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Abstract

We generalize Brownian motion on a Riemannian manifold to the case of

a family of metrics which depends on time. Such questions are natural for

equations like the heat equation with respect to time dependent Laplacians

(inhomogeneous di�usions). In this paper we are in particular interested in

the Ricci �ow which provides an intrinsic family of time dependent metrics.

We give a notion of parallel transport along this Brownian motion, and es-

tablish a generalization of the Dohrn-Guerra or damped parallel transport,

Bismut integration by part formulas, and gradient estimate formulas. One of

our main results is a characterization of the Ricci �ow in terms of the damped

parallel transport. At the end of the paper we give a canonical de�nition of

the damped parallel transport in terms of stochastic �ows, and derive an in-

trinsic martingale which may provide information about singularities of the

�ow.

Abstract

Nous généralisons la notion de mouvement brownien sur une variété au

cas du mouvement brownien dépendant d'une famille de métriques. Cette

généralisation est naturelle quand on s'intéresse aux équations de la chaleur

avec un laplacien qui dépend du temps, ou de manière générale dans le cadre

de di�usions in-homogènes. Dans cette article nous nous sommes partic-

ulièrement intéressé au �ot de Ricci, �ot géométrique fournissant une famille

intrinsèques de métriques. Nous donnons une notion de transport parallèle le

long de tel processus, nous généralisons celle du transport parallèle déformé,

et donnons une formule d'intégration par partie à la Bismut dont nous tirons

des formules de contrôle de norme de gradients de solutions d'équation de

la chaleur in-homogène. Un des résultats principal de cette article est une

caractérisation probabiliste du �ot de Ricci, en terme du transport parallèle

déformé. Dans les dernières sections nous donnons une dé�nition canon-

ique du transports parallèle déformé utilisant le �ot stochastique, et nous en

dérivons une martingale intrinsèque, qui pourrait donner des informations

sur les singularités du �ot.
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1 g(t)-Brownian motion

Let M be a compact connected n-dimensional manifold which carries a family of
time-dependent Riemannian metrics g(t). In this section we will give a generaliza-
tion of the well known Brownian motion on M which will depend on the family of
metrics. In other words, it will depend on the deformation of the manifold. Such
family of metrics will naturally come from geometric �ows like mean curvature �ow
or Ricci �ow. The compactness assumption for the manifold is not essential. Let
∇t be the Levi-Civita connection associated to the metric g(t), ∆t the associated
Laplace-Beltrami operator. Let also (Ω, (Ft)t≥0,F ,P) be a complete probability
space endowed with a �ltration (Ft)t≥0 satisfying ordinary assumptions like right
continuity and W be a Rn-valued Brownian motion for this probability space.

De�nition 1.1 Let us take (Ω, (Ft)t≥0,F ,P) and a C1,2-family g(t)t∈[0,T [ of met-
rics over M . An M-valued process X(x) de�ned on Ω × [0, T [ is called a g(t)-
Brownian motion in M started at x ∈ M if X(x) is continuous, adapted, and if
for every smooth function f ,

f(Xs(x)) − f(x) − 1

2

∫ s

0

∆tf(Xt(x)) dt

is a local martingale.

We shall prove existence of this inhomogeneous di�usion and give a notion of
parallel transport along this process.

Let (ei)i∈[1..d] be an orthonormal basis of Rn, F(M) the frame bundle overM , π
the projection toM . For any u ∈ F(M), let Li(t, u) = ht(uei) be the ∇t horizontal
lift of uei and Li(t) the associated vector �eld. Further let Vα,β be the canonical
basis of vertical vector �elds over F(M) de�ned by Vα,β(u) = Dlu(Eα,β) where Eα,β

is the canonical basis of Mn(R) and where

lu : GLn(R) → F(M)

is the left multiplication. Finally let (O(M), g(t)) be the g(t) orthonormal frame
bundle.

Proposition 1.2 Assume that g(t)t∈[0,T [ is a C
1,2(t, x)-family of metrics over M ,

and
A : [0, T [ ×F(M) → Mn(R)

(t, U) 7→ (Aα,β(t, U))α,β

is locally Lipschitz in U uniformly on each [0, t] in [0, T [. Consider the Stratonovich
di�erential equation in F(M):{

∗dUt =
∑n

i=1 Li(t, Ut) ∗ dW i +
∑

α,β Aα,β(t, Ut)Vα,β(Ut) dt

U0 ∈ F(M) such that U0 ∈ (O(M), g(0)).
(1.1)
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Then there is a unique symmetric choice for A such that Ut ∈ (O(M), g(t)). More-
over:

A(t, U) = −1

2
∂1G(t, U),

where (∂1G(t, U))i,j = 〈Uei, Uej〉∂tg(t).

Proof : Let us begin with curves. Let I be a real interval, π : TM → M the
projection, V and C in C1(I, TM), two curves such that

x(t) := π(V (t)) = π(C(t)), for all t ∈ I

We want to compute:
d

dt |t=0

(
〈V (t), C(t)〉g(t,x(t))

)
We write ∂1g(t, x) for ∂sg(s, x) evaluated at t. Let us express the metric g(t) in

a coordinate system; without loss of generality we can di�erentiate at time 0. Let
(x1, ..., xn) be a coordinate system at the point x(0), in which we have:

V (t) = vi(t)∂xi

C(t) = ci(t)∂xi

g(t, x(t)) = gi,j(t, x(t))dx
i ⊗ dxj

In these local coordinates we get:

d

dt |t=0

〈V (t), C(t)〉g(t,x(t)) =
d

dt |t=0

gi,j(t, x(t))v
i(t)cj(t)

= (∂1gi,j(0, x)v
i(0)cj(0)

+
d

dt |t=0

(gi,j(0, x(t))v
i(t)cj(t))

= ∂1gi,j(0, x)v
i(0)cj(0) +

〈
∇0

ẋ(0)V (0), C(0)
〉

g(0,x(0))

+
〈
V (0),∇0

ẋ(0)C(0)
〉

g(0,x(0))

= 〈V (0), C(0)〉∂1g(0,x(0) +
〈
∇0

ẋ(0)V (0), C(0)
〉

g(0,x(0))

+
〈
V (0),∇0

ẋ(0)C(0)
〉

g(0,x(0))
.

In order to compute the g(t) norm of a tangent valued process we will use what
Malliavin calls �the transfer principle�, as explained in [13],[12].

Recall the equivalence between a given connection on a manifold M and a
splitting on TTM , i.e. TTM = H∇TTM ⊕ V TTM [19]. We have a bijection:

Vv : Tπ(v)M −→ VvTTM
u 7−→ d

dt
(v + tu)|t=0.
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For X, Y ∈ Γ(TM) we have:

∇XY (x) = V−1
X(x)((dY (x)(X(x)))v),

where (.)v is the projection of a vector in TTM onto the vertical subspace V TTM
parallely to H∇TTM .

For a T (M)-valued process Tt, we de�ne:

DS,tTt = (VTt)
−1((∗dTt)

v,t), (1.2)

where (.)v,t is de�ned as before but for the connection∇t. The above generalization
makes sense for a tangent valued process coming from a Stratonovich equation like
Utei, where Ut is a solution of the Stratonovich di�erential equation (1.1).

