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1. Introduction

Lyons [55] introduced rough paths to give a description of solutions to ordinary differ-
ential equation (ODEs) driven by external time varying signals which is robust enough 
to allow very irregular signals like the sample paths of a Brownian motion. His analysis 
singles out a rough path as the appropriate topological structure on the input signal with 
respect to which the solution of an ODE varies in a continuous way. Since its invention, 
rough path theory (RPT) has been developed very intensively to provide robust analysis 
of ODEs and a novel way to define solutions of stochastic differential equations driven 
by non semimartingale signals. For a comprehensive review see the book of Friz and 
Victoir [26] and the lecture notes of Lyons, Caruana and Lévy [56] or the more recents 
ones of Friz and Hairer [24]. RPT can be naturally formulated also in infinite-dimension 
to analyze ODEs in Banach spaces. This generalization is, however, not appropriate 
for the understanding of rough PDEs (RPDEs), i.e. PDEs with irregular perturbations. 
This is due to two basic facts. First, the notion of rough path encodes in a fundamental 
way only the nonlinear effects of time varying signals, without possibility to add more 
dimensions to the parameter space where the signal is allowed to vary in an irregular 



A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577–3645 3579
fashion. Second, in infinite dimension the action of a signal (even finite dimensional) can 
be described by differential (or more generally unbounded) operators.

Due to these basic difficulties, attempts to use RPT to study rough PDEs have been 
limited by two factors: the first one is the need to look at RPDEs as evolutions in 
Banach spaces perturbed by one parameter rough signals (in order to keep rough paths 
as basic objects), the second one is the need to avoid unbounded operators by looking 
at mild formulations or Feynman–Kac formulas or transforming the equation in order to 
absorb the rough dependence into better understood objects (e.g. flow of characteristic 
curves).

These requirements pose strong limitations on the kind of results one is allowed to ob-
tain for RPDEs and the proof strategies are very different from the classical PDE proofs. 
The most successful approaches to RPDEs do not even allow to characterize the solution 
directly but only via a transformation to a more standard PDE problem. The need of a 
mild formulation of a given problem leads usually to very strong structural requirements 
like for example semilinearity. We list here some pointers to the relevant literature:

• Flow transformations applied to viscosity formulation of fully non-linear RPDEs 
(including Backward rough differential equations) have been studied in a series of 
work by Friz and coauthors: Diehl and Friz [18], Friz and Oberhauser [25], Caruana 
and Friz [6], Diehl, Friz and Oberhauser [19], Caruana, Friz and Oberhauser [7] and 
finally Friz, Gassiat, Lions and Souganidis [22].

• Rough formulations of evolution heat equation with multiplicative noise (with vary-
ing degree of success) have been considered by Gubinelli and Tindel [33], Deya, 
Gubinelli and Tindel [16], Teichmann [61], Hu and Nualart [46] and Garrido-Atienza, 
Lu and Schmalfuss [27].

• Mild formulation of rough Burgers equations with spatially irregular noise have been 
first introduced by Hairer and Weber [38,39] and Hairer, Maas and Weber [37] leading 
to the groundbreaking work of Hairer on the Kardar–Parisi–Zhang equation [35].

• Solutions of conservation laws with rough fluxes have been studied via flow trans-
formation by Friz and Gess [23] and via the transformed test function approach 
by Lions, Perthame and Souganidis [52,50,51], Gess and Souganidis [29,30], Gess, 
Souganidis and Perthame [28] and Hofmanová [43].

Hairer’s regularity structure theory [36] is a wide generalization of rough path which 
allows irregular objects parametrized by multidimensional indices. A more conservative 
approach, useful in many situations but not as general, is the paracontrolled calculus 
developed by Gubinelli, Imkeller and Perkowski [31,32]. These techniques go around the 
first limitation. In order to apply them however the PDEs need usually to have a mild 
formulation where the unbounded operators are replaced by better behaved quantities 
and in general by bounded operators in the basic Banach spaces where the theory is set 
up. Existence and uniqueness of solutions to RPDEs are then consequences of standard 
fixed-point theorems in the Banach setting.
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PDE theory developed tools and strategies to study weak solutions to PDEs, that 
is distributional relations satisfied by the unknown together with its weak derivatives. 
From a conceptual point of view the wish arises to devise an approach to RPDEs which 
borrow as much as possible from the variety of tools and techniques of PDE theory. From 
this point of view various authors started to develop intrinsic formulations of RPDEs 
as which involves relations between certain distributions associated to the unknown and 
the rough paths associated to the input signal. Let us mention the work of Gubinelli, 
Tindel and Torrecilla [34] on viscosity solutions to fully non–linear rough PDEs, that of 
Catellier [8] on rough transport equations (in connection with the regularization by noise 
phenomenon), Diehl, Friz and Stannat [20] and finally of Bailleul and Gubinelli [1] on 
rough transport equations. This last work introduces for the first time apriori estimates 
for RPDEs, that is estimates which holds for any weak solution of the RPDE (though we 
should also mention the contribution [57], in which weak formulations are investigated 
for Young type equations driven by fractional Brownian motions with Hurst parameter 
H > 1/2). These estimates are crucial to derive control on various norms of the solution 
and obtain existence and uniqueness results, bypassing the use of the rough flow of 
characteristics which has been the main tool of many of the previous works on this 
subject.

In the present paper, we continue the development of general tools for RPDEs along 
the ideas introduced in [1]. In particular, just as in the latter reference, we will rely 
on the formalism of “unbounded rough driver” in order to model the central operators 
governing the (rough part of the) dynamics in the equation. In fact, through the results 
of this paper, we propose to extend the considerations of [1] along several essential 
directions:
• We include the possibility of an unbounded drift term in the model under consid-
eration (see Definition 2.5), and generalize the main apriori estimates accordingly (see 
Theorem 2.10). This improvement considerably extends the range of possible equations 
covered by the approach, and we will indeed raise two fundamental examples that could 
not have been treated in the framework of [1]: first a heat-equation model with lin-
ear transport noise (Section 2.4), then a more compelling (and much more thorough) 
application to scalar conservation laws with rough fluxes, as introduced below.
• We rephrase the theory in the p-variation language and thus not restrict to the more 
specific Hölder topology used in [1]. Again, this technical extension, which requires a 
careful follow-up of the controls involved in the procedure, will prove to be of a paramount 
importance in the study of our main conservation-law model (see Remark 2.8 for more 
details).
• We illustrate how to efficiently combine our general a priori estimates with Gronwall-
type arguments. Skimming over any book on PDEs indeed shows how fundamental such a 
combination is for any nontrivial result on weak solutions. Therefore our strategy requires 
the clear statement of an effective rough Gronwall lemma adapted to the p-variation set-
ting (see Lemma 2.12 below). While Gronwall-like arguments are well known in the rough 
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path literature, they have been essentially employed in the context of rough strong so-
lutions. Here we show how to use them to obtain finer information about rough weak 
solutions. This will require new ideas to overcome technical difficulties when working 
with test functions.
• We solve, via the constructions of Section 5.3, an important technical question left open 
in [1] about tensorization of the rough equation and the related space of test-functions 
(see Remark 5.5 for more details). For the sake of clarity, we made the whole tensorization 
argument self-contained with respect to [1].

Let us now elaborate on what will be the main illustration of the above technical 
contributions (and what will actually occupy the largest part of the paper), namely the 
rough extension of the so-called “conservation laws” equation.

Conservation laws and related equations have been paid an increasing attention lately 
and have become a very active area of research, counting nowadays quite a number of 
results for deterministic and stochastic setting, that is for conservation laws either of the 
form

∂tu + div(A(u)) = 0, (1.1)

(see [4,5,47,49,53,54,58,59]) or

du + div(A(u))dt = g(x, u)dW,

where the Itô stochastic forcing is driven by a finite- or infinite-dimensional Wiener 
process (see [2,9,15,13,14,21,42,44,48,60,62]). Degenerate parabolic PDEs were studied 
in [5,10] and in the stochastic setting in [3,12,41].

Recently, several attempts have already been made to extend rough path techniques to 
conservation laws as well. First, Lions, Perthame and Souganidis (see [50,52]) developed 
a pathwise approach for

du + div(A(x, u)) ◦ dW = 0,

where W is a continuous real-valued signal and ◦ stands for the Stratonovich product in 
the Brownian case, then Friz and Gess (see [23]) studied

du + div f(t, x, u)dt = F (t, x, u)dt + Λk(x, u,∇u)dzk,

where Λk is affine linear in u and ∇u and z = (z1, . . . , zK) is a rough driving signal. 
Gess and Souganidis [29] considered

du + div(A(x, u))dz = 0, (1.2)

where z = (z1, . . . , zM ) is a geometric α-Hölder rough path and in [30] they studied 
the long-time behavior in the case when z is a Brownian motion. Hofmanová [43] then 
generalized the method to the case of mixed rough-stochastic model
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du + div(A(x, u))dz = g(x, u)dW,

where z is a geometric α-Hölder rough path, W is a Brownian motion and the stochastic 
integral on the right hand side is understood in the sense of Itô.

It was observed already a long time ago that, in order to find a suitable concept of 
solution for problems of the form (1.1), on the one hand classical C1 solutions do not exist 
in general and, on the other hand, weak or distributional solutions lack uniqueness. The 
first claim is a consequence of the fact that any smooth solution has to be constant along 
characteristic lines, which can intersect in finite time (even in the case of smooth data) 
and shocks can be produced. The second claim demonstrates the inconvenience that often 
appears in the study of PDEs and SPDEs: the usual way of weakening the equation leads 
to the occurrence of nonphysical solutions and therefore additional assumptions need to 
be imposed in order to select the physically relevant ones and to ensure uniqueness. 
Hence one needs to find some balance that allows to establish existence of a unique 
(physically reasonable) solution.

Towards this end, Kružkov [49] introduced the notion of entropy solution to (1.1), 
further developed in the stochastic setting in [2,5,21,48,62]. Here we pursue the kinetic 
approach, a concept of solution that was first introduced by Lions, Perthame, Tadmor 
[54] for deterministic hyperbolic conservation laws and further studied in [4], [10], [47], 
[53], [54], [59], [58]. This direction also appears in several works on stochastic conservation 
laws and degenerate parabolic SPDEs, see [12], [15], [13], [14], [42], [41] and in the (rough) 
pathwise works [30], [29], [43], [50], [52].

Kinetic solutions are more general in the sense that they are well defined even in 
situations when neither the original conservation law nor the corresponding entropy in-
equalities can be understood in the sense of distributions. Usually this happens due to 
lack of integrability of the flux and entropy-flux terms, e.g. A(u) /∈ L1

loc. Therefore, fur-
ther assumptions on initial data or the flux function A are in place in order to overcome 
this issue and remain in the entropy setting. It will be seen later on that no such restric-
tions are necessary in the kinetic approach as the equation that is actually being solved 
– the so-called kinetic formulation, see (4.2) – is in fact linear. In addition, various proofs 
simplify as methods for linear PDEs are available.

In the present paper, we are concerned with scalar rough conservation laws of the 
form (1.2), where z = (z1, . . . , zM ) can be lifted to a geometric rough path of finite 
p-variation for p ∈ [2, 3). We will show how our general tools allow to treat (1.2) along the 
lines of the standard PDEs proof strategy. Unlike the known results concerning the same 
problem (see e.g. [29,50,52]), our method does not rely on the flow transformation method 
and so it overcomes the limitations inevitably connected with such a transformation. 
Namely, we are able to significantly weaken the assumptions on the flux coefficient A =
(Aij): we assume that aij = ∂ξAij and bj = divx A·j belong to W 3,∞, whereas in [29] the 
regularity of order Lip2+γ is required for some γ > 1

α with α ∈ (0, 1) being the Hölder 
regularity of the driving signal. For a 2-step rough path, i.e. in the range α ∈ (1

3 , 
1
2 ], 

it therefore means that almost five derivatives might be necessary. Nevertheless, let 
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us point out that even the regularity we require is not the optimal one. To be more 
precise, we conjecture that with a more refined method one could possibly only assume 
W γ,∞-regularity for the coefficients a, b with γ > p.

For the sake of a clearer presentation and in order to convey the key points of our 
strategy as effectively as possible, we will limit the scope of this paper to the first 
“non-trivial” rough situation, that is to p ∈ [2, 3). This being said, we are very confident 
with the possibility to extend the general pattern of this method to rougher cases, that 
is to any p � 2, at the price of a heavier algebraic machinery.

Outline of the paper

In Section 2 we fix notations, introduce the notion of unbounded rough driver and 
establish the main tools used thereafter: a priori estimates for distributional solutions 
to rough equations and a related rough Gronwall lemma. For pedagogical purpose, we 
then provide a first possible application of these results to a rough heat equation model 
with transport noise (Section 2.4). In Section 3, we discuss the theoretical details of 
the tensorization method needed to prove bounds on nonlinear functions of the solu-
tion. Section 4 introduces the setting for the analysis of conservations laws with rough 
fluxes. Section 5 uses the tensorization method to obtain estimates leading to reduc-
tion, L1-contraction and finally uniqueness for kinetic solutions. In Section 6 we prove 
some Lp-apriori bounds on solutions which are stable under rough path topology. These 
bounds are finally used in Section 7 to prove existence of kinetic solutions.

Acknowledgments

The authors would like to thank Dr. Mario Maurelli for some discussions about ten-
sorization and the anonymous referee for his careful reading and the extensive comments 
which helped them to substantially improve the presentation of the results.

2. General a priori estimates for rough PDEs

2.1. Notation

First of all, let us recall the definition of the increment operator, denoted by δ. If g
is a path defined on [0, T ] and s, t ∈ [0, T ] then δgst := gt − gs, if g is a 2-index map 
defined on [0, T ]2 then δgsut := gst − gsu − gut. The norm of the element g, considered 
as an element of a Banach space E, will be written indistinctly as:

‖g‖E , or N [g;E]. (2.1)

For two quantities a and b the relation a �x b means a � cxb, for a constant cx depending 
on a multidimensional parameter x.
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In the sequel, given an interval I we call control on I (and denote it by ω) any 
superadditive map on ΔI := {(s, t) ∈ I2 : s � t}, that is, any map ω : ΔI → [0, ∞[ such 
that, for all s � u � t,

ω(s, u) + ω(u, t) � ω(s, t).

We will say that a control is regular if lim|t−s|→0 ω(s, t) = 0. Also, given a control ω on 
an interval I = [a, b], we will use the notation ω(I) := ω(a, b). Given a time interval I, a 
parameter p > 0 and a Banach space E, we denote by V

p

1(I; E) the space of functions 
g : I → E for which the quantity

sup
(ti)∈P(I)

∑
i

|gti − gti+1 |p

is finite, where P(I) stands for the set of all partitions of the interval I. For any g ∈
V

p

1(I; E),

ωg(s, t) = sup
(ti)∈P([s,t])

∑
i

|gti − gti+1 |p

defines a control on I, and we denote by V p
1 (I; E) the set of elements g ∈ V

p

1(I; E) for 
which ωg is regular on I. We denote by V

p

2(I; E) the set of two-index maps g : I×I → E

with left and right limits in each of the variables and for which there exists a control ω
such that

|gst| � ω(s, t)
1
p

for all s, t ∈ I. We also define the space V
p

2,loc(I; E) of maps g : I × I → E such that 
there exists a countable covering {Ik}k of I satisfying g ∈ V

p

2(Ik; E) for any k. We write 
g ∈ V p

2 (I; E) or g ∈ V p
2,loc(I; E) if the control can be chosen regular.

Definition 2.1. Fix K � 1, p ∈ [2, 3), and I a finite interval. We will call a contin-
uous (weak geometric) p-rough path on I any element Z = (Z1, Z2) ∈ V p

2 (I; RK) ×
V

p
2

2 (I; RK,K) such that for all 1 � i, j � K and s < u < t ∈ I,

Z1,i
st = Z1,i

su + Z1,i
ut , Z2,ij

st = Z2,ij
su + Z2,ij

ut + Z1,i
suZ

1,j
ut , Z2,ij

st + Z2,ji
st = Z1,i

st Z
1,j
st .

Then we will say that a continuous (weak geometric) p-rough path Z = (Z1, Z2) is a lift 
of z ∈ V p

1 (I; RK) provided Z1
st = zt − zs.

Lemma 2.2 (Sewing lemma). Fix an interval I, a Banach space E and a parameter ζ > 1. 
Consider a map h : I3 → E such that h ∈ Im δ and for every s < u < t ∈ I,

|hsut| � ω(s, t)ζ , (2.2)
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for some regular control ω on I. Then there exists a unique element Λh ∈ V
1
ζ

2 (I; E) such 
that δ(Λh) = h and for every s < t ∈ I,

|(Λh)st| � Cζ ω(s, t)ζ , (2.3)

for some universal constant Cζ .

Proof. The proof follows that given in [24, Lemma 4.2] for Hölder norms, we only specify 
the modification needed to handle variation norms. Regarding existence, we recall that 
since δh = 0, there exists a 2-index map B such that δB = h. Let s, t ∈ [0, T ], such that 
s < t, and consider a sequence {πn; n � 0} of partitions {s = rn0 < · · · < rnkn+1 = t} of 
[s, t]. Assume that πn ⊂ πn+1 and limn→∞ sup0�i�kn

|rni+1 − rni | = 0. Set

Mπn
st = Bst −

kn∑
i=0

Brni ,rni+1
.

Due to superadditivity of ω it can be seen that there exists l ∈ {1, . . . , kn} such that

ω(rnl−1, r
n
l+1) �

2ω(s, t)
kn

.

Now we choose such an index l and transform πn into π̂, where π̂ = {rn0 < rn1 < · · · <
rnl−1 < rnl+1 < · · · < rnkn+1}. Then

M π̂
st = Mπn

st − (δB)rnl−1,r
n
l ,rnl+1

= Mπn
st − hrnl−1,r

n
l ,rnl+1

and hence

|M π̂
st −Mπn

st | � ω(rnl−1, r
n
l+1)ζ �

[
2ω(s, t)

kn

]ζ
.

Repeating this operation until we end up with the trivial partition π̂0 = {s, t}, for which 
M π̂0

st = 0 this implies that Mπn
st converges to some Mst satisfying

|Mst| = lim
n

|Mπn
st | � 2ζω(s, t)ζ

∞∑
i=1

i−ζ � Cζ ω(s, t)ζ . �

2.2. Unbounded rough drivers

Let p ∈ [2, 3) be fixed for the whole section. In what follows, we call a (p-)scale any 
4-uplet 

(
En, ‖·‖n

)
0�n�3 of Banach spaces such that En+1 is continuously embedded into 

En. Besides, for 0 � n � 3, we denote by E−n the topological dual of En.
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Definition 2.3. A continuous unbounded p-rough driver with respect to a scale(
En, ‖·‖n

)
0�n�3, is a pair A =

(
A1, A2) of 2-index maps such that

A1
st ∈ L(E−n, E−(n+1)) for n ∈ {0, 2} , A2

st ∈ L(E−n, E−(n+2)) for n ∈ {0, 1} ,

and there exists a regular control ωA on [0, T ] such that for every s, t ∈ [0, T ],

‖A1
st‖pL(E−n,E−(n+1)) � ωA(s, t) for n ∈ {0, 2} , (2.4)

‖A2
st‖

p/2
L(E−n,E−(n+2)) � ωA(s, t) for n ∈ {0, 1} , (2.5)

and, in addition, the Chen’s relation holds true, that is,

δA1
sut = 0, δA2

sut = A1
utA

1
su, for all 0 � s < u < t � T. (2.6)

Remark 2.4. Note that no geometricity assumption appears in Definition 2.3 as this is 
not needed for the proof of the general a priori estimate in Theorem 2.10 below.

To see how such unbounded drivers arise in the study of rough PDEs, let us consider 
the following linear heat-equation model:

du = Δu dt + V · ∇u dz, x ∈ RN , t ∈ (0, T ) ,

u(0) = u0,
(2.7)

where V = (V 1, . . . , V K) is a family of smooth vector fields on RN , and assuming for the 
moment that z = (z1, . . . , zK) : [0, T ] → RK is a smooth path. This (classical) equation 
can of course be understood in the weak sense: for any test-function ϕ ∈ W 1,2(RN ), it 
holds that

δu(ϕ)st =
t∫

s

ur(Δϕ)dr −
t∫

s

ur(div(V kϕ))dzr .

