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Abstract. This paper is concerned with the following memory-type Timoshenko system
⎧
⎪⎪⎨

⎪⎪⎩

ρ1ϕtt − K(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + K(ϕx + ψ) +

+∞∫

0

g(s)ψxx(t − s)ds = 0,

with Dirichlet boundary conditions, where g is a positive nonincreasing function satisfying, for some nonnegative functions
ξ and G,

g′(t) ≤ −ξ(t)G(g(t)), ∀t ≥ 0.

Under appropriate conditions on ξ and G, we establish some new decay results that generalize and improve many earlier
results in the literature such as Mustafa (Math Methods Appl Sci 41(1): 192–204, 2018), Messaoudi et al. (J Integral
Equ Appl 30(1): 117–145, 2018) and Guesmia (Math Model Anal 25(3): 351–373, 2020). We consider the equal speeds of
propagation case, as well as the nonequal-speed case. Moreover, we delete some assumptions on the boundedness of initial
data used in many earlier papers in the literature.
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1. Introduction

In this paper, we consider the following viscoelastic-type Timoshenko system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − K(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + K(ϕx + ψ) +

+∞∫

0

g(s)ψxx(t − s)ds = 0,

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),
ψ(x,−t) = ψ0(x, t), ψt(x, 0) = ψ1(x),

(1.1)

where (x, t) ∈ (0, L)× (0,+∞), L, b,K, ρ1, ρ2 are positive physical constants, ϕ0, ϕ1, ψ0, ψ1 are given data
and g is a relaxation function satisfying some conditions to be specified in the next section.
In 1921, Timoshenko [4] introduced the following system of hyperbolic partial differential equations as a
model to describe the dynamics of a thick beam:

⎧
⎪⎨

⎪⎩

ρ1φtt − K(φx + ψ)x = 0 in (0, L) × (0,+∞),

ρ2ψtt − bψxx + K(φx + ψ) = 0 in (0, L) × (0,+∞),
(1.2)
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where φ is the transverse displacement, ψ is the rotational angle of the filament of the beam and ρ1,
ρ2, b and K are fixed positive physical constants. For almost a century, a great number of researchers
have devoted a considerable amount of time an effort studying this model. As a product, many results
concerning the well-posedness and long-time behavior of the system have been established. For this matter
of various types of dissipation, such as boundary and/or internal feedback, heat or thermoelasticity,
infinite memory and Kelvin–Voigt damping have been utilized. See, for example, [5–17]. It is well known
that the exponential stability of system (1.2) is achieved in the presence of linear damping mechanisms
on both equations of (1.2) without imposing any condition on the speeds of wave propagation. But if
the damping effect is acting on only one equation, the system is exponentially stable if and only if it has
equal speeds of wave propagation, that is,

K

ρ1
=

b

ρ2
. (1.3)

The reader is advised to consult the above-cited references for detailed discussion on the stability analysis
of Timoshenko systems.

1.1. Finite memory

Now, we concentrate on the stabilization of a viscoelastic-type Timoshenko system which is the main
topic of this work. Viscoelastic-type Timoshenko system had received a considerable attention since the
work of Ammar-Khodja et al. [18] in which the authors studied the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1φtt − K(φx + ψ)x = 0 in (0, L) × (0,+∞),

ρ2ψtt − bψxx + K(ux + ψ) +

t∫

0

g(t − s)ψxx(s)ds = 0 in (0, L) × (0,+∞),

φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = 0 for t ≥ 0,

(1.4)

where g is a positive nonincreasing differentiable L1 function defined on R+. They established the uniform
stability of the system if and only if identity (1.3) holds. For the rate of decay, they obtained exponential
and polynomial stability of the system for the relaxation functions g decaying exponentially and poly-
nomially, respectively. Guesmia and Messaoudi [19] proved the same decay result of [18] by weakening
some of the assumptions on g. Precisely, they assumed that g satisfies, for some constants k0 > 0 and
1 ≤ p < 3

2 ,
g′(t) ≤ −k0g

p(t), ∀ t ≥ 0. (1.5)

Messaoudi and Mustafa [20] investigated the same system under the more general relation

g′(t) ≤ −ξ(t)g(t), ∀ t ≥ 0, (1.6)

where ξ is a positive nonincreasing differentiable function defined on R+. They proved for the first time
a general decay result from which the exponential and polynomial stabilities are only special cases.
The assumption (1.6) allows a wider class of relaxation functions. However, the “optimality” of the
polynomial decay is not guaranteed. Very recently, Messaoudi and Hassan [2] analyzed system (1.4)
under the following assumption on the relaxation function: for some 1 ≤ p < 3

2 and for a ξ a positive
nonincreasing differentiable defined function on R+,

g′(t) ≤ −ξ(t)gp(t), ∀ t ≥ 0. (1.7)

They established more general decay results in the case of equal and nonequal speeds of wave propagation.
This class of relaxation functions includes those of Ammar-Khodja et al. [18], Guesmia and Messaoudi
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[19] and Messaoudi and Mustafa [20] as special cases. This latter result guarantees the optimal polynomial
decay result; that is, the rate of decay of energy is exactly the rate of decay of the relaxation function.

