end, observe first that by using Cauchy-Schwarz inequality and a
basic change of variables, we get that

5™ (s, )] < d¢ dpy désd (6P PL((Erm). (2, m2))
Vi ) ~ 1411ag2a71)2 ‘51‘2H1_1|€2‘2H1_1|7]1|2H2_1’772’2H2_1 P 1,M1), (52,12 )

DRA\D3

where we have set

((51,771 52,772 / dtdy (0 0))(t Y / dU/ dzeZ&u 27722{6151u mz 1} '
Let us introduce the following natural domains:
F{l = {(6177713627772) €R4: |€1’ 22277,} ) F2n = {(6177713627772) €R4: |771| Z2n} 3

Ff o= {(&,m, &o,mp) €RY: &) 222" FF = {(&,m, &o,m) €RY 2 |np| > 27}
With this notation, it is readily checked that

155 (s, )|

K(&,m))?
D / de 1 dnydéad Gt PL((&1,m), (&,
2 g 1M e e ot [ P (€ (62,
< 926-4H1-2Hy) 3 g (3.24)

i=1,..,4
with

In \K(2%§172Z771)\2 0 2
‘-7i _/F"_E d&idmdadns |§1‘2H1_1|§2‘2H1_1|771|2H2_1’772’2112_1\Pw((flam)a(527772))’ : (3'25)

i

For the sake of clarity, we have postponed the estimation of the latter integrals to Section
(see Lemma |3.9) and we only report the result here: there exists a small € > 0 such that for all
ie{l,...,4},

|k7i€,n| 5 2—4@(1—6) and if n 2 Y/ , |$€,n| 5 2—4@(1—6)2—6(TL—£) .

Going back to (3.24)), we have thus shown (3.23]), which achieves the proof of (3.11]).
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3.5. A few technical estimates.

Lemma 3.8. With the notations of the proof of , it holds that

/R2 dtdy (DEDYE, )t y) EIXE™ (8 )] = O, - </RZ dtdy 1/}(t,y)) + R (3.26)

where )
C}}Il,HQ = CHl,HQ ' /D d'fdn |§’2H1_1‘77|2H2_1K(§7/’7) (327)

for some constant Cyg, g, > 0, and Rén’m)

is such that

)

‘Rgn,m)| < 2[(4+4H1+2H2+25)27n5

for some small € > 0, and where the proportional constant is uniform in £, m,n.

Proof. First, observe that
/]R dtdy (DDl ) (8 y) E[XE0™ (8, 9)] = /R dtdy (DDl ) (1 y) B[XE0™ (544, 0+y)]

and with the above notations,

E[X2"™ (s + 1,2 + )]

1 _
= _c%-h,Hg ’ /D \ dfdn ’§|2H1_1|n’2H2_1K(§7n)P(s,x),(s+t,z+y)((§a77)7 (_57 _TI)) :

Then
P(sa:) 8+tac+y)((£7 s (=6, / du/ dz{l —(us) —mz x}_t y+D(ty(§> )7
where we have set Dy, (&,1) == —( [y due %) - ([ dze "), so that

/]R 2dtdy(D“’”wé@)(t,y)E[Xf;fgm)(t,y)] CHR, - ( / dtdy(t, y>)+Ré"’”>, (3.28)

with

(n, m) _ . 1 -
RZ CH1,H2 Lm\Dn dfdﬁ |£‘2H1,1|77|2H2,1K(§7n)Bf(gvn)
and

Bu(&,m) = /]R dtdy (DUDf0))(ty) Dis ) (€, m).

It is readily checked that By(£,7n) = Bo(272¢¢,27n) and hence

e =

1 —
2 -2/ —L
Ot J2 '/Dm\Dn e g K& M B2 2 n)‘
1 —
2‘(6—‘“{1—%){/ d /d K(2%¢,2')B
£ >22(n—0) f R ﬁ‘glng_lngz_ﬁ ( ga 77) 0(6777”

1 _
+ [ de dn R (2%€,2n) Bo(€, 1 }
2% S sz M e R JBol& )l

N

Due to the assumption % < 2H1 4+ Hs < 2, we can pick, for any 5 > 0 small enough, two

parameters a,b € [0, 1] such that one has simultaneously a +b =1 — 5 and

e<2H| —14a<1 , e<2Hy—1+2b<1.
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Therefore, by applying Lemma to such a pair (a,b), we get that

nm)| < ol(A—4H,—2Hz+e) [Bo(&:n)|
RIS 2 { /£|>22<"f> % /R @ |§ |21 Fa=1]p|2H2+20-1

# JE f e
R ¢ [p|>2n—¢ n’§|2H1+a71|77|2H2+2b71 ( )

At this point, observe that we can rely on the estimate

R
D 5777 glnf( 77775?4)7
e (&)l el Tl 1e !

which immediately yields

1 1 1
Bo(&:m)l 5 in (|5| ol Tl el 1)‘
|Bo(&,m

In particular, the integral [g. d&dn \£|2H1+“’1|n7\22‘|’2+2b’1 is finite, so, if £ > n, (3.29) entails that

‘Rénym)’ < 2@(4—4H1—2H2+€) < 25(4—4H1—2H2+25)2—n5 )

On the other hand, if £ < n, one has

’BO(g 77)| 2e(n—£)
/|£|>22<M> dS/Rdn |§[2Hara=l |p|2H2t20=1 o= ’

Blenl
|n|>2n— i |£|2H1+a 1|77|2H2+2b 1~ )

which still allows us to conclude by (3.29 - O

and similarly

Lemma 3.9. For alln >0, ¢ >0 and i € {1,...,4}, consider the quantity jz»n’e defined by
. Then for every e > 0 small enough, it holds that

(T S 2707 andifn >0, |TP S 2020
where the proportional constants are uniform in £,n.

Proof. Let us first introduce the two quantities at the core of our argument: for all &1,& € R,
define

¢ 1/2
7€) = ([, dtay (DOV0) (e | [ duesop?) (3.30)

1/2
w(&1,86) = (/ dtdy | (DY) (¢, y)]? - y/ dz/ dw e™Ye W|2> . (3.31)

It turns out that we have to treat the cases Hy > 5 and 1 5 < H; < 5 separately.

and

Case 1: H; > % . In this situation, we start from the estimate

IPO((&m). (€2 m) P < [PV ((61,m), (E2,m)) P + [P ((61,m), (€2, m2))1 (3.32)

where we have set

PV ((&1,m)s (E2,m)) == Ty(&1 + &) - m - Qulm,m)

PP ((€1,m), (€2.12)) 1= Ty(m) - &1 - Qu(€1.62) -
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Then, by Lemma we know that for all a,b € [0, 1] such that a + b =1 — ¢, one has

tn(1) |K (2%, 2,)[? (1) 9
..71' = /anl d&idm d&adns |§1|2H171|£2|2H171|771|2H271‘772|2H2*1 |P1/; ((517771)7 (627772)”

—a0(1— Ty (&1 + &) - 1Qu(n1, m2)|?
< 9—44(1—¢) | Pisl ¥
S2 /FTHZ d€ydm d€adny €| @ +20) 1| g, [2H —1 |y, | 2HaF4b-2) 1|y [2H>—1

i

(3.33)

Due to the assumptions on the pair (Hy, Hy), we can actually pick a € (0,1) such that
max(ﬁ — 8Hq, 2H2) < 4da < min(2H2 +2,4Hy + 1,4 — 4H1) ,

and set b=1—¢ec—a € (0,1), for € small enough. For such a choice of (a, b), it is readily checked

that the conditions in Lemmas and are all satisfied by the bound (3.33)), which leads
us to both

‘ng»n7(1)| 5 2—4@(1—8) and lf n 2 ‘6 , ‘t7i£’n7(1)| 5 2—4[(1—6)2—6(71—@) .