Using a basic Taylor-expansion procedure (along the time parameter) and when ϕ ∈
W 3,2(RN ), the latter expression can be easily developed as

δu(ϕ)st =
t∫

s

ur(Δϕ)dr + us(A1,∗
st ϕ) + us(A2,∗

st ϕ) + u�
st(ϕ) , (2.8)

where we have set (using Einstein summation convention)

A1,∗
st ϕ = −Z1,k

st div(V kϕ) , A2,∗
st ϕ = Z2,jk

st div(V jdiv(V kϕ)) , (2.9)

with Z1, Z2 defined by
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Z1,k
st = δzkst , Z2,jk

st =
t∫

s

δzjsrdzkr , (2.10)

and where u� morally stands for some third-order remainder (in time) acting on 
W 3,2(RN ).

Expansion (2.8) puts us in a position to extend the problem to a rough level and to 
motivate the above Definition 2.3. Assume indeed that z only admits a finite p-variation 
for a given p > 1, and consider its lift to a continuous (weak geometric) p-rough path 
Z = (Z1, Z2) (in the sense of Definition 2.1), for some fixed p ∈ [2, 3). Then the two 
operator-valued paths A1,∗, A2,∗ can be extended along the very same formula (2.9), or 
equivalently along the dual forms

A1
stu := Z1,k

st V k · ∇u , A2
stu := Z2,jk

st V k · ∇(V j · ∇u) , (2.11)

which, as one can easily check it, provides us with an example of an unbounded rough 
driver, for instance on the Sobolev scale En := Wn,2(RN ) (0 � n � 3).

Once endowed with A = (A1, A2), and along the same principles as in [1], our in-
terpretation of (2.7) (or (2.8)) will essentially follow Davie’s approach to rough systems 
([11]). Namely, we will call a solution any path u satisfying the property: for every 
0 � s � t � T and every test-function ϕ ∈ E3, the decomposition (2.8) holds true, for 
some E−3-valued 2-index map u� such that for every ϕ ∈ E3 the map u�

st(ϕ) possesses 
sufficient time regularity, namely, it has finite r-variation for some r < 1.

2.3. A priori estimates and rough Gronwall lemma

Before we turn to the main purpose of this subsection, namely the presentation of the 
mathematical tools at the core of our analysis, let us extend the previous considerations 
and introduce rough PDEs of the general form

dgt = μ(dt) + A(dt)gt , (2.12)

where A = (A1, A2) is an unbounded p-rough driver on a scale (En)0�n�3 and the drift 
μ, which possibly also depends on the solution, is continuous of finite variation.

Following the above ideas, we now give a rigorous meaning to such an equation.

Definition 2.5. Let p ∈ [2, 3) and fix an interval I ⊆ [0, T ]. Let A =
(
A1, A2) be a 

continuous unbounded p-rough driver on I with respect to a scale (En)0�n�3 and let 
μ ∈ V

1
1(I; E−3). A path g : I → E−0 is called a solution (on I) of the equation (2.12)

provided there exists q < 3 and g� ∈ V
q
3

2,loc(I, E−3) such that for every s, t ∈ I, s < t, 
and ϕ ∈ E3,

(δg)st(ϕ) = (δμ)st(ϕ) + gs({A1,∗
st + A2,∗

st }ϕ) + g�st(ϕ). (2.13)
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Remark 2.6. Throughout the paper, we will set up the convention that every 2-index 
map with a 
 superscript denotes an element of V 1/ζ

2,loc([0, T ], E−3) for some ζ > 1.

Remark 2.7. In the heat-equation model (2.13), we thus have g = u and μt(ϕ) = μ1
t (ϕ) :=∫ t

s
ur(Δϕ)dr. Note however that the formulation (2.13) allows the possibility of a very 

general drift term μ, as illustrated by our forthcoming conservation-law model (see Defi-
nition 4.5). In particular, the linearity of μ1 with respect to u would not play any essential 
role in our approach of (2.13), and therefore we believe that this strategy could also be 
useful in situations where μ is derived from a quasilinear elliptic or monotone operator. 
We do not intend to pursue here this line of research.

Remark 2.8. The consideration of p-variation topology (and not Hölder topology) in Def-
inition 2.5 will be essential in the study of our rough conservation-law model (Sections 4
to 7), for two fundamental (and linked) reasons. First, it is a well-known fact that, even 
in the smooth case, solutions to conservation laws are likely to exhibit discontinuities, a 
phenomenon which could not be covered by the Hölder setting. Besides, in the course of 
the procedure, we will be led to consider drift terms of the form μt(ϕ) := m(1[0,t) ⊗ ϕ)
(ϕ ∈ C∞(RN )), for some measure m on [0, T ] × RN that can admit atoms: such a map 
μ clearly defines a 1-variation path, but in general it may not be continuous.

Let us now present our first main result on an a priori estimate for the remainder g�
involved in (2.13). An important role will be played by the E−1-valued 2-index map g�

defined as

g�st(ϕ) := δg(ϕ)st − gs(A1,∗
st ϕ) . (2.14)

Observe that due to (2.13), this path is also given by

g�st(ϕ) = (δμ)st(ϕ) + gs(A2,∗
st ϕ) + g�st(ϕ).

In the following result we will make use of both these expressions, depending on the 
necessary regularity: the former one contains terms that are less regular in time but 
more regular in space (i.e. they require less regular test functions) whereas the terms in 
the latter one are more regular in time but less regular in space.

In order to balance this competition between time and space regularities, and following 
the ideas of [1], we shall assume that a suitable family of “smoothing” operators can be 
involved into the procedure:

Definition 2.9. We call a smoothing on a given scale (En)0�n�3 any family of operators 
(Jη)η∈(0,1) acting on En (for n = 1, 2) in such a way that the two following conditions 
are satisfied:

‖Jη − Id‖L(Em,En) � ηm−n for (n,m) ∈ {(0, 1), (0, 2), (1, 2)} , (2.15)
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‖Jη‖L(En,Em) � η−(m−n) for (n,m) ∈ {(1, 1), (1, 2), (2, 2), (1, 3), (2, 3)} . (2.16)

With this framework in mind, our main technical result concerning equation 
(2.12)–(2.13) can now be stated as follows:

Theorem 2.10. Let p ∈ [2, 3) and fix an interval I ⊆ [0, T ]. Let A = (A1, A2) be a 
continuous unbounded p-rough driver with respect to a scale (En)0�n�3, endowed with a 
smoothing (Jη)η∈(0,1) (in the sense of Definition 2.9), and let ωA be a regular control 
satisfying (2.4)–(2.5). Consider a path μ ∈ V

1
1(I; E−3) for which there exist two controls 

ω1
μ, ω

2
μ and a constant λ ∈ [p, 3] such that for every ϕ ∈ E3, s < t ∈ I, η ∈ (0, 1) and 

k ∈ {1, 2}, one has

|(δμ)st(Jηϕ)| � ω1
μ(s, t) ‖ϕ‖E1 + ηk−λω2

μ(s, t) ‖ϕ‖Ek
. (2.17)

Let g be a solution on I of the equation (2.13) such that g� ∈ V
q
3

2 (I; E−3), for some 
parameter

q ∈
[

3pλ
2p + λ

, 3
)
. (2.18)

Finally, let Gst = N [g; L∞(s, t; E−0)], where we recall that the notation N is introduced 
by (2.1), fix κ ∈ [0, 1p ) such that

1
2

(
3
p
− 3

q

)
� κ � 1

λ− 2

(
3
q
− 1 − 3 − λ

p

)
, (2.19)

and set

ω∗(s, t) := G
q
3
st ωA(s, t)

q
3 ( 3

p−2κ) + ω1
μ(s, t)

q
3ωA(s, t)

q
3p + ω2

μ(s, t)
q
3ωA(s, t)

q
3 ( 3−λ

p +κ(λ−2)).

(2.20)

Then there exists a constant L = L(p, q, κ) > 0 such that if ωA(I) � L, one has, for all 
s < t ∈ I,

‖g�st‖E−3 �q ω∗(s, t)
3
q . (2.21)

The high level of generality of this statement (that is, the involvement of three pa-
rameters κ, λ, q and two controls ω1

μ, ω
2
μ) will indeed be required in the sequel, and more 

precisely in the strategy displayed in Section 5 for rough conservation laws. However, let 
us here specialize this result for a more readable statement, which will turn out to be 
sufficient for our other applications (namely, in Section 2.4 and in Sections 6-7):

Corollary 2.11. In the setting of Theorem 2.10, consider a path μ ∈ V
1
1(I; E−3) for which 

there exists a control ωμ such that for all s < t ∈ I and ϕ ∈ E3,
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|(δμ)st(ϕ)| � ωμ(s, t) ‖ϕ‖E2 . (2.22)

Besides, let g be a solution on I of the equation (2.12) such that g� ∈ V
p
3

2 (I; E−3). Then 
there exists a constant L = L(p) > 0 such that if ωA(I) � L, one has, for all s, t ∈ I, 
s < t,

‖g�st‖E−3 �q N [g;L∞(s, t;E−0)]ωA(s, t)
3
p + ωμ(s, t)ωA(s, t)

3−p
p . (2.23)

Proof of Corollary 2.11. Thanks to (2.22), one has, for all ϕ ∈ E3 and η ∈ (0, 1),

|(δμ)st(Jηϕ)| � ωμ(s, t) ‖Jηϕ‖E2 � ωμ(s, t) min
(
η−1‖ϕ‖E1 , ‖ϕ‖E2

)
� ωμ(s, t) min

(
η1−p‖ϕ‖E1 , η

2−p‖ϕ‖E2

)
,

which readily allows us to take λ = q = p, κ = 0, ω1 = 0 and ω2 = c ωμ (for some 
universal constant c) in the statement of Theorem 2.10. �
Proof of Theorem 2.10. Let ω�(s, t) be a regular control such that ‖g�st‖E−3 ≤ ω�(s, t)

3
q

for any s, t ∈ I. Let ϕ ∈ E3 be such that ‖ϕ‖E3 � 1. We first show that

(δg�(ϕ))sut = (δg)su(A2,∗
ut ϕ) + g�su(A1,∗

ut ϕ), (2.24)

where g� was defined in (2.14). Indeed, owing to (2.13), we have

g�st(ϕ) = δg(ϕ)st − gs
(
[A1,∗

st + A2,∗
st ](ϕ)

)
− δμ(ϕ)st .

Applying δ on both sides of this identity and recalling Chen’s relations (2.6) as well as 
the fact that δδ = 0 we thus get

δg�sut(ϕ) = (δg)su([A1,∗
ut + A2,∗

ut ](ϕ)) − gs(A1,∗
su A1,∗

ut (ϕ)).

Plugging relation (2.14) again into this identity, we end up with our claim (2.24).
The aim now is to bound the terms on the right hand side of (2.24) separately by 

the allowed quantities G, ωμ, ω� and to reach a sufficient time regularity as required by 
the sewing Lemma 2.2. To this end, we make use of the smoothing operators (Jη) and 
repeatedly apply the equation (2.13) as well as the two equivalent definitions of g� from 
(2.14). We obtain

δg�(ϕ)sut = (δg)su(JηA2,∗
ut ϕ) + (δg)su((Id − Jη)A2,∗

ut ϕ)

+ g�su(JηA1,∗
ut ϕ) + g�su((Id − Jη)A1,∗

ut ϕ)

= gs(A1,∗
su JηA2,∗

ut ϕ) + gs(A2,∗
su JηA2,∗

ut ϕ) + (δμ)su(JηA2,∗
ut ϕ) + g�su(JηA2,∗

ut ϕ)

+ (δg)su((Id − Jη)A2,∗
ut ϕ)
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+ gs(A2,∗
su JηA1,∗

ut ϕ) + (δμ)su(JηA1,∗
ut ϕ) + g�su(JηA1,∗

ut ϕ)

+ (δg)su((Id − Jη)A1,∗
ut ϕ) − gs(A1,∗

su (Id − Jη)A1,∗
ut ϕ)

= I1 + · · · + I10 (2.25)

The use of the smoothing operators reflects the competition between space and time 
regularity in the various terms in the equation. To be more precise, the only available 
norm of g is L∞(0, T ; E−0). So on the one hand g does not possess any time regularity 
(at least at this point of the proof) but on the other hand it does not require any space 
regularity of the corresponding test functions. In general, the presence of (Id−Jη) allows 
to apply the first estimate (2.15) to make use of the additional space regularity in order 
to compensate for the lack of time regularity. Correspondingly, the second estimate (2.16)
allows to use the additional time regularity in order to compensate for the lack of space 
regularity.

Now bound the above as follows.

|I1| + |I2| + |I6| � Gst ωA(s, t)
3
p + η−1 Gst ωA(s, t)

4
p + Gst ωA(s, t)

3
p ,

|I3| � ω1
μ(s, t)ωA(s, t)

2
p + η1−λ ω2

μ(s, t)ωA(s, t)
2
p ,

|I7| � ω1
μ(s, t)ωA(s, t)

1
p + η2−λ ω2

μ(s, t)ωA(s, t)
1
p ,

|I4| + |I8| � η−2 ω�(s, t)
3
q ωA(s, t)

2
p + η−1 ω�(s, t)

3
q ωA(s, t)

1
p ,

|I5| + |I9| + |I10| � η Gst ωA(s, t)
2
p + η2 Gst ωA(s, t)

1
p + η Gst ωA(s, t)

2
p .

In order to balance the various terms, we choose

η = ωA(I)−
1
p+κωA(s, t)

1
p−κ ∈ (0, 1) ,

where κ ∈ [0, 1p ) is the parameter picked along (2.19). Assuming that ωA(I) � 1 we 
deduce

|δg�(ϕ)sut| � Gst ωA(s, t)
3
p + ω1

μ(s, t)ωA(s, t)
1
p + ω2

μ(s, t)ωA(s, t)
3−λ
p +κ(λ−2)

+ 2ωA(I)
1
p+κω�(s, t)

3
q ωA(s, t)κ + Gst ωA(I)−2( 1

p+κ)ωA(s, t)
3
p−2κ.

Note that there are only two terms where we kept track of ωA(I), namely, the one that 
needs to be absorbed to the left hand side eventually, i.e. the one containing ω�, and 
the one with a negative power. The latter one can be further estimated from above by 
a constant depending on A and I if we assume that I �= ∅ and the former one will then 
determine the value of the constant L from the statement of the Theorem. Consequently, 
recalling the definition (2.20) of ω∗, we obtain

‖δg�sut‖E−3 � ω∗(s, t)
3
q + ωA(I)

1
p+2κω�(s, t)

3
q .
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At this point, observe that the mapping ω∗ defines a regular control. Indeed, on the one 
hand, the regularity of ω∗ easily stems from the continuity of ωA. On the other hand, 
superadditivity is obtained from [26, Exercise 1.9] by recalling that both ωA and ωμ are 
controls and using condition (2.19), which can also be expressed as

q

3

(
3
p
− 2κ

)
� 1 ,

q

3 + q

3

(
3 − λ

p
+ κ(λ− 2)

)
� 1 .

Since ω� is also a regular control, δg� satisfies the assumptions of Lemma 2.2 and we can 
thus conclude that, for all s < t ∈ I, ‖g�st‖E−3 � ω′

�(s, t)
3
q where

ω′
�(s, t) := Cq(ω∗(s, t) + ωA(I)

q
3 ( 1

p+2κ)ω�(s, t))

is a new control. Let us define L > 0 through the relation CqL
q
3 ( 1

p+2κ) = 1
2 , so that if 

the interval I satisfies ωA(I) � min(1, L), the above reasoning yields, for all s < t ∈ I,

‖g�st‖
q
3
E−3

� Cq ω∗(s, t) + 1
2ω�(s, t) .

Iterating the procedure (on I such that ωA(I) � min(1, L)), we get that for all s < t ∈ I

and n � 0,

‖g�st‖
q
3
E−3

� Cq ω∗(s, t)
( n∑

i=0
2−i

)
+ 2−(n+1)ω�(s, t) .

By letting n tend to infinity, we obtain the desired estimate (2.21). �
With Theorem 2.10 in hand, let us introduce the second main ingredient of our strat-

egy toward a priori bounds for equation (2.13): the Rough Gronwall Lemma. In brief, 
and just as its classical counterpart, this property will allow us to turn local affine-type 
estimates (for the increments of a path) into a global uniform bound.

Lemma 2.12 (Rough Gronwall Lemma). Fix a time horizon T > 0 and let G : [0, T ] →
[0, ∞) be a path such that for some constants C, L > 0, κ � 1 and some controls ω1, ω2
on [0, T ] with ω1 being regular, one has

δGst � C
(

sup
0�r�t

Gr

)
ω1(s, t)

1
κ + ω2(s, t), (2.26)

for every s < t ∈ [0, T ] satisfying ω1(s, t) � L. Then it holds

sup
0�t�T

Gt � 2 exp
(ω1(0, T )

αL

)
·
{
G0 + sup

0�t�T

(
ω2(0, t) exp

(
− ω1(0, t)

αL

))}
,

where α is defined as
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α = min
(

1, 1
L(2Ce2)κ

)
. (2.27)

Remark 2.13. We are aware that similar Gronwall-type properties have already been 
used in the rough or fractional literature, especially when dealing with linear problems 
(see for instance [45, Theorem 3.1 (ii)] or [26, Section 10.7]). Nevertheless, we have found 
it important to have a clear statement of this result at our disposal, and we will refer to 
it several times in the sequel.

Proof. Let us successively set, for every t ∈ [0, T ],

G�t := sup
0�s�t

Gs, Ht := G�t exp
(
− ω1(0, t)

αL

)
and H�t := sup

0�s�t
Hs. (2.28)

Also, let us denote by K the integer such that αL(K−1) � ω1(0, T ) � αLK, and define 
a set of times t0 < t1 < · · · < tK as follows: t0 := 0, tK := T and for k ∈ {1, . . . , K − 1}, 
tk is such that ω1(0, tk) = αLk. In particular, ω1(tk, tk+1) � αL � L (recall that we 
have chosen α � 1 in (2.27)). Fix t ∈ [tk−1, tk], for some k ∈ {1, . . . , K}. We start from 
the trivial decomposition

(δG)0t =
k−2∑
i=0

(δG)titi+1 + (δG)tk−1t.

Then on each interval [ti, ti+1] one can apply the a priori bound (2.26). Taking into 
account the facts that ω1(tk, tk+1) � αL and that ω2 is a super-additive function, we get

(δG)0t � C(αL) 1
κ

k−2∑
i=0

G�ti+1 + ω2(0, tk−1) + C(αL) 1
κG�t + ω2(tk−1, t)

� C(αL) 1
κ

k−1∑
i=0

G�ti+1 + ω2(0, t). (2.29)

Let us bound the term 
∑k−1

i=0 G�ti+1 above. According to our definitions (2.28), we have

k−1∑
i=0

G�ti+1 =
k−1∑
i=0

Hti+1 exp
(ω1(0, ti+1)

αL

)
� H�T

k−1∑
i=0

exp(i + 1) � exp(k + 1)H�T ,

(2.30)

where we have used the fact that ω1(0, ti+1) � αL(i + 1) for the first inequality. Com-
bining (2.29) and (2.30), we thus get that

G�t � G0 + ω2(0, t) + C(αL) 1
κ exp(k + 1)H�T .

Now,
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Ht = G�t exp
(
− ω1(0, t)

αL

)

� {G0 + ω2(0, t)} exp
(
− ω1(0, t)

αL

)
+ C(αL) 1

κ exp(k + 1)H�T exp
(
− ω1(0, tk−1)

αL

)
,

and since ω(0, tk−1) = αL(k − 1), we end up with:

Ht � G0 + sup
0�s�T

(
ω2(0, s) exp

(
− ω1(0, s)

αL

))
+ Ce2(αL) 1

κH�T .

By taking the supremum over t ∈ [0, T ], we deduce that

H�T � Ce2(αL) 1
κH�T + G0 + sup

0�s�T

(
ω2(0, s) exp

(
− ω1(0, s)

αL

))

and recalling the definition (2.27) of α, it entails that

H�T � 2G0 + 2 sup
0�s�T

(
ω2(0, s) exp

(
− ω1(0, s)

αL

))
.

