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The β-numeration, born with the works of Rényi and Parry, provides a generalization of the notions of integers, decimal
numbers and rational numbers by expanding real numbers in base β, where β > 1 is not an integer. One of the main
differences with the case of numeration in integral base is that the sets which play the role of integers, decimal numbers
and rational numbers in base β are not stable under addition or multiplication. In particular, a fractional part may appear
when one adds or multiplies two integers in base β. When β is a Pisot number, which corresponds to the most studied
case, the lengths of the finite fractional parts that may appear when one adds or multiplies two integers in base β are
bounded by constants which only depend on β.

We prove that, for any Perron number β, the set of finite or ultimately periodic fractional parts of the sum, or the
product, of two integers in base β is finite. Additionally, we prove that it is possible to compute this set for the case of
addition when β is a Parry number. As a consequence, we deduce that, when β is a Perron number, there exist bounds,
which only depend on β, for the lengths of the finite fractional parts that may appear when one adds or multiplies
two integers in base β. Moreover, when β is a Parry number, the bound associated with the case of addition can be
explicitly computed.
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1 Introduction
The β-numeration, born in the late 50’s with the works of Renyi [39] and Parry [35], is a generalization
of numeration in a non-integer base which enables a modelling of quasicrystals [43]. The number systems
defined by the β-numeration are also closely related to canonical number systems [6, 40, 5], number sys-
tems generated by iterated function systems [45] or by substitutive systems of Pisot type [20]. A common
feature between these fields is the property of self-similarity, which yields results in number theory [7], ge-
ometry [29], topology [8, 19], dynamical systems [46, 37, 38], combinatorics on words [22] and theoretical
computer science [9]. We focus with this article on applications in computer arithmetics.

Let β > 1 be an algebraic integer, with β /∈ N. In the same way as in the case of integral bases, it is
possible to expand x ∈ [0, 1] as x =

∑

i∈N∗

uiβ
−i, where the sequence (ui)i∈N∗ , called expansion of x in base

β, takes values in the alphabet Aβ = {0, . . . , bβc}. Among the expansions of x in base β, the greatest for
the lexicographic order is called β-expansion of x, and denoted by dβ(x). This expansion can be computed
by the greedy algorithm, that is, dβ(x) = 0.u1 . . . un . . ., with for all i ∈ N∗, ui = [βT k−1

β (x)], where
Tβ : [0, 1] −→ [0, 1[, x 7−→ {βx}. The notion of β-expansion was historically introduced by Rényi in
[39]. Parry produced in [35] many interesting results concerning the β-numeration, creating and studying
among others the dynamical system ([0, 1], Tβ) associated with this numeration system. Note that dβ may
be extended to positive real numbers by shifting i+1 times the β-expansion of xβ−(i+1), where x > 1 and
i ∈ N is such that xβ−(i+1) ∈ [0, 1[. The map dβ is increasing if AZ

β is endowed with the lexicographical
order [31]. Note that the definition of β-expansion may be extended to negative real numbers as well, by
introducing a minus sign, that is, dβ(x) = −dβ(−x) for any x ∈ R∗

−.
When dβ(1) is either finite or ultimately periodic, β is said to be a Parry number. As we see in the

following, Parry numbers satisfy particular arithmetic properties.

Remark 1.1. For any β > 1, a natural expansion of 1 in base β is 1. However, defining dβ(1) as the
sequence computed by the greedy algorithm provides useful informations on β. This is why dβ(1) is not
defined as 1; in particular, dβ(1) has a non-empty fractional part.

Another interesting expansion of 1 in base β is the greatest sequence for the lexicographical order among
those which are infinite, that is, they do not end with 0’s. This expansion, denoted by d∗β(1), is an improper
expansion of 1 in base β; actually, d∗

β(1) = dβ(1) when dβ(1) is not finite. At the opposite of the case
of numeration in integral base, d∗

β(1) plays a key role in the construction and the study of the associated

arithmetical language Lβ , defined as the set of the factors of the sequences (ui)i∈N∗ ∈ AN
∗

β which satisfy
the Parry condition ([35]):

for all k ∈ N, (ui+k)i∈N∗ <lex d∗β(1).

In the following, we say that (vi)i∈N∗ is admissible (with respect to β) if it satisfies the Parry condition.
This notion of admissibility is naturally extended to words and two-sided sequences.

Let x > 1. There exists n ∈ N such that dβ(x) = u−n . . . u0.u1 . . .; the numbers
n
∑

i=0

u−iβ
i and

∑

i∈N∗

uiβ
−i are respectively called β-integer part of x, denoted by bxcβ , and β-fractional part of x, denoted

by {x}β = x − bxcβ . This allows the following generalization for the definition of integers in base β.

Definition 1.2. We define the set of non-negative β-integers, denoted by Z+
β , as the set of real numbers

x ≥ 0 such that x = bxcβ . We define the set of β-integers as Zβ = ±Z+
β .

The following sets generalize the framework of numeration systems with a non-integral base. They play
respectively the role of decimal numbers and rational numbers in base β.
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Definition 1.3. We denote by Fin(β) the set of real numbers whose β-fractional part is finite, that is,

Fin(β) = {x ∈ R; dβ(x) is finite}.

We denote by Per(β) the set of real numbers whose β-fractional part is ultimately periodic, that is,

Per(β) = {x ∈ R; dβ(x) is ultimately periodic}.

Remark 1.4. One has Fin(β) =
⋃

i∈N

β−iZβ =
⋃

i∈Z

β−iZβ .

The sets Zβ and Fin(β) are not stable under usual operations like addition and multiplication. Indeed,
one has Fin(β) ⊂ Z[β−1] and Per(β) ⊂ Q(β), and the cases of equalities define numeration systems that
are well fitted for performing arithmetics. For instance, Bertrand [12] and Schmidt [42] have independently
proven that for any Pisot number, one has Per(β) = Q(β).

The relation Fin(β) = Z[β−1], introduced in [24], is known as the finiteness property, denoted by (F).
Whereas not yet fully characterized, classes of numbers satisfying the finiteness property have already
been extensively studied; see for instance [24, 28, 5]. Indeed, the finiteness property provides topologic
and geometric properties for the geometrical realization of the associated dynamical system known as the
Rauzy fractal, defined in Section 2.2. For instance, due to Akiyama [1], the finiteness property implies that
0 is an exclusive inner point of the Rauzy fractal T under the additional condition that β is a unit. Also,
Theorem 3 of the same article provides a characterization of numbers such that T is arcwise connected.

Example 1.5. Let β be the golden ratio φ = 1+
√

5
2 , as known as the Fibonacci number. Since φ is the

positive root of X2 − X − 1, one has φ−1 + φ−2 = 1; dφ(1) = 0.11, and the set of admissible words
consists of words defined on the alphabet {0, 1} which do not contain two consecutive occurences of 1.

The numeration system associated with the Fibonacci number is the most studied non-standard numer-
ation system. Actually, 1+

√
5

2 is the only quadratic Pisot number which belongs to ]1, 2[, hence it defines
from an algebraic point of view the simplest case of numeration in a non-integer base. See for instance
[31] for a study of the main properties of this numeration system. Since 1 + 1 = 2 = φ + φ−2, one has
dφ(2) = 10.01, hence Zφ is not stable under addition.

Example 1.6. Let β be the positive root of the polynomial X4−2X3−X−1. Then dβ(1) = 0.2011, with
1, 2 ∈ Zβ and dβ(3) = 10.111(00012)∞, hence the finiteness property does not hold for the associated
numeration system.

In order to perform arithmetics on β-integers, say for instance to compute the addition of two β-integers,
one must be able to renormalize expansions in base β of real numbers obtained after adding β-integers.
The renormalization step is performed by transducers, see for instance [23]. Another method consists in
applying the greedy algorithm to the real number obtained after adding or multiplying β-integers, which
produces its β-expansion. However, if the β-expansion of the sum of two β-integers is neither finite nor
ultimately periodic, its computation requires an infinite number of steps. The following notations, L⊕ and
L�, are introduced in [26]. They represent the maximal possible length of the β-fractional part which may
appear when one adds or multiplies two β-integers, in the case where this β-fractional part is finite. For
any x ∈ Fin(β) with dβ(x) = u−N . . . u0.u1 . . . uN ′ , we define the β-integer length of x as li(x) = N +1,
and the β-fractional length of x as lf (x) = N ′.