For the solution Ut of (1.1) we get

d
(
〈Utei, Utej〉g(t,π(Ut))

)
= 〈Utei, Utej〉∂1g(t,π(Ut)))

dt (1.3)

+
〈
DS,tUtei, Utej

〉
g(t,π(Ut))

+
〈
Utei, D

S,tUtej

〉
g(t,π(Ut))

(1.4)

We would like to �nd a symmetric A such that the left hand side of the above
equation vanishes for all time (i.e. Ut ∈ (O(M), g(t))). Denote by evei

: F(M) →
TM the ordinary evaluation, and d evei

: TF(M) → TTM its di�erential.
It is easy to see that d evei

sends V TF(M) to V TTM and sends H∇h
TF(M) to

H∇TTM . We obtain:

DS,tUtei =
n∑

α=1

Aα,i(t, Ut)Uteα dt. (1.5)

For simplicity, we take for notation: (∂1G(t, U))i,j = 〈Uei, Uej〉∂tg(t) and

(G(t, U))i,j = 〈Uei, Uej〉g(t) .

It is now easy to �nd the condition for A:

(G(t, Ut)A(t, Ut))j,i + (G(t, Ut)A(t, Ut))i,j = −(∂1G(t, Ut))i,j (1.6)

Given orthogonality G(t, Ut) = Id and so by (1.6) A di�ers from −1
2
∂1G by a skew

symmetric matrix, therefore will be equal to it if we demand symmetry. Conversely
if A = −1

2
∂1G then by (1.3) and equation (1.2) we see G(t, Ut) = Id.

Remark : The SDE in proposition 1.2 does not explode because on any
compact time interval all coe�cients and their derivatives up to order 2 in space
and order 1 in time are bounded.
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Remark : The condition of symmetry is linked to a good de�nition of
parallel transport with moving metrics in some sense. To see where the condition
of symmetry comes from we may observe what happens in the constant metric
case. It is easy to see that the usual de�nition of parallel transport along a semi-
martingale which depends on the vanishing of the Stratonovich integral of the
connection form, is equivalent to isometry and the symmetry condition for the
drift in the following SDE in F(M):

dŨt =
∑d

i=1 Li(Ũt) ∗ dW i + A(Ũt)α,βVα,β(Ũt) dt

Ũ0 ∈ (O(M), g)

Ũt ∈ (O(M), g) (isometry)
A(., .)α,β ∈ S(n) (vertical evolution).

Isometry of Ut forces A to be skew symmetric (see equation1.6). An assumption
of symmetry on A then forces A = 0. We then get the usual stochastic di�erential
equation of the parallel transport in the constant metric case.

The next proposition is a direct adaptation of a proposition in [15], page 42;
hence the proof is omitted.

Proposition 1.3 Let α ∈ Γ(T ∗M) and Fα : F(M) → Rd, F i
α(u) = απ(u)(uei) its

scalarization. Then, for all A ∈ Γ(TM),

(∇Aα)π(u)(uei) = h(Aπ(u))F
i
α.

Consequently, for all u ∈ F(M),

(∇g(t)
A df)π(u)(uei) = hg(t)(Aπ(u))F

i
df

and for f ∈ C∞(M),

Li(t)(f ◦ π)(u) = d(f ◦ π)Li(t, u)

= F i
df (u).

Hence we have the formula:

Li(t)Lj(t)(f ◦ π)(u) = hg(t)(uei)F
j
df

= (∇g(t)
uei
df)(uej)

= ∇g(t)df(uei, uej).

Proposition 1.4 Take x ∈M and the SDE in F(M):{
∗dUt =

∑n
i=1 Li(t, Ut) ∗ dW i − 1

2
∂1G(t, Ut)α,βVα,β(Ut) dt

U0 ∈ F(M) such that U0 ∈ (Ox(M), g(0)).
(1.7)

Then Xt(x) = π(Ut) is a g(t)-Brownian motion, which we write g(t)-BM(x).
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Proof : For f ∈ C∞(M),

d(f ◦ π ◦ Ut) =
∑n

i=1 Li(t)(f ◦ π)(Ut) ∗ dW i

=
∑n

i=1 Li(t)(f ◦ π)(Ut)dW
i + 1

2

∑n
i,j=1 Li(t)Lj(t)(f ◦ π)dW idW j

dM≡ 1
2

∑n
i=1 ∇g(t)df(Utei, Utei) dt

dM≡ 1
2
∆tf(π ◦ Ut) dt.

(Where we write
dM≡ to denote the equality modulo di�erentials of local martin-

gales.) The last equality comes from the fact that Ut ∈ (O(M), g(t)).

Remark : Recall that in the compact case the lifetime of equation (1.7) is
deterministic and the same as the lifetime of the metrics family.

Let Ut be the solution of (1.7). We will write //0,t = Ut◦U−1
0 for the g(t) parallel

transport over a g(t)-Brownian motion ( we call it parallel transport because it is
a natural extension of the usual parallel transport in the constant metric case). As
usual it is an isometry:

//0,t : (TX0M, g(0)) → (TXtM, g(t)).

We also get a development formula. Take an orthonormal basis (v1, ..., vn) of
(TX0M, g(0)), and Xt(x) a g(t)-Brownian motion of proposition 1.4; then

∗dXt(x) = //0,tvi ∗ dW i
t .

For f ∈ C2(M) we get the Itô formula:

df(Xt(x)) = 〈∇tf, //0,tvi〉tdW i +
1

2
∆t(f)(Xt(x)) dt. (1.8)

We will now give examples of g(t)-Brownian motion. Let (Sn, g(0)) be a sphere
and the solution of the Ricci �ow: ∂

∂t
g(t) = −2Rict that is g(t) = (1−2(n−1)t)g(0)

with explosion time Tc = 1
2(n−1)

. We will use the fact that all metrics are conformal
to the initial metric to express the g(t)-Brownian motion in terms of the g(0)-
Brownian motion. Let f ∈ C2(Sn), Xt(x) be a g(t)-Brownian motion starting at
x ∈ Sn. Then, for some real-valued Brownian motion Bt, and Bt(x) a Sn valued
g(0)-Brownian motion:

df(Xt(x)) =‖ ∇tf(Xt(x)) ‖g(t) dBt +
1

2

(
1

1 − 2(n− 1)t

)
∆0f(Xt(x)) dt.

We have:

‖ ∇tf ‖2
g(t)=

1

1 − 2(n− 1)t
‖ ∇0f ‖2

0 .
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Let

τ(t) =

∫ t

0

1

1 − 2(n− 1)s
ds,

then

τ(t) =
ln(1 − 2(n− 1)t)

−2(n− 1)
, τ−1(t) =

e−2(n−1)t − 1

−2(n− 1)
.

We have the equality in law:

(X.(x))
L
= (Bτ(.)(x)).

We have a similar result for the hyperbolic case: Let (Hn(−1), g(0)) be the
hyperbolic space with constant curvature −1. Then g(t) = (1 + 2(n − 1)t)g(0) is
the solution of the Ricci �ow. Let Xt(x) be a g(t)-Brownian motion starting at
x ∈ Sn,and Bt(x) an Hn-valued g(0)-Brownian motion. Then:

τ(t) =

∫ t

0

1

1 + 2(n− 1)s
ds,

and in law:
(X.(x))

L
= (Bτ(.)(x)).

Let us look at what happens for some limit of the Ricci �ow, the so called
Hamilton cigar manifold ([5]). Let on R2, g(0, x) = 1

1+‖x‖2 gcan be the Hamilton
cigar, where ‖ . ‖ is the Euclidean norm. Then the solution to the Ricci �ow
is given by g(t, x) = 1+‖x‖2

e4t+‖x‖2 g(0, x). Let f ∈ C2(R2), Xt(x) be a g(t)-Brownian
motion starting at x ∈ R2. Then, for some real-valued Brownian motion Bt, and
Bt(x) some R2 valued g(0)-Brownian motion:

df(Xt(x)) =‖ ∇tf(Xt(x)) ‖g(t) dBt +
1

2

e4t+ ‖ Xt(x) ‖2

1+ ‖ Xt(x) ‖2
∆0f(Xt(x)) dt.