The conclusion is now immediate, since

G�T = exp
(ω1(0, T )

αL

)
HT � exp

(ω1(0, T )
αL

)
H�T . �

2.4. A first application: a priori estimates for a (rough) heat model

As a conclusion to this section, we would like to give an example of the possibilities 
offered by the combination of the two previous results (Theorem 2.10 and Lemma 2.12), 
through an application to the linear heat equation (2.7).

Note that this rough parabolic model (when z stands for a p-rough path, with p ∈
[2, 3)) has already been considered in the literature (see for instance [7]). Our aim here 
is not to provide a full treatment of the equation (which would certainly overlap existing 
wellposedness results), but only to illustrate some of the main ideas of our approach, 
before we turn to the more sophisticated conservation-law model.

To be more specific, let us focus on proving a uniform energy estimate for the approx-
imation of (2.7), that is the sequence of (classical) equations

duε = Δuε dt + V · ∇uε dzε , x ∈ RN , t ∈ (0, T ) ,

uε
0 = u0 ∈ L2(RN ) ,

(2.31)

where (zε)ε∈(0,1) is a sequence of smooth paths that converges to a continuous (weak 

geometric) p-rough path Z = (Z1, Z2) (for some fixed p ∈ [2, 3)), i.e. Zε :=
(
δzε, 

∫
δzε⊗

dzε
)
→ Z as ε → 0 (say for the uniform topology). We also assume that
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sup
ε>0

{∣∣Z1,ε
st

∣∣p +
∣∣Z2,ε

st

∣∣ p2} � ωZ(s, t) , (2.32)

for some regular control ωZ. Note that, according to [26, Proposition 8.12], such a se-
quence (zε) can for instance be obtained through the geodesic approximation of Z.

Before we turn to a suitable “rough” treatment of (2.31), and for pedagogical purpose, 
let us briefly recall how the basic energy estimate is derived in the classical smooth case. 
In that situation, one formally tests (2.31) by ϕ = uε

t and integration by parts leads to

‖uε
t‖2

L2 + 2
t∫

0

‖∇uε
r‖2

L2 dr = ‖u0‖2
L2 +

t∫
0

(uε)2r(divV ) dzεr

� ‖u0‖2
L2 + ‖V ‖W 1,∞

t∫
0

‖uε
r‖2

L2 d|zεr | . (2.33)

Hence the (classical) Gronwall lemma applies and we obtain

‖uε
t‖2

L2 + 2
t∫

0

‖∇uε
r‖2

L2 dr � e‖V ‖W1,∞‖zε‖1-var‖u0‖2
L2 .

In the rough setting, these two elementary steps (namely, the estimate (2.33) and 
then the use of the Gronwall lemma) will somehow be replaced with their rough coun-
terpart: first, the a priori estimate provided by Theorem 2.10, then the Rough Gronwall 
Lemma 2.12.

In order to implement this strategy, consider the path vε := (uε)2, and observe that, 
for fixed ε > 0, this path is (trivially) governed by the dynamics

dvε = 2uεΔuε dt + V · ∇vε dzε .

Expanding the latter equation in its weak form (just as in 2.8) easily entails that for any 
test-function ϕ ∈ W 3,∞(RN ),

δvε(ϕ)st = (δμε)st(ϕ) + vεs(A
1,ε,∗
st ϕ) + vεs(A

2,ε,∗
st ϕ) + vε,�st (ϕ) , (2.34)

where the finite variation term με is given by:

(δμε)st(ϕ) := −2
t∫

s

∫
RN

|∇uε
r|2ϕ dx dr − 2

t∫
s

∫
RN

∇uε
r · ∇ϕuε

r dx dr ,

and where A1,ε,∗, A2,ε,∗ are defined along (2.9)–(2.10) (by replacing z with zε). Even-
tually, the term vε,� in (2.34) stands for some new “third-order” remainder acting on 
W 3,∞(RN ).
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Equation (2.34) is actually the starting point of our analysis, that is the equation 
to which we intend to apply the a priori estimate of Theorem 2.10 (or more simply 
Corollary 2.11 in this case). To this end, and as anticipated above, we consider the scale 
En := Wn,∞(RN ) (0 � n � 3). The construction of a smoothing on this scale (in the 
sense of Definition 2.9) is an easy task: consider indeed any smooth, compactly-supported 
and rotation-invariant function j on RN such that 

∫
RN j(x)dx = 1, and define Jη as a 

convolution operator, that is

Jηϕ(x) :=
∫
RN

jη(x− y)ϕ(y)dy , with jη(x) := η−N j(η−1x) . (2.35)

Checking conditions (2.15)–(2.16) is then a matter of elementary computations, which 
we leave to the reader as an exercise.

As far as the drift term με is concerned, observe that it can be estimated as

|(δμε)st(ϕ)| �
( t∫

s

‖∇uε
r‖2

L2 dr
)
‖ϕ‖L∞

+
( t∫

s

‖∇uε
r‖2

L2 dr
) 1

2
( t∫

s

‖uε
r‖2

L2 dr
) 1

2

‖ϕ‖W 1,∞ , (2.36)

and hence the assumption (2.22) holds true for the control given by

ωμε(s, t) :=
t∫

s

‖∇uε
r‖2

L2 dr +
( t∫

s

‖∇uε
r‖2

L2 dr
) 1

2
( t∫

s

‖uε
r‖2

L2 dr
) 1

2

.

We are thus in a position to apply Corollary 2.11 and deduce the existence of a constant 
L > 0 (independent of ε) such that on any interval I ⊂ [0, T ] satisfying ωZ(I) � L, one 
has

‖vε,�st ‖E−3 � N [vε;L∞(s, t;E−0)]ωZ(s, t)
3
p + ωμε(s, t)ωZ(s, t)

3−p
p (s < t ∈ I) , (2.37)

for some proportional constant independent of ε (due to (2.32)).
In order to exploit the (non-uniform) bound (2.37), let us go back to (2.34) and apply 

the equation to the trivial test-function ϕ = 1 ∈ E3, which immediately leads to

(δ‖uε‖2
L2)st + 2

t∫
s

‖∇uε
r‖2

L2 dr

= vεs(A
1,∗
st 1) + vεs(A

2,∗
st 1) + vε,�0t (1)

� ‖uε
s‖2

L2 ωZ(s, t)
1
p + |vε,�st (1)|
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� sup
s�r�t

‖uε
r‖2

L2

[
ωZ(s, t)

1
p + |t− s|ωZ(s, t)

3−p
p

]
+
( t∫

s

‖∇uε
r‖2

L2 dr
)
ωZ(s, t)

3−p
p

�
[

sup
s�r�t

‖uε
r‖2

L2 +
t∫

s

‖∇uε
r‖2

L2 dr
]
ωZ(s, t)

3−p
p ,

for all s < t in a sufficiently small interval.
At this point, we are (morally) in the same position as in (2.33). By applying our 

second main technical tool, namely the rough Gronwall Lemma 2.12, with

Gε
t := ‖uε

t‖2
L2 + 2

t∫
0

‖∇uε
r‖2

L2 dr , ω1 := ωZ , ω2 := 0 ,

we finally obtain the desired uniform estimate

sup
0�t�T

‖uε
t‖2

L2 +
T∫

0

‖∇uε
t‖2

L2 dt � exp
(ω1(0, T )

αL

)
‖u0‖2

L2 , (2.38)

for some proportional constant independent of ε.

Remark 2.14. Starting from the uniform a priori estimate (2.38), one could certainly 
settle a compactness argument and deduce the existence of a solution for the rough 
extension of equation (2.31) (interpreted through Definition 2.5). But again, our aim 
here is not to give a full treatment of this heat-equation example, and we refer the reader 
to Section 7 for more details on such a compactness argument in the (more interesting) 
rough conservation-law case. A full treatment of linear parabolic rough partial differential 
equations with measurable coefficients can be found in [40].

3. Tensorization and uniqueness

We now turn to the sketch of a strategy towards uniqueness for the general rough 
PDE (2.12), understood in the sense of Definition 2.5. These ideas will then be carefully 
implemented in the next sections for the rough conservation-law model.

3.1. Preliminary discussion

Let us go back to the model treated in Section 2.4 and recall that one of the key points 
of our strategy regarding (2.31) (and ultimately leading to (2.38)) was the derivation of 
the equation satisfied by the squared-path vε = (uε)2. Observe in particular that if 
(2.34) were to be true at the rough level, that is above the rough path Z = (Z1, Z2)
and not only above its approximation zε (with u accordingly replacing uε), then the 
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very same arguments could be used to show that estimate (2.38) actually holds true for 
any solution of the underlying rough equation. The desired uniqueness property for this 
equation would immediately follow, due to the linearity of the problem.

Let us point out that if the rough path Z was not geometric, the heuristic discussion 
above would fail. Indeed, if Z is non geometric then taking squares in relation (2.31) for 
ε = 0 brings some extra terms in the right hand side of (2.34). This is the reason why 
for a transport noise in the Itô form one has to require a suitable stochastic parabolicity 
condition (the problem being ill-posed otherwise). Also note that our previous discussion 
on existence does not encounter this problem. Specifically, in order to get existence we 
work with a smooth approximation of the driving signal zε and we derive some uniform 
estimates in ε. Then in the limit we automatically recover a geometric rough path. In 
other words, in case of a Brownian motion z we solve the Stratonovich equation and not 
the Itô one. Therefore in our analysis the geometricity assumption is only necessary in 
the proof of uniqueness (see Section 5.1 for the application to conservation laws), and 
this stems from the fact that we apply the chain rule to approximating sequences. We 
refer to Remark 5.14 for further discussion of this issue.

Unfortunately, when working directly at the rough level, establishing such an equation 
for the squared-path u2 turns out to be a complicated exercise, due to the fact that u
cannot be considered as a test function anymore. Therefore new ideas are required for the 
uniqueness result. In fact, let us consider the following more general formulation of the 
problem (which will also encompass our strategy toward uniqueness for the conservation-
law model): if u, resp. v, is a (functional-valued) solution of the rough equation

dut = μ(dt) + A(dt)ut , resp. dvt = ν(dt) + A(dt)vt , (3.1)

for a same unbounded rough driver A (but possibly different drift terms μ, ν), then what 
is the equation satisfied by the product uv?

In order to answer this question (at least in some particular situations), we shall follow 
the ideas of [1] and rely on a tensorization argument, together with a refined analysis 
of the approximation error. To be more specific, starting from (3.1), we exhibit first the 
equation for the tensor product of distributions U(x, y) := (u ⊗ v)(x, y) = u(x)v(y). 
Namely, write

δUst = δust ⊗ vs + us ⊗ δvst + δust ⊗ δvst , (3.2)

and then expand the increments δust, δvst along (2.8), which, at a formal level, yields 
the decomposition

δUst = δMst + Γ1
stUs + Γ2

stUs + U �
st , (3.3)

where the finite variation term M can be expressed as:



A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577–3645 3599
Mt :=
∫

[0,t]

μdr ⊗ vr +
∫

[0,t]

ur ⊗ νdr , (3.4)

and where the tensorized rough drivers Γ1, Γ2 are given by:

Γ1
st := A1

st ⊗ I + I ⊗A1
st , Γ2

st := A2
st ⊗ I + I ⊗A2

st + A1
st ⊗A1

st . (3.5)

In equations (3.3) and (3.5), I denotes the identity map and U � is a remainder when 
tested with smooth functions of the two variables.

An easy but important observation is that Chen’s relation (2.6) is again satisfied by 
the components of Γ := (Γ1, Γ2). Equation (3.3) still fits the pattern of (2.13), and is 
therefore likely to be treated with the same tools as the original equations (3.1), that is 
along our a priori estimate strategy.

Our goal then is to test the tensorized equation (3.3) against functions of the form

Φε(x, y) = ε−Nϕ

(
x + y

2

)
ψ(ε−1(x− y)) , (3.6)

and try to derive, with the help of Theorem 2.10, an ε-uniform estimate for the resulting 
expression. Such an estimate should indeed allow us to pass to the limit as ε → 0 (or in 
other words, to “pass to the diagonal”) and obtain the desired equation for uv. To this 
end, we consider the blow-up transformation Tε defined on test functions as

TεΦ(x, y) := ε−NΦ
(
x+ + x−

ε
, x+ − x−

ε

)
, (3.7)

where x± = x±y
2 are the coordinates parallel and transverse to the diagonal. Note that 

its adjoint for the L2-inner product reads

T ∗
ε Φ(x, y) = Φ(x+ + εx−, x+ − εx−) (3.8)

and its inverse is given by

T−1
ε Φ(x, y) = εNΦ(x+ + εx−, x+ − εx−) . (3.9)

Setting

Uε := T ∗
ε U , Γ∗

ε := T−1
ε Γ∗Tε , Mε := T ∗

ε M and U �,ε := T ∗
ε U

� , (3.10)

the tensorized equation (3.3) readily turns into

δUε
st(Φ) = δMε

st(Φ) + Uε
s ((Γ1,∗

ε,st + Γ2,∗
ε,st)Φ) + U �,ε

st (Φ) . (3.11)

Applying (3.11) to the test-function Φ(x, y) = ϕ(x+)ψ(2x−) then corresponds to apply-
ing (3.3) to the test-function Φε defined by (3.6).
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With these notations in mind, our search of an ε-uniform estimate for U �,ε (via an 
application of Theorem 2.10) will naturally give rise to the central notion of renormal-
izability for the driver under consideration.

3.2. Renormalizable drivers

Let us fix p ∈ [2, 3] for the rest of the section. Motivated by the considerations of 
Section 3.1, we will now define and illustrate the concept of renormalizable rough driver.

Definition 3.1 (Renormalizable driver). Let A be a continuous unbounded p-rough driver 
acting on C∞

c (RN ), and Γ its tensorization defined by (3.5) and acting on C∞
c (RN×RN ). 

We say that A is renormalizable in a scale of spaces (En)0�n�3 if {Γε}ε∈(0,1) defined in 
(3.10) can be extended to a bounded family (with respect to ε) of continuous unbounded 
p-rough drivers on this scale.

Remark 3.2. Although it is inspired by the equation (3.11) governing Uε, this definition 
only depends on the driver A and not on the drift terms μ, ν involved in (3.1).

Remark 3.3. In the context of transport-type rough drivers, the renormalization property 
corresponds to the fact that a commutator lemma argument in the sense of DiPerna-Lions 
[17] can be performed.

For a clear illustration of this property, let us slightly anticipate the next sections 
and consider the case of the driver that will govern our rough conservation-law model, 
namely A = (A1, A2) with

A1
stu := Z1,k

st V k · ∇u , A2
stu := Z2,jk

st V k · ∇(V j · ∇u) , (3.12)

or equivalently

A1,∗
st ϕ = −Z1,k

st div(V kϕ) and A2,∗
st ϕ = Z2,jk

st div(V jdiv(V kϕ)) , (3.13)

for a given p-rough path Z = (Z1, Z2) in RK and a family of vector fields V =
(V 1, . . . , V K) on RN . Observe that this driver was already at the core of the heat-
equation model evoked in Section 2.2 (or in Section 2.4).

Proposition 3.4. Let A be the continuous unbounded p-rough driver defined by (3.12), 
and assume that V ∈ W 3,∞(RN ). Then, for every 1 � R � ∞, A is a renormalizable 
driver in the scale (ER,n)0�n�3 given by

ER,n :=
{
Φ ∈ Wn,∞(RN ×RN ); Φ(x, y) = 0 if ρR(x, y) ≥ 1

}
, (3.14)

where ρR(x, y)2 = |x+|2/R2 + |x−|2, and equipped with the subspace topology of Wn,∞. 
Besides, it holds that
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‖Γ1
ε,st‖pL(ER,n,ER,n−1) �‖V ‖W3,∞ ωZ(s, t) , n ∈ {−0,−2} , (3.15)

‖Γ2
ε,st‖

p/2
L(ER,n,ER,n−2) �‖V ‖W3,∞ ωZ(s, t) , n ∈ {−0,−1} , (3.16)

for some proportional constants independent of both ε and R.

Remark 3.5. The support condition in the definition of spaces ER,n implies in particular 
that the test functions are compactly supported in the x− direction. This localization 
is a key point in the proof below. As we mentioned it above, the test functions we are 
ultimately interested in are those of the form (3.6), i.e. the dependence on x− is only in 
the mollifier ψ, which can indeed be taken compactly supported.

Remark 3.6. In the subsequent conservation-law model, the possibility of a specific lo-
calization in the x+ direction (as offered by the additional parameter R � 1) will turn 
out to be an important technical tool when looking for suitable estimates of Uε and Mε

(along the notations of (3.11)), as detailed in Sections 5.4-5.5.

Proof of Proposition 3.4. Recall that the driver Γ was defined in (3.5), and that 
A1,∗

st , A2,∗
st are defined by (3.13). Therefore, the driver Γε which was defined by Γ∗

ε =
T−1
ε Γ∗Tε can be written as

Γ1,∗
ε,st = Z1,i

st Γ1,i,∗
V,ε , Γ2,∗

ε,st = Z2,ij
st Γ1,j,∗

V,ε Γ1,i,∗
V,ε ,

where

Γ1,∗
V,ε := −V +

ε · ∇+ − ε−1V −
ε · ∇− −D+

ε .

We have here used the notation

∇± := 1
2(∇x ±∇y) , D(x) = divx V (x) ,

and for any real-valued function Ψ on RN

Ψ±
ε (x, y) := Ψ(x+ + εx−) ± Ψ(x+ − εx−) .

From these expressions, it is clear that neither Γ1,∗
ε,st nor Γ2,∗

ε,st influence the support of 
the test-functions, and so the operators Γ1,∗

ε,st : ER,n → ER,n−1 and Γ2,∗
ε,st : ER,n → ER,n−2

are indeed well-defined. Next, by the Taylor formula we obtain

ε−1V −
ε = 2x−

1∫
0

DV
(
(x+ − εx−) + 2εrx−

)
dr.
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Hence, since any function Φ ∈ ER,n satisfies Φ(x, y) = 0 as soon as |x−| � 1, we obtain 
for n = 0, 1, 2

‖Γ1,∗
V,εΦ‖ER,n

� (‖V ‖Wn,∞ + ‖DV ‖Wn,∞)‖Φ‖ER,n+1 � ‖V ‖Wn+1,∞‖Φ‖ER,n+1 ,

and for n = 0, 1

‖Γ2,∗
V,εΦ‖ER,n

= ‖Γ1,∗
V,εΓ

1,∗
V,εΦ‖ER,n

� ‖V ‖Wn+1,∞‖Γ1,∗
V,εΦ‖ER,n+1

� ‖V ‖Wn+1,∞‖V ‖Wn+2,∞‖Φ‖ER,n+2 ,

which holds true uniformly in ε. Consequently, uniformly in ε (and of course R),

‖Γ1
ε,st‖pL(ER,n,ER,n−1) �‖V ‖W3,∞ ωZ(s, t), n ∈ {−0,−2},

‖Γ2
ε,st‖

p/2
L(ER,n,ER,n−2) �‖V ‖W3,∞ ωZ(s, t), n ∈ {−0,−1},

where ωZ is a control corresponding to the rough path Z, namely,

|Z1
st| � ωZ(s, t)

1
p , |Z2

st| � ωZ(s, t)
2
p . �

4. Rough conservation laws I: presentation

Throughout the remainder of the paper, we are interested in a rough path driven 
scalar conservation law of the form

du + div
(
A(x, u)

)
dz = 0, t ∈ (0, T ), x ∈ RN ,

u(0) = u0,
(4.1)

where z = (z1, . . . , zK) can be lifted to a geometric p-rough path and A : RN
x × Rξ →

RN×K . Using the Einstein summation convention, (4.1) rewrites

du + ∂xi

(
Aij(x, u)

)
dzj = 0, t ∈ (0, T ), x ∈ RN ,

u(0) = u0.