1.2. Infinite memory

Giorgi et al. [21] considered the following semilinear hyperbolic equation with linear memory in a bounded
domain Ω ⊂ R

3

utt − K(0)Δu −
+∞∫

0

K ′(s)Δu(t − s)ds + g(u) = f in Ω × R+, (1.8)

with K(0),K(+∞) > 0 and K ′ ≤ 0 and proved the existence of global attractors for the solutions. Conti
and Pata [22] considered the following semilinear hyperbolic equation:

utt + αut − K(0)Δu −
+∞∫

0

K ′(s)Δu(t − s)ds + g(u) = f in Ω × R+, (1.9)

where the memory kernel is a convex decreasing smooth function such that K(0) > K(+∞) > 0 and
g : R+ → R+ is a nonlinear term of at most cubic growth satisfying some conditions. They proved
the existence of a regular global attractor. In [23], Appleby et al. studied the linear integro-differential
equation

utt + Au(t) +

t∫

−∞
K(t − s)Au(s)ds = 0 for t > 0, (1.10)

and established an exponential decay result for strong solutions in a Hilbert space. Pata [24] discussed
the decay properties of the semigroup generated by the following equation:

utt + αAu(t) + βut(t) −
+∞∫

0

μ(s)Au(t − s)ds = 0 for t > 0, (1.11)

where A is a strictly positive self-adjoint linear operator and α > 0, β ≥ 0 and the memory kernel μ is a
decreasing function satisfying specific conditions. Subsequently, they established necessary as well as the
sufficient conditions for the exponential stability. In [25], Guesmia considered

utt + Au −
+∞∫

0

g(s)Bu(t − s)ds = 0 for t > 0, (1.12)

and introduced a new ingenuous approach for proving a more general decay result based on the properties
of convex functions and the use of the generalized Young inequality. He used a larger class of infinite
history kernels satisfies the following condition

+∞∫

0

g(s)
G−1(−g′(s))

ds + sup
s∈R+

g(s)
G−1(−g′(s))

< +∞, (1.13)

such that
G(0) = G′(0) = 0 and lim

t→+∞ G′(t) = +∞, (1.14)
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where G : R+ → R+ is an increasing strictly convex function. Using this approach, Guesmia and Mes-
saoudi [26] later looked into

utt − Δu +

t∫

0

g1(t − s)div(a1(x)∇u(s))ds +

+∞∫

0

g2(s)div(a2(x)∇u(t − s))ds = 0,

in a bounded domain and under suitable conditions on a1 and a2 and for a wide class of relaxation
functions g1 and g2 that are not necessarily decaying polynomially or exponentially and established a
general decay result from which the usual exponential and polynomial decay rates are only special cases.
For Timoshenko systems with infinite memory, Rivera et al. [16] considered vibrating systems of Tim-
oshenko type with past history acting only in one equation. They showed that the dissipation given by
the history term is strong enough to produce exponential stability if and only if the equations have the
same wave speeds. In the case that the wave speeds of the equations are different, they showed that the
solution decays polynomially to zero if the corresponding system does not decay exponentially as time
goes to infinity, with rates that can be improved depending on the regularity of the initial data. Guesmia
et al. [10] have adopted the method introduced in [25] with some necessary modifications to establish a
general decay of the solution for a vibrating system of Timoshenko type in a one-dimensional bounded
domain with an infinite history acting in the equation of the rotation angle. Guesmia and Messaoudi
[27] discussed a Timoshenko system in the presence of an infinite memory, where the relaxation function
satisfies (1.6) and established some general decay results for the equal and nonequal speed propagation
cases. Recently, Guesmia [3] adapted the approach of [1] to two models of wave equations with infinite
memory and proved, under (2.2) (below) relations between the decay rate of solutions and the growth
of g at infinity. Al-Mahdi [28,29] also adapted the approach of [1] to some viscoelastic plate equations
with relaxation functions satisfy the condition (2.2). The results of [3,28,29] improved and generalized
the ones of [25,30–33] by getting a better decay rate and deleted some assumptions on the boundedness
of initial data.
In the present work, we study the asymptotic behavior of solutions of (1.1) under the general assumption
(2.2) (below) instead of the once in [25,30–34]. Furthermore, our class of admissible initial data is larger
than the one considered in [25,31–34] because we do not assume any boundedness condition on ψ0x by
adapting the arguments of [1,3] to the case of Timoshenko system (1.1).
The rest of this paper is organized as follows. In Sect. 2, we present some assumptions and material
needed for our work. Some technical lemmas are presented and proved in Sect. 3. Finally, we state and
prove our main decay results and provide some examples in Sect. 4.

2. Preliminaries

In this section, we present some materials needed for the proof of our results and state the existence
result of the problem. We use the standard Lebesgue space L2(0, L) and Sobolev space H1

0 (0, L) with
their usual scalar products and norms and assume the following hypotheses

(A) g : R+ → R+ is a C1 nonincreasing function satisfying, for some β0 > 0,

− β0g(s) ≤ g′(s), g(t) > 0 and b −
+∞∫

0

g(s)ds := 	 > 0, (2.1)

and there exists a C1 function G : R+ → R+ which is linear or it is strictly increasing and strictly
convex C2 function on (0, r] for some r > 0 with G(0) = G′(0) = 0, lims→+∞ G′(s) = +∞, s 
→
sG′(s) and s 
→ s (G′)−1 (s) are convex on (0, r]. Moreover, there exists a positive nonincreasing
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differentiable function ξ such that

g′(t) ≤ −ξ(t)G(g(t)), ∀t ≥ 0, (2.2)

where ξ is satisfying
+∞∫

0

ξ(s)ds = +∞.

Remark 2.1. [1] If G is a strictly increasing and strictly convex C2 function on (0, r], with G(0) = G′(0) =
0, then it has an extension G, which is strictly increasing and strictly convex C2 function on R+. For
instance, if G(r) = a,G′(r) = b and G′′(r) = c, we can define G, for t > r, by

G(t) =
c

2
t2 + (b − cr)t +

(
a +

c

2
r2 − br

)
. (2.3)

For simplicity, in the rest of this paper, we use G instead of G

Remark 2.2. [1] Since G is strictly convex on (0, r] and G(0) = 0, then

G(θz) ≤ θG(z), 0 ≤ θ ≤ 1 and z ∈ (0, r]. (2.4)

Remark 2.3. [1] For any 0 < α < 1, we define the following

Cα =

+∞∫

0

g2(s)
αg(s) − g′(s)

ds and h(t) = αg(t) − g′(t). (2.5)

Using the fact that αg2(s)
αg(s)−g′(s) < g(s) and recalling the Lebesgue dominated convergence theorem, we

can easily deduce that

αCα =

+∞∫

0

αg2(s)
αg(s) − g′(s)

ds → 0 as α → 0. (2.6)

For completeness, we state, without proof, the global existence and regularity result which can be
established by the semigroup theory (see [10,27] where some arguments of [35] are used).