The treatment of

in(2) | K (226, 252 (2) 2
J; = /Fn_g d&rdnidadny &1 21| o2 =1 [y, [2H2 1 [y 2H2—1 [Py ((€1m), (€2, m2))

i

is slightly different. Note that 7™ < g5m@D 4 76m(2) iy

jé,n,(2,1) _

7

|Qu (&1, &)1 - [Ty (m2)

Frtagim <1} &1dnid€adny €1 |@HT—2+2a1) ~1| &y [2H1 —1 |y, | @Ho+4b1) —1 |y [ 2H2— 1
(3.34)

and

£,n,(2,2)

gime =
Qu (€1 &) - [Ty () ?

g~ 4Hax+b2) / dé1dnydésyd :
Frtn{m 21} S1dmd&adiy €1 [GH1—2+2a2)— 1| g, [2H1—1 [y | (2Ha+4b2) —1 |y, [2Ha—1
(3.35)

Observe also that | T}, (n2)[* < inf(1, W) So, in order to apply Lemma to 1) it suffices
to choose ay, by € [0,1] such that a; +b; =1 — ¢ and
max(2 + 2Ha, 4 — 4Hy,6 — SH1) < 4a1 < 4 .

Similarly, in order to apply Lemma to (3.35)), it suffices to pick ag,by € [0,1] such that
as +by=1—¢ and

max(4 —4H;,6 — 8Hy) < 4ag < min(2 + 2Hy,4) .
We can therefore conclude that
“-72‘&%(2” 5 2—4€(1—6) and if n > ¢ | |$Z,”7(2)| 5 2—44(1—6)2—5(71—6) ’

which completes the proof of the lemma in the situation where H; > %

Case 2: % < H; < % . In particular, it holds that Ho > % Here, we reverse the roles of the
variables by replacing (3.32)) with

P& m), (€ m)? S 1P (&sm)s (€oom)) P+ PP (6rm), (2m))* s (3.36)
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where we have set this time (¢, y) := 1(y, t),
PO((&1,m), (€2,m)) = Ty(m +1m2) - &1 - Qp(€1, &) |

Pl%2)((€17771)7 (527772)) = T1/;(£2) e Qﬁ(nlﬂh) ’

As above, we first deal with

on(1) | K (2261, 21) 2 (1) 2
T i= [ A e e i et P (6m):(€m)

_ 2.10- 2
sz / d&1dnidSadns Ty (m +n2) [ 1Q (61, &)
~ e €1 |CH1+2a=2)=1| g, [2H1—1 [y}, | 2Ha+4b)—1 [, [2Ha—1

i

(3.37)

and we pick a,b € [0, 1] satisfying a + b =1 — £ and

max(4 —4H,6 —8H1,2Hy + 2) < 4a < min(4,4H, + 1) ,
so that the conditions in Lemmas and are all met by the bound (3.37)), as it can be
easily verified.

Also, if we set

on(2) | K (2241, 2,)|? (2) 2
J; o /F"—f dgydmd&ady ‘51’2H1—1‘£2’2H1—1|771|2H2—1|n2|2H2_1‘PJ, ((€1,m), (&2, m))I”

2

we have %é’n’@) S %Z,n,(ll) +$€,n,(2,2)’ with

Zé,n,(&l) —
2 2
—4b(ar+b1) 1Qu(1,m2)|* - 1Ty (&2)]
2 /Fi”‘zﬁ{lﬁlgl} d&1dnid8adiy |61 [CHi2a1) 1|, | 2H1—L [y, | 2Ha+4b1—2)—1 |y, [2Ho—1
(3.38)
and
Zé,n,(2,2) —

|Qu (1, m2)? - [Ty (2)]?
d&ydmd&ady |1 RH1+2a2)=1| g | 2H1—1 |y, |(2HaF4b2=2)—1 [, [2Ha—1 °

(3.39)

2—44((12—{-{)2)

Frfn{l&|>1}

In , we fix a1, by € [0,1] such that a; +b; =1 — ¢ and
9Hy < dap < min(2Hs + 2,4 — AHy, AHy +1)
while in , we fix ag,be € [0,1] such that ag + by =1 — ¢ and
max(2H,4 — 4Hy) < 4ag < min(2Hy + 2,4Hy + 1) .

In this way, we are again in positions to appeal to Lemmas [3.10[3.11] and therefore conclude,
which achieves the proof of our statement. O

Lemma 3.10. Fiz ) € C?>(R?;R) with compact support and let Ty be the quantity defined by
3.30). Then, for all A1, A2 € (0,2) such that Ay + Ay > 3, the integral

| Ty (1 + 22) |
SN EP

- dl’ldJIQ (3.40)
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is finite. Besides, under the same conditions, for every ¢ > 1, i € {1,2} and every € > 0 small
enough, one has

Ty (21 + 22) 2 _
dx1d < 7€ 3.41
/mec TR | P g e T = € (3.41)

Proof. 1t is a matter of elementary estimates based on the fact that

1
Ty(xr+ <inf<1,).
‘ w( 1 2>‘N ’x1+x2‘

We only give details for (3.41)). One has, for any small € > 0,

Ty (21 4 x2)]?
dz /da:
/|x1|zc Fr T PP
1 1
< dac/ dz
~ /xllzc asice 2 oz T oy + 202

1 1
+ dx/ dx
w2 Jaize Jz Mo oy + g0

1 1
2—(/\1+/\2)/ d / d
C i) xT9
lz1]|>1 ENES |1 [M Tt zg| A2 oy + 2o )?