Definition 1.7. We define L⊕ as min
n∈N

{n; ∀x, y ∈ Zβ , x + y ∈ Fin(β) ⇒ lf (x + y) ≤ n} when this set is

not empty, +∞ otherwise.
We define L� as min

n∈N

{n; ∀x, y ∈ Zβ , xy ∈ Fin(β) ⇒ lf (x + y) ≤ n} when this set is not empty, +∞

otherwise.

The computation of L⊕ and L� gives an idea of the difficulty of performing arithmetics on Zβ . Frougny
and Solomyak have proven in [24] that L⊕ and L� are finite when β is a Pisot number. The computation of
these values is however not so easy, especially for L�. The value of L⊕ has been computed for quadratic
Pisot numbers, in [18] when β is a unit and in [27] for the non-unit case. However, when β is of higher
degree, it is a difficult problem to compute the exact value of L⊕ or L�, and even to compute upper and
lower bounds for these two constants. Several examples are studied in [9], where a method is described in
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order to compute upper bounds of L⊕ and L� for Pisot numbers satisfying additional algebraic properties.
Also, we perform the computation of L⊕ for several cases of cubic Pisot numbers in [11], where we use
algebraic inequalities as well but we do not construct any automaton. Another class of β-numbers is studied
in [10], where upper and lower bounds for L⊕ and L� are computed.

The aim of this paper is to define an algorithmic process for the computation of L⊕ under algebraic
conditions on β. More precisely, we have the following result. Let us recall that an algebraic integer β is
hyperbolic when any of its algebraic conjugates α satisfy |α| 6= 1.

Theorem 1.8. Let β be a hyperbolic Perron number. Then L⊕ and L� are finite. Furthermore, when β is
a Parry number, it is possible to compute explicitly L⊕.

As a consequence of Theorem 1.8 we deduce that there exist two finite sets F0 and G0 which satisfy:

(Zβ + Zβ) ∩ Fin(β) ⊂ (Zβ + F0) and (Zβ · Zβ) ∩ Fin(β) ⊂ (Zβ + G0), (1)

by taking F0 = ∪
x,y∈Zβ

{{x + y}β} ∩ Fin(β) and G0 = ∪
x,y∈Zβ

{{xy}β} ∩ Fin(β). When the finiteness

condition (F) holds, (1) implies that there exists a finite set F which satisfies (Zβ −Zβ) ⊂ (Zβ + F ), and
which can be explicitly computed.

When Zβ is a Meyer set (see Section 2.1), a method which enables the computation of a minimal finite
set F satisfying (Zβ +Zβ) ⊂ (Zβ +F ) is presented in [4], where the problem of recognizing the language
constituted by sums or differences of positive β-integers is studied as well. On the other hand, Zβ is not a
Meyer set when β is neither a Pisot nor a Salem number ([34]).

Let us observe that there is no reason for the cardinality of the finite sets F0 and G0, constructed by
the automaton described in Section 2, to be minimal among the sets F and G which satisfy (Zβ − Zβ) ∩
Fin(β) ⊂ (Zβ + F ) and (ZβZβ)∩ Fin(β) ⊂ (Zβ + G). Therefore, the study performed in this article does
not solve the problem of finding minimal sets satisfying these relations, which is studied in [4]. See also
[33, 25] for more details.

This article is structured in the following way. Section 2 gathers definitions and notation that are in-
troduced in the framework of β-numeration. In Section 3, we consider expansions of 0 in base β taking
values on a finite alphabet. We prove in Section 3.1 that, when β is a hyperbolic Perron number, one can
define a geometrical interpretation of these expansions (Lemma 3.1), and that they satisfy several algebraic
relations (Lemma 3.3). In Section 3.2, we construct an automaton G inspired by the arithmetic automaton
defined by Rauzy [38] and studied by Siegel [44]. We prove that G is finite when β is a hyperbolic Perron
number (Lemma 3.5) and that the paths in G define expansions of 0 in base β (Proposition 3.9). In par-
ticular, G contains the finite and ultimately periodic paths which correspond to the sum of two β-integers
(Proposition 3.11).

In Section 4.1, we define an algorithmic process which reduces G. We obtain thereby an automaton G+
β ,

whose edges are labelled by letters of the alphabet Aβ − Aβ − Aβ = {−2bβc, . . . , bβc}. We prove in
Section 4.3 that any sum x + y of two β-integers can be represented by a path in G+

β , whose labels define

an expansion of 0 in base β (Theorem 4.5). Then, we study a connection between the study of paths in G+
β

and the finiteness property in Section 4.2 (Proposition 4.3), and we study the case of multiplication of two
β-integers in Section 4.4 (Proposition 4.7). We deduce the finiteness of L⊕ and L� for any Perron number
in Section 4.5 (Theorem 4.9).

Finally, in Section 5, we study several questions related to the finiteness of L⊕. Section 5.1 deals
with formal power series in β that are ultimately periodic. We prove that these formal power series are
characterized by paths in G ′

β , an automaton that we obtain similarly as G+
β by reverting the sense of the

edges. In Section 5.2, we retrieve an algebraic construction that was initially given by Thurston [47] in the
framework of automata theory. In Section 5.3, we focus on the particular Tribonacci case: we explicitly
construct G′

β , which admits G+
β as a subgraph.

2 Definitions and notation
We mainly refer to [36] and [31] for the notations introduced in the sequel.
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2.1 Generalities

The sets N and N∗ respectively denote the sets of non-negative and positive integers. We denote by [[i, j]]
the set of integers k such that i ≤ k ≤ j.

Expansions
We consider in this article sequences taking values in alphabets which consist of integers. For convenience,
we identify the notions of expansions . . . u0.u1 . . . and sequences (un)n∈Z. We may also identify words
and sequences that admit only finitely many non-zero entries; in this case, (ui)i≥N is said to be finite. In
particular, since 0 ∈ Aβ for any β > 1, we identify (ui)i∈E and (ui)i∈Z for any E ⊂ Z, setting the missing
terms to 0. For any sequence (ui)i∈Z, we define u+ as the right-sided sequence (ui)i∈N∗ .

For any alphabet A, one may define the shift map S : AZ → AZ, (ui)i∈Z 7−→ (ui+1)i∈Z. The shift
map may be defined as the corresponding shift action on AN

∗

as well. We say that (ui)i≥N is ultimately
periodic if there exists n ∈ Z such that (Sn(u))+ is ultimately periodic.

β-numeration and algebraic numbers
Let β be an algebraic integer of degree d. We denote by {αj}j∈[[1,r+s]] the set of algebraic conjugates
which differ from β and have a non-negative imaginary part. There are among them r real numbers and s
complex numbers (hence d − 1 = r + 2s). For convenience, we set J = [[1, r + s]]. Let z ∈ C and j ∈ J .
We call αj-expansion of z any admissible sequence (ui)i≥−N such that z =

∑

i≥−N

uiα
i
j . Note that there

exist complex numbers having at least two associated different αj-expansions.
A Pisot (resp. Salem, Perron) number is an algebraic integer β > 1 such that max

j∈J
|αj | < 1 (resp.

max
j∈J

|αj | = 1, max
j∈J

|αj | < β). Pisot numbers are Parry numbers [12, 42], and Parry numbers are Perron

numbers [21, 30]. Note that this latter result was already proven by Parry in [35] for numbers β > 2.
Despite a deep research on Salem numbers ([15, 16, 17]), it is not yet known whether all Salem numbers
are Parry numbers.

It is known that {x}β ∈ [0, 1[ for any β > 1, and for any positive real number x. This implies that the
set Zβ is relatively dense, that is, the distance between a real number and the closest β-integer is uniformly
bounded. Moreover, Zβ is a discrete subset of R for any β > 1, and it is uniformly discrete when β is a
Parry number, that is, the difference between two β-integers cannot be arbitrarily small. The set of numbers
such that Zβ is uniformly discrete is introduced in [14] as the class of specified subshifts, denoted by C3.
According to Schmeling [41], this class has Hausdorff dimension 1, Lebesgue measure 0, and is dense and
meager in ]1, +∞[.