Proposition 2.4. Let (ϕ0, ϕ1), (ψ0(., 0), ψ1) ∈ H1
0 (0, L)×L2(0, L) be given. Assume that g satisfies hypothe-

sis (A). Then, problem (1.1) has a unique global (weak) solution ϕ,ψ ∈ C(R+;H1
0 (0, L))∩C1(R+;L2(0, L)).

Moreover, if (ϕ0, ϕ1), (ψ0(., 0), ψ1) ∈ (H2(0, L) ∩ H1
0 (0, L)) × H1

0 (0, L), then the problem has a unique
classical solution ϕ,ψ ∈ C(R+;H2(0, L) ∩ H1

0 (0, L)) ∩ C1(R+;H1
0 (0, L)) ∩ C2(R+;L2(0, L)).

We introduce the “modified” energy associated to problem (1.1)

E(t) :=
1
2
(
ρ1||ϕ2

t ||2 + ρ2||ψ2
t ||2 + 	||ψ2

x||2 + K||(ϕx + ψ)2||2
)

+
1
2
(g ◦ ψx)(t), (2.7)

where || · ||2 = || · ||L2(0,L) and for any u ∈ L2
(
R+;L2(0, L)

)
,

(gou)(t) =

+∞∫

0

g(s)||u(t) − u(t − s)||22ds.

Direct differentiation, using (1.1), leads to

E′(t) =
1
2
(g′oψx)(t) ≤ 0, ∀t ≥ 0. (2.8)
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3. Technical lemmas

In this section, we state and establish several lemmas needed for the proof of our main result. We assume
that (A) holds and take (ϕ0, ϕ1), (ψ0(., 0), ψ1) ∈ H1

0 (0, L) × L2(0, L).

Lemma 3.1. There exists a positive constant M1 such that

+∞∫

t

g(s)||ψx(t) − ψx(t − s)||22ds ≤ M0h0(t), (3.1)

and

+∞∫

t

g(s)||ψxt(t) − ψxt(t − s)||22ds ≤ M1h1(t), (3.2)

where h0(t) =
+∞∫

0

g(t + s)
(
1 + ||ψ0x(s)||2) ds and h1(t) =

+∞∫

0

g(t + s)
(
1 + ||ψ0xt(s)||2

)
ds.

Proof. The proof of (3.1) is identical to the one in [3]. Indeed, we have

+∞∫

t

g(s)||ψx(t) − ψx(t − s)||22ds ≤ 2||ψx(t)||2
+∞∫

t

g(s)ds + 2

+∞∫

t

g(s)||ψx(t − s)||2ds

≤ 2 sup
s≥0

||ψx(s)||2
+∞∫

0

g(t + s)ds + 2

+∞∫

0

g(t + s)||ψx(−s)||2ds

≤ 4E(s)
	

+∞∫

0

g(t + s)ds + 2

+∞∫

0

g(t + s)||ψ0x(s)||2ds

≤ 4E(0)
	

+∞∫

0

g(t + s)ds + 2

+∞∫

0

g(t + s)||ψ0x(s)||2ds

≤ M0

+∞∫

0

g(t + s)
(
1 + ||ψ0x(s)||2) ds.

(3.3)

where M0 = max
{
2, 4E(0)

�

}
. To prove (3.2), we use the same arguments in the proof of (3.1). �

Lemma 3.2. The following functionals
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F (t) := −ρ2

L∫

0

ψt

+∞∫

0

g(s)(ψ(t) − ψ(t − s))dsdx,

I(t) := εI1(t) + I2(t) + I3(t),

I1(t) := −
L∫

0

(ρ1ϕϕt + ρ2ψψt)dx,

I2(t) := ρ2

L∫

0

ψt(ϕx + ψ)dx +
bρ1
K

L∫

0

ϕtψxdx − ρ1
K

L∫

0

ϕt

+∞∫

0

g(s)ψx(t − s)dsdx,

I3(t) :=
ρ2
4ε

L∫

0

m(x)ψt

⎛

⎝bψx −
+∞∫

0

g(s)ψx(t − s)ds

⎞

⎠dx + ε
ρ1
K

L∫

0

m(x)ϕtϕxdx

and

J(t) :=

L∫

0

(ρ1wϕt + ρ2ψψt)dx,

satisfy, along the solution of (1.1), the following estimates

F ′(t) ≤ −ρ2 (b − 	 − δ)

L∫

0

ψ2
t dx + δK

L∫

0

(ϕx + ψ)2dx

+δ

L∫

0

ψ2
xdx +

c

δ
(Cα + 1)(h ◦ ψx)(t), (3.4)

I ′(t) ≤ −K

2

L∫

0

(ϕx + ψ)2dx − c1ρ1

L∫

0

ϕ2
t dx

+cρ2

L∫

0

ψ2
t dx + c

L∫

0

ψ2
xdx

+c(Cα + 1)(h ◦ ψx)(t) +
(

bρ1
K

− ρ2

) L∫

0

ϕtψxtdx, (3.5)

and

J ′(t) ≤ ε0ρ1

L∫

0

ϕ2
t dx +

c

ε0
ρ2

L∫

0

ψ2
t dx − l

2

L∫

0

ψ2
xdx +

Cα

2l
(h ◦ ψx)(t), ∀ ε0 > 0. (3.6)

Proof. The proof of this lemma can be done by following the calculations in [2]. �

Lemma 3.3. [2] There exist strictly positive constants N,N1, N2 and ε such that the functional

L(t) = NE(t) + N1F (t) + I(t) + N2J(t)

satisfies, for all t ∈ R+,
L ∼ E, (3.7)
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and

L′(t) ≤ − K

4
||(ϕx + ψ)2||2 − ρ1

4
||ϕ2

t ||2 − ρ2
4

||ψ2
t ||2 − 4(b − l)||ψ2

x||2

+
1
4
(g ◦ ψx)(t) +

(
bρ1
K

− ρ2

) L∫

0

ϕtψxtdx, ∀ t ≥ 0,

(3.8)