We have:

∇tf(x) =
e4t+ ‖ x ‖2

1+ ‖ x ‖2
∇0f(x),

‖ ∇tf(x) ‖2
t =

e4t+ ‖ x ‖2

1+ ‖ x ‖2
‖ ∇0f(x) ‖2

0,

∆tf =
e4t+ ‖ x ‖2

1+ ‖ x ‖2
∆0f.

We set:

τ(t) =

∫ t

0

e4s+ ‖ Xs(x) ‖2

1+ ‖ Xs(x) ‖2
ds.
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Then in law:
(X.(x))

L
= (Bτ(.)(x))

Remark : If Xt(x) is a g(t)-Brownian motion associated to a Ricci �ow
started at g(0) then Xt/c(x) is a cg(t/c)-Brownian motion associated to a Ricci
�ow started at cg(0) so it is compatible with the blow up.

2 Local expression, evolution equation for the den-

sity, conjugate heat equation

We begin this section by expressing a g(t)-Brownian motion in local coordinates.

Proposition 2.1 Let x ∈M , (x1, ..., xn) be local coordinates around x, and Xt(x)
a g(t)-Brownian motion. Before the exit time of the domain of coordinates, we
have:

dX i
t(x) =

√
g(t)i,jdBj − 1

2
gk,lΓi

kl(t,Xt(x)) dt

where we denote by
√
g(t)i,j :=

√
g(t,Xt(x))i,j the unique positive square root of the

inverse to the matrix (g(t, ∂xi , ∂xj))i,j(Xt(x)). Here Γi
kl(t,Xt(x)) are the Christo�el

symbols associated to ∇g(t), and Bi are n independent Brownian motion.

Proof : From the Itô equation 1.8, we get:

dX i
t(x) = 〈∇txi, //0,tvl〉g(t)dW

l +
1

2
∆tx

i(Xt(x))dt,

where (v1, ..., vn) is a g(0)-orthogonal basis of TxM . By the usual expression of the
Laplacian in coordinates:

∆tx
i(Xt(x)) = −gl,kΓi

kl(t,Xt(x)),

and the gradient expression of the coordinates functions:

∇txi = g(t)i,j ∂

∂xj

,

we have:

dX i
t(x) = g(t)i,j〈 ∂

∂xj

, //0,tvl〉g(t)dW
l − 1

2
gl,kΓi

kl(t,Xt(x)) dt

=
∑
m

√
g(t)i,m〈

√
g(t)m,j

∂

∂xj

, //0,tvl〉g(t)dW
l − 1

2
gl,kΓi

kl(t,Xt(x)) dt

=
√
g(t)i,mdBm − 1

2
gl,kΓi

kl(t,Xt(x)) dt ,
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where dBm = 〈
√
g(t)m,j ∂

∂xj
, //0,tvl〉g(t)dW

l. By the isometry property of the par-

allel transport and Lévy's Theorem B = (B1, ..., Bn) is a Brownian motion in
Rn.

Remark : The above equation is similar to the equation in the �xed metric
case.

Now we shall study the evolution equation for the density of the law of the
g(t)-Brownian motion. Let Xt(x) be a g(t)-BM(x), and dµt the Lebesgue measure
over (M, g(t)). Since Xt(x) is a di�usion with generator ∆t, we have smoothness
of the density (e.g. [22]). Let hx(t, y) ∈ C∞(]0, T [×M) be such that:{

Xt(x)
L
= hx(t, y)dµt(y), t > 0

X0(x)
L
= δx.

By the continuity of Xt(x) and the dominated convergence Theorem we get the
convergence in law:

L
lim
t→0

Xt(x) = δx.

We write in a local chart the expression of dµt in terms of dµ0, i.e.,

dµt =

√
det(gi,j(t))√
det(gi,j(0))

√
det(gi,j(0))|dx1 ∧ dx2 ∧ ... ∧ dxn|

and set:
µt(dy) = ψ(t, y)µ0(dy).

Proposition 2.2
d

dt
(hx(t, y)) + hx(t, y)Tr

(
1

2
(g−1(t, y))

d

dt
g(t, y)

)
=

1

2
∆g(t)h

x(t, y)

L
lim
t→0

hx(t, y)dµt = δx.

Proof : For f ∈ C∞(M), t > 0, by de�nition of Xt(x) we have:

E[f(Xt(x))] − f(x) = 1
2
E

[ ∫ t

0
∆g(s)f(Xs(x)) ds

]
d
dt

E[f(Xt(x))] = 1
2
E[∆g(t)f(Xt(x))],

i.e.:
d
dt

∫
M
hx(t, y)f(y)µt(dy) = 1

2

∫
M

∆g(t)f(y)hx(t, y)µt(dy)
= 1

2

∫
M
f(y)∆g(t)h

x(t, y)µt(dy).
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The last equality comes from Green's Theorem and the compactness of the mani-
fold. By setting µt(dy) = ψ(t, y)µ0(dy), we have:∫

M

f(y)
d

dt
(hx(t, y)ψ(t, y))µ0(dy) =

1

2

∫
M

f(y)(∆g(t)h
x(t, y))ψ(t, y))µ0(dy)

so:
d

dt
(hx(t, y)ψ(t, y)) =

1

2
(∆g(t)h

x(t, y))ψ(t, y)) (2.1)

We also have by determinant di�erentiation:

d

dt
ψ(t, y) =

1

2
√

det(gi,j(0))

1√
det(gi,j(t))

det(gi,j(t)) Tr

(
g−1(t, y)

d

dt
g(t, y)

)
=

1

2
ψ(t, y) Tr

(
g−1(t, y)

d

dt
g(t, y)

)
.

The part Tr

(
1
2
g−1(t, y) d

dt
g(t, y)

)
is intrinsic, it does not depend on the choice

of the chart. Hence (2.1) gives the following inhomogeneous reaction-di�usion
equation:

d

dt
(hx(t, y)) + hx(t, y)Tr

(
1

2
g−1(t, y)

d

dt
g(t, y)

)
=

1

2
∆g(t)h

x(t, y).

We will give as example the evolution equation of the density in the case where
the family of metrics comes from the forward (and resp. backward) Ricci �ow.
From now Ricci �ow will mean (probabilistic convention):

d
dt
gi,j = −Rici,j . (2.2)

(respectively)
d
dt
gi,j = Rici,j . (2.3)

Remark : Hamilton in [14], and later DeTurck in [7] have shown existence
in small times of such �ow. In this section we don't care about the real existence
time.

For x ∈M , we will denote by S(t, x) the scalar curvature at the point x for the
metric g(t).

Corollary 2.3 For the backward Ricci �ow (2.3), we have:
d

dt
(hx(t, y)) +

1

2
hx(t, y)S(t, y) =

1

2
∆g(t)h

x(t, y)
L

lim
t→0

hx(t, y)dµt = δx.
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For the forward Ricci �ow (2.2), we have:
d

dt
(hx(t, y)) − 1

2
hx(t, y)S(t, y) =

1

2
∆g(t)h

x(t, y)
L

lim
t→0

hx(t, y)dµt = δx.

Remark : These equations are conservative. This is not the case for the ordi-
nary heat equation with time depending Laplacian i.e. ∆g(t). They are conjugate
heat equations which are well known in the Ricci �ow theory (e.g. [24]).