The property of having uniformly bounded strings of 0’s in dβ(1) is equivalent to the uniform discrete-
ness of Zβ , and therefore to the fact that Zβ is a Delone set, that is, a set which is both uniformly bounded
and relatively dense. Any Delone set E for which there exists a finite set F such that E − E ⊂ E + F is
said to be a Meyer set. The problem to determine for which algebraic numbers is Zβ a Delone or a Meyer
set is not totally solved at the moment; however several significant results are known. For instance, Zβ is a
Meyer set when β is a Pisot number ([18]).

It is stated as a conjecture in [48] that, for any Perron number β, the lengths of the strings of consecutives
0’s which occur in dβ(1) are uniformly bounded. However, we believe thanks to numerical evidence and
arguments of Diophantine approximation that there exist Perron numbers such that the orbit of 1 under the
map Tβ : x 7−→ {βx} is dense in [0, 1].

Automata and paths
We say that G = (V, E) is an automaton if there exists an alphabet A such that E ⊂ V × V ×A. In this
case, V consists of states, and E consists of edges. Let e = (s, s′, i) be an edge. We say that s is the initial
state of e, that s′ is the terminal state of e, and that e is labelled by i.

We call finite path any sequence of edges (ei)i∈[[1,n]] = ((si, si+1, ui))i∈[[1,n]] in G, where n ∈ N∗, and
infinite path any sequence of edges (ei)i∈N∗ = ((si, si+1, ui))i∈N∗ in G. The state s1 is the initial state of
these paths. If there exist n, p ∈ N∗ such that for all i ≥ n, si = si+p, (ei)i∈N∗ is said to be ultimately
periodic. If moreover one may choose n = 1, (ei)i∈N∗ is said to be a loop; it may be denoted as the
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finite path ((si, si+1, ui))i∈[[1,n]]. We say that a ultimately periodic path or a loop is irreducible when p is
minimal in the corresponding definition.

2.2 Generalized Rauzy fractal
We recall here the notion of generalized Rauzy fractal [37], which will be useful in the construction of
the automaton defined in Section 3.2. Rauzy fractals were first introduced by Rauzy in [37, 38], then by
Thurston in [47]. They provide a geometrical representation of the dynamical system associated with a
substitution. In the framework of numeration, they are called central tiles by Akiyama [1, 2, 3].

Let β be a hyperbolic Perron number of degree d, and let µβ(X) = Xd −
d
∑

i=1

aiX
d−i be the minimal

polynomial of β over Z. Let Mβ be the companion matrix of µβ, defined as follows:

Mβ =

















a1 . . . . . . . . . ad

1 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 . . . 0 1 0

















.

It is possible to describe Rd as the direct sum of the stable sub-spaces {Hj}j∈J with D, where Hj is
expanding when associated with |αj | > 1, contracting when associated with |αj | < 1, and where D is the
eigenspace associated with β. Note that Hj ' R when αj ∈ R, Hj ' C otherwise. There exists −→w ∈ D
and a base of H = ⊕

j∈J
Hj constituted by r +2s complex eigenvectors (−→vj )j∈[[1,r+2s]], which can be chosen

such that the following equalities hold:

−→e1 =

r+2s
∑

j=1

−→vj + −→w ,

∀j ∈ [[1, s]], ∀i ∈ [[1, d]], vr+j [i] = vr+s+j [i],

where −→e1 denotes the first vector in the canonical basis of Zd, vk[i] denotes the i-th coordinate of −→vk ∈
Rr × Cs and z 7−→ z is the standard conjugacy on C. These relations allow us to define the projections
{−−→pHj

}j∈J and −→pD on each associated subspace along the direct sum of the others, and the coordinates
{pHj

}j∈J and pD which satisfy for all Y ∈ Rd:

−−→pHj
(Y ) = pHj

(Y )−→vj for all j ∈ [[1, r]],

−−→pHj
(Y ) = pHj

(Y ) Re(−→vj ) for all j ∈ [[r + 1, r + s]].

For all j ∈ J , we define τj as the field morphism: Q(β) → Q(αj), β 7−→ αj . We denote by τ the map:
Q(β) → Rr × Cs ' Rd−1, x 7−→ (τ1(x), . . . , τr+s(x)).

The map Φ : AZ

β −→ Rd is defined by the following relations, where u = . . . u0.u1 . . . ∈ AZ

β :

pHj
(Φ(u)) =

∑

i∈N

u−iα
i
j when |αj | < 1,

pHj
(Φ(u)) = −

∑

i∈N∗

uiα
−i
j when |αj | > 1,

pD(Φ(u)) = −
∑

i∈N∗

uiβ
−i.

We explain in Remark 3.2 the reason for the minus sign.

Let X+
β , X−

β and Xβ denote the sets which respectively consist of respectively right-sided, left-sided and
two-sided admissible sequences.
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φ

φ−1

−1

−1 −φ−1

Fig. 1: Generalized Rauzy fractal for the Fibonacci number

Fig. 2: Rauzy fractal for the Tribonacci number

Remark 2.1. The notation Xβ usually denotes a compact metric space. This is not the case here, since Xβ

does not contain 0∞.d∗β(1).

For any hyperbolic Perron number β, the set
⋃

u∈Xβ

{Φ(u)} is a bounded subset of Rd.

Definition 2.2. Let β be a hyperbolic Perron number. The set
⋃

u∈Xβ

{Φ(u)}, denoted by Rβ , is called

generalized Rauzy fractal.

Example 2.3. The generalized Rauzy fractal defined by the Fibonacci numeration is depicted in Figure 1.
One has Rβ = [−1, φ−1] × [−1, 0] ∪ [φ−1, φ] × [−φ−1, 0].

In the particular case where β is a Pisot number, the set
⋃

u∈X−

β

{Φ(u)} is a compact set.

Definition 2.4. Let β be a Pisot number. The set Tβ =
⋃

u∈X−

β

{Φ(u)} is called Rauzy fractal or central tile.

Note that, for any Pisot number β, Tβ is a subset of H ' Rd−1 ' Rr × Cs, whereas Rβ is a subset of
Rd.

Remark 2.5. For any Pisot number β, Tβ is the projection of Rβ on ⊕
j∈J

Hj along D. Hence Tβ =

{τ(Z+
β )}.

Example 2.6. The Rauzy fractal defined by dβ(1) = 0.111, known as the Tribonacci fractal, is depicted in
Figure 2; Tβ is the closure of {

∑

i∈N

uiα
i; ui ∈ {0, 1}, uiui+1ui+2 6= 111 for any i ∈ N}.
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3 Arithmetic automaton for a hyperbolic Perron number
In this section, we focus on expansions of 0 in base β, that is, sequences (ui)i≥N for some N ∈ Z, taking
values in a finite subset of Z, which satisfy

∑

i≥N

uiβ
−i = 0.

Let us recall that we may set missing terms to 0, considering that sequences are actually elements of AZ

β .

First, we give in Section 3.1 a geometric representation of two-sided sequences due to Lemma 3.1.
Indeed, these representations belong to a bounded subset of Rd (Lemma 3.3). In Section 3.2, we construct
a finite automaton G. We see in Section 3.3 that expansions of 0 in base β defined on A′β = [[−2bβc, bβc]]
are represented by paths and loops in G.

3.1 Representation of sequences in Rd

From now on, we assume that β is a hyperbolic Perron number, except explicit mention of an opposite
hypothesis.

Let x and y be two positive β-integers. We denote by (ui)i∈Z, (vi)i∈Z and (wi)i∈Z the respective β-
expansions of x, y and x + y, setting the value 0 to the missing digits.