Proof. It is a routine computation to establish that L(t) ∼ E(t). To prove (3.8), combining (2.8), (3.4),
(3.5), (3.6), recalling that g′ = αg − h and setting δ = 1

4N1
, we obtain, for all t ≥ t0,

L′(t) ≤ −K

4

L∫

0

(ϕx + ψ)2dx − (c1 − N2ε0)ρ1

L∫

0

ϕ2
t dx

−
[

(b − 	)N1 − 1
4

− c

(

1 +
1
ε0

N2

)]

ρ2

L∫

0

ψ2
t dx

−
(

l

2
N2 − 1

4
− c

) L∫

0

ψ2
xdx +

α

2
N(g ◦ ψx)(t)

−
[
1
2
N − c(4N2

1 + 1) − Cα

(
1
2l

N2 + c + 4cN2
1

)]

(h ◦ ψx)(t)

+
(

bρ1
K

− ρ2

) L∫

0

ϕtψxtdx.

We start by choosing N2 large enough so that

l

2
N2 − 1

4
− c > 4(b − l),

then pick ε0 so small that

c1 − N2ε0 >
1
4
.

Next, we select N1 so large that

(b − 	)N1 − 1
4

+ c(1 +
1
ε0

N2) >
1
4
.

As
αg2(s)

αg(s) − g′(s)
< g(s), it follows from the Lebesgue Dominated Convergence Theorem that

lim
α→0+

αCα = lim
α→0+

∞∫

0

αg2(s)
αg(s) − g′(s)

ds = 0.

Consequently, there exists 0 < α0 < 1 such that if α < α0, then

αCα <
1

8
[
1
2lN2 + c(1 + 4N2

1 )
] .

Now, choose N large enough so that

N > max
{

4c(4N2
1 + 1),

1
2α0

}
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and set

α =
1

2N
.

So

1
4
N − c(4N2

1 + 1) > 0 and α =
1

2N
< α0.

This gives

1
2
N − c(4N2

1 + 1) − Cα

[
1
2l

N2 + c(1 + 4N2
1 )
]

>
1
2
N − c(4N2

1 + 1) − 1
8α

=
1
4
N − c(4N2

1 + 1) > 0.

Hence, we arrive at the required estimate. �

Lemma 3.4. The functional

N3(t) =

t∫

0

p(t − s)||ψx(s)||22ds,

satisfies, along the solution of (1.1), the estimate

N ′
3(t) ≤ −1

2
(g ◦ ψx)(t) + 3(b − 	)||ψx(t)||22dx +

1
2

+∞∫

t

g(s)||ψx(t) − ψx(t − s)||22ds, (3.9)

where p(t) =
+∞∫

t

g(s)ds.

Proof. In fact, we have the following

p′(t) = −g(t),

t∫

0

g(t − s)ds =

t∫

0

g(s)ds =

∞∫

0

g(s)ds −
∞∫

t

g(s)ds = p(0) − p(t). (3.10)

Now, direct differentiation of N3 leads to

N ′
3(t) = p(0)||ψx(t)||22 +

t∫

0

p′(t − s)||ψx(s)||22ds

= p(0)||ψx(t)||22 −
t∫

0

g(t − s)||ψx(s)||22ds
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= p(0)||ψx(t)||22 −
t∫

0

g(t − s)||ψx(s) − ψx(t) + ψx(t)||22ds

= p(0)||ψx(t)||22 −
t∫

0

g(t − s)||ψx(s) − ψx(t)||22 − 2

t∫

0

g(t − s)||ψx(s) − ψx(t)||2||ψx(t)||2

−
t∫

0

g(t − s)||ψx(t)||22ds

= p(t)||ψx(t)||22 + 2

t∫

0

g(t − s)||ψx(t) − ψx(s)||2||ψx(t)||2 −
t∫

0

g(t − s)||ψx(t)||22ds

≤ p(t)||ψx(t)||22 −
t∫

0

g(t − s)||ψx(t)||22ds

+2(b − 	)||ψx(t)||22 +

t∫

0

g(s)ds

2(b − 	)

t∫

0

g(t − s)||ψx(t) − ψx(s)||22ds

≤ 3(b − 	)||ψx(t)||22 −
t∫

0

g(t − s)||ψx(t) − ψx(s)||22ds +
1
2

t∫

0

g(t − s)||ψx(t) − ψx(s)||22ds(3.11)

≤ 3(b − 	)||ψx(t)||22 − 1
2

t∫

0

g(t − s)||ψx(t) − ψx(s)||22ds

≤ 3(b − 	)||ψx(t)||22 − 1
2

∞∫

0

g(t − s)||ψx(t) − ψx(s)||22ds +
1
2

∞∫

t

g(t − s)||ψx(t) − ψx(s)||22ds

≤ 3(b − 	)||ψx(t)||22 − 1
2

(g ◦ ψx) (t) +
1
2

∞∫

t

g(t − s)||ψx(t) − ψx(s)||22ds.

(3.12)

Then, (3.9) is established. �

Lemma 3.5. Assume that (1.3) holds. Then, the energy functional satisfies, for all t ∈ R
+ and for some

positive constant m̃, the following estimate

t∫

0

E(s)ds < m̃f(t), (3.13)

where f(t) = 1 +
t∫

0

h0(s)ds and h0 is defined in Lemma 3.1.
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Proof. As in [3], let F (t) = L(t) + N3(t); then using (3.8) and (3.9), we obtain, for all t ∈ R+,

F ′(t) ≤ − K

4
||(φx + ψ)2||2 − ρ1

4
||φ2

t ||2 − ρ2
4

||ψ2
t ||2 − (b − l)||ψ2

x||2 − 1
4
(g ◦ ψx)(t)

+
1
2

L∫

0

+∞∫

t

g(s) (ψx(t) − ψx(t − s))2 dsdx.