3 Damped parallel transport, and Bismut formula

for Ricci �ow, applications to Ricci �ow for sur-

faces

In this section, we will be interested in the heat equation under the Ricci �ow. The
principal fact is that under forward Ricci �ow, the damped parallel transport or
Dohrn-Guerra transport is the parallel transport de�ned before. The deformation
of geometry under the Ricci �ow compensates for the deformation of the parallel
transport (i.e. the Ricci term in the usual formula for the damped parallel transport
in constant metric case see ([9], [23], [10])). The isometry property of the damped
parallel transport turns out to be an advantage for computations. In particular, for
gradient estimate formulas, everything looks like the case of a Ricci �at manifold
with constant metric. We begin with a general result independent of the fact that
the �ow is a Ricci �ow. Let g(t)[0,Tc[ be a C

1,2 family of metrics, and consider the
heat equation: {

∂tf(t, x) = 1
2
∆tf(t, x)

f(0, x) = f0(x),
(3.1)

where f0 is a function over M . We suppose that the solution of (3.1) exists until
Tc. For T < Tc, let XT

t be a g(T − t)-Brownian motion, //T
0,t the associated parallel

transport.
Let S ∈ Γ(T ∗M ⊗ T ∗M) a 2-covariant tensor, g a metric on M and v ∈ TxM ,

we will write S#g(v) for the tangent vector in TxM such that, for all u ∈ TxM we
have

S(v, u) = 〈S#g(v), u〉g
De�nition 3.1 We de�ne the damped parallel transport WT

0,t as the solution of:

∗d((//T
0,t)

−1(WT
0,t)) = −1

2
(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(WT

0,t) dt

with
W

T
0,t : TxM −→ TXT

t (x)M,WT
0,0 = IdTxM .

11



Theorem 3.2 For every solution f(t, .) of (3.1), and for all v ∈ TxM ,

df(T − t, .)XT
t (x)(W

T
0,tv)

is a local martingale.

Proof : Recall the equation of a parallel transport over the g(T − t)-Brownian
motion XT

t (x):{
∗dUT

t =
∑d

i=1 Li(T − t, UT
t ) ∗ dW i − 1

2
∂t(g(T − t))(UT

t eα, U
T
t eβ)Vα,β(UT

t ) dt
UT

0 ∈ (Ox(M), g(T )).
(3.2)

For f ∈ C∞(M), its scalarization:

d̃f : F(M) −→ Rn

U 7−→ (df(Ue1), ..., df(Uen)),

yields the following formula in Rn:

df(T − t, .)XT
t (x)(W

T
0,tv) = 〈d̃f(T − t, UT

t ), (UT
t )−1WT

0,tv〉Rn ,

for every v ∈ TxM . To recall the notation let:

evei
: F(M) −→ TM

U 7−→ Uei

and recall that UT
t , solution of (3.2), is a di�usion associated to the generator

1

2
∆H

T−t −
1

2
∂t(g(T − t))(evei

(.), evej
(.))Vi,j(.)

where ∆H
T−t is the horizontal Laplacian in F(M), associated to the metric g(T − t).

In the Itô sense, we get:

d(df(T − t, .)XT
t (x)(W

T
0,t)v) = d〈d̃f(T − t, UT

t ), (UT
t )−1WT

0,tv〉Rn

dM≡ 〈−(
d

dt
d̃f)(T − t, .)(UT

t )dt+ [
1

2
∆H

T−td̃f(T − t, .)

− 1

2
∂t(g(T − t))(evei

., evej
.)Vi,j(.)d̃f(T − t, .)](UT

t ) dt, (UT
t )−1WT

0,tv〉Rn

+ 〈(d̃f(T − t, UT
t )), (UT

0 )−1d((//T
0,t)

−1(WT
0,t))v〉Rn

dM≡ −(
d

dt
df)(T − t, .)((WT

0,t))v) dt+ 〈[1
2
∆H

T−td̃f(T − t, .)

− 1

2
∂t(g(T − t))(evei

., evej
)Vi,j(.)d̃f(T − t, .)](UT

t ) dt, (UT
t )−1WT

0,tv〉Rn

− 1

2
〈(d̃f(T − t, UT

t )), (UT
0 )−1(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(WT

0,t)v dt〉Rn .

12



We shall make separate computations for each term in the previous equality. Using
the well known formula (e.g. [15], page 193)

∆H d̃f = ∆̃df,

we �rst note that:

〈1
2
∆H

T−td̃f(T − t, .)(UT
t ), (UT

t )−1WT
0,tv dt〉Rn

= 1
2
〈∆̃T−tdf(T − t, .)(UT

t ), (UT
t )−1WT

0,tv〉Rn dt

= 1
2
∆T−tdf(T − t, .)(WT

0,tv) dt,

By de�nition:

Vi,j d̃f(u) = d
dt
|t=0d̃f(u(Id+tEij))

= d
dt
|t=0(df(u(Id+tEij)es))s=1..n

= (df(uδs
i ej))s=1..n

= (0, ..., 0, df(uej), 0, ..., 0) i-th position,

so that:∑
ij ∂t(g(T − t))(evei

., evej
.)Vi,j(.)d̃f(T − t, .)(UT

t ) dt

=
∑

ij ∂t(g(T − t))(UT
t ei, U

T
t ej)df(UT

t ej)ei dt

= (〈∇T−tf(T − t, .),
∑

j ∂t(g(T − t))(UT
t ei, U

T
t ej)U

T
t ej〉T−t dt)i=1..n

= (df(T − t, ∂t(g(T − t))#g(T−t)(UT
t ei)) dt)i=1..n.

Then

d(df(T − t, .)XT
t (x)((W

T
0,t)v))

dM≡ − d
dt
df(T − t, .)((WT

0,tv) dt

−1
2
〈(df(T − t, ∂t(g(T − t))#g(T−t)(UT

t ei)))i=1..n, (U
T
t )−1WT

0,tv〉Rn dt

+1
2
∆T−tdf(T − t, .)(WT

0,tv) dt

−1
2
〈(d̃f(T − t, UT

t )), (UT
0 )−1(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t))#g(T−t)(WT

0,t)v dt〉Rn .

By the fact that UT
t is a g(T − t)-isometry we have:

〈(df(T − t, ∂t(g(T − t))#g(T−t)(UT
t ei)))i=1..n, (U

T
t )−1WT

0,tv〉Rn

= 〈
∑

i ∂t(g(T − t))(UT
t ei,∇T−tf(T − t, .))ei, (U

T
t )−1WT

0,tv〉Rn

= 〈
∑

i ∂t(g(T − t))(UT
t ei,∇T−tf(T − t, .))UT

t ei,W
T
0,tv〉g(T−t)

= 〈∂t(g(T − t))#g(T−t)(WT
0,tv),∇T−tf(T − t, .)〉g(T−t),

13



Consequently:

d(df(T − t, .)XT
t (x)(W

T
0,tv))

dM≡ − d

dt
df(T − t, .)(WT

0,tv) dt

− 1

2
〈∇T−tf(T − t, .), ∂t(g(T − t))#g(T−t)(WT

0,tv)〉T−t dt

+
1

2
∆T−tdf(T − t, .)(WT

0,tv) dt

− 1

2
〈(d̃f(T − t, UT

t )), (UT
t )−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(WT

0,t)v dt〉Rn

dM≡ − d

dt
df(T − t, .)(WT

0,tv) dt+
1

2
∆T−tdf(T − t, .)(WT

0,tv) dt

− 1

2
df(T − t,Ric#g(T−t)

g(T−t) (WT
0,tv) dt.

But recall that f is a solution of:

∂

∂t
f =

1

2
∆tf,

so that

− ∂

∂t
df(T − t, .) = −1

2
d∆T−tf(T − t, .).

We shall use the Hodge-de Rham Laplacian �T−t = −(dδT−t + δT−td) which com-
mutes with the de Rham di�erential, and we shall use the well-known Weitzenböck
formula ([16, 17]), which says that for θ a 1-form:

�T−tθ = ∆T−tθ − Ricg(T−t) θ.