As the next step, let us introduce the kinetic formulation of (4.1) as well as the basic 
definitions concerning the notion of kinetic solution. We refer the reader to [58] for a 
detailed exposition. The motivation behind this approach is given by the nonexistence 
of a strong solution and, on the other hand, the nonuniqueness of weak solutions, even 
in simple cases. The idea is to establish an additional criterion – the kinetic formulation 
– which is automatically satisfied by any strong solution to (4.1) (in case it exists) 
and which permits to ensure the well-posedness. The linear character of the kinetic 
formulation simplifies also the analysis of the remainder terms and the proof of the 
apriori estimates. It is well-known that in the case of a smooth driving signal z, the 
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kinetic formulation of (4.1), which describes the time evolution of ft(x, ξ) = 1ut(x)>ξ, 
reads as

df + ∇xf · a dz − ∂ξf bdz = ∂ξm,

f(0) = f0,
(4.2)

where the coefficients a, b are given by

a = (aij) = (∂ξAij) : RN ×R → RN×K , b = (bj) = (divx A·j) : RN ×R → RK

and m is a nonnegative finite measure on [0, T ] × RN
x × Rξ which becomes part of the 

solution. The measure m is called kinetic defect measure as it takes account of possible 
singularities of u. Indeed, if there was a smooth solution to (4.1) then one can derive 
(4.2) rigorously with m ≡ 0. We say then that u is a kinetic solution to (4.1) provided, 
roughly speaking, there exists a kinetic measure m such that the pair (f = 1u>ξ, m)
solves (4.2) in the sense of distributions on [0, T ) ×RN

x ×Rξ.
In the case of a rough driver z, we will give an intrinsic notion of kinetic solution 

to (4.1). In particular, the kinetic formulation (4.2) will be understood in the framework 
of unbounded rough drivers presented in the previous sections. The reader can immedi-
ately observe that (4.2) fits very naturally into this concept: the left hand side of (4.2)
is of the form of a rough transport equation whereas the kinetic measure on the right 
hand side plays the role of a drift. Nevertheless, one has to be careful since the kinetic 
measure is not given in advance, it is a part of the solution and has to be constructed 
within the proof of existence. Besides, in the proof of uniqueness, one has to compare 
two solutions with possibly different kinetic measures.

The kinetic formulation (4.2) can be rewritten as

df =
(

b

−a

)
·
(

∂ξf

∇xf

)
dz + ∂ξm

or

df = V · ∇ξ,xf dz + ∂ξm, (4.3)

where the family of vector fields V is given by

V = (V 1, . . . , V K) =
(

b

−a

)
=

⎛
⎜⎜⎜⎜⎝

b1 · · · bK
−a11 · · · −a1K

... · · ·
...

−aN1 · · · −aNK

⎞
⎟⎟⎟⎟⎠ . (4.4)

Note that these vector fields satisfy for i ∈ {1, . . . , K}



3604 A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577–3645
divξ,x Vi = ∂ξbi − divx a·i = ∂ξ divx A·i − divx ∂ξA·i = 0. (4.5)

Let us now label the assumptions we will use in order to solve equation (4.2) or its 
equivalent form (4.3), beginning with the assumptions on V :

Hypothesis 4.1. Let V be the family of vector fields defined by relation (4.4). We assume 
that:

V ∈ W 3,∞(RN+1) and V (x, 0) = 0 ∀x ∈ RN . (4.6)

Notice that the assumption V (x, 0) = 0 is only used for the a priori estimates on 
solutions of (4.2), so that it will not show up before Section 6. In addition, as in the toy 
heat model case, we shall also assume that z can be understood as a rough path.

Hypothesis 4.2. For some fixed p ∈ [2, 3), let Z = (Z1, Z2) be a continuous (weak geomet-
ric) p-rough path on [0, T ] which is a lift of the function z in the sense of Definition 2.1, 
and we fix a regular control ωZ such that for all s < t ∈ [0, T ]

|Z1
st| � ωZ(s, t)

1
p , |Z2

st| � ωZ(s, t)
2
p .

Endowed with the p-rough path Z = (Z1, Z2), we can turn to the presentation of 
the rough driver structure related to our equation (4.3). The scale of spaces (En)0�n�3
where this equation will be considered is

En = Wn,1(RN+1) ∩Wn,∞(RN+1) .

Then we define the central operator-valued paths as follows: for all s < t ∈ [0, T ] and 
ϕ ∈ E1 (resp. ϕ ∈ E2),

A1
stϕ : = Z1,i

st V i · ∇ξ,xϕ ,

resp. A2
stϕ : = Z2,ij

st V j · ∇ξ,x(V i · ∇ξ,xϕ) .
(4.7)

It is readily checked that A := (A1, A2) defines a continuous unbounded p-rough driver 
on (En)0�n�3, and that for all s < t ∈ [0, T ],

‖A1
st‖pL(En,En−1) � ωZ(s, t), n ∈ {−0,−2},

‖A2
st‖

p/2
L(En,En−2) � ωZ(s, t), n ∈ {−0,−1}.

(4.8)

As in Section 2.2, it will be useful to have the expression of A1,∗ and A2,∗ in mind for 
our computations. Here it is readily checked that:

A1,∗
st ϕ = −Z1,k

st divx,ξ

(
V kϕ

)
, and A2,∗

st ϕ = Z2,jk
st divx,ξ

(
V jdivx,ξ

(
V kϕ

))
. (4.9)
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The last point to be specified in order to include (4.2) in the framework of unbounded 
rough drivers, is how to understand the drift term given by the kinetic measure m. To 
be more precise, in view of Subsection 2.3, one would like to rewrite (4.2) as

δfst = δμst + (A1
st + A2

st)fs + f �
st (4.10)

where δμ stands for the increment of the corresponding kinetic measure term and f � is a 
suitable remainder. However, already in the smooth setting such a formulation can only 
be true for a.e. s, t ∈ [0, T ]. Indeed, the kinetic measure contains shocks of the kinetic 
solution and thus it is not absolutely continuous with respect to the Lebesgue measure. 
The atoms of the kinetic measure correspond precisely to singularities of the solution. 
Therefore, it makes a difference if we define the drift term μt(ϕ) as −m(1[0,t]∂ξϕ) or 
−m(1[0,t)∂ξϕ). According to the properties of functions with bounded variation, the 
first one is right-continuous whereas the second one is left-continuous. Furthermore, 
they coincide everywhere except on a set of times which is at most countable. Note also 
that the rough integral f  defined by

δf 
st = (A1

st + A2
st)fs + f �

st

is expected to be continuous in time. Thus, depending on the chosen definition of μ, we 
obtain either right- or left-continuous representative of the class of equivalence f on the 
left hand side of (4.10). These representatives will be denoted by f+ and f− respectively.

For the sake of completeness, recall that in the deterministic (as well as stochastic) 
setting, the kinetic formulation (4.2) is understood in the sense of distributions on [0, T ) ×
RN+1. That is, the test functions depend also on time. Nevertheless, for our purposes it 
seems to be more convenient to consider directly the equation for the increments δf±

st . 
Correspondingly, we include two versions of (4.2) in the definition of kinetic solution, even 
though this presentation may look slightly redundant at first. Both of these equations 
will actually be needed in the proof of uniqueness.

Before doing so, we proceed with a reminder of two technical definitions introduced 
in [13] and extending classical concepts from PDE literature: the definition of a Young 
measure and a kinetic function. Just as in [13,43], the consideration of such specific 
objects will be one of the keys toward wellposedness for the problem (4.2).

In what follows, we denote by P1(R) the set of probability measures on R.

Definition 4.3 (Young measure). Let (X, λ) be a σ-finite measure space. A mapping 
ν : X → P1(R) is called a Young measure provided it is weakly measurable, that is, for 
all φ ∈ Cb(R) the mapping z �→ νz(φ) from X to R is measurable. A Young measure ν
is said to vanish at infinity if

∫
X

∫
R

|ξ| dνz(ξ) dλ(z) < ∞.
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Definition 4.4 (Kinetic function). Let (X, λ) be a σ-finite measure space. A measurable 
function f : X × R → [0, 1] is called a kinetic function on X if there exists a Young 
measure ν on X that vanishes at infinity and such that for a.e. z ∈ X and for all ξ ∈ R

f(z, ξ) = νz((ξ,∞)).

We are now ready to introduce the notion of generalized kinetic solution to (4.2), as 
an intermediate step in the construction of full solutions.

Definition 4.5 (Generalized kinetic solution). Let f0 : RN+1 → [0, 1] be a kinetic function. 
A measurable function f : [0, T ] ×RN+1 → [0, 1] is called a generalized kinetic solution 
to (4.1) with initial datum f0 provided

(i) there exist f±, such that f+
t = f−

t = ft for a.e. t ∈ [0, T ], f±
t are kinetic functions 

on RN for all t ∈ [0, T ], and the associated Young measures ν± satisfy

sup
0�t�T

∫
RN

∫
R

|ξ| dν±t,x(ξ) dx < ∞, (4.11)

(ii) f+
0 = f−

0 = f0,
(iii) there exists a finite Borel measure m on [0, T ] ×RN+1,
(iv) there exist f±,� ∈ V

q
3

2,loc([0, T ]; E−3) for some q < 3,

such that, recalling our definition (4.9) of A1,∗ and A2,∗, we have that

δf+
st(ϕ) = f+

s (A1,∗
st ϕ + A2,∗

st ϕ) −m(1(s,t]∂ξϕ) + f+,�
st (ϕ), (4.12)

δf−
st(ϕ) = f−

s (A1,∗
st ϕ + A2,∗

st ϕ) −m(1[s,t)∂ξϕ) + f−,�
st (ϕ), (4.13)

holds true for all s < t ∈ [0, T ] and all ϕ ∈ E3.

Finally we state the precise notion of solution we will consider for eq. (4.2):

Definition 4.6 (Kinetic solution). Let u0 ∈ L1(RN ). Then u ∈ L∞(0, T ; L1(RN )) is called 
a kinetic solution to (4.1) with initial datum u0 if the function ft(x, ξ) = 1ut(x)>ξ is a 
generalized kinetic solution according to Definition 4.5 with initial condition f0(x, ξ) =
1u0(x)>ξ.

4.1. The main result

Our well-posedness result for the conservation law (4.1) reads as follows.

Theorem 4.7. Let u0 ∈ L1(RN ) ∩ L2(RN ), and assume our Hypothesis 4.1 and 4.2 are 
satisfied. Then the following statements hold true:
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(i) There exists a unique kinetic solution to (4.1) and it belongs to L∞(0, T ; L2(RN )).
(ii) Any generalized kinetic solution is actually a kinetic solution, that is, if f is a 

generalized kinetic solution to equation (4.1) with initial datum 1u0>ξ then there 
exists a kinetic solution u to (4.1) with initial datum u0 such that f = 1u>ξ for a.e. 
(t, x, ξ).

(iii) If u1, u2 are kinetic solutions to (4.1) with initial data u1,0 and u2,0, respectively, 
then for a.e. t ∈ [0, T ]

‖(u1(t) − u2(t))+‖L1 � ‖(u1,0 − u2,0)+‖L1 .

Remark 4.8. Note that in the definition of a kinetic solution, u is a class of equivalence in 
the functional space L∞(0, T ; L1(RN )). Consequently, the L1-contraction property holds 
true only for a.e. t ∈ [0, T ]. However, it can be proved that in the class of equivalence u
there exists a representative u+, defined through 1u+(t,x)>ξ = f+

t (x, ξ), which has better 
continuity properties and in particular it is defined for every t ∈ [0, T ]. If u+

1 and u+
2 are 

these representatives associated to u1 and u2 respectively, then

‖(u+
1 (t) − u+

2 (t))+‖L1 � ‖(u1,0 − u2,0)+‖L1

is satisfied for every t ∈ [0, T ].

4.2. Conservation laws with smooth drivers

Let us show that in the case of a smooth driver z, our notion of solution co-
incides with the classical notion of kinetic solution. Recall that using the standard 
theory for conservation laws, one obtains existence of a unique kinetic solution u ∈
L∞(0, T ; L1(RN )) ∩ L∞(0, T ; L2(RN )) to the problem

∂tu + div(A(x, u))ż = 0, u(0) = u0. (4.14)

In other words, there exists a kinetic measure m such that f = 1u>ξ satisfies the corre-
sponding kinetic formulation

∂tf = ∂ξm + V · ∇ξ,xf ż,

f(0) = f0 = 1u0>ξ,

in the sense of distributions over [0, T ) ×RN+1, that is, for every ϕ ∈ C∞
c ([0, T ) ×RN+1)

it holds true

T∫
0

ft(∂tϕt) dt + f0(ϕ0) =
T∫

0

ft(V · ∇ϕt) dzt + m(∂ξϕ) (4.15)

(recall that divV = 0).
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Lemma 4.9. Let u be a classical kinetic solution of equation (4.14). Then u is also a rough 
kinetic solution in the sense of Definition 4.6, and the following relation holds true:

ft(x, ξ) = νt,x((ξ,∞)) = 1ut(x)>ξ,

where ν is the Young measure related to f .

In order to derive from this formulation the equations for time increments needed in 
Definition 4.5, let us first recall a classical compactness result for Young measures.

Lemma 4.10 (Compactness of Young measures). Let (X, λ) be a σ-finite measure space 
such that L1(X) is separable. Let (νn) be a sequence of Young measures on X such that 
for some p ∈ [1, ∞)

sup
n∈N

∫
X

∫
R

|ξ|p dνnz (ξ) dλ(z) < ∞. (4.16)

Then there exists a Young measure ν on X satisfying (4.16) and a subsequence, still 
denoted by (νn), such that for all h ∈ L1(X) and all φ ∈ Cb(R)

lim
n→∞

∫
X

h(z)
∫
R

φ(ξ) dνnz (ξ) dλ(z) =
∫
X

h(z)
∫
R

φ(ξ) dνz(ξ) dλ(z)

Moreover, if fn, n ∈ N, are the kinetic functions corresponding to νn, n ∈ N, such 
that (4.16) holds true, then there exists a kinetic function f (which corresponds to the 
Young measure ν whose existence was ensured by the first part of the statement) and a 
subsequence still denoted by (fn) such that

fn
w∗
−→ f in L∞(X ×R).

With this result in hand, we are able to obtain the representatives f+ and f− of f .

Lemma 4.11. Let f be a classical kinetic solution defined as in Lemma 4.9. For fixed 
t ∈ (0, T ) and ε > 0 set:

f+,ε
t := 1

ε

t+ε∫
t

fs ds, f−,ε
t := 1

ε

t∫
t−ε

fs ds.

Then there exist f+, f−, representatives of the class of equivalence f , such that, for 
every t ∈ (0, T ), f+

t , f−
t are kinetic functions on RN and, along subsequences,

f+,ε
t

∗
⇀ f+

t , and f−,ε
t

∗
⇀ f−

t in L∞(RN+1).
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Moreover, the corresponding Young measures ν±t satisfy

sup
t∈(0,T )

∫
RN

∫
R

(
|ξ| + |ξ|2

)
ν±t,x(dξ) � ‖u‖L∞

t L1
x

+ ‖u‖2
L∞

t L2
x
. (4.17)

Proof. Both f+,ε and f−,ε are kinetic functions on RN , with associated Young measures 
given by:

ν+,ε
t = 1

ε

t+ε∫
t

νs ds, ν−,ε
t = 1

ε

t∫
t−ε

νs ds.

Furthermore, recall that νt,x(dξ) = δut(x)(dξ). Hence, due to the fact that u sits in the 
space L∞(0, T ; L1(RN )) ∩ L∞(0, T ; L2(RN )), the following relation holds true:

∫
RN

∫
R

(
|ξ| + |ξ|2

)
ν±,ε
t,x (dξ) dx � esssup

t∈[0,T ]

∫
RN

∫
R

(
|ξ| + |ξ|2

)
νt,x(dξ) dx

� ‖u‖L∞
t L1

x
+ ‖u‖2

L∞
t L2

x
.

Thus, we can apply Lemma 4.10 to deduce the existence of f+
t , f−

t , which are kinetic 
functions on RN such that, along a subsequence that possibly depends on t,

f+,ε
t

∗
⇀ f+

t , f−,ε
t

∗
⇀ f−

t in L∞(RN+1). (4.18)

Moreover, the associated Young measures ν±t satisfy (4.17).
It remains to show that they also fulfill f+

t = f−
t = ft for a.e. t ∈ (0, T ). According 

to the classical Lebesgue differentiation theorem, there exists a set of full measure Eψ ⊂
[0, T ] possibly depending on ψ, such that

lim
ε→0

1
ε

t+ε∫
t

fs(ψ) ds = ft(ψ) for all t ∈ Eψ,

for any ψ ∈ L1(RN+1). Therefore, in view of (4.18) we deduce that for every ψ ∈
L1(RN+1) it holds

f+
t (ψ) = ft(ψ) for all t ∈ Eψ.

As the space L1(RN+1) is separable (more precisely it contains a countable set D that 
separates points of L∞(RN+1)), we deduce that f+

t = ft for all t from the set of full 
measure ∩ψ∈DEψ. The same argument applied to f− then completes the claim. �
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Proof of Lemma 4.9. As a consequence of Lemma 4.11, for all ϕ ∈ C∞
c (RN+1),

δf+
st(ϕ) = −

t∫
s

fr(V · ∇ϕ) dzr −m(1(s,t]∂ξϕ),

δf−
st(ϕ) = −

t∫
s

fr(V · ∇ϕ) dzr −m(1[s,t)∂ξϕ),

hold true for every s, t ∈ (0, T ). This can be obtained by testing (4.15) by ψ+,εϕ and 
ψ−,εϕ where ψ+,ε and ψ−,ε are suitable approximations of 1[0,t] and 1[0,t), respectively, 
such as

ψ+,ε
r :=

⎧⎪⎪⎨
⎪⎪⎩

1, if r ∈ [0, t],
1 − r−t

ε , if r ∈ [t, t + ε],
0, if r ∈ [t + ε, T ],

ψ−,ε
r :=

⎧⎪⎪⎨
⎪⎪⎩

1, if r ∈ [0, t− ε],
− s−t

ε , if r ∈ [t− ε, t],
0, if r ∈ [t, T ],

(4.19)

and passing to the limit in ε. Therefore, we arrive at the equivalent formulation

δf+
st(ϕ) = f+

s (A1,∗
st ϕ) + f+

s (A2,∗
st ϕ) + f+,�

st (ϕ) −m(1(s,t]∂ξϕ),

δf−
st(ϕ) = f−

s (A1,∗
st ϕ) + f−

s (A2,∗
st ϕ) + f−,�

st (ϕ) −m(1[s,t)∂ξϕ),

which holds true in the scale (En) with En = Wn,1(RN+1) ∩Wn,∞(RN+1) for remainders 
f±,� given by

f±,�
st (ϕ) = −f±

s (A2,∗
st ϕ) +

t∫
s

(f±
r (V · ∇ϕ) − f±

s (V · ∇ϕ))dzr.

Where we have replaced f by f± in the above Riemann-Stieltjes since f+
t = f−

t = ft for 
a.e. t ∈ (0, T ). Plugging into the integral the equation for f± we get

f±,�
st (ϕ) = −f±

s (A2,∗
st ϕ) −

t∫
s

⎡
⎣ r∫

s

fw(V · ∇(V · ∇ϕ)) dzw + m(1(s,r]∂ξ(V · ∇ϕ))

⎤
⎦dzr.

Inspection of this expression shows that f±,� ∈ V p
2,loc(E−2) for any p � 1/2. Moreover, 

it can be proved, cf. [14, Remark 12] or [43, Lemma 4.3], that the kinetic measures m
do not have atoms at t = 0 and consequently f+

0 = f0. �
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5. Rough conservation laws II: uniqueness and reduction

5.1. General strategy

Before we turn to the details, let us briefly sketch out the main steps of our method 
toward uniqueness for the problem (4.1), interpreted through the above kinetic formu-
lation. The starting observation is, in fact, the basic identity

(u1 − u2)+ =
∫
R

1u1>ξ(1 − 1u2>ξ) dξ , u1, u2 ∈ R ,

which, applied to two kinetic functions u1, u2, immediately yields
∥∥(u1

t − u2
t

)+∥∥
L1

x
= ‖f1

t (1 − f2
t )‖L1

x,ξ
,

where f1, f2 stands for the generalized kinetic functions associated with u1, u2.
We are thus interested in a estimate for the product f1(1 −f2), and to this end, we will 

naturally try to understand the dynamics of this path. At this point, observe that owing 
to (4.12)–(4.13), the two paths f1 and f̄2 := 1 −f2 (or rather their representatives f i,±) 
are solutions of rough equations driven by the same driver A (we will carefully justify 
this assertion below).

This brings us back to the same setting of Section 3.1, and following the ideas therein 
described, we intend to display a tensorization procedure based on the consideration of 
the path

F := f1,+ ⊗ f̄2,+ .