(3.14)

From (2.7) and (3.14), we obtain for all t ∈ R+,

F ′(t) ≤ −mE(t) +
1
2

+∞∫

t

g(s)||ψx(t) − ψx(t − s)||22ds,

where m is some positive constant. Therefore, using (3.1), we obtain

m

t∫

0

E(s)ds ≤ F (0) − F (t) +
M0

2

t∫

0

+∞∫

0

g(τ + s) (1 + |ψx0(s)|ds)2 dτds

≤ F (0) +
M0

2

t∫

0

h0(s)ds.

(3.15)

Hence, we get
t∫

0

E(s)ds ≤ F (0)
m

+
M0

2m

t∫

0

h0(s)ds ≤ m̃

(

1 +

t∫

0

h0(s)ds

)

, (3.16)

where m̃ = max
{F (0)

m , M0
2m

}
. �

Corollary 3.6. There exists 0 < q0 < 1 such that, for all t ≥ 0, we have the following estimate:
t∫

0

g(s)||ψx(t) − ψx(t − s)||22ds ≤ 1
q(t)

G−1

(
q(t)μ(t)

ξ(t)

)

(3.17)

where G is defined in Remark (2.1),

μ(t) := −
t∫

0

g′(s)||ψx(t) − ψx(t − s)||22ds ≤ −cE′(t) (3.18)

and
q(t) :=

q0
f(t)

. (3.19)

Proof. As in [3], using (2.7) and (3.13), we have
t∫

0

||ψx(t) − ψx(t − s)||22ds ≤ 2

L∫

0

t∫

0

(|ψx(t)|2 + |ψx(t − s)|2) dsdx

≤ 4
	

t∫

0

(E(t) + E(t − s)) ds

≤ 8
	

t∫

0

E(s)ds ≤ 8
	
m̃f(t), ∀ t ∈ R+.

(3.20)
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Thanks to (3.13), we have for all t ≥ 0 and for 0 < q0 < min
{
1, �

8m̃

}
,

q(t) < 1 and

q(t)

t∫

0

||ψx(t) − ψx(t − s)||22ds < 1.

So, the proof of (3.17) can be archived as the one given in [1]. �

4. A decay result for equal speeds of wave propagation

In this section, we state and prove a new general decay result in the case of equal speeds of wave
propagation (1.3). As in [3], we introduce the following functions:

G1(t) :=

1∫

t

1
sG′(s)

ds, (4.1)

G2(t) = tG′(t), G3(t) = t(G′)−1(t), G4(t) = G∗
3(t), (4.2)

where G∗
3 is the convex conjugate of G3. Further, we introduce the class S of functions χ : R+ → R

∗
+

satisfying for fixed c1, c2 > 0 [should be selected carefully in (4.16)]:

χ ∈ C1(R+), χ ≤ 1, χ′ ≤ 0, (4.3)

and

c2G4

[ c

d
q(t)h0(t)

]
≤ c1

(

G2

(
G5(t)
χ(t)

)

− G2 (G5(t))
χ(t)

)

, (4.4)

where d > 0, c is a generic positive constant which may change from line to line, h0 and q are defined in
Lemma 3.1 and Corollary 3.6 and

G5(t) = G−1
1

(

c1

t∫

0

ξ(s)ds

)

. (4.5)

Remark 4.1. [3] According to the properties of G introduced in (A), G2 is convex increasing and defines
a bijection from R+ to R+, G1 is decreasing defines a bijection from (0, 1] to R+, and G3 and G4 are
convex and increasing functions on (0, r]. Then, the set S is not empty because it contains χ(s) = εG5(s)
for any 0 < ε ≤ 1 small enough. From (4.1) and (4.5), we notice that (4.3) is satisfied. On the other hand,
we have q(t)h0(t) is nonincreasing, 0 < G5 ≤ 1, and G′ and G4 are increasing, then (4.4) is satisfied if

c2G4

[
c

d
q0h0(0)

]

≤ c1
ε

(

G′
(

1
ε

)

− G′(1)
)

which holds, for 0 < ε ≤ 1 small enough, since limt→+∞ G′(t) = +∞.

Theorem 4.2. Assume that (A) and (1.3) hold, then there exists a strictly positive constant C such that
the solution of (1.1) satisfies, for all t ≥ 0,

E(t) ≤ CG5(t)
χ(t)q(t)

. (4.6)

Remark 4.3. The stability estimate (4.6) holds for any χ satisfying (4.3) and (4.4). But (4.6) does not
lead in general to the asymptotic stability limt→∞ E(t) = 0 (like in case of the choice χ = εG5 indicated in
Remark 4.1, where (4.6) becomes just an upper bound estimate for E). The idea is to choose χ satisfying
(4.3) and (4.4) such that (4.6) gives the best possible decay rate for E. This choice can be done by taking
χ satisfying (4.3) and (4.4) such that the decay rate of the function in the right-hand side of (4.4) has
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the closet decay rate to the one of the function in the left-hand side of (4.4). So, such choice of χ can be
seen from each specific considered functions g and ψ0x (see the particular example considered below).

Proof. To prove Theorem 4.2, we start by combining (2.8), (3.1), (3.8), (3.17) and (1.3), then, for some
m > 0 and for any t ≥ 0, we have

L′(t) ≤ −mE(t) +
c

q(t)
G−1

(
q(t)μ(t)

ξ(t)

)

+ ch0(t). (4.7)

Without loss of generality, one can assume that E(0) > 0. For ε0 < r, let the functional F defined by

F(t) := G′
(

ε0
E(t)q(t)

E(0)

)

L(t),

which satisfies F ∼ E. By noting that G′′ ≥ 0, q′ ≤ 0 and E′ ≤ 0, we get

F ′(t) = ε0
(qE)′(t)

E(0)
G′′

(

ε0
E(t)q(t)

E(0)

)

L(t) + G′
(

ε0
E(t)q(t)

E(0)

)

L′(t)

≤ −mE(t)G′
(

ε0
E(t)q(t)

E(0)

)

+
c

q(t)
G′
(

ε0
E(t)q(t)

E(0)

)

G−1

(
q(t)μ(t)

ξ(t)

)

+ ch0(t)G′
(

ε0
E(t)q(t)

E(0)

)

.