Where by duality we write θ#g(x) the element of TxM such that for all v ∈ TxM
〈θ#g(x), v〉g = θ(v) and Ricg(T−t) θ the 1-form such that for all v ∈ TxM

Ricg(T−t) θ(v) := Ricg(T−t)(θ
#g(T−t)(x), v).

We get:

d∆T−tf(T − t, .) = d�T−tf(T − t, .)
= �T−tdf(T − t, .)
= ∆T−tdf(T − t, .) − Ricg(T−t) df(T − t, .).

Finally:

d(df(T − t, .)XT
t (x)(W

T
0,tv))

dM≡ 1
2
Ricg(T−t) df(T − t, .)(WT

0,tv) dt

−1
2
〈∇T−tf(T − t, .),Ric#g(T−t)

g(T−t) (WT
0,tv)〉T−t dt

dM≡ 0 .

14



Remark : For the forward Ricci �ow, we have:

//T
0,t ∗ d((//T

0,t)
−1WT

0,t) = 0.

For the backward Ricci �ow, we have:

//T
0,t ∗ d((//T

0,t)
−1WT

0,t) = −Ric#g(T−t)
g(T−t) (WT

0,t) dt.

When the family of metrics is constant, we have the usual damped parallel
transport, wich sati�es:

//0,t ∗ d((//0,t)
−1W0,t) = −1

2
Ric#(W0,t) dt.

Remark : Roughly speaking, the result says that the deformation of the
metric under the forward Ricci �ow makes the damped parallel transport behaves
like the damped parallel transport in the case of a constant metric with �at Ricci
curvature.

For the heat equation under the forward Ricci �ow, we take the probabilistic
convention: 

∂tf(t, x) = 1
2
∆tf(t, x)

d
dt
gi,j = −Rici,j

f(0, x) = f0(x)
(3.3)

We shall give a Bismut type formula and a gradient estimate formula for the
above equation. For notation, let Tc be the maximal life time of the forward Ricci
�ow g(t)t∈[0,Tc[, solution of (2.2). For T < Tc, XT

t is a g(T − t)-Brownian motion
and //T

0,t the associated parallel transport. In this case, for a solution f(t, .) of
(3.3), f(T − t,XT

t (x)) is a local martingale for any x ∈ M . When going back in
time, one has to remember all deformations of the geometry.

We now recall a well known Lemma giving a Bismut type formula (e.g. [8]).
Let f(t, .) and g(t) be solution of (3.3), T < Tc, and XT

t (x) a g(T − t)-Brownian
motion.

Lemma 3.3 For any Rn-valued process k such that k ∈ L2
loc(W ) where W is the

Rn-valued Brownian motion (that appearred in the construction of XT
t (x)) , and

for all v ∈ TxM ,

Nt = df(T − t, .)XT
t (x)(U

T
t )[(UT

0 )−1v −
∫ t

0
krdr]

+ f(T − t,XT
t (x))

∫ t

0
〈kr, dW 〉Rn

is a local martingale.
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Proof : The �rst remark after Theorem 3.2 yields that the �rst term is a semi-
martingale. By Itô calculus we get:

d(f(T − t,XT
t (x))) = df(T − t, .)XT

t (x)UteidW
i.

With (li)i=1..n a g(T )-orthonormal frame of TxM , we write Nt as:

Nt =
∑

i(df(T − t, .)XT
t (x)(U

T
t (UT

0 )−1)li)(vi −
∫ t

0
〈UT

0 (kr), li〉Tdr)
+ f(T − t,XT

t (x))
∫ t

0
〈kr, dW 〉Rn

with Theorem 3.2:

dNt
dM≡

∑
i(df(T − t, .)XT

t (x)(U
T
t (UT

0 )−1)li)(−〈UT
0 (kt), li〉Tdt)

+d(f(T − t,XT
t (x)))〈kt, dW 〉Rn

dM≡
∑

i(df(T − t, .)XT
t (x)(U

T
t (UT

0 )−1)li)(−〈UT
0 (kt), li〉Tdt)

+
∑

i df(T − t, .)XT
t (x)(U

T
t li)dW

i(
∑

j k
j
tdW

j)
dM≡ 0.

Remark : Since T is smaller than the explosion time Tc, and by the compact-
ness of M , Nt is clearly a true martingale, so we could use the martingale property
for global estimates, or the Doob optional sampling Theorem for local estimates
(e.g. [23]).

Corollary 3.4 Let v ∈ TxM , and take for example kr =
(UT

0 )−1v

T
1[0,T ](r) then:

df(T, .)xv =
1

T

∑
i

E[f0(X
T
T (x))〈(UT

0 )−1v, ei〉RnWi(T )].

Proof : With the above remark, Nt is a martingale. The choice of kr gives

(UT
0 )−1v −

∫ T

0
krdr = 0; the result follows by taking expectation at time 0 and T .

We can give the following estimate for the gradient of the solution of (3.3):

Corollary 3.5 Let ‖f‖∞ = supM |f0|. For T < Tc:

sup
x∈M

‖∇Tf(T, x)‖T is decreasing in time

and:

sup
x∈M

‖∇Tf(T, x)‖T ≤ ‖f‖∞√
T
.
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Proof : Take x ∈ M such that ‖ ∇Tf(T, x) ‖T is maximal. Using the damped
parallel transport, by Theorem 3.2 we obtain that for all v ∈ TxM :

df(T − t,XT
t (x))WT

0,tv,

is a local martingale. By compactness, this is a true martingale. Taking v =
∇Tf(T, x) and averaging the previous martingale at time 0 and t we get:

‖ ∇Tf(T, x) ‖2
T = E[〈∇T−tf(T − t,XT

t (x)),WT
0,tv〉T−t].

Using Theorem 3.2 and the fact that the family of metrics involves according to
forward Ricci �ow we obtainWT

0,t = //T
0,t, hence the isometry property ofWT

0,t, i.e.

‖ WT
0,tv ‖T−t=‖ v ‖T .

So we obtain the �rst result.
If we choose kr =

(UT
0 )−1v

T
1[0,T ](r) in Lemma 3.3, then Nt is a martingale. Taking

expectations at times 0 and T , we obtain

df(T, .)xv =
1

T
E[f0(X

T
T (x))

∫ T

0

〈UT
0 )−1v, dW 〉Rn ].

For x ∈M and v = ∇Tf(T, x), Schwartz inequality gives

‖ ∇Tf(T, x) ‖2
T≤

‖f‖∞
T

E

[∣∣∣∣∫ T

0

〈UT
0 )−1v, dW 〉Rn

∣∣∣∣2
] 1

2

.

We have:

E

[∣∣∣∣∫ T

0

〈UT
0 )−1v, dW 〉Rn

∣∣∣∣2
]

= T ‖ v ‖2
T .

The result follows.

For geometric interpretation, let us give an example of normalized Ricci �ow
for surfaces (which is completely understood e.g. [5]). We are interested in this
example because the equation for the scalar curvature under this �ow is a reaction-
di�usion equation which is quite similar to the heat equation under Ricci �ow. We
will give a gradient estimate formula for the scalar curvature under normalized
Ricci �ow which gives in the case χ(M) < 0 (the easiest case) the convergence of
the metric to a metric of constant curvature.

The normalized Ricci �ow of surfaces comes from normalizing the metric by
some time dependent function to preserve the volume. Let M be a 2-dimensional
manifold, R(t) the scalar curvature, r =

∫
M
Rtdµt/µt(M) its average (which will
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be constant in time, being a topological constant, e.g. by Gauss-Bonnet Theorem).
We get the following equation for the normalized Ricci �ow:

d

dt
gi,j(t) = (r −R(t))gi,j(t).