The main steps of the analysis are those outlined in Section 3.1, namely:
(i) Derive the specific rough equation satisfied by F (that is, the corresponding version 
of (3.3)), with clear identification of a drift term Q and a remainder F �. This is the 
purpose of Section 5.2 below, and, as expected, it will involve the tensorized driver Γ
derived from A along (3.5).
(ii) Apply the blow-up transformation (3.7) to the equation and, in order to use our 
a priori estimate on the remainder, try to find suitable bounds for the (transformed) 
drift term Qε := T ∗

ε Q, as well as for the supremum of F ε := T ∗
ε F . These issues will be 

addressed in Sections 5.4 and 5.5.
(iii) Combine Theorem 2.10 with the renormalizability property of the tensorized driver 
(as proved in Proposition 3.4) in order to estimate the (transformed) remainder F �,ε :=
T ∗
ε F

�. Then use this control to pass to the diagonal (that is to let ε tend to 0) and, with 
the limit equation at hand, try to settle a rough Gronwall argument toward the desired 
estimate (in a way similar way to the example treated in Section 2.4). This will be the 
topic of Section 5.6, and it will finally lead us to the expected uniqueness property.
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The principles of this three-step procedure are thus quite general, and they could 
certainly be used as guidelines for other rough-PDE models.

Nevertheless, when it turns to its rigorous implementation (at least in our case), the 
above scheme happens to be the source of (painful) technical difficulties related to the 
“localizability” of the test-functions, that is the control of their support. As we already 
evoked it in Remark 3.6, these difficulties will force us to consider the sophisticated scale 
ER,n introduced in (3.14), and thus to handle an additional parameter R � 1 throughout 
the procedure (on top of the blow-up parameter ε). The dependence of the resulting 
controls with respect to R will be removed afterwards, via a (rough) Gronwall-type 
argument.

Note finally that the construction of a smoothing (in the sense of Definition 2.9) for 
the “localized” scale ER,n is not an as easy task as in the situation treated in Section 2.4: 
we will go back to this problem in Section 5.3 and therein construct a suitable family of 
operators.

From now on and for the rest of the section, let f1, f2 be two generalized kinetic 
solutions to (4.1), and fix two associated measures m1, m2 (along Definition 4.5(iii)). 
Besides, we will use the following notation: f̄ := 1 − f as well as x := (x, ξ) ∈ RN+1, 
y := (y, ζ) ∈ RN+1.

5.2. Tensorization

We here intend to implement Step (i) of the above-described procedure, that is to 
derive the specific rough equation governing the path F = f1,+⊗ f̄2,+ defined on [0, T ] ×
RN+1 ×RN+1 by

Ft(x,y) := f1,+
t (x)f̄2,+

t (y). (5.1)

For the moment, let us consider the general scale of spaces E⊗
n = Wn,1(RN+1 ×RN+1) ∩

Wn,∞(RN+1 ×RN+1) (0 � n � 3) with norms

‖Φ‖E⊗
n

= ‖Φ‖Wn,1(RN+1×RN+1) + ‖Φ‖Wn,∞(RN+1×RN+1) ,

and recall that the tensorized driver Γ = (Γ1, Γ2) is defined along the formulas

Γ1
st := A1

st ⊗ I + I ⊗A1
st , Γ2

st := A2
st ⊗ I + I ⊗A2

st + A1
st ⊗A1

st .

Proposition 5.1. In the above setting, and for all test functions Φ ∈ E⊗
3 , the following 

relation is satisfied:

δFst(Φ) = δQst(Φ) + Fs((Γ1,∗
st + Γ2,∗

st )Φ) + F �
st(Φ), (5.2)

where F � ∈ V
q/3
2 (E⊗

−3) and where Q is the path defined (in the distributional sense) as:
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Qt := Q1
t −Q2

t =
∫

[0,t]

∂ξm
1
dr ⊗ f̄2,−

r −
∫

[0,t]

f1,+
r ⊗ ∂ξm

2
dr. (5.3)

Proof. Let us first work out the algebraic form of the equation governing F in a formal 
way. Namely, according to relations (4.12), the equations describing the dynamics of f1,+

and f̄2,+ in the distributional sense are given by:

δf1,+
st = A1

stf
1,+
s + A2

stf
1,+
s + ∂ξm

1 (1(s,t]
)

+ f1,+,�
st (5.4)

δf̄2,+
st = A1

stf̄
2,+
s + A2

stf̄
2,+
s − ∂ξm

2 (1(s,t]
)
− f2,+,�

st . (5.5)

In order to derive the equation for F , we tensorize the equation for f1,+ with the equation 
for f̄2,+. Similarly to (3.2) we obtain the following relation, understood in the sense of 
distributions over RN+1 ×RN+1:

δFst = δf1,+
st ⊗ f̄2,+

s + f1,+
s ⊗ δf̄2,+

st + δf1,+
st ⊗ δf̄2,+

st .

Expanding δf1,+
st and δf̄2,+

st above according to (5.4) and (5.5), we end up with:

δFst = Γ1
stFs + Γ2

stFs

− f1,+
s ⊗ ∂ξm

2(1(s,t]) − ∂ξm
1(1(s,t]) ⊗ ∂ξm

2(1(s,t]) + ∂ξm
1(1(s,t]) ⊗ f̄2,+

s + R1
st, (5.6)

where all the other terms have been included in the remainder R1
st. More explicitly

R1
st = A2

stf
1,+
s ⊗A1

stf̄
2,+
s + A1

stf
1,+
s ⊗A2

stf̄
2,+
s + A2

stf
1,+
s ⊗A2

stf̄
2,+
s

+ f1,+,�
st ⊗ f

2,+
s − f1,+

s ⊗ f2,+,�
st

− (A1
st + A2

st)f1,+
s ⊗ ∂ξm

2(1(s,t]) + ∂ξm
1(1(s,t]) ⊗ (A1

st + A2
st)f̄2,+

s

− ∂ξm
1(1(s,t]) ⊗ ∂ξm

2(1(s,t])

− (A1
st + A2

st)f1,+
s ⊗ f2,+,�

st + f1,+,�
st ⊗ (A1

st + A2
st)f̄2,+

s

− ∂ξm
1(1(s,t]) ⊗ f2,+,�

st − f1,+,�
st ⊗ ∂ξm

2(1(s,t]) − f1,+,�
st ⊗ f2,+,�

st .

Let us further decompose the term I := ∂ξm
1(1(s,t]) ⊗ ∂ξm

2(1(s,t]) in (5.6). The inte-
gration by parts formula for two general BV functions A and B reads as

AtBt = AsBs +
∫

(s,t]

ArdBr +
∫

(s,t]

Br−dAr.

Applying this identity to I, we obtain I = I1 + I2 with

I1 = −
∫

∂ξm
1(1(s,r]) ⊗ d∂ξm2

r, and I2 = −
∫

d∂ξm1
r ⊗ ∂ξm

2(1(s,r)).

(s,t] (s,t]
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We now handle I1 and I2 separately. For the term I1 we invoke again equation (5.4)
describing the dynamics of f1,+, which yields

I1 = −
∫

(s,t]

(δf1,+
sr − (A1

sr + A2
sr)f1,+

s − f1,+,�
sr ) ⊗ d∂ξm2

r = −
∫

(s,t]

δf1,+
sr ⊗ d∂ξm2 + R2

st

= −
∫

(s,t]

f1,+
r ⊗ d∂ξm2 + f1,+

s ⊗ ∂ξm
2(1(s,t]) + R2

st.

Similarly, we let the patient reader check that the equivalent of relation (5.5) for δf̄−
st , 

derived from (4.13), leads to

I2 =
∫

(s,t]

f̄2,−
r ⊗ d∂ξm1

r − f
2,−
s ⊗ ∂ξm

1(1(s,t]) + ∂ξm
2(1{s}) ⊗ ∂ξm

1(1(s,t]) + R3
st.

In addition, observe that f2,+
s − f2,−

s = ∂ξm
2(1{s}). Hence f̄2,−

s −∂ξm(1{s}) = f̄2,+
s and 

we obtain

I2 =
∫

(s,t]

f̄2,−
r ⊗ d∂ξm1

r − f
2,+
s ⊗ ∂ξm

1(1(s,t]) + R3
st.

Plugging the relations we have obtained for I = I1 + I2 into (5.6) and looking for 
cancellations, we end up with the following expression for δF :

δFst = Γ1
stFs + Γ2

stFs +
∫

(s,t]

d∂ξm1
r ⊗ f̄2,−

r −
∫

(s,t]

f1,+
r ⊗ d∂ξm2 + F �

st,

with F �
st = R1

st + R2
st + R3

st. Having the definition (5.3) of Q in mind, this proves equa-
tion (5.2) in the distributional sense, for test functions Φ ∈ C∞

c (RN+1 × RN+1) since 
distributions can act in each set of variables separately. We now establish the claimed 
regularity for F � through an interpolation argument. To this end, consider the smooth-
ing (Jη)η∈(0,1) (with respect to (E⊗

n )0�n�3) derived from the same basic convolution 
procedure as in (2.35), and for Φ ∈ C∞

c (RN+1 ×RN+1), write

F �
st(Φ) = F �

st(JηΦ) + F �
st((Id − Jη)Φ) .

The first term will be estimated with the decomposition into the various remainder terms 
F �
st(JηΦ) = R1

st(JηΦ) + R2
st(JηΦ) + R3

st(JηΦ). Close inspection of the precise form of 
Ri for i = 1, 2, 3 shows that the terms which require more than three derivatives from 
JηΦ (resulting in negative powers of η) are also more regular in time. On the other 
hand, F �

st((Id − Jη)Φ) can be estimated directly from the equation (5.2) and while the 
various terms show less time regularity they also require less than three derivatives from 
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(Id − Jη)Φ which in turn become positive powers of η. Reasoning as in the proof of 
Theorem 2.10 we can obtain a suitable choice for η which shows that there exists a 
regular control ω��, depending on the controls for f i, mi, f i,�, i = 1, 2, such that

F �
st(Φ) � ω��(s, t)3/q‖Φ‖E⊗

3
. (5.7)

To complete the argument we need to go from the distributional to the variational 
form of the dynamics of F . That is, we need to establish eq. (5.2) for all Φ ∈ E⊗

3 and not 
only for Φ ∈ C∞

c (RN+1 ×RN+1). In order to do so we observe that C∞
c (RN+1 ×RN+1)

is weakly-� dense in E⊗
3 . Choosing a sequence (Φn)n ⊆ C∞

c (RN+1 × RN+1) weakly-�
converging to Φ ∈ E⊗

3 we see that all the terms in eq. (5.2) apart from the remainder 
F � converge. Consequently also the remainder converges and it satisfies the required 
estimates by (5.7). �

Let us now turn to the implementation of Step (ii) of the procedure described in 
Section 5.1. We recall that the blow-up transformation (Tε)ε∈(0,1) has been introduced 
in Section 3.1, together with the explicit description of the related transforms T ∗

ε , T
−1
ε

(see (3.8) and (3.9)). Setting

Γ∗
ε := T−1

ε Γ∗Tε , Qε := T ∗
ε Q and F �,ε := T ∗

ε F
� , (5.8)

it is easy to check that, for each fixed ε ∈ (0, 1), the transformed path F ε := T ∗
ε F satisfies 

the rough equation

δF ε
st(Φ) = δQε

st(Φ) + F ε
s ((Γ1,∗

ε,st + Γ2,∗
ε,st)Φ) + F �,ε

st (Φ) , (5.9)

in the same scale (E⊗
n )0�n�3 as the original equation (5.2).

As a preliminary step toward an efficient application of Theorem 2.10 to equation 
(5.9), we need to find suitable bounds for Qε (keeping condition (2.17) in mind) and for 
the supremum of F ε (which, in view of (2.20)–(2.21), will be involved in the resulting 
estimate). As we mentioned it earlier, the above scale (E⊗

n ) turns out to be too general 
for the derivation of such bounds, and we must restrict our attention to the more specific 
(set of) localized scale(s) (ER,n)0�n�3 (R � 1) defined in (3.14), that is

ER,n :=
{
Φ ∈ Wn,∞(RN+1 ×RN+1); Φ(x,y) = 0 if ρR(x,y) ≥ 1

}
, (5.10)

with ρR(x, y)2 = |x+|2/R2 + |x−|2.

5.3. Construction of a smoothing

The first condition involved in Theorem 2.10 is the existence of a suitable smoothing 
(in the sense of Definition 2.9), and we thus need to exhibit such an object for the above 
scale (ER,n)0�n�3 (for fixed R � 1).



3616 A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577–3645
Just as in Section 2.4, a first natural idea here is to turn to a convolution procedure: 
namely, we introduce a smooth rotation-invariant function j on RN+1 × RN+1 with 
support in the ball of radius 1

2 and such that 
∫
RN+1×RN+1 j(x, y)dxdy = 1, and consider 

Jη defined as

Jηϕ(x,y) :=
∫

RN+1×RN+1

jη(x − x̃,y − ỹ)ϕ(x̃, ỹ)dx̃dỹ , with

jη(x,y) := η−2N−2j(η−1(x,y)) .

Unfortunately, the sole consideration of the so-defined family (Jη)η∈(0,1) is no longer 
sufficient in this “localized” setting, since convolution may of course increase the sup-
port of test-functions, leading to stability issues. Accordingly, an additional localization 
procedure must come into the picture.

To this end, let us first introduce a suitable cut-off function:

Notation 5.2. Let η ∈ (0, 13 ) and let θη ∈ C∞
c (R) be such that

0 � θη � 1, supp θη ⊂ B1−2η ⊂ R, θη ≡ 1 on B1−3η ⊂ R,

where for α > 0 we set Bα := [−α, α]. We also require the following condition on θη:

|∇kθη| � η−k, for k = 1, 2.

Finally, for all R � 1 and x, y ∈ RN+1, we define

Θη(x,y) := ΘR,η(x,y) = θη(ρR(x,y)).

With these objects in hand, we have the following technical result.

Proposition 5.3. Let Θη be the function introduced in Notation 5.2. Then it holds that

‖ΘηΦ‖ER,k
� ‖Φ‖ER,k

for k = 0, 1, 2 , (5.11)

‖(1 − Θη)Φ‖ER,0 � ηk‖Φ‖ER,k
for k = 1, 2 , (5.12)

‖(1 − Θη)Φ‖ER,1 � η‖Φ‖ER,2 , (5.13)

with proportional constants independent of both η and R. Besides,

supp(JηΘηΦ) ⊂
{
(x,y) ∈ RN+1 ×RN+1; ρR(x,y) � 1

}
and there exists ΨR ∈ ER,3 with supR�1 ‖ΨR‖ER,3 < ∞ such that for all x, y ∈ RN+1

η3−k|JηΘηΦ(x,y)| � ΨR(x,y)‖Φ‖ER,k
, (5.14)

where the proportional constant is again independent of both η and R.
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Before we turn to the proof of these properties, let us observe that they immediately 
give rise to the expected smoothing:

Corollary 5.4. For all η ∈ (0, 1) and R � 1, consider the operator Ĵη on ER,k (k = 0, 1, 2) 
defined as Ĵη(Φ) := Jη(ΘηΦ). Then Ĵη defines a smoothing on the scale (ER,k), and 
conditions (2.15)–(2.16) are both satisfied with proportional constants independent of R.

Remark 5.5. The existence of a smoothing for the localized scale (ER,n) is also an (un-
proven) assumption in the analysis carried out in [1] for a rough transport equation (see 
in particular Section 5.2 in the latter reference). The statement above thus offers a way 
to complete these results.

Proof of Proposition 5.3. In order to prove (5.11), we write

∇(ΘηΦ) = (∇Θη)Φ + Θη(∇Φ),

where the second term does not pose any problem. On the other hand, the term ∇Θη

diverges as η−1 due to the assumptions on θη, namely, it holds

∇Θη = (∇θη)(ρR(x,y))∇ρR(x,y).

But due to the support of Φ and the fact that θη ≡ 1 on B1−3η, we have that for every 
(x, y) in the region where ∇Θη �= 0 there exists (x̃, ̃y) outside of support of Φ such that 
|(x, y) − (x̃, ̃y)| � η hence

|Φ(x,y)| = |Φ(x,y) − Φ(x̃, ỹ)| � η‖Φ‖ER,1

and consequently (5.11) follows for k = 1. If k = 2, we have

∇2(ΘηΦ) = (∇2Θη)Φ + 2∇Θη · ∇Φ + Θη∇2Φ,

where the third term does not pose any problem and the second one can be estimated 
using the reasoning above. For the first one, we observe that ∇2

xΘη diverges like η−2 but 
for every (x, y) such that ∇2Θ �= 0 there exists (x̃, ̃y) that lies outside of support of Φ, 
satisfies |(x, y) − (x̃, ̃y)| � η. Resorting to a second order Taylor expansion and invoking 
the fact that both Φ(x̃, ̃y) and ∇Φ(x̃, ̃y) are vanishing we get:

|Φ(x,y)| = |Φ(x,y) − Φ(x̃, ỹ) − DΦ(x̃, ỹ)((x,y) − (x̃, ỹ))|
� |D2Φ(zx, zy)||(x,y) − (x̃, ỹ)|2 � η2‖Φ‖ER,2

(5.15)

and relation (5.11) follows.
The same approach leads to (5.12). To be more precise, for (x, y) from the support 

of (1 − Θη)Φ we have using the first and second order Taylor expansion, respectively,
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|(1 − Θη)Φ(x,y)| � ηk‖(1 − Θη)Φ‖ER,k
� ηk‖Φ‖ER,k

, (5.16)

where we used (5.11) for the second inequality.
To show (5.13), we write

∇[(1 − Θη)Φ] = −(∇Θη)Φ + (1 − Θη)(∇Φ).

The second term can be estimated due to (5.16) as follows

|(1 − Θη)(∇Φ)| � η‖Φ‖ER,2 .

For the first term, we recall that even though ∇Θη is of order η−1, Φ can be estimated 
on the support of ∇Θη by η2 due to (5.15). This yields

|(∇Θη)Φ| � η‖Φ‖ER,2

and completes the proof.
Let us now prove (5.14). First of all, we observe the trivial estimate, for k = 1, 2, and 

(x, y) ∈ supp(JηΘηΦ),

η3−k|JηΘηΦ(x,y)| � ‖JηΘηΦ‖L∞ � ‖Φ‖E0 � ‖Φ‖Ek
. (5.17)

Next, we note that

supp(JηΘηΦ) ⊂
{
(x,y) ∈ RN+1 ×RN+1; ρR(x,y) � 1 − η

}
(5.18)

since R ≥ 1, and denote

DR :=
{
(x,y) ∈ RN+1 ×RN+1; ρR(x,y) � 1

}
. (5.19)

Let d(·, ∂DR) denote the distance to its boundary ∂DR. Owing to (5.18), it satisfies

d((x,y), ∂DR) � η for all (x,y) ∈ supp(JηΘηΦ).

Therefore, performing a Taylor expansion we obtain for k = 1, 2, and (x, y) ∈
supp(JηΘηΦ),

η3−k|JηΘηΦ(x,y)| � η3−k|d((x,y), ∂DR)|k‖JηΘηΦ‖Wk,∞

� |d((x,y), ∂DR)|3‖Φ‖ER,k

(5.20)

where we also used (5.11) and the fact that ER,k is embedded in W k,∞. Besides we may 
put (5.17) and (5.20) together to conclude that there exists ΨR ∈ ER,3 satisfying the 
conditions stated in this Lemma and, in addition,
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min
{
1, |d((x,y), ∂DR)|3

}
� ΨR(x,y)

which completes the proof. For example we can take

ΨR(x,y) =
{
d((x,y), ∂DR)3, if (x,y) ∈ DR and d((x,y), ∂DR) ≤ 1/2,
1, if (x,y) ∈ DR and d((x,y), ∂DR) ≥ 3/4,

and complete it with a smooth interpolation in between. �
5.4. Preliminary estimate for the supremum of F ε

We can now go ahead with our strategy and state our upper bound for F ε in (5.9).

Proposition 5.6. Let F ε be the increment defined by (5.8). Then for all 0 � s � t � T it 
holds that

N [F ε;L∞(s, t; E∗
R,0)] � M(s, t, ε, R) , (5.21)

where

M(s, t, ε, R) := εRN + sup
s�r�t

∫
RN

∫
R

|ξ| ν1,+
r,x (dξ)dx + sup

s�r�t

∫
RN

∫
R

|ζ| ν2,+
r,y (dζ)dy (5.22)

and the proportional in (5.21) constant does not depend on ε and R. We recall that, 
following Definition 4.5(i), νi,±t,. stands for the Young measure associated with the kinetic 
function f i,±

t .