1 1
+C3+€_(>\1+)\2) d:El / d.TQ .
|lz1|> |za|> |z [P gAY [y 4 gt e

A

1 1
2 2

It remains to observe that
1 1
dl‘l/ dl‘g
/|m1|21 joa] < |21 M= g2 [z + )2

1

2
<(/ 7d$1 )(/ 7dx2 ><oo
~ \ g1 o [ jma| <] [2o]A2 71 ’

and

/|SC1|>

1 1
da:/ dx
1 2l 2 lz1 M me 22T |2y + 20| ¢

<</°° dr ) (/%de ! ! ) <
— . m’
N R 0 lcos M |sin 02" |cos 6 + sin 6]~

for any € > 0 small enough. O

1
2

Lemma 3.11. Fiz ¢ € C2(R?%;R) with compact support and let Qy be the quantity defined by
3.31). Then, for all A1, A2 € (0,2) such that Ay + A2 > 1, the integral

|Qy (21, 22) 2
/R2 dxydzy P T (3.42)

is finite. Besides, under the same conditions, for every ¢ > 1, i € {1,2} and every e > 0 small
enough, one has

|Qu (w1, 22) 2 _
dxid < 7€ 3.43
e R S (3.43)
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Proof. It leans on the following readily-checked estimate: for i € {1, 2},

1 1 1 1
Qy(z1,z2)| S inf <1,,, + > )
@u (o1, z2)| ol ol Tellea] | Jmiller o)

Based on this bound, one has, for any small € > 0,

/ dﬂfl\/diUQ ’Qw(a:l’l?)‘?

21 |>e O Y R P
) (L ) i, 2
~ e [z [HTAM o<1 |22 271 o1 [ >e ea>1 |z M2 e

|Qu(z1,22)]
+/ d / dx . 3.44
[z1]>c ! |za|>1 2 |$1’/\1_5|x2|)‘2_1|5[;1 _|_1-2‘1—5 ( )

To bound the second summand in (3.44)), pick a1 € [0,1] N (1 — A1, A2), so that, for any € > 0
small enough,

T
le1|>e S R o L v

< (/ dxl) . (/ dx?) < JA-(atar—e)
~ o1 >e |$1‘/\1+a1—a 22| >1 |x2’)\2+1—a1—5 ~

Then, in order to estimate

|Q¢($1,$2)|
T ::/ dx / dxo
T Deze ezt Ptz etz + aofiE

observe first that, without loss of generality, we can assume that A;, A2 € (0,1). Under this
assumption, there exists ag € [0,1]N (A2 — 1,1 — A1), and for such a value of ag, one has, for any
€ > 0 small enough,

1
J. < / dz / dz
c o~ o1 [>e 1 lza|>1 2 |$1|)\1*€+a2|m2|)\2*a2|x1 + m2|1fs

() (] = )5
c . - - <ec
1 rAitre—3e 0 |cos 9|)‘1+a2_25 |sin 9|)‘2_a2 |cos 6 + sin 0|1_E ’

which completes the proof of (3.43]). The estimation of (3.42)) can clearly be done along the

same lines.

174N

0

3.6. Estimation of the renormalization constant. At this point, we have shown the con-

vergence result of Theorem point (i7), for the constant CF, 5, explicitly given by (3.27).
Let us now complete the proof of the statement with an asymptotic estimate of this constant.

Proposition 3.12. Let Cy, 4, be the sequence defined by . Then, as n tends to infinity,
it holds that

on ~ C}-I1,H2 ) 22n(2—2H1—H2) Zf % <2H; + Hy <2 ’

Hy,Hz G, M if 2H, +Hy =2,

1 2
for some constants CHy Hy» CHy Hy > 0

Proof. Recall the decomposition K(s,7) = > ;>0 28Ko(22%s,2%x) given by Lemma which
leads us to B

K(gn) =Y 27 %Ky (27%¢,270y) |
k>0
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uniformly over (&,7) € R?. Therefore, it is readily checked that

Ko(272k¢ 27 k)

n 2k 0 77

Comy, = CHm,- 22 / d&dn €| 2H =1 || 2H2—1
= 3 Wl

B B o I/{\(2—2(k—n)£ 2—(k—n) )
_ 62n(2—2H, —Hy) 2(k—n) 0 ’ n
= Chuka? 22 /[—1,1]2d€dn [§[2H0 = 221

k>0
I/(\(2f2k€ 271{? )
_ . 92n(2—2H,—Ha) —2k 0 ) Ui
= iy 2O 3 0 [ e (649
>—n ’

In the case where % < 2H; + Hy < 2, the conclusion can now be derived from the dominated
convergence theorem, by using the fact that the sum

_ Ko(272k¢, 27 )|
S = 2 2k:/ d d ‘ 0 2
Hy,Ho EEZ: 1P £dn |€|2H =T |y 2H>—1

is finite. Indeed, since 2H; + Hy < 2, we can pick a,b > 0 such that

b
2Hi—1+a<l , 2Hy—1+b<1 , a+g>1,

and then
SHl,Hz
_ d&dn —2a— d&dn
< 9 2k>/ +< ok(2-2a b))/ < .
~ (kz>:0 —1,1]2 |§’2H171|n|2H271 ]€Z>:0 (—1,1]2 |€|2H1*1+a|n’2H271+b

If 2H, + Hy = 2, then, as n tends to infinity, one has

3 2—2k/ dédn Ko(272k¢,27kp)

€T

k>—n [-L.1?
[/(\(22k£ 2k )
_ 2k 0 , 41
-2 sy 0 i+ O0)
Ko(&,n)
-2 0 s +O0)
Ko(&,7) / Ko(&,n)

— n- [ dedy - Lo,

n /R2 3 |€|2H1 1m|2H2 1 O<§k’:<n ]R\Dk |§‘2H1—1|n|2H271 ( )

and it is readily checked that 3 o<r<p Jr2\p, dédn % =0(1).
]
Remark 3.13. If we look closer at the proof of [I3, Lemma 5.5] for the decomposition ({2.2]) of

the heat kernel G, we see that, with the notations of Lemma we can actually choose Kj in
such a way that for every (¢,z) € R?,

= > 27%(82 Ko)(t,x)
nez
which immediately entails that for every (£,7) € R?,
G(&m) =D 2 2" Ko(27°"¢,27™)) .

ne”L
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In the case where % < 2H; + Hs < 2, and thanks to the estimations of the previous proof, we
can then assert that

o (9—2ke o—k e
n—oo [7171]2

k>—n [~1,1)2 |20 |22t [§[2H0 = [t

5 1—2H |, [1—2H,
_ \f/ dedn € ’ In]
T J]-1,1)2 n* — 2€

2 1-2H; 3—2H>
SN EY - R iy
T J]=1,1)2 n* 4+ 4¢€

which, going back to 1} provides us with an explicit constant c}lqh 1, satisfying Theorem
point (7).

4. IDENTIFICATION OF THE LIMIT

Let us now turn to the proof of the last assertion in point (i¢) of Theorem Thus, our aim in
this section is to identify, in the situation where Hy; = % and Hy > %, the limit Y := <I>(£, v, T)
exhibited in Section (and based on the constructions of Section [3) with the classical 1t6
solution of . Let us indeed recall that if H; = %, then the noise ¢ = 9,0, X712 under
consideration defines a cylindrical Wiener process (that we also denote by dWW2) with spatial
covariance described by the formula: for every test-functions ¢, 1) on R2,

E[(dW 2, o) (dW ™2, 4)] = cp, /R3 dtdzdy o(t, 2)(t,y) |z — y[*272 .