Let X ′
β = {(wi − ui − vi)i∈Z; (ui)i∈Z, (vi)i∈Z, (wi)i∈Z ∈ Xβ}. Let L′

β be the language which consists
of factors of elements in X ′

β . The sequence (u′
i)i∈Z, defined by u′i = wi − ui − vi for all i ∈ Z, belongs to

X ′
β . Moreover, (u′

i)i∈Z is an expansion of 0 in base β defined on the alphabet A′
β = [[−2bβc, bβc]], with

u′
i = 0 for any i ≤ li(x + y).
We are interested in real numbers having a finite or ultimately periodic β-expansion which are sums of

two β-integers. Hence, assume now that dβ(x + y) is either finite or ultimately periodic.
If dβ(x + y) is finite, then (u′i)i∈Z consists of only finitely many non-zeros elements. Hence

∑

i∈Z

u′
iα

−i
j

is defined for all j ∈ J and equals 0 (since τj(0) = 0). We deduce that the following relations hold when
dβ(x + y) is finite:

∑

i∈Z

u′
iβ

−i = 0, (2)

∑

i∈Z

u′
iα

−i
j = 0, for all j ∈ J. (3)

If (u′
i)i∈N∗ is ultimately periodic, of preperiod n and of period p, we consider the rational fraction R(X) =

−li(x+y)
∑

i≤n

u′
iX

−i + Xp

Xp−1 (
n+p
∑

i=n+1

u′
iX

−i). Clearly, R admits β and any of its algebraic conjugate αj as roots.

Therefore (2) also holds, and we obtain using the rational fraction R a corresponding relation for (3).

Let fi be the map defined as follows for any i ∈ Z.

fi : Rd → Rd, X 7−→ MβX + i −→e1 . (4)

Lemma 3.1. Let u = (ui)i∈Z be a two-sided sequence taking values in A′
β . Then Φ(S(u)) = fu1

(Φ(u)).

Proof. Let us recall that A′
β is the finite alphabet [[−2bβc, bβc]], and that S, the shift map naturally defined

on AN
∗

β , can be defined on any alphabet and extended to two-sided sequences. Let u = (ui)i∈Z be a
two-sided sequence taking values in A′

β . Let Y1 = Φ(u). We have the following relations:

pHj
(Y1) =

∑

i∈N

u−iα
i
j when Hj is contracting,

pHj
(Y1) = −

∑

i∈N∗

uiα
−i
j when Hj is expanding,

pD(Y1) = −
∑

i∈N∗

ukβ−i.
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Let Y2 = Φ(S(u)). We get:

pHj
(Y2) =

∑

i∈N

u−i+1α
i
j when Hj is contracting,

pHj
(Y2) = −

∑

i∈N∗

ui+1α
−i
j when Hj is expanding,

pD(Y2) = −
∑

i∈N∗

ui+1β
−i.

We deduce the following relations between Y1 and Y2:

pHj
(Y2) = gj(pHj

(Y1)),

pD(Y2) = h(pD(Y1)),

where for any j ∈ J , gj is the affine map: C −→ C, x 7−→ αjx + u1, and h the affine map: C −→ C,
x 7−→ βx + u1. Hence Y2 = fu1

(Φ(u)), which ends the proof. Note that the alphabet A′
β does not play a

particular role, and can be replaced by any finite subset of Z.

Let us note that, for any j ∈ J , Z[αj ] is stable under gj , and that Z[β] is stable under h.

Remark 3.2. There are two reasons for the minus sign which occurs in the definition of pHj
when |αj | > 1,

and pD, and in the definition of Rβ as well. First, if we had defined pHj
(Φ(u)) =

∑

i∈N∗

uiα
−i
j for any

j ∈ J , then the relation between Y1 = Φ(u) and Y2 = Φ(S(u)) would be pHj
(Y2) = αjpHj

(Y1) − u1

when |αj | > 1. Hence the relation τj ◦ h = gj would not hold for any j ∈ J , and it would not be possible
to define an affine map on Rd for which Y2 is the image of Y1. Secondly, let u be a finite expansion of 0 in
base β; one has

∑

i∈N

u−iβ
i = −

∑

i∈N∗

uiβ
−i. Since pHj

(Φ(u)) = −
∑

i∈N∗

uiα
−i
j when Hj is expanding, we

have pHj
(Φ(u)) =

∑

i∈N

u−iα
i
j . Hence we do not have to separate the two cases of expanding or contracting

eigenvalues, since pHj
(Φ(u)) = τj(pD(Φ(u))) for all j ∈ J .

The following lemma allows us to represent two-sided sequences defined on A′
β as elements which

belong to a compact subset of Rd.

Lemma 3.3. Let u = (ui)i∈Z be a two-sided sequence defined onA′
β . We then have the following relations:

if |αj | > 1, then |
∑

i∈N∗

uiα
−i
j | is bounded by

2bβc

|αj | − 1
, (5)

if |αj | < 1, then |
∑

i∈N

u−iα
i
j | is bounded by

2bβc

1 − |αj |
. (6)

Proof. First, since (ui)i∈Z takes values in the alphabet A′
β , we have |ui| ≤ 2bβc for all i ∈ Z. If

|αj | > 1, then
∑

i∈N∗

uiα
−i
j is well defined and satisfies |

∑

i∈N∗

uiα
−i
j | ≤ 2bβc

∑

i∈N∗

|αj |
−i, hence |

∑

i∈N∗

uiα
−i
j | ≤

2bβc|αj |−1

1−|αj |−1 . If |αj | < 1, then
∑

i∈N

u−iα
i
j satisfies |

∑

i∈N

u−iα
i
j | ≤ 2bβc

∑

i∈N

|αj |
i.

Remark 3.4. Relations that occur in Lemma 3.3 provide inequalities satisfied by images under Φ of se-
quences defined on A′

β . If we are looking for inequalities satisfied by images under Φ of elements of X ′
β ,

better upper bounds than those of relations (5) and (6) can be computed since one has actually Φ(u) ∈ R′
β ,

where R′
β = {z − x − y; x, y, z ∈ Rβ}. The use of more accurate inequalities improves the algorithmic

process of the construction of the arithmetic graph that we define in Section 3.2; for more details, see [11].



10 Bernat Julien

−0.001

0.101

0.011

0.01

0.001

−0.101

−1 −0.11

−0.011

−0.1

0.1

1 0.11

0

0 1 −1

−0.01

Fig. 3: Arithmetic automaton for the Tribonacci number

3.2 Automaton of expansions of 0 in base β

Under the assumption that β is a hyperbolic Perron number, we will see that it is possible to compute the
set of the β-fractional parts of sums of two β-integers, using a slightly modified arithmetic automaton.
The notion of arithmetic automaton is introduced by Rauzy [38] and studied by Siegel [44]. Roughly
speaking, an arithmetic automaton is defined for a unimodular substitution of Pisot type σ. The states of
this automaton can be denoted by elements of Z[β−1]. Each edge of the automaton represents the action of
an affine map, and is labelled by a digit that belongs to the alphabet [[−bβc, bβc]], where β is the dominant
eigenvalue of Mσ , the incidence matrix of σ. The loops and ultimately periodic paths in this automaton are
labelled by expansions of 0 whose letters belong to the alphabet [[−bβc, bβc]].

If we add the Parry condition on infinite paths in an arithmetic automaton, we obtain an automaton called
injectivity automaton. This automaton enables the determination of elements in Rd−1 which belong to the
fractal boundary of at least two tiles in the periodic tiling of Rd−1 defined by Tβ , in the case where such a
tiling exists.

Figure 3 shows the arithmetic automaton for the Tribonacci case, constructed in [32].

Let us see how to adapt the construction of the arithmetic automaton, in order to characterize the β-
fractional parts that may appear when one adds two β-integers as paths in an automaton. Starting from
V0 = {0} ⊂ Zd, we define the sequence (Vn)n∈N of subsets of Zd by the following rule. Let us recall that
the maps fi are defined in (4).

For all n ∈ N, Vn+1 =
(

∪
i∈A′

β

fi(Vn) ∪ Vn

)

∩ R′
β . (7)

Lemma 3.5. The sequence (Vn)n∈N is stationary.

Proof. By construction, for any n ∈ N, Vn is a subset of Zd and is included in R′
β , which is a bounded

subset of Rd. However, Zd ∩ R′
β is finite as the intersection of a bounded set and a discrete set. Since

(Vn)n∈N is an increasing sequence for the inclusion, there exists R ∈ N such that VR = VR+1, hence
Vn = VR for all n ≥ R.
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Fig. 4: An example of a loop in G for the Tribonacci case

Definition 3.6. We define the automaton of expansions in base β on A′
β as G = (VR, E), with E =

VR × VR ×A′
β , where (s, s′, i) ∈ E if and only if s′ = fi(s).

Note that, since the restriction of pD to Zd is one-to-one, the relation pD(s′) = βpD(s) + i is equivalent
to s′ = Mβs + i−→e1 for all states s, s′ ∈ Zd.