Remark 5.7. Observe that our localization procedure becomes apparent here for the first 
time. Indeed, the bound (5.21) still depends on the localization parameter R. This lack 
of uniformity does not pose any problem since our procedure will later consist in sending 
ε → 0 first and then R → ∞.

Proof. Consider the function Υε : R2 → [0, ∞[ defined as

Υε(ξ, ζ) :=
∞∫
ζ

ξ∫
−∞

ε−11|ξ′−ζ′|�2ε dξ′dζ ′,

whose main interest lies in the relation (∂ζ∂ξΥε)(ξ, ζ) = ε−11|ξ−ζ|�2ε. Let us derive some 
elementary properties of Υε. First, we obviously have:

∂ξΥε(ξ, ζ) =
∞∫
ε−11|ξ−ζ′|�2ε dζ ′, (5.23)
ζ
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and in particular ∂ξΥε(ξ, +∞) = 0. A simple change of variables also yields:

Υε(ξ, ζ) =
∞∫

ζ−ξ

0∫
−∞

ε−11|ξ′−ζ′|�2ε dξ′dζ ′ = Υε(0, ζ − ξ).

Moreover, writing

Υε(0, ζ) = ε

ζ/ε∫
−∞

ζ′∫
−∞

1|ξ′|�2 dξ′dζ ′

it follows that

|Υε(0, 0)| = ε

0∫
−∞

ζ′∫
−∞

1|ξ′|�2 dξ′dζ ′ � ε.

Finally, using the elementary bound

|∂ζΥε(ξ, ζ)| � 2,

which stems from (5.23), we obtain that

|Υε(ξ, ζ)| = |Υε(0, ζ − ξ)| � ε + |ζ − ξ| � ε + |ξ| + |ζ|.

Recall that, since both f1 and f2 are kinetic solutions, we have f1,+
r (x, ξ) =

ν1,+
r,x ((ξ, +∞)) and f̄2,+

r (y, ζ) = ν2,+
r,y ((−∞, ζ]). With the above properties of Υε in mind 

we thus obtain, for all t ∈ [0, T ] and x, y ∈ RN ,

∫
R2

f1,+
r (x, ξ)f̄2,+

r (y, ζ)ε−11|ξ−ζ|�2ε dξdζ = −
∫
R2

f1,+
r (x, ξ)f̄2,+

r (y, ζ)(∂ζ∂ξΥε)(ξ, ζ) dξdζ

=
∫
R

∫
R

f1,+
r (x; ξ)(∂ξΥε)(ξ, ζ) dξ ν2,+

r,y (dζ)

=
∫
R

∫
R

Υε(ξ, ζ) ν1,+
r,x (dξ) ν2,+

r,y (dζ)

� ε +
∫
R

|ξ| ν1,+
r,x (dξ) +

∫
R

|ζ| ν2,+
r,y (dζ). (5.24)

We are now ready to bound F ε in E∗
R,0, which is a L1-type space. Namely, a simple 

change of variables yields:
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‖F ε
r ‖E∗

R,0
�

∫
RN+1×RN+1

F ε
r (x,y)1|x−|�1 1|x+|�R dxdy

�
∫

RN+1×RN+1

Fr(x,y)ε−N−1 1|x−|�ε 1|x+|�R dxdy

�
∫

RN×RN

ε−N 1|x−|�ε 1|x+|�R

∫
R2

Ft(x,y)ε−1 1|ξ−|�ε dξdζdxdy.

Hence, thanks to relation (5.24), we get

‖F ε
r ‖E∗

R,0
�

∫
RN×RN

ε−N 1|x−|�ε 1|x+|�R

(
ε +

∫
R

|ξ| ν1,+
r,x (dξ) +

∫
R

|ζ| ν2,+
r,y (dζ)

)
dxdy

� εRN +
∫

RN×RN

ε−N 1|x−|�ε

(∫
R

|ξ| ν1,+
r,x (dξ) +

∫
R

|ζ| ν2,+
r,y (dζ)

)
dxdy

� εRN +
∫
RN

∫
R

|ξ| ν1,+
r,x (dξ)dx +

∫
RN

∫
R

|ζ| ν2,+
r,y (dζ)dy,

and the estimate (5.21) follows. �
5.5. Preliminary estimate for the drift term Qε

Let us now proceed to an estimation of the drift term Qε in (5.9), where we recall 
that Q is defined by (5.3). This estimation must fit the pattern of (2.17) with respect to 
the smoothing (Ĵη)η∈(0,1) introduced in Corollary 5.4. To this aim, we set:

q1
t :=

∫
[0,t]

m1
dr ⊗ f̄2,−

r , σ1
t :=

∫
[0,t]

m1
dr ⊗ ν2,−

r

and in parallel

q2
t :=

∫
[0,t]

f1,+
r ⊗m2

dr, σ2
t :=

∫
[0,t]

ν1,+
r ⊗m2

dr .

With these notations, it holds true that

Q1 = (∂ξ ⊗ I)q1 = 2∂+
ξ q1 − σ1 where ∂+

ξ := 1
2(∂ξ ⊗ I + I ⊗ ∂ξ), (5.25)

and in the same way Q2 = 2∂+
ξ q2 + σ2. We now bound the increments q� for � = 1, 2

uniformly.
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Lemma 5.8. For all 0 � s � t � T and Φ ∈ ER,k, k = 1, 2, it holds that
∑
�=1,2

|δq�st(∂+
ξ TεΦ)| � ωm(s, t)‖∂+

ξ Φ‖ER,0 ,

where � = 1, 2, and the proportional constant does not depend on ε, R and the control 
ωm is defined as follows

ωm(s, t) := ‖f̄2‖L∞m1((s, t] ×RN+1) + ‖f1‖L∞m2((s, t] ×RN+1). (5.26)

Proof. We shall bound q1(∂+
ξ TεΦ) only, the bound on q2(∂+

ξ TεΦ) being obtained in a 
similar way.
Step 1: Bound on q1. Consider a test function Ψ ∈ ER,0, and let us first point out that

|δq1
st(Ψ)| �

∫
x,y

δq1
st(dx,y)|Ψ(x,y)|dy,

so that the change of variable x− = 1
2 (x − y) and x unchanged yields

|δq1
st(Ψ)| = 2N+1

∫
x,x−

δq1
st(dx,x − 2x−)|Ψ(x,x − 2x−)|dx−

� 2N+1
∫
x−

∫
x

δq1
st(dx,x − 2x−) sup

x
|Ψ(x,x − 2x−)|dx−

� 2N+1

⎡
⎣sup

x−

∫
x

δq1
st(dx,x − 2x−)

⎤
⎦
⎡
⎣∫
x−

sup
x

|Ψ(x,x − 2x−)|dx−

⎤
⎦

= 2N+1

⎡
⎣sup

x−

∫
x

δq1
st(dx,x − 2x−)

⎤
⎦
⎡
⎣∫
x−

sup
x+

|Ψ(x+ + x−,x+ − x−)|dx−

⎤
⎦ .

(5.27)

Furthermore, we have:

sup
x−

∫
x

δq1
st(dx,x − 2x−) �

∫
]s,t]

sup
x−

∫
x

m1(dr, dx)|f̄2
r (x − 2x−)|

� ‖f̄2‖L∞

∫
]s,t]×RN+1

m1(dr, dx)

� ‖f̄2‖L∞m1((s, t] ×RN+1).

Reporting this estimate into (5.27) we get:
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|δq1
st(Ψ)| � ‖f̄2‖L∞m1((s, t] ×RN+1)‖Ψ‖L1

−L∞
+
, (5.28)

where we have introduced the intermediate norm

‖Ψ‖L1
−L∞

+
:=

∫
RN+1

dx− sup
x+

|Ψ(x+ + x−,x+ − x−)|. (5.29)

Step 2: Simple properties of the L1
−L

∞
+ -norm. We still consider a test function Ψ ∈ ER,0. 

Observe that by the basic change of variables x− = ε−1x−, one has

‖TεΨ‖L1
−L∞

+
= ε−N−1

∫
RN+1

dx− sup
z

|Ψ(z + ε−1x−, z − ε−1x−)| (5.30)

=
∫

RN+1

dx− sup
z

|Ψ(z + x−, z − x−)| = ‖Ψ‖L1
−L∞

+
.

In addition, if Ψ ∈ ER,0, we can use the fact that the support of Ψ is bounded in the x−
variable (independently of R) in order to get:

‖Ψ‖L1
−L∞

+
� ‖Ψ‖ER,0 .

Step 3: Conclusion. As a last preliminary step, notice that

∂+
ξ Tε = Tε∂

+
ξ ,

where we recall that ∂+
ξ is defined by (5.25). This entails:

|δq1
st(∂+

ξ TεΦ)| = |δq1
st(Tε∂

+
ξ Φ)|.

Then, applying successively (5.28) and (5.30) it follows that

|δq1
st(∂+

ξ TεΦ)| = |δq1
st(Tε∂

+
ξ Φ)|

� ‖f̄2‖L∞m1((s, t] ×RN+1)‖∂+
ξ Φ‖L1

−L∞
+

� ‖f̄2‖L∞m1((s, t] ×RN+1)‖∂+
ξ Φ‖ER,0 ,

which is our claim. �
We are now ready to establish our main estimate on Qε.

Proposition 5.9. Let Q be defined by (5.3), Qε := T ∗
ε Q and let (Ĵη)η∈(0,1) be the set 

of smoothing operators introduced in Corollary 5.4. Then for all 0 � s � t � T and 
Φ ∈ ER,k, k = 1, 2, it holds that
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|δQε
st(ĴηΦ)| � ωm(s, t)‖Φ‖ER,1 + ηk−3 ωσ,ε,R(s, t)‖Φ‖ER,k

, (5.31)

δQε
st(ΨR) + ωσ,ε,R(s, t) � ωm(s, t)‖∂+

ξ ΨR‖ER,0 , (5.32)

where the proportionality constants do not depend on ε, η and R, and ΨR is the function 
introduced in Proposition 5.3. In (5.31) and (5.32), we also have ωm given by (5.26) and 
the control ωσ,ε,R is defined as

ωσ,ε,R(s, t) := δσ1
st(T εΨR) + δσ2

st(T εΨR) . (5.33)

Remark 5.10. Although it seems purely technical, inequality (5.32) sets the stage for our 
contraction argument yielding uniqueness. Namely, the proper control we need for the 
measure term of our equation will stem from the fact that the control ωσ,ε,R appears in 
a “good” form in the l.h.s. of (5.32). This damping effect is reminiscent of (2.33) for the 
heat equation model.

Remark 5.11. Observe that the bound (5.31) (which will serve us in the forthcoming 
application of Theorem 2.10) still depends on both parameters ε and R. At this point we 
are not systematically looking for uniformity but only for bounds that we will be able 
to control afterwards, via the Gronwall-type arguments of Section 5.6. The situation 
here can somehow be compared with our use of the (non-uniform) estimate (2.36) in the 
example treated in Section 2.4.

Proof. Recall that Q is written as Q1 −Q2 in (5.3). We focus here on the estimate for 
Q1. Furthermore, owing to (5.25) we have

δQ1,ε
st (ĴηΦ) = T ∗

ε δQ
1
st(ĴηΦ) = δQ1

st(TεĴ
ηΦ) = 2δQ11,ε

st − δQ12,ε
st ,

where

δQ11,ε
st = ∂+

ξ δq1
st(TεĴ

ηΦ), and δQ12,ε
st = δσ1

st(TεĴ
ηΦ).

Now thanks to Lemma 5.8, we have that

|δQ11,ε
st | = |δq1

st(∂+
ξ TεĴ

ηΦ)| � ‖f̄2‖L∞m1((s, t] ×RN+1)‖∂+
ξ ĴηΦ‖ER,0

Moreover, invoking the fact that Jη is a bounded operator in E1 plus inequality (5.11), 
we get:

‖∂+
ξ ĴηΦ‖ER,0 � ‖ĴηΦ‖ER,1 � ‖Φ‖ER,1 ,

which entails the following relation:

|δQ11,ε
st | � ‖f̄2‖L∞m1((s, t] ×RN+1)‖Φ‖ER,1 .
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As far as the term δQ12,ε
st is concerned, we make use of (5.14) to deduce

η3−k|δQ12,ε
st | = η3−k|δσ1

st(TεĴ
ηΦ)| � η3−kδσ1

st(Tε|ĴηΦ|) � ‖Φ‖ER,k
ωσ,ε,R(s, t).

Putting together our bound on δQ11,ε
st and δQ12,ε

st , we thus get:

|δQ1
st(TεĴ

ηΦ)| � ωm(s, t)‖Φ‖ER,1 + ηk−3 ωσ,ε,R(s, t)‖Φ‖ER,k
,

and along the same lines, we can prove that

|δQ2
st(TεĴ

ηΦ)| � ωm(s, t)‖Φ‖ER,1 + ηk−3 ωσ,ε,R(s, t)‖Φ‖ER,k
,

which achieves the proof of our assertion (5.31).
The second claim (5.32) is obtained as follows: we start from relation (5.25), which 

yields:

δQε
st(ΨR) = δQst(TεΨR)

= −δσ1
st(TεΨR) − δσ2

st(TεΨR) + δq1
st(Tε∂

+
ξ ΨR) + δq2

st(Tε∂
+
ξ ΨR)

� −ωσ,ε,R(s, t) + δq1
st(Tε∂

+
ξ ΨR) + δq2

st(Tε∂
+
ξ ΨR) (5.34)

We can now proceed as for (5.31) in order to bound δq1
st(Tε∂

+
ξ ΨR) and δq2

st(Tε∂
+
ξ ΨR)

above, and this immediately implies (5.32). �
5.6. Passage to the diagonal

Thanks to the results of Sections 5.3-5.5, we are now in a position to efficiently apply 
Theorem 2.10 to the transformed equation (5.9). To be more specific, we study this 
equation on the scale (ER,n)0�n�3 defined in (5.10) (for fixed R � 1) and consider the 
smoothing (Ĵη)η∈(0,1) given by Corollary 5.4. At this point, let us also recall that the 
driver A governing the original equation is known to be renormalizable with respect to 
the scale (ER,n): this was the content of Proposition 3.4, which provides us with the two 
bounds (3.15)–(3.16) (uniform in both ε and R) for the tensorized driver Γε.

By injecting these considerations, together with the results of Proposition 5.6 and 
Proposition 5.9, into the statement of Theorem 2.10, we immediately obtain the following 
important assertion about the remainder F �,ε in equation (5.9): there exists a constant 
L > 0 such that if ωZ(I) � L, one has, for all s < t ∈ I,

‖F �,ε
st ‖E∗

R,3
� ω∗,ε,R(s, t)

3
q

:= M(s, t, ε, R)ωZ(s, t)
3
p−2κ + ωm(s, t)ωZ(s, t)

1
p + ωσ,ε,R(s, t)ωZ(s, t)κ ,

(5.35)
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where the proportional constant is independent of ε and R, the quantities M, ωZ , ωm,

ωσ,ε,R are respectively defined by (5.22), Hypothesis 4.2, (5.26) and (5.33), and we have 
fixed (once and for all) the parameters q, κ such that

q ∈
[

9p
2p + 3 , 3

)
, κ ∈

[
3
q
− 1, 1

2

(
3
p
− 3

q

)]
.

As a first consequence of estimate (5.35), we can derive the following bound on the 
limit of ωσ,ε,R(s, t) as ε → 0 and R → ∞.

Lemma 5.12. Let ωσ,ε,R be the control defined by (5.33). There exists a finite measure μ
on [0, T ] such that, for all 0 � s � t � T ,

lim sup
R→∞

lim sup
ε→0

ωσ,ε,R(s, t) � μ([s, t]). (5.36)

Proof. Consider the sequence of measures (με
R)ε>0 on [0, T ] defined for every Borel set 

B ⊂ [0, T ] as

με
R(B) :=

(∫
B

m1
dr ⊗ ν2,−

r

)(
TεΨR

)
+
(∫

B

ν1,+
r ⊗m2

dr

)(
TεΨR

)
, (5.37)

so that ωσ,ε,R(s, t) = με
R((s, t]). By applying equation (5.9) to the test function ΨR and 

using (5.32), we get that for every s < t ∈ [0, T ],

δF ε
st(ΨR) � F ε

s

(
(Γ1,∗

ε,st + Γ2,∗
ε,st)(ΨR)

)
− ωσ,ε,R(s, t) + F �,ε

st (ΨR) + ωm(s, t)‖∂+
ξ ΨR‖,

and so

ωσ,ε,R(s, t) � F ε
s (|(1 + Γ1,∗

ε,st + Γ2,∗
ε,st)ΨR|) + |F �,ε

st (ΨR)| + ωm(s, t)‖∂+
ξ ΨR‖.

Therefore, due to Proposition 5.6, estimate (5.35) and assumption (4.11), we can conclude 
that for every interval I ⊂ [0, T ] satisfying ωZ(I) � L, one has

ωσ,ε,R(I) � εRN + 1 + ωm(I)(1 + ωZ(I)
1
p ) + ωσ,ε,R(I)ωZ(I)κ,

for some proportional constant independent of ε, R. As a consequence, there exists 0 <
L′ � L such that for every interval I ⊂ [0, T ] satisfying ωZ(I) � L′, it holds

ωσ,ε,R(I) � εRN + 1 + ωm(I).

By uniformity of both L′ and the proportional constant, the latter bound immediately 
yields

ωσ,ε,R(0, T ) � εRN + 1 + ωm(0, T ). (5.38)
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Thus, the sequence (με
R)ε>0 defined by (5.37) is bounded in total variation on [0, T ] and 

accordingly, by Banach-Alaoglu theorem, there exists a subsequence, still denoted by 
(με

R)ε>0, as well as a finite measure μR on [0, T ] such that for every ϕ ∈ C([0, T ]), one 
has

με
R(ϕ) → μR(ϕ) as ε → 0.

Moreover, as a straightforward consequence of (5.38), we get

μR([0, T ]) � 1 + ωm(0, T ).

Therefore (μR)R∈N is bounded in total variation and there exists a finite measure μ on 
[0, T ] satisfying

μ([0, T ]) � 1 + ωm(0, T ),

such that, along a subsequence,

μR(ϕ) → μ(ϕ), ∀ϕ ∈ C([0, T ]), R → ∞.

Finally, due to the properties of BV -functions, for every R ∈ N, there exists an at 
most countable set DR such that the function t �→ μR(]0, t]) is continuous on [0, T ] \DR. 
Furthermore, by Portmanteau theorem, one has

με
R(]0, t]) → μR(]0, t]) ∀ t ∈ [0, T ] \ DR ε → 0.

Similarly, there exists a countable set D such that

μR(]0, t]) → μ(]0, t]) ∀ t ∈ [0, T ] \ D R → 0.

Fix s < t ∈ [0, T ]. Since a countable union of countable sets is countable, we may consider 
a sequence (sk), resp. (tk), of points outside of ∪RDR ∪ D that increase, resp. decrease, 
to s, resp. t, as k tends to infinity. Then

lim sup
ε→0

ωσ,ε,R(s, t) = lim sup
ε→0

με
R(]s, t]) � lim sup

ε→0
με
R(]sk, tk]) = μR(]sk, tk])

and

lim sup
R→∞

lim sup
ε→0

ωσ,ε,R(s, t) � lim sup
R→∞

μR(]sk, tk]) = μ(]sk, tk]).

By letting k tend to infinity, we get (5.36), which achieves the proof of the lemma. �
We are now ready to prove our main intermediate result towards uniqueness.
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Proposition 5.13. Consider ψ ∈ C∞
c (RN+1) such that

ψ � 0, suppψ ⊂ B2/
√

2,

∫
RN+1

ψ(x) dx = 1.

Let also {ϕR; R > 0} ⊂ C∞
c (RN+1) be a family of smooth functions such that

ϕR � 0, suppϕR ⊂ BR/
√

2, sup
R

‖ϕR‖W 3,∞ � 1.