Thanks to the results of [19] (and more specifically by a straightforward adaptation of the
arguments in the proof of [I9, Theorem 6.2]), one can easily check that the identification of ¥’
with the It6 solution of reduces to an identification at the level of the model. Our last
assertion in Theorem [I.2]is therefore a consequence of the following identity:

Theorem 4.1. Fiz Hy = 3, Hy € (3,1), and consider the (a, K)-rough path € = (£,€2) given
by Corollary . Then, for every (s,z) € R? and every smooth test-function v with compact
support included in the set {(t,y) : t > 0}, one has almost surely

(€ o) = | Wi E ) (K )t = (K <))l aW/™) . (41)

where Y ) (t,y) := ¥(t — s,y — ) and the integral in the right-hand side is understood in the
Ito sense.

The first step of our strategy towards will consist in an identification for the approx-
imated quantity (é(zs’z),zﬁ(&xﬁ, where 5(252) is defined by (with C}, y, given by (3.27)).
As £™ is obtained through a space-time regularization of the original Wiener process, it is both
natural and convenient to frame this study within a general Gaussian setting, namely the one
provided by Malliavin calculus.

Given a centered Gaussian field {Z(s,x); s,z € R} defined on a complete probability space
(Q, F,P), we will denote by Hy the Hilbert space associated with Z, that is the closure of the
linear space generated by the functions {1[s, ¢,)x[z,20]5 51,52, 71,72 € R} with respect to the
semi-definite positive form

<1[81,82]><[361,22]7 1[t1,t2]><[y1,y2}>7'lz = E[(A(SZ,SLIZ,M)Z)(SM$1) ’ (A(tzftl,yzfzn)z)(tlvyl)] )

where the notation A has been introduced in (3.16)). Besides, we denote by DZ the Malliavin
derivative with respect to Z, and by 6 the associated divergence operator (or Skorohod integral).



ON A MODELLED ROUGH HEAT EQUATION 37

We here refer the reader to [23] or [2, Sections 5 and 6] for an exhaustive presentation of these
objects, together with their classical properties.

In the sequel, we will also be led to involve the family of operators Qg ,, (a1,a2 € (0,1)),

resp. Qq,.as, defined for every measurable, compactly-supported function ¢ and every £,n € R
as

Qal,ag(@(f,ﬁ) = 0041,a21{(€,n)€1)n W@( £&-n),

resp.

577

€|tz |p|eets

Qaho@ (90)(6777) = Cay,an QB( f 77) s

where cq, o, is the same constant as in the representation (|1 .

With these considerations in mind, our first intermediate result reads as follows:
Proposition 4.2. Fiz (Hy,H) € (0,1)? such that 3 < 2Hy + Hy < 2, and consider the

distribution {A(QSZ) defined by , with Cy, p, given by (3.27). Then for every (s,z) € R? and
every smooth test-function v, it holds that

(€20 Pay) = 6 (V) + 7511, (¥) (4.2)
where
Vi (B9) = bam () - {(K + DIDXM(t,y) — (K + DOVX")(5,2)}  (43)
and
i) =~ || e K (4.4)

Proof. We follow the arguments of the proof of [2, Proposition 5.8]. Consider a sequence of
partitions 1 = (7}, %) of the support of Y(s,2), With mesh tending to 0 as k tends to infinity.
For every (t;,y;) € mg, write Oj; = Oy, = [ti, tiy1[x[zj,7541[. Using the basic rules of
Malliavin calculus, we can first write

6Xﬂ(‘/( )( I3 y])l‘]z;) = ‘/(Z,a:) (t’w yj)(A(ti+1*ti,yj+1*yj)Xn)(ti? y])_<Dxn (‘/(Z,.z’) (tl? y]))’ 1Dij>HX’"« .
(4.5)
Now, by [2, Lemma 6.1], we can rely on the identity

~

<DX (Vv( )(thy]))ﬂ 1|:’ij>HXn = <DW(Vv(Z,x)(ti7yj))7 QnHl,HQ(]'Dij)>L2(R2) . (46)

It is easy to check that the Malliavin derivative DW(V( 5.2) (ti,yj)) is explicitly given for all
EneRas

w § n ;€ s 186 T
D™ (V5 (i, i) (&) = cry 1y Vs 2) (L y5) K K (&,1)1{(en)en, }’}E‘HIJr |77|H2+1{ et —e! e}

and therefore, by (4.6]), it holds that
<DX (V( )(tuy]))a 1Dij>7‘lxn

dédn — ‘ ) tit1 Yj+1 e
:C%h,HQ/D |§‘2H1—1|7]|2H2—1K<€777) w(s,m)(ti,yj){elt’ée’y’"—ewfe”"}/t_ dt/y dy e "Ce ] .

J
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At this point, observe that for all £,n € R,

. tit1
5 b s mercem - ey [T ar |
(tiy;)Emp b Ys

kﬂo /]R2 dtdy 1/1(3735) (t, y){l _ el(sft)gel(xfy)n} ’

which readily leads us to

n n k—o0 ~n n
Z <DX (V(s,x)(ti7yj))’1mij>7'lxn i> CHl,Hg /]RQ dtdyi/i(t, y) +TH1,H2(¢) )
(tiy;)Emp
where Cjy p, is defined by (3.27) and rfy, g, (¥) by (4.4).

We can finally take the sum over the points in 7 in (4.5) and let & tend to infinity to derive
the conclusion. Indeed, just as in [2] Proposition 5.7], it is easy to check that

Yj+1
dy o1 =W

n k—oo 1 rn .
Z ‘/(s,z)(ti7yj) i> Vv( m LQ(Q;,HX”) s

$,x)
(tiy;)Emk

which is sufficient to assert that >, , SX (VR (i, yp)) hoep 5X"(V(” ) in L2(Q). As for

ETL (s,x) 5,x)

the fact that r,(¢) tends to 0 as n tends to infinity, it follows from the smoothness of 1, along
similar estimates as those in the proof of Lemma [3.8

O

The whole point now is to pass to the limit in the right-hand side of (4.2]). This is the purpose
of our next result, which completes the proof of Theorem

Proposition 4.3. Fix H; = % and Hy € (%, 1). Then, with the notations of Proposition
the following assertions hold true:

(7) For every smooth test-function v with support in the set {(t,y) : t > 0}, one has
i () =50
(i) For every (s,x) € R? and every smooth test-function v, one has
(V) = 0 (Vi) in LP(Q) (4.7)

where V) is defined by (7-9) and Vigu)(ty) = Yiem(t.y) - {(K * €)(t,y) — (K + &)(s,)}.
Besides, 5X(V(W)) coincides with the right-hand side of .