Remark 3.7. The states in G are elements of Zd which belong to a bounded set defined by relations of

Lemma 3.3. We deduce from these relations that 3
r+s
∏

j=1

2bβc
1−|αj | is an upper bound for N , the number of

states in G. Additionally, since G is deterministic by construction, and since the labels of E take values
in [[−2bβc, bβc]], the number of edges in G is less than (3bβc + 1)N . See [4] for remarks concerning the
order of growth of N .

Now, let us see the connection between β-fractional parts, either finite or ultimately periodic, that occur
as the sum of two β-integers, and expansions of 0 defined on the alphabet A′

β = [[−2bβc, bβc]] which are
either finite or ultimately periodic.

3.3 Ultimately periodic paths and loops
Proposition 3.8. Let n ∈ N∗. Let ((si, si+1, ui))i∈[[1,n]] be a finite path in G. Then, one has pD(sn+1) =

βnpD(s1) +
n
∑

i=1

uiβ
n−i.

Proof. By construction, for any i ∈ [[1, n]], (si, si+1, ui) is an edge in G if and only if si+1 = fui
(si).

Hence, si+1 = fun
◦ . . . ◦ fu1

(s1), and we get:

sn+1 = Mn
β s1 +

n
∑

i=1

uiM
n−i
β

−→e1 . (8)

Since for all i ∈ [[1, n]], uiM
n−i
β ∈ Md(Z), and since the restriction of pD to Zd is one-to-one, this relation

is equivalent to: pD(sn+1) = βnpD(s1) +
n
∑

i=1

uiβ
n−i.

Let us recall that, by construction of VR, any state s in G may be obtained as the image of 0 under
the composition of finitely many maps (fi)i∈A′

β
. Hence, as a particular case of Proposition 3.8, if the

state {s} ∈ VR is obtained as the image of the state {0} under the action of fun
◦ . . . ◦ fu1

, one has

pD(s) =
n
∑

i=1

uiβ
n−i.

We make the connection between the search of expansions of 0 in base β and the determination of loops
or ultimately periodic paths in G thanks to Propositions 3.9 and 3.11.
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Proposition 3.9. Let ((si, si+1, ui))i∈N∗ be an infinite path in G. Then (−ui)i∈N∗ is an expansion of
pD(s1) in base β.

Proof. Let ((si, si+1, ui))i∈N∗ be an infinite path in G. According to Proposition 3.8, one has for any
n ∈ N∗:

pD(s1) = β−npD(sn+1) −

n
∑

i=1

uiβ
−i.

Since G admits only finitely many states, there exists N > 0 such that |pD(s)| < N for any state s.

Hence |
n
∑

i=1

uiβ
−i| < Nβ−n for any n ∈ N∗ and pD(s1) = lim

n→+∞

n
∑

i=1

(−ui)β
−i, that is, (−ui)i∈N∗ is an

expansion of pD(s) in base β.

As a particular case, we obtain the following corollary.

Corollary 3.10. For any state s1 in G, there exists at most an infinite path ((si, si+1, ui))i∈N∗ in G such
that (ui)i∈N∗ is admissible.

Proof. Let s1 = s′1 be a state in G. Suppose that there exist two distinct infinite paths ((si, si+1, ui))i∈N∗

and ((s′i, s
′
i+1, vi))i∈N∗ in G, such that (ui)i∈N∗ and (vi)i∈N∗ are admissible. Since these infinite paths are

distincts, there exists n ∈ N such that sn = s′n and sn+1 6= s′n+1, hence un 6= vn. Due to Proposition 3.9,
one has pD(−s1) =

∑

i∈N∗

uiβ
−i =

∑

i∈N∗

viβ
−i, that is, (ui)i∈N∗ and (vi)i∈N∗ are distincts β-expansions of

pD(−s1), which is absurd.

The study of ultimately periodic paths and loops which occur in G allows us to determine the finite and
ultimately periodic expansions of 0 in base β on A′

β , thanks to the following proposition. Let us remind
that, for x ∈ Fin(β) with dβ(x) = u−N . . . u0.u1 . . . uN , li(x) and lf (x) respectively denote the lengths
of the β-integer part and the length of the β-fractional part of x, that is, li(x) = N + 1 and lf (x) = M .

Proposition 3.11. Let x, y ∈ Z+
β . Set N = li(x+y) and N ′ = lf (x+y). Let (ui)i∈Z, (vi)i∈Z and (wi)i∈Z

be respectively the β-expansions of x, y and x + y. Let (u′
i)i∈Z be defined by u′

i+li(x+y) = wi − ui − vi

for all i ∈ Z. Then (u′
i)i∈Z labels a path in G starting from the state {0}. Moreover, if x+ y ∈ Per(β), this

path is ultimately periodic; if x + y ∈ Fin(β), this path may be represented by a loop.

Proof. Let x, y ∈ Z+
β . Set N = li(x + y) and N ′ = lf (x + y). Let (ui)i∈Z, (vi)i∈Z and (wi)i∈Z be

respectively the β-expansions of x, y and x + y. Let (u′
i)i∈Z be defined by u′

i+li(x+y) = wi − ui − vi for
all i ∈ Z. Since the β-expansions of x and y are finite, and since x+y ≥ max(x, y), one has wi−ui−vi for
any i ≤ −li(x + y). As a consequence, the left-sided part of u′ consists of zeros, that is, Φ(S−k(u′)) = 0
for any k ∈ N; due to Proposition 3.9, (u′

i)i∈N∗ is an expansion of 0 in base β. Therefore we can assume
that expansions of 0 are represented in the automaton G by paths whose starting point is the fixed point of
f0, that is, the state {0}.

Since the restriction of pD to Zd is one-to-one, there exists a sequence (si)i∈N∗ of elements in Zd such
that, for any i ≥ 2, si is obtained as the image of s1 = {0} under the maps fu′

i−N−1
◦ . . . ◦ fu′

1−N
. Due to

Lemma 3.1, one has Φ(Si(u′)) = fu′

i−N−1
◦ . . . ◦ fu′

1−N
(Φ(u′)) for any i ∈ N. Hence, by construction of

VR, (si)i∈N∗ consists of states in G.
Clearly, if x + y ∈ Per(β), then (u′

i)i∈Z is ultimately periodic. If x + y ∈ Fin(β), one has u′
k = 0 for

any k ≥ lf (x+ y)+1, hence sk = 0 for any k ≥ 2+ li(x+ y)+ lf(x+ y), and we obtain a loop of length
1 + li(x + y) + lf (x + y).

4 Finiteness of ultimately periodic β-fractional parts for sums or
products of two β-integers

The automaton G previously constructed contains states and edges that are not used in order to characterize
expansions of 0 in base β that are neither finite nor ultimately periodic. Therefore we define in Section
4.1 an algorithmic method of reduction for G. Actually, this method is not needed in our study, but it may
improve in a significant way the algorithmic construction of β-fractional parts of sums of β-integers. In
Section 4.2, we make a connection between the finiteness property and the property of connectedness for
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G+
β . Then, we consider the case of the addition of two positive β-integers in Section 4.3, and the case of

the product of two β-integers in Section 4.4. Finally, we prove in Section 4.5 the finiteness of L⊕ and L�.

4.1 Reduction of G

Due to Proposition 3.11, expansions of finite or ultimately periodic β-fractional parts of the sum of two
β-integers label loops and ultimately periodic paths in G. However, we are only interested in loops and
ultimately periodic paths which are labelled by sequences in X ′

β . Indeed, only these sequences may provide
expansions in base β on the alphabet A′

β , constructed digit by digit, for z − x − y, with x, y ∈ Fin(β) and
z ∈ Per(β). The algorithm G defined in Section 3.2 may compute an automaton with useless states and
edges, in the sense that G may contain states and edges that are not used by any loop or ultimately periodic
path which starts from {0}. Let us see how to prune G.

First, we remove recursively the states of G which are not the initial state of any edge, and the edges
which admit those removed states as terminal state. This rule removes recursively the states of G which
are never reached by an infinite path starting from the state {0}. We obtain at this point G0, the connected
component of G which contains the state {0}. We denote by (R1) the rule which consists in extracting the
connected component of a subgraph of G which contains {0}.