Remark : Hamilton gives a proof of the existence of solutions to this equa-
tion, de�ned for all time ( e.g. [5])).

Recall that (e.g. [5]) the equation for the scalar curvature R under this nor-
malised �ow is:

∂

∂t
R = ∆tR +R(R− r).

Proposition 3.6 Let T ∈ R, XT
t (x) be a 1

2
g(T − t)-BM(x), //T

0,t the parallel trans-
port, v ∈ TxM and ϕtv the solution of the following equation:

//T
0,td

(
(//T

0,t)
−1ϕtv

)
= −

(
3

2
r − 2R

(
T − t,XT

t (x)
))

ϕtv dt

ϕ0 = IdTxM .

Then dR(T − t, .)XT
t (x)ϕtv is a martingale and:

‖∇TR(T, x)‖T ≤ sup
M

‖∇0R(0, x)‖0e
− 3

2
rT E[e

R T
0 2R(T−t,XT

t (x)) dt]. (3.4)

Proof : The proof is similar to the one in Theorem 3.2, the di�erence is the
reaction term: R(R− r). For notations and some details see the proof of Theorem
3.2. Take F : x 7→ x(x− r), then:

∂

∂t
R = ∆tR + F (R).

We write:

dR(T − t, .) |XT
t (x) ϕtv = 〈d̃R(T − t, UT

t ), (UT
t )−1ϕtv〉R2

where UT
t is a di�usion on F(M) with generator

∆H
T−t +

1

4
(r −R(T − t, π.))g(T − t)(evei

., evej
.)Vi,j(.).

Using Theorem 3.2, we have:

d〈d̃R(T − t, UT
t ), (UT

t )−1ϕtv〉R2

= 〈d(d̃R(T − t, UT
t )), (UT

t )−1ϕtv〉R2

+ 〈d̃R(T − t, UT
t ), d((UT

t )−1ϕtv)〉R2

dM≡
[ ∂
∂t

(dR(T − t, .)) + ∆T−tdR(t− t, .) +
1

2
(r −R(T − t, π.))dR(T − t, .)

]
(ϕtv) dt

+ 〈d̃R(T − t, UT
t ), d((UT

t )−1ϕtv)〉R2
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Using the Weitzenböck formula and the equation for R we have:

∂

∂t
dR(T−t, .) = −[∆T−tdR(T−t, .)−Ricg(T−t) dR(T−t, .)+F ′

(R(T−t, .))dR(T−t, .)]

Recall that for the surface:

Ricg(T−t) dR(T − t, .) =
1

2
R(T − t, .)dR(T − t, .),

consequently

d〈d̃R(T − t, UT
t ), (UT

t )−1ϕtv〉R2

dM≡ (
1

2
r − F

′
(R(T − t, .))dR(T − t, .))(ϕtv) dt+ 〈d̃R(T − t, UT

t ), d((UT
t )−1ϕtv)〉R2

dM≡ (
1

2
r − 2R(T − t, .) + r)dR(T − t, .))(ϕtv) dt

+ 〈d̃R(T − t, UT
t ), (UT

t )−1(−3

2
r + 2R(T − t, .))ϕtv)〉R2

dM≡ 0,

where we used the equation of ϕtv in the last step.
For the second part of the proposition, with the equation for ϕtv we have:

d(‖ ϕtv ‖2
T−t) = (4R(T − t,XT

t (x) − 3r) ‖ ϕtv ‖2
T−t dt,

so that
‖ ϕTv ‖2

0=‖ ϕ0v ‖2
T e

−3rT e
R T
0 4R(T−s,XT

s (x)) ds.

Take v = ∇TR(T, x) and average at time 0 and T (it is a true martingale
because all coe�cients are bounded) to get:

‖∇TR(T, x)‖T ≤ sup
M

‖∇0R(0, x)‖0e
− 3

2
rT E[e

R T
0 2R(T−s,XT

s (x)) ds].

Remark : For reaction-di�usion equations we can �nd by this calculation
the correction to the parallel transport leading to a Bismut type formula for the
gradient of the equation:

∂

∂t
f = ∆tf + F (f), (3.5)

where ∆t is a Laplace Beltrami operator associated to a family of metrics g(t),
and F : R 7→ R is a C1 function. Let XT

t (x) be a 1
2
g(T − t) − BM(x), //T

0,t the
associated parallel transport and v ∈ TxM . Consider the covariant equation:

//T
0,td(//

T
0,t)

−1Θtv = −
(
Ric#g(T−t)

g(T−t) −1

2

[ ∂
∂t

(g(T − t))
]#g(T−t)

− F
′
(f)

)
Θtv dt
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Then for f a solution of (3.5) and v ∈ TxM we obtain that:

df(T − t, .)Θtv

is a local martingale.

Corollary 3.7 For χ(M) < 0, there exists C > 0 depending only on g(0), such
that:

‖∇TR(T, x)‖T ≤ sup
M

‖∇0R(0, x)‖0 e
1
2
rT e2C( erT −1

r
).

Proof : We use proposition 5.18 in [5]. In this case we have r < 0 and a con-
stant C > 0 depending only on the initial metric such that R(t, .) ≤ r + Cert and
the estimate follows from previous proposition.

Remark : For the case χ(M) < 0 we obtained an estimate which decreases
exponentially. For the case χ(M) > 0 one could control the expectation in (3.4)
with the same consequences.

4 The point of view of the stochastic �ow

Let g(t)[0,Tc[ be a C
1,2 family of metrics, and consider the heat equation:{

∂tf(t, x) = 1
2
∆tf(t, x)

f(0, x) = f0(x),
(4.1)

where f0 is a function overM . We suppose that the solution of this equation exists
until Tc. For T < Tc, let XT

t be a g(T−t)-Brownian motion and //T
0,t the associated

parallel transport.
We will build (c.f. equation (4.2)) a family of semimartingales (T − t,XT

t (x))
such that XT

t (x) is a g(T−t)-BM(x) for all x nearby x0 and such that the family of
martingales f(T − t,XT

t (x))x is di�erentiable at x0 with respect to the parameter
x. However, in this section, we will not do it directly using stochastic �ows in the
sense of [20]. Instead, we will use di�erentiation of families of martingales de�ned
as a limit in some semi-martingale space (the topology is as in [11] which has been
extended by Arnaudon, Thalmaier to the manifold case [4], [3], [1], [2]).

We work in the space-time I×M , its tangent bundle being identi�ed to TI×TM
endowed with the cross connection ∇̃ = ∇⊗∇T−t where ∇ is the �at connection.
Let XT

t (x0) be a g(T − t)-BM started at x0, and de�ne Yt(x0) = (t,XT
t (x0)) a

I×M -valued semi martingale. From now on P ∇̃
X,Y stands for the parallel transport
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along the shortest ∇̃-geodesic between nearby points X ∈ I ×M and Y ∈ I ×M
for the connection ∇̃.

Let c̃ a curve in I ×M , we write P ∇̃
c̃ for the ∇̃ parallel transport along c̃ and

for a curve c in M we denote by //T−s
c the ∇T−s parallel transport along c. We

also denote π : I ×M →M the natural projection.
For a curve γ : t −→ (s, xt) in I ×M , where s is a �xed time, we have the

following observation:
P ∇̃

γ = (Id, //T−s
π(γ)).

De�ne the Itô stochastic equation in the sense of [13]:

d∇̃Yt(x) = P ∇̃
Yt(x0),Yt(x)d

∇̃Yt(x0) (4.2)

Remark : The above equation is well de�ned, for x su�ciently close to x0,
because dT−t(Yt(x), Yt(x0)) is a �nite variation process, with bounded derivative
(by a short computation and [18], [6]).