Proof. (i) Using the isometry property of the Fourier transform, we easily obtain, for every fixed
neR,

[ deR(emiten) = —c [ dudye e [ ds K (s,z)yi(-s.)
R R2 R
and the latter integral vanishes for support reasons.
(73) We first use [2, Lemma 6.1] to write the difference 6XW(V(Z’Z)) — 6% (Vis ) as
5" (V(g,m)) - 6X(V(s,x)) = 5W(Q%L7H2 (V(st,x)) - Q%,H2(V(s,a:))) ’
and from this, the proof of (4.7]) reduces to showing that
O 11, (V) = Qb 11, (Vo) "“F 0 i L2 L2(R2)) .
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To do so, write

198 1, (Vi) = @31, (Vi) 2e
< IIQ1 1 Visa) = Vism)llzee) + Q1 g, — Q1 m (Vi) 2@z =t In + 11y
In order to bound I,,, we first combine the subsequent Lemma [4.4] with Lemma [2.2] to get that
Inl S IVisw) = Viso ey S N1E™ = Ellass

for some appropriate compact set & and o € (—%, —2+ Hj). Thanks to 1} we can immedi-
ately conclude that I,, "=3° 0 in L?(Q).

As for I1,, observe first that for ¢ > 0 small enough, it holds that
L * < 271191 a1, (Vi) o) + 11Q1 iy (Ve o)) I T2e2) }

and so, by Lemma |11, S 27"¢||V/2 ,|le.«, for some appropriate compact set &. As above,
we can now combine Lemma [2.2{ with (3.12) to derive that IT,, "=3° 0 in L2(£2).

Finally, the identification of 6% (Vis,)) as an It6 integral with respect to dWH2 is the result
of |8 Lemma 2.10]. O

It only remains us to prove the following Sobolev-embedding-type property:

Lemma 4.4. Let a; € (0,3), az € (3,1 ) and e > 0 such that § — % + ¢ < 1. Then for

any a,b > 0 and every function ¢ € Cc_ 7 (]R2) with support contamed in the rectangle
[—a,a] x [=b,b], it holds that

HQal,az (@)”LQ(RQ) < Capb ||90H%7°‘71+5;[,a7a}><[,b7b] ) (4.8)

as well as
191 4, (P L2(m2) < Cap llllLoe o) - (4.9)

Proof. Set £ := 3 — o and for s,2,n € R, set ¢y(s) := [pdre p(s,x), ps(z) = ¢(s, ).
Then, using standard Sobolev inequalities, we successively obtain that

d o~
Qs s (P S [ gzt [ dE(L+IEPV QP

dsdt )
S /R|77’2a2 ! |:/ dswn +//R2 ’5 t’1+2;§‘w7]< ) @bn(t)\ :|
/\ dsdt dn /\ 9
<
~ / /R|77|2O‘2 1‘ //Rz |5 t|1+2n /]R |n’2a2 1|( %)(77)!
2
|JU— R2 |5 — t|1+20 Jg |1:—y|
dsdt
S d +// 7 - t, 2:|
@ yeS[EIZ,b] / s li(s y| R2 |s — t|1+25 lo(s,y) — o(t,y)]
< [—a,a] x[—b,b] -

The bound (4.9) follows from similar estimates.
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5. THE YOUNG CASE

We conclude the paper with the proof of Theorem 1.2} point (i), and see how the condition
2H1 + Hs > 2 allows for a drastic simplification of the modelling procedure exhibited in Section
With the result of Corollary in mind, we consider from now on that the noise § involved
in the equation belongs to C2(R?) for some fixed

HEm)! o

Under this assumption, the argument will importantly rely on the following property.

Lemma 5.1. Let K be defined as in Lemma . Then for every ¢ € C2(R?), every compact
set & C R? and every z,y € R such that ||z — y||s < 1, it holds that
(K * (J(z) = [K =« W) < Nz = ylls - [ICllasrect(sy »

where rect(R) stands for the smallest rectangle [x1,x2] X [y1,y2] that contains K.

Proof. Decompose the increment [K * (](x) — [K * (](y) as the sum of two terms A, and By,
with
Ay = [K x(J(w) = [K + {J(y) = (2 = ) - (DOVE) (] (w)
By = (22 —y2) - [(DOVK) + ()(y) -
As far as By, is concerned, we immediately get that
|Bxy’ S nga;ﬁ Jlz —ylls - Z gt S HfHa;ﬁ Jlz =yl -
n>0

In order to estimate A, pick i > 0 such that 2=+ < ||z — y||s < 27 and denote by Ay, the
expression derived from A;, by replacing each occurence of K with K;,. On the one hand, we
have

YolAL L < I # (@) + (K ()] + ez — gol - [(DOVE) * ()]}

n>i n>i

S WCllas- 227"l —ylls - 27V} S [ Cflags - e =yl

n>i

For n <, expand A7, as
1
Az = (@ =y [ dr (DK« o+ (o1 =)o)

1 1 71
gl - w)t /o dﬁ/o dry (DO K * ¢y, ya + ra(ws — y2)) -
With this decomposition in hand, we readily deduce that
Z |A:71:ly| S ||C||a;rect(ﬁ) : ”l’ - y||§ : Z 27 5 HCHa;rect(ﬁ) : ||$ - y||?+2 :

0<n<i 0<n<i
O
As we announced it, the framework of the lift procedure reduces to a minimum here. Namely,
Ty =Span(2) , Fp:=Span(l) , T :=7,0%,

with commutative product x in 7 given by
1x1=1 , 1x===Z |,
Then define the model (I1¢,T¢) for .7 by the formulas:
ME(1) =1, TE(E) = ¢, T5,(1) =1, T%,(2)

(11
>
(1
I
o

—_
—
—
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In particular, the "Lévy area" term no longer comes into the picture here, and one has, along
the same lines as in Proposition

1T, T s S Néllass (TS, 15 (T2, T%2) s S 1€ — Eallass -

Next, just as in Section [2 we denote by R¢ the reconstruction operator associated with this
model and characterized by the two relations (2.15))-(2.16) (where & must be substituted for £).
Also, we denote by Dg’n(f) the corresponding spaces of modelled distributions, defined along

Formula (2.13)).

In fact, in this situation, it turns out that we can fix the background space as D 0 (&) with

v e (—a,1)].
Otherwise stated, any element u € Dg’o(ﬁ) is reduced to a single component u’ 1 in % which
satisfies
0 0
u’(z) —u(y
lullo = sup [W(@)|+  sup o) m vl
TER? 2yeR2: lz—ylls <zl |2 = Ylls - 125yl p

Thus, the "lift" operation clearly loses all its relevancy in this setting (dealing with u € DO’O (&)
or u’ € C7(R?) is just equivalent, at least away from P), and we only keep to this formalism for
a direct comparison with the situation described in Section

So recall that we want to transpose in Dg’o(é’ ), along the same steps as before, the localized
equation

u(z) = (Goy W) (22) + pr(21) - (G * [py - Flu) - €])(2) (5.2)
where py and pr stand for the two cut-off functions introduced in Section
First, it is readily checked that if u = u®1 € DJY(¢) and F € C(R?), then the element
p+ - F(u) trivially defined by
[p+ - F(u)](z) = (p+(21) - F(xz2,u’(2))) 1,

belongs to Dg’o(g), and the two bounds 1)1’ remain valid in this setting. Also, the
product

v(z) = [(p+ - F(u)) *E](2) := (p4-(21) - Fla2,u’(2))) =,
clearly defines an element of D)T%%(¢) and (2.32))-(2.33) still prevail.