(4.8)

Let G∗ be the convex conjugate of G in the sense of Young (see [36]), then

G∗(s) = s(G′)−1(s) − G
[
(G′)−1(s)

]
, if s ∈ (0, G′(r)] (4.9)

and G∗ satisfies the following generalized Young inequality

AB ≤ G∗(A) + G(B), if A ∈ (0, G′(r)], B ∈ (0, r]. (4.10)

So, with A = G′
(
ε0

E(t)q(t)
E(0)

)
and B = G−1

(
q(t)μ(t)

ξ(t)

)
and using (2.8) and (4.8)–(4.10), we arrive at

F ′(t) ≤ −mE(t)G′
(

ε0
E(t)q(t)

E(0)

)

+
c

q(t)
G∗

(

G′
(

ε0
E(t)q(t)

E(0)

))

+ c

(
μ(t)q(t)

ξ(t)

)

+ ch0(t)G′
(

ε0
E(t)q(t)

E(0)

)

≤ −mE(t)G′
(

ε0
E(t)q(t)

E(0)

)

+ cε0
E(t)
E(0)

G′
(

ε0
E(t)q(t)

E(0)

)

+ c

(
μ(t)q(t)

ξ(t)

)

+ ch0(t)G′
(

ε0
E(t)q(t)

E(0)

)

.

(4.11)

So, multiplying (4.11) by ξ(t) and using (3.18) and the fact that ε0
E(t)q(t)

E(0) < r and G′
(
ε0

E(t)q(t)
E(0)

)
=

G′
(
ε0

E(t)q(t)
E(0)

)
give

ξ(t)F ′(t) ≤ −mξ(t)E(t)G′
(

ε0
E(t)q(t)

E(0)

)

+ cξ(t)ε0
E(t)
E(0)

G′
(

ε0
E(t)q(t)

E(0)

)

+ cμ(t)q(t) + cξ(t)h0(t)G′
(

ε0
E(t)q(t)

E(0)

)

≤ −ε0(
mE(0)

ε0
− c)ξ(t)

E(t)
E(0)

G′
(

ε0
E(t)q(t)

E(0)

)

− cE′(t) + cξ(t)h0(t)G′
(

ε0
E(t)q(t)

E(0)

)

.
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Consequently, recalling the definition of G2 and choosing ε0 so that k = (mE(0)
ε0

− c) > 0, we obtain, for
all t ∈ R+,

F ′
1(t) ≤ −kξ(t)

(
E(t)
E(0)

)

G′
(

ε0
E(t)q(t)

E(0)

)

+ cξ(t)h0(t)G′
(

ε0
E(t)q(t)

E(0)

)

= −k
ξ(t)
q(t)

G2

(
E(t)q(t)

E(0)

)

+ cξ(t)h0(t)G′
(

ε0
E(t)q(t)

E(0)

)

,

(4.12)

where F1 = ξF + cE ∼ E and satisfies for some α1, α2 > 0.

α1F1(t) ≤ E(t) ≤ α2F1(t). (4.13)

Since G′
2(t) = G′(t)+ tG′′(t), then, using the strict convexity of G on (0, r], we find that G′

2(t), G2(t) > 0
on (0, r].

Using the general Young inequality (4.10) on the last term in (4.12) with A = G′
(
ε0

E(t)q(t)
E(0)

)
and

B = [ c
dh0(t)], we have for d > 0

ch0(t)G′
(

ε0
E(t)q(t)

E(0)

)

=
d

q(t)

[ c

d
q(t)h0(t)

](

G′
(

ε0
E(t)q(t)

E(0)

))

≤ d

q(t)
G3

(

G′
(

ε0
E(t)q(t)

E(0)

))

+
d

q(t)
G∗

3

[ c

d
q(t)h0(t)

]

≤ d

q(t)

(

ε0
E(t)q(t)

E(0)

)(

G′
(

ε0
E(t)q(t)

E(0)

))

+
d

q(t)
G4

[ c

d
q(t)h0(t)

]

≤ d

q(t)
G2

(

ε0
E(t)q(t)

E(0)

)

+
d

q(t)
G4

[ c

d
q(t)h0(t)

]
.

(4.14)

Now, combining (4.12) and (4.14) and choosing d small enough so that k1 = (k − d) > 0, we arrive at

F ′
1(t) ≤ −k

ξ(t)
q(t)

G2

(

ε0
E(t)q(t)

E(0)

)

+
dξ(t)
q(t)

G2

(

ε0
E(t)q(t)

E(0)

)

+
dξ(t)
q(t)

G4

[ c

d
q(t)h0(t)

]

≤ −k1
ξ(t)
q(t)

G2

(

ε0
E(t)q(t)

E(0)

)

+
dξ(t)
q(t)

G4

[ c

d
q(t)h0(t)

]
.

(4.15)

Using the equivalent property in (4.13) and the increasing of G2, we have

G2

(

ε0
E(t)q(t)

E(0)

)

≥ G2

(

d0F1(t)q(t)
)

.

Letting F2(t) := d0F1(t)q(t) and recalling q′ ≤ 0, then we arrive at, for some c1, c2 > 0,

F ′
2(t) ≤ −c1ξ(t)G2(F2(t)) + c2ξ(t)G4

[ c

d
q(t)h0(t)

]
. (4.16)

d0q(t) is nonincreasing. Using the equivalent property F1 ∼ E implies that there exists b0 > 0 such that
F2(t) ≥ b0E(t)q(t). Let t ∈ R+ and χ(t) satisfying (4.3) and (4.4).
If

b0q(t)E(t) ≤ 2
G5(t)
χ(t)

, (4.17)

then, we have

E(t) ≤ 2
b0

G5(t)
χ(t)q(t)

. (4.18)

If

b0q(t)E(t) > 2
G5(t)
χ(t)

, (4.19)
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then, for any 0 ≤ s ≤ t, we get

b0q(s)E(s) > 2
G5(t)
χ(t)

, (4.20)

since q(t)E(t) is nonincreasing function. Therefore,

F2(s) > 2
G5(t)
χ(t)

, (4.21)

for any 0 ≤ s ≤ t. Recalling the definition of G2, using the fact that G2 is convex, G2(0) = 0 and
0 < χ ≤ 1, we have, for any 0 ≤ s ≤ t and 0 < ε1 ≤ 1,

G2

(

ε1χ(s)F2(s) − ε1G5(s)
)

≤ ε1χ(s)G2

(

F2(s) − G5(s)
χ(s)

)

≤ ε1χ(s)F2(s)G′
(

F2(s) − G5(s)
χ(s)

)

− ε1χ(s)
G5(s)
χ(s)

G′
(

F2(s) − G5(s)
χ(s)

)

≤ ε1χ(s)F2(s)G′
(

F2(s)
)

− ε1χ(s)
G5(s)
χ(s)

G′
(

G5(s)
χ(s)

)

.