We define

ΦR(x,y) = ϕR(x+)ψ(2x−). (5.39)

Then for every 0 � s � t � T , it holds true that, as ε → 0,

F ε
t (ΦR) → ht(ϕR), (5.40)

(Γ1
ε,st + Γ2

ε,st)F ε
s (ΦR) → (A1

st + A2
st)hs(ϕR), (5.41)

where ht := f1,+
t f̄2,+

t .

Proof. Consider first a function Ψ supported in DR ≡ BR+1 × BR+1 ⊂ RN+1 × RN+1. 
Then for all functions v1, v2 we have:

|v1 ⊗ v2(Ψ)| =
∣∣∣∣
∫
DR

v1(x+ + x−)v2(x+ − x−)Ψ(x+ + x−,x+ − x−)dx−dx+

∣∣∣∣
�
∫
DR

v1(x+ + x−)v2(x+ − x−)dx+ sup
y+

|Ψ(y+ + x−,y+ − x−)|dx−.

Recalling our definition (5.29), |v1⊗v2(Ψ)| can be further estimated in two ways: on the 
one hand we have

|v1 ⊗ v2(Ψ)| � ‖v1‖L1(BR+1)‖v2‖L∞(BR+1)‖Ψ‖L1
−L∞

+
,

and on the other hand we also get

|v1 ⊗ v2(Ψ)| � ‖v2‖L1(BR+1)‖v1‖L∞(BR+1)‖Ψ‖L1
−L∞

+
.

In order to apply this general estimate, define a new test function ΦR(x, y) =
ϕR(x+)ψ(2x−), and observe that ΦR is compactly supported in the set DR. Since 
|f1,+

t | � 1, |f̄2,+
t | � 1 it follows that f1,+

t , f̄2,+
t ∈ L1(BR+1) (notice that the local-

ization procedure is crucial for this step). Therefore one may find g1, g2 ∈ C∞
c (RN+1)

such that |g1| � 1, |g2| � 1 and
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‖f1,+
t − g1‖L1(BR+1) + ‖f̄2,+

t − g2‖L1(BR+1) � δ. (5.42)

We now split the difference F ε
t − ht as follows:

|F ε
t (ΦR) − ht(ϕR)|

� |F ε
t (ΦR) − (g1 ⊗ g2)ε (ΦR)|+

∣∣(g1 ⊗ g2)ε (ΦR) − (g1g2)(ϕR)
∣∣+∣∣(g1g2)(ϕR) − ht(ϕR)

∣∣ .
(5.43)

We shall bound the three terms of the right hand side above separately. Indeed, owing 
to (5.42) and the fact that |g1| � 1, |g2| � 1 and ‖TεΦR‖L1

−L∞
+

� 1 uniformly in R, ε, 
we have

|F ε
t (ΦR) − (g1 ⊗ g2)ε(ΦR)| � |(g1 ⊗ (f̄2,+

t − g2))(TεΦR)| + |((f1,+
t − g1) ⊗ f̄2,+

t )(TεΦR)|
� ‖g1‖L∞(BR+1)‖f̄

2,+
t − g2‖L1(BR+1) + ‖f̄2,+

t ‖L∞(BR+1)‖f
1,+
t − g1‖L1(BR+1) � δ

(5.44)

On the other hand, using the continuity of g1, g2 we have

lim
ε→0

(g1 ⊗ g2)(TεΦR) = (g1g2)(ϕR),

and thus | (g1 ⊗ g2)ε (ΦR) − (g1g2)(ϕR)| ≤ δ for ε small enough. Moreover, as in (5.44), 
we have

|(g1g2)(ϕR) − ht(ϕR)|

� ‖g1‖L∞(BR+1)‖f̄
2,+
t − g2‖L1(BR+1) + ‖f̄2,+

t ‖L∞(BR+1)‖f
1,+
t − g1‖L1(BR+1)

� δ.

Since δ is arbitrary we have established (5.40).
Let us now turn to (5.41). Observe that by Proposition 3.4 we have that TεΓ1,∗

ε ΦR

and TεΓ2,∗
ε ΦR are bounded uniformly in ε in L1

−L
∞
+ . Specifically, we have:

‖TεΓ1,∗
ε ΦR‖L1

−L∞
+

� ‖Γ1,∗
ε ΦR‖L1

−L∞
+

= ‖Γ1,∗
ε ΦR‖L1

−(B1;L∞
+ (BR))

� ‖Γ1,∗
ε ΦR‖ER,0 �V ‖ΦR‖ER,1

where we used in order the boundedness of Tε in L1
−L

∞
+ , the compact support of ΦR

to go from L1 to L∞ and finally the renormalizability of A in the spaces (ER,n)n (as 
provided by Proposition 3.4). The same reasoning applies to TεΓ2,∗

ε ΦR. Similarly to 
(5.43), in order to establish the limit of F ε

s (Γj,∗
ε ΦR) for j = 1, 2, it is enough to consider 

(g1 ⊗ g2)(TεΓ1,∗
ε ΦR) and (g1 ⊗ g2)(TεΓ2,∗

ε ΦR) for g1, g2 as in (5.42). Now, recalling the 
very definition (5.8) of Γ∗

ε,
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(g1 ⊗ g2)(TεΓ1,∗
ε ΦR) = (g1 ⊗ g2)(Γ1,∗TεΦR) = (Γ1(g1 ⊗ g2))(TεΦR)

= (A1g1 ⊗ g2 + g1 ⊗A1g2)(TεΦR)

and hence we end up with:

lim
ε→∞

(g1 ⊗ g2)(TεΓ1,∗
ε ΦR) = ((A1g1)g2 + g1(A1g2))(ϕR) = (g1g2)(A1,∗ϕR).

Similarly we have:

(g1 ⊗ g2)(TεΓ2,∗
ε ΦR) = (g1 ⊗ g2)(Γ2,∗TεΦR) = (Γ2(g1 ⊗ g2))(TεΦR)

= (A2g1 ⊗ g2 + g1 ⊗A2g2 + A1g1 ⊗A1g2)(TεΦR)

Therefore, in view of the geometricity of the underlying rough path Z, we obtain

lim
ε→∞

(g1 ⊗ g2)(TεΓ2,∗
ε ΦR) = ((A2g1)g2 + g1(A2g2) + (A1g1)(A1g2))(ϕR)

= (g1g2)(A2,∗ϕR). (5.45)

This finishes the proof of (5.41). �
Remark 5.14. We point out that the geometricity of the rough path Z was essential in 
order to prove the last equality in (5.45), where it allowed for certain cancellations. In 
other words, if the rough path was not geometric, then the convergence (5.41) would not 
be valid and additional terms would appear after the passage to the limit ε → 0. This is 
precisely the reason why it is necessary to work with geometric rough paths.

The following contraction principle is the main result of this section. By considering 
two equal initial conditions, it yields in particular our desired uniqueness result for 
generalized solutions of equation (4.1).

Proposition 5.15. Let f1 and f2 be two generalized kinetic solutions of (4.1) with initial 
conditions f1

0 and f2
0 . Assume that f1

0 f̄
2
0 ∈ L1(RN+1) then

sup
t∈[0,T ]

‖f1,+
t f̄2,+

t ‖L1(RN+1) ≤ ‖f1
0 f̄

2
0 ‖L1(RN+1).

Proof. Our global strategy is to take limits in (5.9) in order to show the contraction 
principle. We now divide the proof in several steps.
Step 1: Limit in ε. Recall that ΦR has been defined by (5.39). Applying (5.9) to the test 
function ΦR yields:

δF ε
st(ΦR) = δQε

st(ΦR) + F ε
s ((Γ1,∗

ε,st + Γ2,∗
ε,st)ΦR) + F �,ε

st (ΦR). (5.46)

Furthermore, similarly to (5.32), we have that
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δQε
st(ΦR) � −δσ1

st(TεΦR) − δσ2
st(TεΦR) + ωm(s, t)‖∂+

ξ ΦR‖ER,0 � ‖∂+
ξ ΦR‖ER,0 ωm(s, t).

By using Proposition 5.13, we can take limits in relation (5.46), which, together with 
(5.35), gives the following bound for the increments of the path ht = f1,+

t f̄2,+
t : for every 

interval I such that ωZ(I) � L and all s < t ∈ I,

δhst(ϕR) � (A1
st + A2

st)hs(ϕR) + lim sup
ε→0

ω∗,ε,R(s, t)
3
q + ‖∂+

ξ ΦR‖ER,0ωm(s, t), (5.47)

where ω∗,ε,R is the control defined in (5.35). Application of Proposition 5.6 and 
Lemma 5.12 gives a uniform bound in R on lim supε→0 ω∗,ε,R(s, t) in terms of the control 
ω� given by

ω�(s, t)
3
q = ωZ(s, t)

3
p−2κ + ωm(s, t)ωZ(s, t)

1
p + μ([s, t])ωZ(s, t)κ. (5.48)

Namely, we have lim supε→0 ω∗,ε,R(s, t) � ω�(s, t), hence we can recast inequality (5.47)
as:

δhst(ϕR) � (A1
st + A2

st)hs(ϕR) + ω�(s, t)
3
q + ‖∂+

ξ ΦR‖ER,0 ωm(s, t) , (5.49)

for all s < t ∈ I with ωZ(I) � L.
Step 2: Uniform L1 bounds. We now wish to test the increment δhst against the function 
1(x, ξ) = 1 in order to get uniform (in t) L1 bounds on h. This should be obtained by 
taking the limit R → ∞ in (5.49). However, the difficulty here is the estimation of the 
term (A1

st +A2
st)hs(ϕR), uniformly in R. To circumvent this problem, we want to choose 

another test function which is easier to estimate but with unbounded support. Namely, 
instead of the function ϕR of Proposition 5.13, let us consider a function ϕR,L(x+) =
ϕ(x+/R)ψL(x+). In this definition ψL(x+) = ψ(x+/L) with ψ(x+) = (1 + |x+|2)−M for 
M > (N + 1)/2, and ϕ is a smooth compactly supported function with ϕ|B1/4 = 1.

With these notations in hand, relation (5.49) is still satisfied for the function ϕR,L:

δhst(ϕR,L) � (A1
st + A2

st)hs(ϕR,L) + ω�(s, t)
3
q + ‖∂+

ξ ΦR,L‖ER,0 ωm(s, t), (5.50)

where ΦR,L is defined similarly to (5.39). We can now take limits as R goes to infinity 
in (5.50). That is, since Aj,∗

st ϕR,L is an element of L1, uniformly in R and for j = 1, 2, 
we have

lim
R→∞

(A1
st + A2

st)hs(ϕR,L) = (A1
st + A2

st)hs(ψL)

In addition, according to the definition (5.25) of ∂+
ξ , we have that if g = g(x+) then 

∂+
ξ g = g′(x+), while ∂+

ξ g = 0 whenever g = g(x−). Therefore, it is readily checked that:

∂+
ξ ΦR,L(x,y) = R−1(∂ξϕ)(x+/R)ψ(x+/L)ψ(2x−) + L−1ϕ(x+/R)(∂ξψ)(x+/L)ψ(2x−),
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and thus ‖∂+
ξ ΦR,L‖ER,0 � (R−1 +L−1). Hence, invoking our last two considerations, we 

can take limits as R → ∞ in relation (5.50) to deduce, for all s < t ∈ I with ωZ(I) � L,

δhst(ψL) � (A1
st + A2

st)hs(ψL) + ω�(s, t)
3
q + CL−1ωm(s, t). (5.51)

We are now in a position to apply our Gronwall type Lemma 2.12 to relation (5.51). 
To this aim, we can highlight the reason to choose ψL as a new test function. Indeed, 
invoking Proposition 3.4 it is easy to show that for this particular test function we have

|(A1
st + A2

st)hs(ψL)| �V hs(ψL)ωZ(s, t)1/p

for some constant depending only on the vector fields V but uniform in L. The other 
terms on the right hand side of (5.51) are controls. Note that even though μ([s, t])
is not superadditive due to the possible presence of jumps, μ is a positive measure 
anyway. Therefore one has the following property which can be used as a replacement 
for superadditivity

μ([s, u]) + μ([u, t]) � 2μ([s, t]).

Hence a simple modification of Lemma 2.12 (to take into account this small deviation 
from superadditivity) gives readily

sup
t∈[0,T ]

ht(ψL) � 1,

where the constant is uniform in L and depends only on ωm, ωZ , V, μ and h0(ψL). This 
implies that if h0 ∈ L1 we can send L → ∞ and get that

sup
t∈[0,T ]

ht(1) � 1, (5.52)

by monotone convergence. Summarizing, we have obtained that ht is in L1 uniformly in 
t ∈ [0, T ].
Step 3: Conclusion. Having relation (5.52) in hand, we can go back to equation (5.51)
for ht(ψL), and send L → ∞ therein. We first resort to the fact that supt∈[0,T ] ht(1) is 
bounded in order to get that:

lim
L→∞

(A1
st + A2

st)hs(ψL) � (A1
st + A2

st)hs(1) = 0,

where the second identity is due to the fact that divV = 0 (as noted in (4.5)). Thus, the 
limiting relation for δhst(ψL) is:

δhst(1) � ω�(s, t)
3
q , (5.53)
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for all s, t ∈ [0, T ] at a sufficiently small distance from each other. Thus, one may telescope 
(5.53) on a partition {0 = t0 < t1 < · · · < tn = t} whose mesh vanishes with n. Invoking 
our expression (5.48) for ω�, this entails:

ht(1) − h0(1) =
n−1∑
i=0

δhtiti+1(1)

�
[

sup
i=0,...,n−1

ωZ(ti, ti+1)
]( 3

p−2κ−1)∧ 1
p∧κ(

ωZ(0, t) + ωm(0, t) + 2μ([0, t])
)
,

due to 3
p − 2κ − 1 > 0. Eventually we send n → ∞ and use the fact that ωZ is a regular 

control. This yields:

‖f1,+
t f̄2,+

t ‖L1
x,ξ

= ht(1) � h0(1) = ‖f1
0 f̄

2
0 ‖L1

x,ξ
,

which ends the proof. �
Once endowed with the result of Proposition 5.15, we can use standard arguments on 

kinetic equations (such as those in [13]) to derive uniqueness of the solution to equation 
(4.1), as well as the reduction of a generalized kinetic solution to a kinetic solution and 
the L1-contraction property. This is the contents of the following corollary.

Corollary 5.16. Under the assumptions of Theorem 4.7, uniqueness holds true for equa-
tion (4.1). Furthermore, Theorem 4.7 (ii) and (iii) are satisfied.

Proof. Let us start by the reduction part, that is Theorem 4.7 (ii). Let then f be a 
generalized kinetic solution to (4.1) with an initial condition at equilibrium: f0 = 1u0>ξ. 
Applying Proposition 5.15 to f1 = f2 = f leads to

sup
0�t�T

‖f+
t f̄+

t ‖L1
x,ξ

� ‖f0f̄0‖L1
x,ξ

= ‖1u0>ξ1u0�ξ‖L1
x,ξ

= 0.

Hence f+
t (1 − f+

t ) = 0 for a.e. (x, ξ). Now, the fact that f+
t is a kinetic function for all 

t ∈ [0, T ) gives the conclusion: indeed, by Fubini’s Theorem, for any t ∈ [0, T ), there is 
a set Bt of full measure in RN such that, for all x ∈ Bt, f+

t (x, ξ) ∈ {0, 1} for a.e. ξ ∈ R. 
Recall that −∂ξf

+
t (x, ·) is a probability measure on R hence, necessarily, there exists 

u+ : [0, T ) × RN → R measurable such that f+
t (x, ξ) = 1u+(t,x)>ξ for a.e. (x, ξ) and all 

t ∈ [0, T ). Moreover, according to (4.11), it holds

sup
0�t�T

∫
RN

|u+(t, x)|dx = sup
0�t�T

∫
RN

∫
R

|ξ| dν+
t,x(ξ) dx < ∞. (5.54)

Thus u+ is a kinetic solution and Theorem 4.7(ii) follows.
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In order to prove the L1-contraction property (that is Theorem 4.7(iii)), consider two 
kinetic solutions u1, u2 of equation (4.1) with respective initial conditions u1,0, u2,0. Then 
we have:

(u1 − u2)+ =
∫
R

1u1>ξ1u2>ξ dξ .

Let u+
1 and u+

2 denote the representatives of u1, u2 as constructed above. Then we apply 
Proposition 5.15 and obtain

∥∥(u+
1 (t) − u+

2 (t)
)+∥∥

L1
x

= ‖f1,+
t f

2,+
t ‖L1

x,ξ
� ‖f1,+

0 f
2,+
0 ‖L1

x,ξ
= ‖(u+

1,0 − u+
2,0)+‖L1

x

which completes the proof of Theorem 4.7(iii). Uniqueness is obtained in the same way, 
by considering two identical initial conditions. �
6. Rough conservation laws III: a priori estimates

In this section we will establish a priori Lq-estimates for kinetic solutions to (4.1). We 
thus consider a kinetic solution u to (4.1) and let ft(x, ξ) = 1ut(x)>ξ be the corresponding 
kinetic function, to which we can associate a Borel measure m (along Definition 4.5(iii)). 
Let us also introduce some useful notation for the remainder of the section.

Notation 6.1. We denote by χt the function χt(x, ξ) = ft(x, ξ) −1ξ<0. We also define the 
functions βq, γq : RN+1 → R, where q � 0, as follows:

βq+1(x, ξ) = ξ|ξ|q, and γq(x, ξ) =
{
|ξ|q if q > 0,
1 if q = 0.

The interest of the functions βq, γq lies in the following elementary relations, which 
are labeled here for further use:

∂ξβq+1 = (q + 1)γq, ∂ξγq+2 = (q + 2)βq+1,

and consequently for q � 2 we have

χt(βq−1) = 1
q

∫
RN

|ut(x)|q dx, and |χt|(1) = χt(sgn(ξ)) =
∫
RN

|ut(x)| dx. (6.1)

With these preliminary notations in mind, our a priori estimate takes the following form.

Theorem 6.2. Assume Hypothesis 4.1 holds true. Then u satisfies the following relation:

sup ‖u(t, ·)‖L1 ≤ ‖u(0, ·)‖L1 (6.2)

t∈[0,T ]
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and, for all q � 2,

sup
t∈[0,T ]

‖u(t, ·)‖qLq + (q− 1)δm0T (γq−2) �A,q ‖u(0, ·)‖qLq + ‖u(0, ·)‖2
L2 + ‖u(0, ·)‖L1 . (6.3)

Remark 6.3. The above result gives a priori estimates for kinetic solutions that depend 
only on the rough regularity of the driver A, and are therefore well-suited for the proof of 
existence in the next section. Note that in order to make all the arguments below entirely 
rigorous, it is necessary to either work at the level of a smooth approximation (just as in 
the example treated in Section 2.4) or to introduce an additional cut-off of the employed 
test functions. Since we will only apply Theorem 6.2 to smooth approximations, we omit 
the technical details here. For classical solutions it is easy to prove Lq bounds. These 
bounds will depend on the C1 norm of the driver and so will not pass to the limit. But 
using the fact, proved in Lemma 4.9, that classical kinetic solutions are, in particular, 
rough kinetic solutions, we can justify the steps below and get the uniform estimates 
claimed in Theorem 6.2.

Proof of Theorem 6.2. Due to relation (6.1), our global strategy will be to test ut against 
the functions βq defined in Notation 6.1. We will split this procedure in several steps.
Step 1: Equation governing χ. Let χ be the function introduced in Notation 6.1, and 
observe that δχ(ϕ) = δf(ϕ). Furthermore we have (in the distributional sense) ∇1ξ<0 =
0 whenever ξ �= 0, and we have assumed V (x, 0) = 0 in (4.6). Having in mind relation 
(4.7) defining A1 and A2, this easily yields:

χ(A1,∗ϕ + A2,∗ϕ) = f(A1,∗ϕ + A2,∗ϕ).

Then the function χ solves the rough equation

δχ(ϕ) = δ∂ξm(ϕ) + χ(A1,∗ϕ) + χ(A2,∗ϕ) + χ�(ϕ) (6.4)

where χ� = f �.
Step 2: Considerations on weights. Our aim is to apply equation (6.4) to a test function 
of the form βq−1 for some q � 2. The growth of the test function does not pose particular 
problems since we can use a scale of spaces of test function with a polynomial weight 
wq−1 = 1 + γq−1. However, in order to obtain useful estimates, we cannot apply directly 
the Rough Gronwall strategy. Indeed, estimates for χ�(βq−1) will in general depend on 
m(wq−1) and on |χ|(wq−1), and we cannot easily control m(wq−1).