At this point, note that, since v + o > 0, the reconstruction R¢v of v does define an element
of C¢(R?) that is compactly supported in R, x R. Thanks to Lemma the convolution with
G* can therefore be (locally) lifted as [pr - Qg(v)](az) = pr(z1)[G* * Re(v)](2) 1, and the two
bounds — remain valid. Using Lemma the same conclusions actually hold true
for the convolution with K, lifted as [pr - ICe(V)](x) = pr(x1)[K * Re(v)](x) 1.

Finally, lifting the initial-condition term GV can be readily done for any ¥ € L*°(R), since,
with the arguments and notation of the proof of Proposition [2.21

‘/Rde(a:l,xg—z)-\I/(z)—/Rde(yl,yg—z)-\I/(z)|

1 _
Sl o) - {lzr =il s yllp' + w2 = yol - lzsyllp?} S N1 llzooqy - o = yll] - syl -

By putting these successive observations together, we find ourselves in the very same situation
as in Section for the equation

u=GU +pr- [Ke + G ((p+ - F(w) *E) , (5.3)
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interpreted in DO’O(f). It is therefore clear that the arguments of the proofs of Propositions m
and [2.25] can be transposed at once in this setting, which leads us to the following statement:

Proposition 5.2. (i) For every path ¢ € C%(R?) and initial condition ¥ € L*®(R), there exists a
time Ty = To(&,¥) > 0 and a radius R = R(§,v) > 0 such that for every 0 < T < Ty, Equation
admits a unique solution ®(&, ¥, T) within the ball B¢(R) := {u € Dg’o(f) : Jully,0 < R}

(ii) Consider a sequence of paths " € CY(R?) and initial conditions U™ € L>°(R) such that, for
every compact & C R?,
[€" = €llaze = 0 and  |[¥" = V| poow)y — 0, (5.4)

for some path ¢ € CY(R?) and initial condition ¥ € L®(R). Then there exists a time T* =
T*(&, V) > 0 such that ®(", V", T*) is well defined for every n large enough, as well as
(&, V,T), and
| @™, 0™, T*); (&, ¥, T") 40— 0. (5.5)

In particular, if we set ®(£", V", T*) = Ren (R(E™, V", T%)) and ®(&, ¥, T*) = Re(®(E, ¥, T7)),
it holds that

H(I)(£n7\pn7T*) - q)(gv‘P?T*)HLOO(]R?) -0, (56)
as well as

||<I>(£n7‘1]naT*) - CD(ga\IIaT*)H’Y;[S,T*}Xﬁ_) 0 (57)
for every compact set & C R and every fized s € (0,T).

Let us finally turn to our approximated noise £ = 9,0, X", where X" is given by (1.6). A
quick survey of the arguments in Sections [3.1] and [3.3]| regarding the first-level path £ shows that
condition (5.4)) is indeed satisfied in this situation, that is, there exists a C&(R?)-valued process
¢ such that almost surely, for every compact set & C R?, [|€" — £[|a.q — 0. Endowed with this

result, the end of the proof of Theorem point (7), follows the lines of Section The only
difference lies in the fact that instead of (3.15]), one has here

Ren((py - F))xE)(ty) = pi(ty) - Fly,u"(t,y)) - T, (E)(ty)
= p+(t7y) ' F(ya un(tay)) : én(tay) )
which accounts for the absence of a renormalization term in (1.7 (in comparison with (|1.9)).

6. APPENDIX: MULTI-LEVEL SCHAUDER ESTIMATE

Lemma 6.1. With the notation of Proposition it holds that

1
1Ke (¥)ll5,0: =127, 127738 < Qe - 72 V] taa (6.1)

for some parameter k > 0.

The proof of (6.1]) relies on a very subtle juggling between the "global" and "local" properties

of Re, that is between the respective bounds (2.15) and (2.16]), together with suitable Taylor
expansions of the components K, introduced in Lemma

Throughout the proof, we use the notation Qy¢ := |[v[|y4a,a - Q¢, Where Q¢ represents a
generic polynomial expression in [|€||a;z,, for some suitable compact set £y C R
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6.1. Supremum norms. Let us start with the consideration of the three "supremum norms'
associated with K¢ (v) along , which, by the way, will ensure that the components in
are indeed well-defined functions. It turns out that each of these three estimates relies on a
distinct argument.

We first have to deal with |[K * Rev](z)| for z = (x1,z2) € [-12T,12T] x K. To do so, we
appeal to the very same "non-anticipativity" argument as in the proof of Proposition which
here allows us to write

(K *Rev)(z) = (K *Rev)(x) — (K xRev)(0,22) .
Now, with the decomposition K = 3, 54 K, of Lemma in mind, pick 7 > 0 such that

2-(i+1) < ||33H}3/2 < 27%  On the one hand, using the representation 1) and the "global"
regularity (2.15)), we get that

| (K Rev) (@) — (Kn % Rev)(0,22)]| < > {|(Kn * Rev) ()] + |(Kp * Rev) (0, 22) ]}

n>i n>i
< Qv,§ 22 n(a+2)
n>i
1
< Que-l2llF™ < Que T L (62)

On the other hand, we can of course write
(Kn* Rev) () — (K * Rev)(0,22) = 7 - / dr (DY K,) « Revl(ray, x2)

and so, still with the help of (2.3) and ,
| (Kt Rev)(@) — (K s ReVO.2)]| < Qug-laal- Y 277

0<n<i 0Sn<i
5 1
< Que-lml 3 < Que-T207? (6.3)

Combining (6.2)) and (6.3)) gives the desired bound.