We do not have used any admissibility condition in the construction of G so far. Therefore we need now
to define a computational rule in order to remove the states and the edges that are only used by ultimately
periodic paths or loops which are not labelled by elements of L′

β , the language of factors of elements in
X ′

β . Bertrand has proven in [13] that β is a Parry number if and only if Lβ is recognizable by a finite
automaton. In this case, L′

β is recognizable by the triple cartesian product automaton which recognizes
Lβ , and it is possible to determine whether a ultimately periodic path or a loop in G0 belong to L′

β . When
β is a hyperbolic Perron number that is not a Parry number, we cannot recognize L′

β by a finite automaton.
In this case, it is not possible to compute effectively the ultimately periodic paths in G0.

The rule which consists of removing edges and states that are not elements of any loop or ultimately
periodic path labelled by a sequence of L′

β , that we denote by (R2), can be performed by an algorithmic
process when β is a Parry number. The graph G1 that we obtain after having applied (R2) to G0 is con-
nected, since for any edge (s, s′, i) of G1, there exists a ultimately periodic path or a loop which contains
(s, s′, i).

Definition 4.1. We define G+
β as the connected component of G containing {0}, such that, for any edge

(s, s′, l), there exist an infinite path ((si, si+1, ui))i∈N in G and i ∈ N∗ such that (s, s′, l) = (si, si+1, ui).

Note that if we want to consider only finite expansions of 0 in base β, we have to consider the strongly
connected component, instead of the connected component, of G+

β which contains {0}, and whose loops
are labelled by elements of L′

β .

Remark 4.2. In order to construct the reduced automaton G+
β , we can commute the order of application

of the rules (R2) and (R1) to G. However, since the admissibility condition associated with L′
β is difficult

to compute, it is more convenient from a practical point of view to perform first (R1).

4.2 Connection with the finiteness property

Let us see a connection between the connectedness of G+
β and the (F) property. The following proposition

provides a sufficient condition for having the finiteness property (F) not satisfied, that is, Fin(β) 6= Z[β−1].
We recall that several comments concerning (F) are given in the introduction.

Proposition 4.3. If there exist a non trivial ultimately periodic path ((si, si+1, w
′
i))i∈N∗ in G+

β such that

(w′
i)i∈N∗ ∈ X ′+

β , and N ∈ N such that (w′
i+N )i∈N∗ ∈ X+

β , then property (F) does not hold.

Proof. Let ((si, si+1, u
′
i))i∈N∗ be a ultimately periodic path in G+

β , such that (u′
i)i∈N∗ ∈ X ′+

β . Assume

that there exists N ∈ N such that (u′
i+N )i∈N∗ ∈ X+

β . Since (u′
i)i∈N∗ belongs to X ′+

β , there exist (ui)i∈N∗ ,

(vi)i∈N∗ and (wi)i∈N∗ ∈ X+
β such that ∀i ∈ N∗, u′

i = wi − ui − vi. Let x, y and z be the real numbers

such that dβ(x) = (ui)i∈N∗ , dβ(y) = (vi)i∈N∗ and dβ(z) = (wi)i∈N∗ . By hypothesis, (u′
i+N )i∈N∗ ∈ X+

β .
Hence one may set u′

i = wi and ui = vi = 0 for any i ≥ N ; the β-expansions of x and y are then finite,
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and x′ = βNx and y′ = βNy belong to Z+
β . Since dβ(x′ + y′) = (u′

i+N )i∈N∗ ∈ X+
β is ultimately periodic

by hypothesis, either the sequence (u′
i+N )i∈N∗ consists of 0, or one has x′ + y′ /∈ Fin(β).

Note that the assumption of Proposition 4.3 implies that G+
β is a connected graph, however we do not

know whether G+
β is strongly connected. Actually, if G+

β is a strongly connected graph, then for any state
{s} there exists k ∈ N∗ and a loop ((si, si+1, ui))i∈[[1,k]] which starts from {0} in G such that si = s.
Since (ui)i∈N∗ is a finite expansion of 0 in base β, we deduce pD(s) ∈ Fin(β).

There could exist β such that, for any x, y ∈ Zβ , the sum x + y either belong to Fin(β) or Q(β) r

Per(β), with examples respectively belonging to each of these two sets. However, if β is a Pisot number,
Q(β) r Per(β) = ∅. Hence (F) holds if and only if G+

β is a strongly connected graph.

4.3 Addition of two positive β-integers
Proposition 4.4. Let β be a hyperbolic Perron number. Let z ∈ [0, 1[ and (wi)i∈N∗ = dβ(z).

If z ∈ Fin(β), then there exist x, y ∈ Z+
β such that z = {x + y}β if and only if there exist a loop

((si, si+1, w
′
i))i∈[[1,n]] in G+

β starting from {0} and k ∈ N∗ such that, for all i ∈ [[1, n]], w′
i+k = wi.

If z ∈ Per(β), then there exist x, y ∈ Z+
β such that z = {x + y}β if and only if there exist a ultimately

periodic path ((si, si+1, w
′
i))i∈N∗ in G+

β starting from {0}, and k ∈ N such that for all i ∈ N∗, w′
i+k = wi.

Proof. We reduce the proof to the case where {x + y}β is ultimately periodic, since the finite case is a
particular subcase and does not require any additional argument. As usual, let x, y ∈ Z+

β and (ui)i∈Z,
(vi)i∈Z, (wi)i∈Z denote respectively dβ(x), dβ(y) and dβ(x + y). Let (u′

i)i∈Z be defined by u′i = wi −
ui − vi for all i ∈ Z. If x + y ∈ Per(β), (u′

i)i∈Z labels a ultimately periodic path starting from {0} in G+
β

due to Proposition 3.11.
On the other hand, let ((si, si+1, w

′
i))i∈N∗ be a path in G+

β starting from {0}. Assume that there exists
k ∈ N such that for all i ∈ N∗, w′

i+k = wi. Due to Proposition 3.9, (w′
i)i∈N∗ is an expansion of 0 in

base β. By construction of G+
β , any factor of (w′

i)i∈N∗ belongs to L′
β . As a consequence, there exist three

admissible sequences (ui)i∈Z, (vi)i∈Z and (wi)i∈Z such that w′
i+k = wi −ui − vi for all i ∈ Z. Moreover,

since w′
i+k = wi for all i ∈ N∗, one has ui − vi = 0 for all i ∈ N∗. Since (ui)i∈Z and (vi)i∈Z take values

in Aβ , which contains only non-negative elements, we get ui = vi = 0 for all i ∈ N∗. Hence (ui)i∈Z and
(vi)i∈Z are β-expansions of β-integers x and y, and (wi)i∈Z is the β-expansion of x + y; since (wi)i∈N∗ is
defined as the β-expansion of z, one gets z = {x + y}β.

Theorem 4.5. Let β be a hyperbolic Perron number. The set {dβ(x + y) finite or ultimately periodic;
x, y ∈ Z+

β } is finite. Furthermore, it is possible to compute effectively this set when β is a Parry number.

Proof. Let ((si, si+1, ui))i∈N∗ be an infinite path in G′β . Then, for any k ∈ N∗, (−uk+i)i∈N is an expansion
of sk in base β as seen in Proposition 3.9.

Due to Corollary 3.10, for any state si in G′
β , there exists at most one infinite path ((sk, sk+1, uk))k≥i

in G′
β such that (uk)k≥i satisfies the Parry condition. Moreover, since there are only finitely many states

in G′
β , any path ((sk, sk+1, uk))k∈N∗ such that (uk)k≥i satisfies the Parry condition is ultimately periodic.

Hence there are finitely many irreducible ultimately periodic paths in G′β that are labelled by an admissible
word. We may check for each of these paths whether the hypothesis introduced in Proposition 4.4 holds.
This provides only finitely many possible numbers which can be described as the β-fractional parts of the
sum of two positive β-integers.

Suppose additionally that β is a Parry number. Then the automaton which define the admissibility con-
dition is finite; the triple cartesian product of this automaton contains the automaton A′ which recognizes
expansions {(wi −ui − vi)i∈Z; (ui)i∈Z, (vi)i∈Z, (wi)i∈Z ∈ Xβ}. Hence A′ is finite; as a consequence, one
may effectively compute the loops that satisfy the hypothesis of Proposition 4.4.