(4.22)

Now, we let
F3(s) = ε1χ(s)F2(s) − ε1G5(s), (4.23)

where ε1 small enough so that F3(0) ≤ 1. Then, (4.22) becomes, for any 0 ≤ s ≤ t,

G2

(

F3(s)
)

≤ ε1χ(t)G2

(

F2(s)
)

− ε1χ(t)G2

(
G5(s)
χ(s)

)

. (4.24)

Further, we have
F ′

3(t) = ε1χ
′(t)F2(t) + ε1χ(s)F ′

2(t) − ε1G
′
5(t). (4.25)

Since χ′ ≤ 0 and using (4.16), then for any 0 ≤ s ≤ t, 0 < ε1 ≤ 1, we obtain

F ′
3(t) ≤ ε1χ(s)F ′

2(t) − ε1G
′
5(t)

≤ −c1ε1ξ(t)χ(t)G2(F2(t)) + c2ε1ξ(t)χ(s)G4

[ c

d
q(t)h0(t)

]
− ε1G

′
5(t).

(4.26)

Then, using (4.4) and (4.24), we get

F ′
3(t) ≤ −c1ξ(t)G2(F3(t)) − c1ε1ξ(t)χ(t)G2

(
G5(s)
χ(s)

)

+ c2ε1ξ(t)χ(t)G4

[ c

d
q(t)h0(t)

]
− ε1G

′
5(t).

(4.27)

Thus,

F ′
3(t) ≤ −c1ξ(t)G2(F3(t)) + c2ε1ξ(t)χ(t)G4

[ c

d
q(t)h0(t)

]

− c1ε1ξ(t)χ(t)G2

(
G5(s)
χ(s)

)

− ε1G
′
5(t).

(4.28)

From the definition of G1 and G5, we have

G1 (G5(s)) = c1

s∫

0

ξ(τ)dτ ;

hence,
G′

5(s) = −c1ξ(s)G2 (G5(s)) . (4.29)
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Now, we have

c2ε1ξ(t)χ(t)G4

[ c

d
q(t)h0(t)

]
− c1ε1ξ(t)χ(t)G2

(
G5(s)
χ(s)

)

− ε1G
′
5(t)

= c2ε1ξ(t)χ(t)G4

[ c

d
q(t)h0(t)

]
− ε1ξ(t)χ(t)G2

(
G5(s)
χ(s)

)

+ cε1ξ(t)G2 (G5(t))

= ε1ξ(t)χ(t)
(

c2G4

[ c

d
q(t)h0(t)

]
− c1G2

(
G5(s)
χ(s)

)

+ c1
G2 (G5(t))

χ(t)

)

.

(4.30)

Then, according to (4.4), we get

ε1ξ(t)χ(t)
(

c2G4

[ c

d
q(t)h0(t)

]
− c1G2

(
G5(s)
χ(s)

)

− c1
G2 (G5(t))

χ(t)

)

≤ 0

Then, (4.28) gives
F ′

3(t) ≤ −c1ξ(t)G2(F3(t)). (4.31)
Thus, from (4.31) and the definition of G1 and G2 in (4.1) and (4.2), we obtain

(

G1 (F3(t))
)′

≥ c1ξ(t). (4.32)

Integrating (4.32) over [0, t], we get

G1 (F3(t)) ≥ c1

t∫

0

ξ(s)ds + G1 (F3(0)) . (4.33)

Since G1 is decreasing, F3(0) ≤ 1 and G1(1) = 0, then

F3(t) ≤ G−1
1

(

c1

t∫

0

ξ(s)ds

)

= G5(t). (4.34)

Recalling that F3(t) = ε1χ(t)F2(t) − ε1G5(t), we have

F2(t) ≤ (1 + ε1)
ε1

G5(t)
χ(t)

, (4.35)

Similarly, recall that F2(t) := d0F1(t)q(t), then

F1(t) ≤ (1 + ε1)
d0ε1

G5(t)
χ(t)q(t)

, (4.36)

Since F1 ∼ E, then for some b > 0, we have E(t) ≤ bF1, which gives

E(t) ≤ b(1 + ε1)
d0ε1

G5(t)
χ(t)q(t)

, (4.37)

From (4.18) and (4.37), we obtain the following estimate

E(t) ≤ c3

(
G5(t)

χ(t)q(t)

)

, (4.38)

where c3 = max{ 2
b0

, b(1+ε1)
d0ε1

}. �

Example 4.4. [3]: Let g(t) = a
(1+t)ν , where ν > 1 and 0 < a < ν − 1 so that (A) is satisfied. In this case

ξ(t) = νa
−1
ν and G(t) = t

ν+1
ν . Then, there exist positive constants ai(i = 1, ..., 5) depending only on a, ν

such that

G3(t) = a3t
ν+1, G4(t) = a4t

ν+1
ν , G2(t) = a2t

ν+1
ν , G1(t) = a1(t

−1
ν − 1), G5(t) = (a5t + 1)−ν . (4.39)
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We will discuss two cases:

Case 1 If
m0(1 + t)r ≤ 1 + ||ψ0x||2 ≤ m1(1 + t)r (4.40)

where 0 < r < ν − 1 and m0,m1 > 0, then we have, for some positive constants ai(i = 6, ..., 9) depending
only on a, ν,m0,m1, r, the following:

a6(1 + t)−ν+1+r ≤ h0(t) ≤ a7(1 + t)−ν+1+r, (4.41)

q0
q(t)

≥ a8

⎧
⎨

⎩

1 + ln(1 + t), ν − r = 2;
2, ν − r > 2;
(1 + t)−ν+r+2, 1 < ν − r < 2.