The bound for the second term of the supremum in (2.22)) follows immediately from the
definition of the space DYT*%(£). Indeed, for any x € [—12T,12T] x &,

V@) - fl2llE = [ Za(v(@)] - 2llE < VItaa - T

IN

A

Finally, regarding the third term of the supremum in 1 , pick i > 0 such that 2-(+1) <
1llzllp < 27 (for some fixed z € [—~12T,12T] x &) and decompose, along the same pattern as
above,

[(DOVK) « {Rev —vO(x) - €}](x)

= Z [(D(O’l)Kn) * {Rev — vV )+ Z D(0 VK * {Rev —v (x) ~&H(x)
0<n<e n>i
For n < i, we can invoke (2.15)) and use the regularity of £ to derive that
lzllp 1Ll < lzlp- D> {I(D ) * Revl(@)] + [v0(@)] - [[(DOVK,) # €] ()]}
0<n<s

1+(1+
< QV,E ||$”P Z 27 n(l+a) < Qv,{ || H *) < CQV,{'TOH—2 .
0<n<i
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For n > i, the estimate appeals this time to the "local" property (2.16) of Re. Write first 11, as

I, =
> (DO K ) e {Rev—TIE (v(2)) Y] () + D (DY K ) #{TIE (v(2)) = V() £} ) () = TI;+1T7

Then, due to , it holds that

1—y+(1
]l - |III|<QV,£ lallp - 57 >0 2704 < Qe - [lallp Y < Qug - TR

n>1
As for 112, observe that the difference ITE (v(z)) — vO(z) - € reduces to
M (v(z)) = V(@) - £ = v!(2) - € + VP (2) - TI(EX) . (6.5)

Then for instance, since £2 € C22T2(R?), we get that

Izl - v (@)] - Y DOV Ey) * €2](x))

n>i

< Qug - flallp TP Y027 < Qi [l TV < Qe T
n>i

The second term derived from (6.5) can be readily treated along the same lines, which finally
completes the estimation of the supremum norms associated with K¢ (v).

6.2. Projection in %. Let us now turn to the bound for the projection

To((Kev) () — T, (Kev) (1) . (6.6)

where, from now on, x and y are fixed elements in [—127", 12T x & such that ||z —y||s < ||z;y] P
In fact, easy computations based on the sole definition of the model shows that the quantity

can be expanded as
/RQ [K(z—2) = K(y = 2) = (2 = o) - (DOVE)(y — 2)] - [Rev = V() - €](d2)

In turn, it will appear convenient to decompose the latter integral as the sum of three terms
A, B, C of growing complexity:

Auy = [ [a1=n)-(DUOR) (g—2)+ 5 (02 -0) (DO ) (y—2)] - [Rev-TE (V)] (d2) . (67

Byy = /R [K(x—2) = K(y—2)— (z2— y2) - (DOVE) (y — 2)] - [ (v(y)) — v°(y) - ](dz) , (6.8)

and
Coy = [ K (@ =2) = K(y—2) = @2 = o) - (DVK)(y = 2) = (@1 =) - (DD K)(y = 2)

- %(902 —2)? - (DOPE)(y - 2)] - [Rev — T (v(y))](d2) . (6.9)

(¢) Estimation of A, . It is relatively straightforward. Observe that

2— —
o1 = y1| + |22 = ol S e = yll < llo = ylld - Nzsyllp " < (le = w2 - lasyllz?) - lyllb -

Then the estimation of

lyl% - |/RQ(DkK)(y_Z) [Rev — T (v(y))] (d2)]
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for k € {(1,0),(0,2)}, can be done with the very same arguments as those we used in order to
deal with (6.4). The procedure leads us to the conclusion that

[Aayl < Qug - (lz = yllI - lzsyllp?) - T .

(77) Estimation of By, . As above, we rely on the expansion

IE(v(y) —vO(y) - € =v'(y) - € + v (y)  TE(EX,) . (6.10)

Let us focus on the term

Bay = V') - [ [K (e =) = K(y=2) = (22— y2) - (DOVK)(y = )] €2(d2)

keeping in mind that the subsequent arguments could similarly apply to the second summand
in decomposition 1} Also, denote by By, the expression derived from By, by replacing each

occurrence of K with K,,. Pick now j > 0 such that 2-0+1D < il —ylls <279,
(ti-a): n > j. We simply bound B’;}y with a triangle inequality
Byl < W )] - {1167 Kl ()] + |[€7 % Kl ()] + w2 — wo| - [1€] * (DOVEL)I()]} - (6.11)

The estimation of the last two terms follows immediately from the regularity of £2 and the
representation (2.3). As for |[§§ x Kp](x)|, we must let the K-Chen relation come into the
picture. Write indeed

67 * Kal(2)] = |[€3 * Kn] () + [(K * &)(2) — (K *&)(y)] - [€ * Kn)(2)]
< |16 Kal(@)] + [[(K %) (y) — (K &)(@)]] - |[€ * Knl ()],
so that, going back to ,
Z ’B;Ly < Qv,{ . ”yH;(aJrQ) . Z{Q—n(2a+4) + Hx _ y”?—l-Z . 2—n(a+2) + Hl, _ st . 2—n(2a+3)}

n>j n>j

—(a+2 —
< Que-lWlp ™ llz—yl7 < Que- (lz—yll2 - sl p7)

(73-b): n < j. We expand B;;y as B;}y = B;‘?f + B;Zf, with

X Ta+2

_ 1
By =) Gy =) [ dr (€]« DOV KD+ (1~ ), 22)

1

_ 1
BZ}Q = ivl(y) (w2 —y2)? - /0 dr [55 * (D(0’2)Kn)](y1,y2 +r(z2 —y2)) -

Let us focus on Ba%l. Fix w = (y1+7(z1—y1),z2) (r € [0,1]) and note that ||w—y|s < [[z—y|s-
Then, using the K-Chen relation, we get that

€5+ (DUVK,))(w)|

< €8+ (DMK ()] + [[(K * &) (w) = (K ()]l - |[€ * (DPV K] (w))
< Qe {277 4 o —ylls - 2777

A

and hence
— _ 2 _ —
STUBEY < Que - lyllp T e —y)2 - 327D 4 e — gy 270

0<n<; =
< Que-(lz = yld - lasyllp") -T2

The very same arguments clearly hold for BQZ’JQ, which completes the estimation of Bmy.

A
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(74i) Estimation of Cy,, . It is even more tricky, and we are led to introduce two integers i < j
such that 270+ < Hlzsyllp < 27% and 2-U+) < 1llz — ylls < 279, As before, denote by Cry
the expression derived from Cj, by replacing each occurrence of K with K,.

(iii-a): n > j. We first estimate C7;, with a basic triangle inequality

€3yl <] [, Kula = 2) - Rev — T (v(y)(d2)
H [, Kaly=2) Rev=T(v)) (do)] +ra=pal| [ (DD Ko (y=2) [Rev—T1 (v())](d=) ..
(6.12)

Using only the local property (2.15)) and the representation (2.3)), we immediately deduce a sharp
bound on each of these terms except on the first one, for which a slight refinement is needed.
Write indeed

[, Kala = 2) - [Rev = T (v(u))(d2)

= [, Kule = 2) - Rev ~ I (v(a))(d2) + [ Kol = 2)- [ (v(@) — 05 (v(0)))(d:)
and then invoke the relation to get that

| [, Kale = 2) - [0 (v(a)) — 11§ (v(9))] (@)

= | [, Kala = 2)- [ (v(2) = T, (v(u))] (d2)
< Q) 2O A(v() - T, (vv)

re{o,204-2,a+1}
< Qe syl - {27l — yll + 27" o -yl + 27O o - y771}(6.13)

Going back to (6.12), we can now assert that

SICH < Que-llasyllp” - X {270F0 ) 427 g — gy 427l -yl
n>j n>j

+27 g — ||yt 4 2T gy 4 27O g — g 2]