Let /̃/0,t be the parallel transport, associated to the connection ∇̃, over the
semi-martingale Yt(x0).

In the next Lemma, we will explain the relationship between the two parallel
transport /̃/0,t and //

T
0,t.

Lemma 4.1 Let (ei)i=1..n be a orthonormal base of (Tx0M, g(T )) then

d((//T
0,t)

−1dπ/̃/0,t)(0, ei) =
1

2
(//T

0,t)
−1(

∂

∂t

g(T − t))#g(T−t)(dπ/̃/0,t(0, ei)) dt.

Proof : The parallel transport /̃/0,t does not modify the time vector, i.e.,

/̃/
−1

(t,Xt)
(0, ...) = (0, ...),

as can be shown for every curve, and hence for the semi-martingale Yt by the
transfer principle.

We identify T̃ = {(0, v) ∈ T(0,x0)I×M} and Tx0M with the help of (0, v) 7−→ v.
Hence

(//T
0,t)

−1dπ/̃/0,t : T̃ → Tx0M

becomes an element in Mn,n(R).
Recall that //T

0,t = UT
t U

T,−1
0 . By de�nition of DS,t given in equation (1.2). We
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get using the shorthand ei = UT
0 ẽi, with (ẽi)i=1..n an orthonormal frame of Rn,

∗d((//T
0,t)

−1dπ/̃/0,t) = ∗d(〈(//T
0,t)

−1dπ/̃/0,tei, ej〉g(T ))i,j

= ∗d(〈dπ/̃/0,tei, //
T
0,tej〉g(T−t))i,j

=
(
〈DS,T−tdπ/̃/0,tei, U

T
t ẽj〉g(T−t)

+
∂

∂t

(g(T − t))(dπ/̃/0,tei, U
T
t ẽj) dt

+〈dπ/̃/0,tei, D
S,T−tUT

t ẽj〉g(T−t)

)
i,j
.

We also have:

DS,T−tdπ/̃/0,tei = V−1

dπ/̃/0,tei
((∗d(dπ/̃/0,tei))

vT−t)

= V−1

dπ/̃/0,tei
((ddπd evei

(∗d/̃/0,t))
vT−t)

= V−1

dπ/̃/0,tei
(ddπ(d evei

(∗d/̃/0,t))
ṽ)

= 0.

Where we have used in the last equality the fact that /̃/0,t is the ∇̃ horizontal lift

of Yt. The third one may be seen for curves, it comes from the de�nition of ∇̃.
Following computations similar to ones in the �rst section, we have by (1.5):

∗d((//T
0,t)

−1dπ/̃/0,t)i,j = ∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt

+ 〈dπ/̃/0,tei, D
S,T−tUT

t ẽj〉g(T−t)

= ∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt

+ 〈dπ/̃/0,tei,−1
2

∑d
α=1

∂
∂t
g(T − t)(UT

t ẽj, U
T
t ẽα)UT

t ẽα〉g(T−t) dt

= ∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt

− 1
2

∑d
α=1

∂
∂t
g(T − t)(UT

t ẽj, U
T
t ẽα)〈dπ/̃/0,tei, U

T
t ẽα〉g(T−t) dt

= 1
2

∂
∂t
g(T − t)(dπ/̃/0,tei, U

T
t ẽj) dt.

In the general case, and by the previous identi�cation:

d((//T
0,t)

−1dπ/̃/0,t)(0, ei) =
1

2

∑
j

∂

∂t

g(T − t)(dπ/̃/0,tei, U
T
t ẽj)ej dt (4.3)

=
1

2
((//T

0,t)
−1 ∂

∂t

g(T − t))#g(T−t)(dπ/̃/0,t(0, ei)) dt(4.4)

.
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Di�erentiating (4.2) along a geodesic curve beginning at (0, x0) with velocity
(a, v) ∈ T0I × Tx0M and using corollary 3.17 in [3] we get:

/̃/0,td
(
/̃/

−1

0,tTYt(a, v)
)

= −1

2
R̃(TYt(a, v), dYt(x0))dYt(x0),

where R̃ is the curvature tensor.
Let v ∈ TxM we write:

TXtv := dπTYt(0, v).

In a more canonical way than de�nition 3.1, we have the following proposition.

Proposition 4.2 For all v ∈ TxM we have:

d((//T
0,t)

−1TXtv) = −1

2
(//T

0,t)
−1(Ricg(T−t) −∂t(g(T − t)))#g(T−t)(TXtv) dt.

Proof : For a triple of tangent vectors (Lt, L), (At, A), (Zt, Z) ∈ TI × TM , we
have:

R̃((Lt, L), (At, A))(Zt, Z) = (0, RT−t(L,A)Z).

Hence, according to the relation dY (x0) = (dt, ∗dXt) = (dt, //T
0,tei ∗ dW i) and the

de�nition of the Ricci tensor:

/̃/0,td
(
/̃/

−1

0,tTYt(0, v)
)

= −1

2
(0,Ric#g(T−t)

g(T−t) (TXtv)) dt. (4.5)

In order to compute in Rn, we write:

(//T
0,t)

−1TXtv = ((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v)). (4.6)

By (4.5), we have d
(
/̃/

−1

0,tTYt(0, v)
)
∈ dA where A is the space of �nite variation

processes. We get:

d((//T
0,t)

−1TXtv) = d((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v))

+ ((//T
0,t)

−1dπ/̃/0,t)d(/̃/
−1

0,tTYt(0, v)).

By (4.6) and Lemma 4.1 we get:

d((//T
0,t)

−1TXtv) = ∗d((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v))

+ ((//T
0,t)

−1dπ/̃/0,t) ∗ d(/̃/
−1

0,tTYt(0, v))

= ∗d((//T
0,t)

−1dπ/̃/0,t)(/̃/
−1

0,tTYt(0, v))

− 1
2
((//T

0,t)
−1dπ)(0,Ric#g(T−t)

g(T−t) (TXtv) dt

= 1
2
(//T

0,t)
−1( ∂

∂t
g(T − t))#g(T−t)(TXtv) dt

− 1
2
(//T

0,t)
−1 Ric#g(T−t)

g(T−t) (TXtv) dt.

23



For all f0 ∈ C∞(M) and for f(t, .) a solution of equation (3.3), where g(t)
evolves along a forward Ricci �ow, f(T − t,XT

t (x)) is a martingale, where (T −
t,XT

t (x)) = Yt(x) is built as in equation (4.2). We have the following corollary
which agrees with Theorem 3.2.

Corollary 4.3 For all v ∈ TxM :

df(T − t,XT
t (.))v = df(T − t, .)XT

t (x)//
T
0,tv,

is a martingale.

Proof : By di�erentiation with respect to x of f(T − t,XT
t (x)), we get a local

martingale. According to [3] and by the chain rule for di�erentials we have:

df(T − t,XT
t (.))v = df(T − t, .)XT

t (x)TXtv.

Using the evolution of the metric under forward Ricci �ow and the Proposition 4.2,
we get the corollary after replacing TXt by //T

0,t.

In an canonical way, we have the following result.

Theorem 4.4 The following conditions are equivalent for a C1,2 family g(t) of
metrics:

i) g(t) evolves under the forward Ricci �ow.

ii) For all T < Tc we have //
T
0,t =WT

0,t = TXt.

iii) For all T < Tc, the damped parallel transport WT
0,t is an isometry.

Proof : Here, the forward Ricci �ow has probabilistic convention (2.2). The
result follows by the equation of g(t) and by proposition 4.2 and Theorem 3.2.