In order to compute L⊕, we have to determine as well the possible paths which correspond to the
subtraction of two positive β-integers x and y, with x > y.

Proposition 4.6. Let β be a hyperbolic Perron number. The set {dβ(x − y) finite or ultimately periodic;
x, y ∈ Z+

β , x > y} is finite. Furthermore, it is possible to compute effectively this set when β is a Parry
number.

Proof. Let us see that the case of subtraction of two non-negative β-integers is essentially the same case
as the addition, and does not require additional ideas. Let x, y ∈ Z+

β , with x > y. Let z = x − y, and let
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(ui)i∈Z, (vi)i∈Z and (wi)i∈Z be the respective β-expansions of x, y and z. Then (wi + vi − ui)i∈Z is an
expansion of 0 in base β, and (wi)i∈N∗ = dβ({x − y}β).

Actually, we have to replace A′
β by [[−bβc, 2bβc]] in (7) to obtain a sequence of finite sets (V′

i )i∈N∗ ,
which is increasing for the inclusion and stationary as well. We construct then an automaton, where V ′

R are
the states and the edges (s, s′, i) corresponds to s′ = fi(s) whenever i ∈ [[−bβc, 2bβc]]. Easily, we obtain
similar versions for Propositions 3.8, 3.9, 3.11 and 4.4.

4.4 Multiplication of two β-integers

We study in this subsection the β-fractional parts of the product of two β-integers.

Proposition 4.7. Let β be a hyperbolic Perron number. Then the set of finite or ultimately periodic β-
fractional parts of the product of two β-integers is finite.

Proof. We may suppose without loss of generality that x, y ∈ Z+
β . Let dβ(x) = (ui)i∈Z, dβ(y) = (vi)i∈Z

and dβ(xy) = (wi)i∈Z. Suppose moreover that dβ(xy) is either finite or ultimately periodic. We have for
any j ∈ J the relation:

∑

k∈Z

(wk − w′
k)α−k

j = 0,

where the sequence (w′
k)k∈Z is defined by w′

−k =
k
∑

i=0

u−ivi−k if k ∈ N, w′
k = 0 otherwise.

Note that, unlike the case of addition, the sequence (w′
i)i∈Z does not take values on a finite alphabet.

However, since (ui)i∈Z and (vi)i∈Z take values in Aβ , we have w′
−i ∈ [[0, (i + 1)bβc2]] for all i ∈ N. This

means that, for any αj an algebraic conjugate of β such that |αj | > 1, the series
∑

i∈N

w′
−iα

i
j is absolutely

convergent, since the main term of this series is bounded in modulus by the product of a polynomial term
and a geometric term of modulus less than 1. Hence for all j ∈ J , there exists Bj ∈ R∗

+ such that
∑

i∈N

ν−i|αj |
i < Bj .

We retrieve an equation which provides a connection between the β-integer part and the β-fractional part
of xy, which is

∑

i∈N

(w−i − w′
−i)M

i
β
−→e1 = −

∑

i∈N∗

wiM
−i
β

−→e1 . (9)

Since (w−i)i∈N and (w′
−i)i∈N contain finitely many non-zero elements, the right hand side of (9) belongs

to Zd, and we get additionally the following relations:

if |αj | > 1, then |
∑

i∈N∗

wiα
−i
j | <

|αj |
−1

|αj | − 1
,

if |αj | < 1, then |
∑

i∈N

(w−i − w′
−i)α

i
j | < Bj +

1

1 − |αj |
.

As in the case of addition, the finite or ultimately periodic β-fractional parts of the product of two β-
integers label loops in an automaton with states that belong to the discrete lattice Zd and a bounded set
B ⊂ Rd defined by the previous inequalities. It follows that there are only finitely many finite β-fractional
parts of products of two β-integers.

Remark 4.8. As mentioned in the proof, the only noteworthy difference with the case of addition is that it
is not possible to compute {{xy}β; x, y ∈ Z+

β } since (w′
−i)i∈N may take infinitely many distinct values.

4.5 Finiteness of L⊕ and L�

In [9], it has been asked whether there exists a Perron number β such that L⊕ or L� are not finite. The
following theorem answers this question.

Theorem 4.9. Let β be a Perron number. Then L⊕ and L� are finite. If additionally β is a Parry number,
L⊕ is effectively computable.
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Proof. Let β be a Perron number. If β is hyperbolic, the result is a consequence of Theorem 4.5 and
Proposition 4.7.

Now, suppose that β is not hyperbolic, that is, there exists an algebraic conjugate αj of β such that
|αj | = 1. Since µβ(α−1) = µβ(αj) = 0, µβ is a reciprocal polynomial, hence µβ(β−1) = 0.

First, let us consider the case of the addition of two β-integers. Let us recall that lf (x) denotes the
length of the β-fractional part of x ∈ Fin(β). Suppose that L⊕ is not finite. This implies that there exists
a countable subset I of N∗ such that, for any k ∈ I , there exist x, y ∈ Z+

β such that lf (x + y) = k. Note

that, in this case, lf (βl(x + y)) = k − l for any l < k. Hence for any k ∈ N∗, there exist xk, yk ∈ Z+
β

such that lf (xk + yk) = k. We deduce that there exist a sequence (u(n))n∈N∗ , with u(n) = (u
(n)
i )i∈N∗ for

all n ∈ N∗, such that, for any n ∈ N∗:

1. (u
(n)
i )i∈Z ∈ X ′

β and (u
(n)
i )i∈N∗ ∈ X+

β ,

2. (u
(n)
i )i∈Z is a finite expansion of 0 in base β,

3. there exists xn > 0 such that dβ(xn) = (u
(n)
i )i∈N∗ and lf (xn) = n.

Let n ∈ N∗. Since (u
(n)
i )i∈Z contains finitely many non-zero digits for any n ∈ N∗, it defines an expansion

of 0 in base β, that is,
∑

i∈Z

u
(n)
i β−i = 0. However, β−1 is an algebraic conjugate of β, one has

∑

i∈Z

u
(n)
i βi = 0

as well, which is equivalent to
∑

i∈N∗

u
(n)
i βi =

∑

i∈N

u
(n)
−i β−i. Since lf (xn) = n implies u

(n)
n ≥ 1, the left-

hand side of the previous equality is greater than βn. On the other hand, since (u
(n)
i )i∈N∗ takes values in

Aβ , the right-hand side of the equality belongs is bounded, hence a contradiction. We deduce that L⊕ is
finite when β is a non-hyperbolic Perron number.

Assume now that L� is not finite. The only difference with the case of addition is that (u
(n)
i )i∈Z does

not take values in a finite alphabet. However, using the same argument as in Proposition 4.7, and using the
fact that β−1 is an algebraic conjugate of β by hypothesis, we obtain the same contradiction as in the case
of addition if we suppose that for any k ∈ N∗, there exist x, y ∈ Z+

β such that lf (xy) = k. Hence L� is
finite.

Remark 4.10. If β is not a Parry number, we do not know whether the algorithmic construction of the set
of finite β-fractional parts of the sum of two β-integers terminates.

5 Other related questions
In Section 5.1, we consider formal power series in β when β is a Pisot number. Since they define converging
series when we replace β by any of its algebraic conjugate, we construct in the same way as in Section 4
an automaton G′

β , which characterizes formal power series in β whose sequences of coefficients are both
admissible and ultimately periodic. Then, in Section 5.2, we give an explicit algebraic construction of
Thurston’s automaton, introduced at first in [47]. Finally, we construct in Section 5.3 the automaton G′β for
the Tribonacci case.

5.1 Formal power series in β

In [11], we studied the computation of L⊕ in the particular case of Tribonacci. We have proven that the
sum of two β-integers has a β-fractional part of length less or equal to 5, and that there exist two elements
of the associated Rauzy fractal T such that their sum admits an α-expansion of length 6. This can be seen
as a limit case, in the sense that, for any z ∈ T , there exists a sequence of β-integers (bi)i∈N such that
(zi)i∈N, the sequence of elements in T which satisfy pHj

(zi) = τj(bi) for all j ∈ J , tends to z. We see
here that the study of limit cases is related to the study of formal power series in β whose sequences of
coefficients consist of ultimately periodic sequences that are admissible. In the framework of graphs, this
is related to the study of an automaton G ′

β , defined below, similarly generated as in Section 3.2 but where
the sense of the edges are reverted.