Qug - llz:yllp” - llz = ylI™"? < Que- (e =yl - llzsyllp") - 7972

IN

(#ii-b): n < j. We need to turn to a sharper control on the expansion of K, involved in C7, ,

that is on the first bracket in (with K, instead of K). In fact, using basic differential
calculus, this expansion can be easily written as the sum of the following three expressions:

1
(r1 —y1) - (v2 —y2) - /0 dry (DYVEL) (g1 — 21,92 + 71(22 — y2) — 22) (6.14)

1 1 T1
3 (z1— 1) /0 drl/o dry (DO K,) (y1 + ra(a1 — y1) — 21,22 — 22) (6.15)

1 3 1 T1 T2 (O 3)
5 (x2 — y2) '/0 dﬁ/o drz/o dr3 (D" Ky)(y1 — 21, y2 + 13(22 — 12) — 22) - (6.16)
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We will only focus on the term inherited from (6.14]), that is on

C_' = (z1—y1) (2—Y2) /dr 2 D(“ Ky)(y1—21,y2+r(v2—y2)— Zz)'[Rf"—Hg(V(y))](dz),
(6.17)

but it should be clear that the subsequent arguments also hold for the terms derived from
(16.15))-(6.16)).

So, with the above expression of CZ, in mind, set w = (y1,y2 + r(x2 — y2)) (with r € [0,1])
and note that ||w — y||s < ||z — yl|s, while |w|p = ||w;yl|p > ||z;y||p. Then write

|, (DU K = 2) - [Rev — I (v(y))](d2)

= [, (DKL) w=2) [Rev—TiE (v(w)))(d)+ | | (DU K w21 (v (w) T (v(w)] (=)
(6.18)

which, injected into (6.17)), gives a decomposition of C_';ly as a sum of two terms C_’;}?f and C_'Qf.

With the same argument as in ((6.13)), we obtain that

[ DUV E) (w — 2) - [, (v(w)) — T (v(y))](d2)|
< Qug - llzsyllp” - {277 Vlz =yl + 270 |z —y 37072 F27 o — |71}

which leads us to the conclusion that

>

0<n<j

TCV+2

e lle =yl syl e = yllet ™ < Qug - (lzsyllp” -l = wl) -

As far as égél is concerned, consider first the subcase where ¢ < n < j. Then by 1 ,
[ (DU @ = 2) - [Rev = T, (v(w))](d2)] < Qug syl - 277D,

and so

YoICH T < Que-lle =yl - oyl - llz = yle ™ < Que - (lzsullp” - e —yll2) - T2
i<n<yj

For n < i, using the global property (2.15) and the regularity of £, we get that
| C(DUVE) (w = 2) - [Rev =TI, (v(w))](d2))|
< ! , (DO - 2) - [Revl(d)] +] [ (DOVE)w — 2) - [T (v(w)))(d)
R R
< Qug- (2777 4 27 Do [ 27w 1

and hence

Yo ICH < Qug Nl —yll2 Nyl ™ < Que - (lasyllp” - e —yld) - T2
0<n<i
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6.3. Projection in 7,,5. The increment reduces to
Tara((Kgv)(z) = T4, ((Kev)(y))) = v(2) =v°(y) ,
and we know that by definition of the space D7T**(¢)

[vO(z) = v(y)|
< V(@) =vy) = vIY) - (K * &) (2) — (K +&)y)] = v*(y) - (22 — y2)|
Hvi () - [(K +€)(x) — (K * )]l + V3 () - (22 — 12)]
< Que-flle =yl - loslly” + ylp ™ - llz =yl + lyllp" - lz =yl (6.19)
< Qug (lz = ylle™ - llasyllp”) - 7072

6.4. Projection in 77. We decompose the increment as a sum of two terms:
%((,Cév)(x) - ng((ng)(y))) = Dyy + Ezy ,
with
Day = (w2 =10) - [ (DOVE)(y = 2) - {Rev — IS (v(w)}d2)
Eyy =
LLDOVR) @ =) {Rev =v"(@) - £4d) = [ (DOVK)(y = 2) - {Rev = V'(y) - €}(d2)

— (w2 =) [ (DOVK)(y = 2) {Rev — I (vi) Hez) -

(tv) Estimation of Dy,. Note that

-1 - 2
|72 —go| < Ml —ylls < (lz —yll7 - Iz yllp") - llzsyllp -
Thus, we are exactly in the same position as with the above term A,,, which allows us to
conclude that

‘Dacy‘ < Qv,f ’ (H.%' - Z/Hzfl ’ H%Z/H;ﬂ) T
(v) Estimation of E,,. Let us introduce j > 0 such that 2=U+D < )z — y||; < 277, and
define the notation E7 along the same pattern as before.

(v-a): n > j. We start with the basic inequality

) <| [ (DOVE) @ =) {Rev —v"(@) - £1(d2)]
] [LOOIE) = ) (Rev = ¥(0) - €)(d2)
+laa =l | [ (DODK)y - 2) - {Rev =T (v(w))}(d2)]

Then, on the one hand, we have
| Kn)(x —2) - {Rev —v0(2) - €} (d2)]
=< | Ky)(a = 2) - {Rev — I (v(2))}(dz))|

| DOVE,)(x — 2) - {T(v(x)) — v'(x) - £}(dz)]

_ _ — 2 _ _
< Qv,g-{z "<a+7+1>uscup”+2 n(2043) ||| OF) g2t D) g By
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and on the other hand,

w2 — Yol - \/ K)(y = 2) - {Rev = I5(v(y) }dz)| < Qug - 1w = ylls - 27" 1y | 7
As a result,

> 1B

n>j
o — a —(a+2 a —

< Quer (= wllet Yoyl + e — yl225 - syl 54 + o — yle - sl
< Qug (le—yllI™ - Nasyllp?) -T2

(v-b): n < j. We decompose Ey, as the sum of the following three terms:
n,l __

Ez =

/RQ[(D(O’I)Kn)(w—Z)—(D(O’I)Kn)(y—Z)—(ffz—yz)'(D(O’Q)Kn)(y—Z)]'[Rgv—ﬂf,(V(y))](dZ) ,
By = /RQ[(D(O DKL) (@ = 2) = (DOVE,)(y - 2)] - [1(v(y) - v0(y) - €](d2)

B = W) ()] [ (DO K@~ 2) - €(d2)

R2
In order to estimate E™!, it suffices to follow the lines of the above-described situation (i7i-b),
while for E™2, we just have to copy the arguments of the case (ii-b). Putting these strategies
together, we easily deduce that

Yo AIEL B < Que - (lz = yl3™ - llasyllp?) - ToF2

0<n<y
As far as E;‘y?’, we can invoke (| ) to get that
—n(a+1)

Allz =yl s wllp” + lyllp —ylls + yllp' - e —ylls}

and accordingly

2

0<n<j

e (le = yl3=" s ylp?) - 772
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