5 Second derivative of the stochastic �ow

We take the di�erential of the stochastic �ow in order to obtain a intrinsic mar-
tingale. We take the same notation as the previous section, and g(t) is a family of
metrics coming from a forward Ricci �ow. Let XT

t (x) be the g(T − t)-BM started
at x, constructed as in equation ( 4.2 ) in the previous section by the parallel cou-
pling of a g(T − t)-BM started at x0, ∇̃ and Yt(x) = (t,XT

t (x)) as before, de�ne
the intrinsic trace (that does not depend on the choice of Ei as below):

Tr∇.TXt(x0)(.) := dπ

( ∑
i

∇̃(0,ei)(TYt(0, Ei)) − TYt∇̃(0,ei)(0, Ei)

)
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where (ei) is a (Tx0M, g(T )) orthonormal basis, Ei are C1 vectors �elds such that
Ei(x0) = ei and ∇̃(0,ei)(TYt(0, Ei)) := ∇̃(0,ei)(TYt(.)(0, Ei(.))) is a derivative of a
bundle-valued semi-martingale in the sense of ([4], [3], [1]). By Theorem 4.4:

Tr∇.TXt(x0)(.) = dπ
∑

i

∇̃(0,ei)(TYt(0, Ei)) − //T
0,tdπ(

∑
i

∇̃(0,ei)(0, Ei))

Theorem 5.1 Let Lt := (//T
0,t)

−1 Tr∇.TXt(x0)(.), a Tx0M -valued process, started
at 0. Then:

i) Lt is a (Tx0M, g(T ))-valued martingale, independent of the choice of Ei, and
we have the following equation:

Lt =

∫ t

0

∑
i

//T,−1
0,s Ric#g(T−s)

g(T−s) (//T
0,sei)dW

i
s .

ii) The g(T )-quadratic variation of L is given by:

d[L,L]t = |||Ricg(T−t)(Xt(x0))|||2g(T−t) dt,

where |||.||| is the usual Hilbert-Schmidt norm of linear operator.

Proof : Recall that by the same construction as in the previous section:

D̃(TYt(x)(0, Ei(x))) = −1

2
R̃(TYt(x)(0, Ei(x)), dYt(x))dYt(x).

By the general commutation formula (e.g. Theorem 4.5 in [4]), and by the previous
equation which cancels two terms in this formula, we get:

D̃∇̃(0,ei)(TYt(x)(0, Ei(x))) =∇̃(0,ei)D̃(TYt(x)(0, Ei(x)))

+ R̃(d∇̃Yt(x0), TYt(x0)(0, ei))TYt(x0)(0, ei)

− 1

2
∇̃R̃(dYt(x0), TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei)

= − 1

2
∇̃(0,ei)(R̃(TYt(x)(0, Ei(x)), dYt(x))dYt(x))

+ R̃(d∇̃Yt(x0), TYt(x0)(0, ei))TYt(x0)(0, ei)

− 1

2
(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei).

Taking trace in the previous equation we can go one step further. Recall that
(ei)i=1..n is a orthogonal basis of (Tx0M, g(T )), and write for notation:

R̃ic
#

(t,x)(V ) = (0,Ricg(T−t)
#g(T−t)(dπV )),
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then: ∑
i D̃∇̃(0,ei)(TYt(x)(0, Ei(x)))

= −1
2

∑
i ∇̃(0,ei)(R̃ic

#

Yt(x)(TYt(x)Ei(x))) dt

+
∑

i R̃(d∇̃Yt(x0), TYt(x0)(0, ei))TYt(x0)(0, ei)

−1
2

∑
i(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei)

= −1
2

∑
i(∇̃(TYt(x0)(0,ei))R̃ic

#
)(TYt(x0)(0, ei)) dt

−1
2
R̃ic

#

Yt(x0)(
∑

i ∇̃(0,ei)(TYt(x)(0, Ei(x)))) dt+ R̃ic
#

Yt(x0)(d
∇̃Yt(x0))

−1
2

∑
i(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei).

In the last equality, we use the chain derivative formula, and derivation is taken
with respect to x . We will make an independent computation for the last term in
the previous equation. Let Tr stand for the usual trace:∑

i(∇̃dYt(x0)R̃)(TYt(x0)(0, ei), dYt(x0))TYt(x0)(0, ei)
=

∑
i(0, (∇

T−t
dXt

RT−t)(TXt(x0)ei, dXt)TXt(x0)ei)
=

∑
i,j(0, (∇

T−t
//T

0,tej
RT−t)(TXt(x0)ei, //

T
0,tej)TXt(x0)ei) dt

=
∑

j(0,Tr1,3(∇T−t
//T

0,tej
RT−t)(//T

0,tej)) dt

=
∑

j(0, (∇
T−t
//T

0,tej
Tr1,3R

T−t)(//T
0,tej)) dt

= −
∑

j(0, (∇
T−t
//T

0,tej
Ric#g(T−t)

g(T−t) )(//T
0,tej)) dt,

where we have used in the second equality the fact that in case of the forward
Ricci �ow //T

0,t is a g(T − t) isometry and dX = //T
0,tejdW

j. In the last equality we
use the commutation between trace and covariant derivative (for example [21], or
[19]). Note that: ∑

i(∇̃(TYt(x0)(0,ei))R̃ic
#
)(TYt(x0)(0, ei)) dt

=
∑

i(0, (∇
T−t
TXt(x0)ei

Ric#g(T−t)
g(T−t) )(TXt(x0)ei)) dt

Hence, using Theorem 4.4:

D̃(
∑

i ∇̃(0,ei)(TYt(x)(0, Ei(x))))

= −1
2
R̃ic

#

Yt(x0)(
∑

i ∇̃(0,ei)(TYt(x)(0, Ei(x)))) dt+ R̃ic
#

Yt(x0)(d
∇̃Yt(x0))

Write, for simplicity, B for
∑

i ∇̃(0,ei)(TYt(x)(0, Ei(x))). We compute:

d(//T,−1
0,t dπB) = d([//T,−1

0,t dπ/̃/0,t][(/̃/0,t)
−1B])

= 1
2
//T,−1

0,t (∂tg(T − t))#g(T−t)(dπB) dt

+//T,−1
0,t (−1

2
dπ(R̃ic

#
(B)) dt+ dπ(R̃ic

#

Yt(x0)(d
∇̃Yt(x0))))

= //T,−1
0,t (dπR̃ic

#

Yt(x0)(d
∇̃Yt(x0)))

=
∑

i //
T,−1
0,t Ric#g(T−t)

g(T−t) (//T
0,tei)dW

i,
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where we have used Lemma 4.1 in the �rst equality. We get a intrinsic martingale
that does not depend on Ei, starting at 0. By the de�nition in Theorem 5.1 and
by the formula preceding Theorem 5.1, the above calculations yield:

Lt =

∫ t

0

∑
i

//T,−1
0,s Ric#g(T−s)

g(T−s) (//T
0,sei)dW

i
s .

For the g(T )-quadratic variation of Lt we use the isometry property of the parallel
transport; we compute the quadratic variation:

d[L,L]t = 〈//T,−1
0,t Ric#g(T−t)

g(T−t) (//T
0,tei), //

T,−1
0,t Ric#g(T−t)

g(T−t) (//T
0,tei)〉T dt

=
∑

i ‖ Ric
#g(T−t)
g(T−t) (//T

0,tei) ‖2
g(T−t) dt

= |||Ric#g(T−t)
g(T−t) (XT

t (x0))|||2g(T−t) dt.

Remark : By the independence of the choice of the orthonormal basis (ei)
we can express this norm in terms of the eigenvalues of the Ricci operator:

d[L,L]t =
∑

i

λ2
i (T − t,XT

t (x)) dt.

Remark : We could choose Ei such that ∇̃(0,ei)(0, Ei(x)) = 0. That does not
change the martingale L, but gives a simpler version.
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