To avoid this problem we have to inspect more carefully the equation satisfied by 
χ�(βq−1). Applying δ to (6.4) with ϕ(ξ) = βq−1 we obtain

δχ�
sut(βq−1) = (δχ)su(A2,∗

ut βq−1) + χ�
su(A1,∗

ut βq−1) (6.5)

with the usual notation
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χ�
su = (δχ)su −A1

suχs.

Note that this point can be made rigorous as explained in Remark 6.3. Moreover, using 
the specific definition of A1,∗, A2,∗, namely

A1,∗ϕ = −Z1V · ∇ϕ, A2,∗ϕ = Z2V · ∇(V · ∇ϕ),

we have that the test functions on the right hand side of (6.5), i.e. A1,∗
ut βq−1 and A2,∗

ut βq−1, 
as well as their derivatives are bounded by the weight wq−2 and not just wq−1 as we 
would naively expect. So we can use the scale of spaces with weight wq−2 in order to 
estimate the remainder.

To this end, consider the family (Eq
n)0�n�3 of weighted spaces given by

Eq
n :=

⎧⎨
⎩ϕ : RN+1 → R; ‖ϕ‖Eq

n
:=

∑
0�k�n

∥∥∥∥∇kϕ

wq−2

∥∥∥∥
L∞

x,ξ

< ∞

⎫⎬
⎭

Since wq−2 stands for a fixed weight (independent of n), it is easy to check that the basic 
convolution procedure (2.35) gives birth to a smoothing (Jη)η∈(0,1) with respect to this 
scale.
Step 3: Estimation of χ� as a distribution. We are now in a position to see relation (6.5)
as an equation of the form (2.12) on the scale (Eq

n)0�n�3, and apply the general a priori 
estimate of Theorem 2.10 (or more simply Corollary 2.11) in this context. Indeed, if 
ϕ ∈ Eq

1 then it holds true that

|δmst(∂ξϕ)| � δmst(wq−2)‖ϕ‖Eq
1

= (δmst(1) + δmst(γq−2)) ‖ϕ‖Eq
1
.

Besides, if ϕ ∈ Eq
n+1, n = 0, 1, 2, then

‖Ak,∗
st ϕ‖Eq

n
�‖V ‖Wn,∞ ωZ(s, t)

k
p ‖ϕ‖Eq

n+k
, k = 1, 2,

which implies that A = (A1, A2) is a continuous unbounded p-rough driver on the scale 
(Eq

n)0�n�3. Hence, thanks to Corollary 2.11 (keep in mind that we implicitly consider 
smooth approximations of the noise Z here), we get that for all s < t sufficiently close 
to each other,

‖χ�
st‖Eq

−3
� ω�(s, t)

3
p

:= sup
r∈[s,t]

|χr|(1)ωA(s, t)
3
p + (δmst(1) + δmst(γq−2))ωA(s, t)

3−p
p .

(6.6)

In the latter relation, we still have to find an accurate bound for |χ|(1) and m(γq−2).
Step 4: Reduction to L1 estimates. Inserting the above smoothing (Jη)η∈(0,1) into (6.5), 
we obtain
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δχ�(βq−1) = δχ((1 − Jη)A1,∗βq−1) + δχ((1 − Jη)A2,∗βq−1) − χ(A1,∗(1 − Jη)A1,∗βq−1)

+χ(A2,∗JηA1,∗βq−1) + χ(A1,∗JηA2,∗βq−1) + χ(A2,∗JηA2,∗βq−1)

+χ�(JηA1,∗βq−1) + χ�(JηA2,∗βq−1)

−δm(∂ξJηA1,∗βq−1) − δm(∂ξJηA2,∗βq−1)

As already explained above, the test functions on the right hand side always contain 
derivatives of βq−1, so that the scale (Eq

n) is sufficient to control the right hand side. 
Indeed, we may use (6.6) for the remainder as well as the elementary bound (observe 
that |χ|(γq−1) = χ(βq−1))

|χ(ϕ)| � |χ|(wq−2)‖ϕ‖Eq
0
� |χ|(1 + wq−1)‖ϕ‖Eq

0
= (2|χ|(1) + χ(βq−1)) ‖ϕ‖Eq

0

to deduce, along the same lines as in the proof of Theorem 2.10, that

|δχ�
sut(βq−1)| �

(
sup

r∈[s,t]
|χr|(1) + sup

r∈[s,t]
χr(βq−1)

)
ωZ(s, t)

3
p

+ ωZ(I)
1
pω�(s, t)

3
p + (δmst(1) + δmst(γq−2))ωA(s, t)

3−p
p ,

provided s, u, t ∈ I with ωZ(I) sufficiently small. We can now resort to the (original) 
sewing Lemma 2.2, which gives

|χ�
st(βq−1)| �

(
sup

r∈[s,t]
|χr|(1) + sup

r∈[s,t]
χr(βq−1)

)
ωZ(s, t)

3
p

+ (δmst(1) + δmst(γq−2))ωA(s, t)
3−p
p .

Finally, (6.4) applied to βq−1 reads as

δχ(βq−1) = χ(A1,∗βq−1) + χ(A2,∗βq−1) − (q − 1)δm(γq−2) + χ�(βq−1)

so that recalling relation (6.1) and applying the Rough Gronwall lemma yields, for any 
q � 2,

sup
t∈[0,T ]

χt(βq−1) + (q − 1)δm0T (γq−2) � χ0(βq−1) + δm0T (1) + sup
t∈[0,T ]

|χt|(1). (6.7)

In particular, for q = 2 we obtain an estimate for δm0T (1) in terms of supt∈[0,T ] |χt|(1)
and the initial condition only:

sup
t∈[0,T ]

χt(β1) + δm0T (1) � χ0(ξ) + sup
t∈[0,T ]

|χt|(1).

Plugging this relation into (6.7) and recalling relation (6.1), we thus end up with:
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sup
t∈[0,T ]

‖ut‖qLq + (q − 1)δm0T (γq−2) � χ0(βq−1) + sup
t∈[0,T ]

|χt|(1). (6.8)

This way, we have reduced the problem of obtaining a priori estimates in Lq to estimates 
in L1, and more specifically to an upper bound on supt∈[0,T ] |χt|(1).
Step 5: L1 estimates. The first obvious idea in order to estimate |χ|(1) is to follow the 
computations of the previous step. However, this strategy requires to test the equation 
against the singular test function (x, ξ) �→ sgn(ξ). It might be possible to approximate 
this test function and then pass to the limit. In order to do so one would have to prove 
that the rough driver behaves well under this limit and that we have uniform estimates.

Without embarking in this strategy, we shall first upper bound ut in L1. Namely, 
observe that the L1-contraction property established in Section 5 immediately implies 
the L1-estimate we need. Indeed we note that under hypothesis (4.6), equation (4.1)
with null initial condition possesses a kinetic solution which is constantly zero. Hence 
the L1-contraction property applied to u1 = u and u2 ≡ 0 yields (6.2). Going back to 
relation (6.1), this also implies:

sup
t∈[0,T ]

|χt|(1) ≤ ‖u0‖L1 ,

which is the required bound for |χt|(1) needed to close the Lq-estimate (6.8). Our claim 
(6.3) thus follows. �
7. Rough conservation laws IV: existence

Let us finally establish the existence part of Theorem 4.7. To this end, we consider 
(Zn)n∈N , a family of canonical rough paths lifts associated with smooth paths (zn), 
which converge to Z in the uniform sense (over the time interval [0, T ]), and such that

sup
n�0

{∣∣Z1,n
st

∣∣p +
∣∣Z2,n

st

∣∣ p2} � ωZ(s, t) , (7.1)

for some proportional constant independent of s, t ∈ [0, T ], and where ωZ is the regular 
control introduced in Hypothesis 4.2. Note that the existence of such an approximation 
(Zn)n is for instance guaranteed by the result of [26, Proposition 8.12]. Then we define 
the approximate drivers An = (An,1, An,2) as follows

An,1
st ϕ := Zn,1,i

st V i · ∇ξ,xϕ ,

An,2
st ϕ := Zn,2,ij

st V j · ∇ξ,x(V i · ∇ξ,xϕ) .

It is readily checked that both A and An define continuous unbounded p-rough drivers 
(in the sense of Definition 2.3) on the scale (Ek)0�k�3 given by Ek = W k,1(RN+1) ∩
W k,∞(RN+1), and, according to (7.1), we can clearly pick the related controls ωAn of 
An in such a way that
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sup
n�0

ωAn(s, t) � ωZ(s, t) , (7.2)

for some proportional constant independent of s, t ∈ [0, T ]. We fix this scale (Ek)0�k�3, 
as well as these uniformly-bounded controls ωAn , for the rest of proof.

Using the standard theory for conservation laws, one obtains existence of a unique 
kinetic solution un to the approximate problem

dun + div(A(x, un)) dzn = 0, un(0) = u0,

moreover we denote by fn = 1un>ξ the kinetic function associated to un and by mn the 
kinetic measure appearing in the kinetic formulation (4.15). We are now ready to prove 
the existence of a solution to equation (4.1).

Proof of Theorem 4.7 (i). Step 1: A priori bound for the regularized solutions. Due to 
Lemma 4.9, the classical solutions fn corresponds to rough kinetic solutions fn,± satis-
fying

δfn,+
st (ϕ) = fn,+

s (An,1,∗
st ϕ) + fn,+

s (An,2,∗
st ϕ) + fn,+,�

st (ϕ) −mn(1(s,t]∂ξϕ),

δfn,−
st (ϕ) = fn,−

s (An,1,∗
st ϕ) + fn,−

s (An,2,∗
st ϕ) + fn,−,�

st (ϕ) −mn(1[s,t)∂ξϕ),
(7.3)

which holds true in the above scale (Ek)0�k�3, for some remainders fn,±,�.
Under our standing assumption on the initial condition, it follows from Theorem 6.2

that the approximate solutions un are bounded uniformly in L∞(0, T ; L1 ∩ L2(RN ))
and the corresponding kinetic measures mn are uniformly bounded in total variation. 
Therefore the Young measures νn = δun=ξ satisfy

sup
t∈[0,T ]

∫
RN

∫
R

|ξ| νnt,x(dξ) + sup
t∈[0,T ]

∫
RN

∫
R

|ξ|2 νnt,x(dξ) � ‖u0‖L1 + ‖u0‖2
L2 . (7.4)

Now we simply invoke Corollary 2.11 and (7.2) to obtain, since |fn,±| � 1,

‖fn,±,�
st ‖E−3 � ωZ(s, t)

3
p + mn(1(s,t])ωZ(s, t)

3−p
p , (7.5)

provided ωZ(s, t) � L. Notice that this restriction on the distance of s, t induces a 
covering {Ik; k ≤ M} of the interval [0, T ], for a finite M ∈ N. To be more specific, Ik
is just chosen so that:

sup
s,t∈Ik

ωZ(s, t) � L ∀k.

Thus relation (7.5) is satisfied on each interval Ik.
Step 2: Limit in equation (7.3). By (7.4) the assumptions of Lemma 4.10 are fulfilled 
and there exists a kinetic function f on [0, T ] ×RN such that, along a subsequence,



3640 A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577–3645
fn ∗
⇀ f in L∞([0, T ] ×RN+1), (7.6)

and the associated Young measure ν satisfies

esssup
t∈[0,T ]

∫
RN

∫
R

(
|ξ| + |ξ|2

)
νt,x(dξ) � ‖u0‖L1 + ‖u0‖2

L2 .

Moreover by the Banach-Alaoglu theorem there exists a nonnegative bounded Borel 
measure m on [0, T ] ×RN+1 such that, along a subsequence,

mn ∗
⇀ m in Mb([0, T ] ×RN+1). (7.7)

Moreover using Lemma 4.11 we have also the existence of the good representatives f±

of f . In order to pass to the limit in the equation (7.3) the main difficulty originates in 
the fact that the only available convergence of fn,+ (as well as fn,− and fn) is weak* 
in time. Consequently, we cannot pass to the limit pointwise for a fixed time t. In order 
to overcome this issue, we observe that the first three terms on the right hand sides in 
(7.3), i.e. the approximation of the Riemann-Stieltjes integral, are continuous in t. The 
kinetic measure poses problems as it contains jumps, which are directly related to the 
possible noncontinuity of fn. Therefore, let us define an auxiliary distribution fn, by

fn,
t (ϕ) := fn,+

t (ϕ) + mn(1[0,t]∂ξϕ),

and observe that due to (7.3) it can also be written as

fn,
t (ϕ) = fn,−

t (ϕ) + mn(1[0,t)∂ξϕ).

Then we have

δfn,
st (ϕ) = fn,±

s (An,1,∗
st ϕ) + fn,±

s (An,2,∗
st ϕ) + fn,±,�

st (ϕ) (7.8)

and due to (7.5), satisfied on each Ik, this yields:

|δfn,
st (ϕ)| �

(
ωZ(s, t)

1
p + m(1[0,T ])ωZ(s, t)

3−p
p

)
‖ϕ‖E3 � ωZ(s, t)

3−p
p ‖ϕ‖E3 , (7.9)

where the second inequality stems from (7.7).
Owing to the fact that fn, is a path, the local bound (7.9) on each interval Ik can 

be extended globally on [0, T ] by a simple telescopic sum argument. In other words, 
(fn,(ϕ))n∈N is equicontinuous and bounded in V q

1 ([0, T ]; R) for q = p
3−p . So as a corol-

lary of the Arzelà-Ascoli theorem (cf. [26, Proposition 5.28]), there exists a subsequence, 
possibly depending on ϕ, and an element f ,ϕ ∈ V q

1 ([0, T ]; R) such that

fn,(ϕ) → f ,ϕ in V q′

1 ([0, T ];R) ∀q′ > q. (7.10)
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As the next step, we prove that the limit f ,ϕ can be identified to be given by a true 
distribution f 

t as

f ,ϕ
t = f+

t (ϕ) + m(1[0,t]∂ξϕ) = f−
t (ϕ) + m(1[0,t)∂ξϕ) =: f 

t (ϕ). (7.11)

To this end, let us recall that given r1, r2 � 1 such that 1
r1

+ 1
r2

> 1, we can define the 
Young integral as a bilinear continuous mapping

V r1
1 ([0, T ];R) × V r2

1 ([0, T ];R) → V r2
1 ([0, T ];R), (g, h) �→

·∫
0

g dh,

see [26, Theorem 6.8]. Let ψ ∈ C∞
c ([0, T )). Then it follows from the definition of fn,, 

the integration by parts formula for Young integrals and fn,
0 = fn,+

0 = f0 that

T∫
0

fn
t (ϕ)ψ′

t dt−mn(ψ∂ξϕ) + f0(ϕ)ψ0 = −
T∫

0

ψt dfn,
t (ϕ).

The convergences (7.6) and (7.7) allow now to pass to the limit on the left hand side, 
whereas by (7.10) we obtain the convergence of the Young integrals on the right hand 
side.

We obtain

T∫
0

ft(ϕ)ψ′
t dt−m(ψ∂ξϕ) + f0(ϕ)ψ0 = −

T∫
0

ψt df ,ϕ
t

Now, in order to derive (7.11) we consider again the two sequences of test functions (4.19)
and pass to the limit as ε → 0. Indeed, due to Lemma 4.11 we get the convergence of the 
first term on the left hand side, the kinetic measure term converges due to dominated 
convergence theorem and for the right hand side we use the continuity of the Young 
integral. We deduce

−f+
t (ϕ) −m(1[0,t]∂ξϕ) + f0(ϕ) = −f ,ϕ

t + f ,ϕ
0 ,

−f−
t (ϕ) −m(1[0,t)∂ξϕ) + f0(ϕ) = −f ,ϕ

t + f ,ϕ
0 ,

and (7.11) follows since for t = 0 we have

f ,ϕ
0 = lim

n→∞
fn,
0 (ϕ) = lim

n→∞
fn,±
0 (ϕ) = f0(ϕ).

Now, it only remains to prove that f+
0 = f0. The above formula at time t = 0 rewrites 

as



3642 A. Deya et al. / Journal of Functional Analysis 276 (2019) 3577–3645
f+
0 (ϕ) − f0(ϕ) = −m(1{0}∂ξϕ).

Hence the claim can be proved following the lines of [43, Lemma 4.3] and we omit the 
details. For the sake of completeness, let us set f−

0 := f0 and f+
T := f−

T .
Finally we have all in hand to complete the proof of convergence in (7.3). Fix ϕ ∈ E3

and integrate (7.8) over s as follows

1
ε

s+ε∫
s

(δfn,)rt(ϕ) dr − 1
ε

s+ε∫
s

fn,+
r (An,1,∗

rt ϕ + An,2,∗
rt ϕ) dr = 1

ε

s+ε∫
s

fn,+,�
rt (ϕ) dr,

1
ε

s∫
s−ε

(δfn,)rt(ϕ) dr − 1
ε

s∫
s−ε

fn,−
r (An,1,∗

rt ϕ + An,2,∗
rt ϕ) dr = 1

ε

s∫
s−ε

fn,−,�
rt (ϕ) dr.

On the left hand side we can successively take the limit as n → ∞ and ε → 0 (or rather 
for a suitable subsequence of n and ε depending possibly on ϕ and s, to be more precise). 
This leads to the following assertion: for every s < t ∈ [0, T ], the quantities

f+,�
st (ϕ) := lim

ε→0
lim
n→∞

1
ε

s+ε∫
s

fn,+,�
rt (ϕ) dr

f−,�
st (ϕ) := lim

ε→0
lim
n→∞

1
ε

s∫
s−ε

fn,−,�
rt (ϕ) dr

(7.12)

are well-defined, finite and satisfy

(δf )st(ϕ) = f±
s (A1,∗

st ϕ + A2,∗
st ϕ) + f±,�

st (ϕ). (7.13)

Injecting (7.11) into (7.13) yields that for every s < t ∈ [0, T ],

δf+
st(ϕ) = f+

s (A1,∗
st ϕ + A2,∗

st ϕ) −m(1(s,t]∂ξϕ) + f+,�
st (ϕ),

δf−
st(ϕ) = f−

s (A1,∗
st ϕ + A2,∗

st ϕ) −m(1[s,t)∂ξϕ) + f−,�
st (ϕ),

and so it only remains to prove that the remainders f±,� defined by (7.12) are sufficiently 
regular. To this end, we first observe that

lim sup
n→∞

mn(1(s,t]) � m(1[s,t]), lim sup
n→∞

mn(1[s,t)) � m(1[s,t]) (7.14)

holds true for every s < t ∈ [0, T ]. Indeed, the weak* convergence of mn to m, as 
described by (7.7), allows us to assert that for every t in the (dense) subset Cm of 
continuity points of the function t �→ m(1(0,t]), one has mn(1(0,t]) → m(1(0,t]) as n → ∞. 
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Consider now two sequences sk, tk in Cm such that sk strictly increases to s and tk
decreases to t, as k → ∞. Hence it holds that

lim sup
n→∞

mn(1(s,t]) � lim sup
n→∞

mn(1(sk,tk]) = m(1(sk,tk]).

Taking the limsup over k yields the first part of (7.14), the second part being similar. 
Next, we make use of (7.5) and (7.14) to deduce for every ϕ ∈ E3 and every s < t ∈ Ik,

|f±,�
st (ϕ)| � ‖ϕ‖E3

(
ωZ(s, t) + m([s, t])

p
3ωZ(s, t)1−

p
3

) 3
p

.

We can conclude that f±,� ∈ V
p
3

2,loc([0, T ]; E∗
3 ), and finally the pair (f, m) is indeed a 

generalized kinetic solution on the interval [0, T ].
Step 3: Conclusion. The reduction Theorem 4.7(ii) now applies and yields the existence 
of u+ : [0, T ) × RN → R such that 1u+(t,x)>ξ = f+

t (x, ξ) for a.e. (x, ξ) and every t. 
Besides, we deduce from (4.17) that u+ ∈ L∞(0, T ; L1 ∩ L2(RN )). Hence, the function 
u+ is a representative of a class of equivalence u which is a kinetic solution to (4.1). 
In view of Remark 4.8, this is the representative which then satisfies the L1-contraction 
property for every t ∈ [0, T ] and not only almost everywhere. The proof of Theorem 4.7(i) 
is now complete. �
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