In Section 4, we have constructed an automaton which recognizes finite or ultimately periodic expansions
of 0 in base β which are defined on the alphabet A′

β . Since β > 1, non-finite expansions of 0 in base β
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define formal power series in β that do not represent real numbers. However, when β is a Pisot number,
we obtain well defined converging series if we replace β by any of its algebraic conjugates αj . In the case
of a ultimately periodic expansion, this can be done using the field morphism τj , since ultimately periodic
expansions of 0 in base β characterize the elements of Q(β) in the Pisot case ([12, 42]). This is why
we consider mainly ultimately periodic expansions from now on. We will see that the limit cases in the
computation of L⊕ can be computed in an algorithmic way.

Assume now that β is a Pisot number of algebraic degree d. If we revert the sense of the edges in G,
the mirror image of (ui)i∈N∗ , where (ui)i∈N∗ labels a path in G, belongs to a compact subset of AN

∗

β . The

sequence (xk)k∈N∗ of elements of Rd defined by pHj
(xk) =

k
∑

i=0

di+1α
i
j is a sequence taking values in

the Rauzy fractal Tβ . Moreover, since β is a Pisot number, pHj
(xk) admits a limit for any j. Since Tβ

is closed, any formal power series in β whose coefficients are the terms of a ultimately periodic sequence
which belongs to Xβ can be represented in Rd−1 as an element which belongs to the associated Rauzy
fractal Tβ .

In order to compute the limit cases, that is, the β-fractional parts of sums of two ultimately periodic
formal power series in β whose coefficients satisfy the admissibility condition, we have to revert the edges
in the construction of G. We want here to obtain two-sided expansions of 0 with only finitely many non-
zero terms to the right, whereas we studied in Section 3 two-sided expansions of 0 with only finitely many
non-zero terms to the left. More precisely, since we revert the sense of reading, the algorithmic construction
of the automaton G ′ is the following, with V ′

0 = {0}:

for all n ∈ N, V ′
n+1 =

(

∪
k∈[[−2bβc,bβc]]

f−1
k (V ′

n) ∩ Zd
)

∩ 3R′
β. (10)

Remark 5.1. Note that β is a unit if and only if f−1
i (Zd) ⊂ Zd for any i ∈ Z. In this case, the definition of

V ′
n+1 in (10) does not require the presence of the intersection with Zd. This intersection is however needed

in the non-unit case, since f−1
u0

(Zd) ⊂ Qd is not sufficient to deduce anything about the finiteness of the
constructed automaton. We do not need to distinguish the two cases of a unit and a non-unit number in (7).

The automaton G′ can be pruned following the steps of reduction that are described in Section 4.1; we
obtain in the same way a reduced automaton G ′+

β . The loops of G′+
β are exactly the loops of G+

β labelled
by the mirror image of admissible words v, since the strongly connected component which contains {0}
in G does not change if we revert the sense of reading. However, since the sense of reading is significant
in the definition of the connected component of G which contains {0}, there is no connection between the
ultimately periodic paths in G+

β and those in G′+
β . Then, we find the set of limit cases by finding the finite

number of ultimately periodic paths in G ′+
β , that can be done following the results described in Section 4.

We detail in Section 5.3 the example of Tribonacci.

5.2 An effective construction of Thurston’s automaton
We retrieve here the known result that a Pisot number is a Parry number, see [12, 42]. We give an algebraic
construction of an automaton which is originally introduced by Thurston in [47].

We assume in this section that β is a Pisot number. As we have previously seen for the more general case
of a Perron numbers of degree d, we can describe Rd as D ⊕

j∈J
Hj . We recall that the map Φ : AZ

β → Rd

is defined as follows. For an admissible sequence u = (ui)i∈Z, we have pD(Φ(u)) = −
∑

i∈N

uiβ
−i, and

pHj
(Φ(u)) =

∑

i∈N∗

uiα
i
j for all j ∈ J . Additionally, Φ ◦S(u) = fui

◦Φ(u) as we have seen in Lemma 3.1,

and the coordinates of Φ are bounded both on D and on Hj for all j ∈ J . This implies that there exists a
compact set K ⊂ Rd such that for any u, Φ(u) ∈ K.

Let β be a Pisot number of degree d. Let dβ(1) = (ui)i∈N∗ . Let v = (vi)i∈N∗ be the sequence defined by
v1 = −1 and vi+1 = ui for any i ∈ N∗. The elements of (Φ(Sk(v)))k∈N∗ are the images of 1 under finitely
many maps (fi)i∈Aβ

; there exists an infinite path ((si, si+1, vi))i∈N∗ in G, with si = Φ(Si(v)) for any
i ∈ N∗. Since G+

β is finite, there exist n, p ∈ N such that sn = sn+p. However, since dβ(1) = (ui)i∈N∗ ,
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(ui+k)i∈N∗ is admissible for any k ∈ N. Due to Proposition 3.8, one gets pD(si+1) = T i
β(1) for all i ∈ N∗.

This implies that T n(1) = T n+p(1). Hence (ui)i∈N∗ is ultimately periodic, that is, β is a Parry number.

5.3 Construction of G ′+
β in the case of Tribonacci

Let us recall that the Tribonacci numeration system, introduced in Example 2.6, is defined by the positive
root of the polynomial X3 − X2 − X − 1. The finiteness property holds for this number system; as a
consequence, the connected component of G+

β which contains the state {0} is strongly connected, and G ′+
β

admits G+
β as a subgraph. Figure 5 represents the associated graph G ′+

β .

There exists a ultimately periodic path in G ′+
β which starts from the state {0} and reaches the state

{0.100011}. However, the state {0.100011} does not belong to the strong connected component of
G′+

β which contains the state {0}. Let us give an interpretation of this fact. The two-sided sequence
∞(11(−2))100011.0∞ is an expansion of 0 in base αj , although the sum is not defined in base β, and it
belongs to X ′

β . Indeed, there exists a loop of length 3 in G ′+
β which is labelled by the word 11(−2) ∈ L′

β ;
the states of this loops, among which {β−1 +β−5 +β−6}, do not belong to the strongly connected compo-
nent of G+

β which contains the state {0}. We deduce that the real number z = β−1 + β−5 + β−6 is a limit
case: it cannot be the β-fractional part of the sum of two β-integers, however there exist two elements x
and y, which belong in fact to the boundary of the associated Rauzy fractal, such that, among the possible
αj-expansions of their sum, one of them admits τj(z) = α−1

j + α−5
j + α−6

j as its αj-fractional part. We
check that, if we take x = y = 1

1−α3 , then x belongs to Tβ , and x+x admits three different αj -expansions;
among these αj-expansions, one of them admits 100011 as its αj-fractional part. See [11] for more details.

If we remove the states {0.0011}, {0.00011}, {0.100011} and {−0.10101} in G ′+
β , we check that the

remaining graph is strongly connected, that is, we obtain G+
β . The states s such that pD(s) ≥ 0 define the

possible β-fractional parts of the sum of two positive β-integers, which are:

{0, β−1, β−2, β−1 + β−2, β−3, β−1 + β−3, β−2 + β−3, β−1 + β−3, β−2 + β−4, β−1 + β−3 + β−5}.

We obtain thanks to a similar computation the set of β-fractional parts of the difference of two positive
β-integers. Note that, for any vertex of G ′+

β or G+
β , there exists an infinite loop using this vertex starting

from the state {0}, but the edge having for initial state {−β} and for final state {−1−β−1} cannot be used
in any infinite loop starting from the state {0}.

Remark 5.2. Similarly to what happens for the state {β−1 +β−5 +β−6}, the state {−β−1−β−3 −β−5}
belongs to G′+

β , but it does not belong to G+
β . This means that β−1 +β−3 +β−5 cannot be the β-fractional

part of the difference of two positive integers. However there exists (x, y) ∈ T 2 such that, among the
α-expansions of x − y, one of them has 0.10101 as its α-fractional part. By computation, we find that,
when x = 1+α

1−α3 and y = α2

1−α3 , then (x, y) ∈ T 2 and x − y = y + α−1 + α−3 + α−5.
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