(4.42)

q0
q(t)

≤ a9

⎧
⎨

⎩

1 + ln(1 + t), ν − r = 2;
2, ν − r > 2;
(1 + t)−ν+r+2, 1 < ν − r < 2.

(4.43)

We notice that condition (4.4) is satisfied if

(t + 1)νq(t)h0(t)χ(t) ≤ a10

(

1 − (χ)
1
ν

) ν
ν+1

. (4.44)

where a10 > 0 depending on a, ν, c1 and c2. Choosing χ(t) as the following

χ(t) = λ

{
(1 + t)−p, p = r + 1 ν − r ≥ 2;
(1 + t)−p, p = ν − 1, 1 < ν − r < 2.

(4.45)

so that (4.3) is valid. Moreover, using (4.41) and (4.42), we see that (4.44) is satisfied if 0 < λ ≤ 1 is
small enough, and then (4.4) is satisfied. Hence (4.6) and (4.43) imply that, for any t ∈ R+

E(t) ≤ a11

⎧
⎪⎪⎨

⎪⎪⎩

(

1 + ln(1 + t)
)

(1 + t)−(ν−r−1), ν − r = 2;

(1 + t)−(ν−r−1), ν − r > 2;
(1 + t)−(ν−r−1), 1 < ν − r < 2.

(4.46)

Thus, estimate (4.46) gives limt→+∞ E(t) = 0. We notice that estimate (4.46) extends and improves the
decay rate (t + 1)p (for some 0 < p small enough) obtained in [30] for ν > 2.
Case 2 if m0 ≤ 1 + ||ψ0x||2 ≤ m1. That is, r = 0 in (4.40) (as it was assumed in [25,31–33], then (4.46)
holds with r = 0, which gives a better decay rate than the ones (1 + t)−p (for any 0 < p < ν−1

2 ),

(1 + t)−p(for some 0 < p small enough) and (1 + t)
−ν2−ν−1

ν obtained in [25,31–33], respectively.

5. A decay result for nonequal speeds of wave propagation

In this section, we give an estimate to the decay rate in the case of nonequal speeds of wave propagation.
We start by stating, under assumption (A) and for (ϕ0, ϕ1), (ψ0(., 0), ψ1) ∈ H1

0 (0, L) × L2(0, L), some
lemmas that are necessary for the proof of our second main result.

First, we introduce the second energy functional

E∗(t) :=
1
2
(
ρ1||ϕ2

tt||22 + ρ2||ψ2
tt||22 + 	||ψ2

xt||22 + K||(ϕxt + ψt)2
) ||22 +

1
2
(g ◦ ψxt)(t). (5.1)

Then, we have the following lemma.

Lemma 5.1. [37] Let (ϕ,ψ) be the strong solution of (1.1). Then, the second energy functional satisfies,
for all t ≥ 0,

E′
∗(t) =

1
2
(g′ ◦ ψxt) ≤ 0 (5.2)
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and
E∗(t) ≤ E∗(0). (5.3)

Next, we have the following estimate for the last term in the right-hand side of (3.8).

Lemma 5.2. [37] Let (ϕ,ψ) be the strong solution of (1.1). Then, for any ε > 0, we have

(
ρ1b

K
− ρ2

) L∫

0

ϕtψxtdx ≤ εE(t) +
c

ε

(
(g ◦ ψxt)(t) − E′(t)

)
, ∀t ≥ 0. (5.4)

Proof. For any t ≥ 0, we have the following

(
ρ1b

K
− ρ2

) L∫

0

ϕtψxtdx =

(
ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g(s) (ψxt(t) − ψxt(t − s)) dsdx

+

(
ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g(s)ψxt(t − s)dsdx.

(5.5)

By exploiting Young’s inequality, we get for all ε > 0 and t ≥ 0, the following estimates
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g(s) (ψxt(t) − ψxt(t − s)) dsdx ≤ cε

2

L∫

0

ϕ2
t dx +

c

ε
(g ◦ ψxt)

≤ ε

2
E(t) +

c

ε
(g ◦ ψxt) .

(5.6)

On the other hand, by using the fact ψxt(t − s) = −ψxs(t − s) and integrating by parts, we obtain
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g(s) (ψxt(t − s)) dsdx = −
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g(s) (ψxs(t − s)) dsdx

= −
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

([

0 − g(0)ψx(t)
]

+

∞∫

0

g′(s)ψx(t − s)ds

)

dx

=
g(0)

(
ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕtψx(t)dx −
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g′(s)ψx(t)dsdx

−
g(0)

(
ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

( ∞∫

0

g′(s) (ψx(t − s) − ψx(t)) ds

)

dx

=
2g(0)

(
ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕtψx(t)dx −
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

( ∞∫

0

g′(s) (ψx(t − s) − ψx(t)) ds

)

dx.

(5.7)
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Using Young’s inequality, we get for all ε > 0 and t ≥ 0,

−
(

ρ1b
K − ρ2

)

∞∫

0

g(s)ds

L∫

0

ϕt

∞∫

0

g′(s) (ψx(t − s)) − ψx(t)) dsdx

≤ ε

2

L∫

0

ϕ2
t dx − c

ε
(g′ ◦ ψx)

≤ ε

2
E(t) − c

ε
(g′ ◦ ψx) ,

(5.8)

and

c

L∫

0

ϕtψx(t)dx ≤ ε

2

L∫

0

ϕ2
t dx +

c

ε

L∫

0

ψ2
xdx. (5.9)

Combining (5.8) and (5.9), (5.4) is established. �

Lemma 5.3. We have the following estimate:
t∫

0

g(s)
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds ≤ 1

γ(t)
G−1

(
γ(t)θ(t)

ξ(t)

)

, (5.10)

for any t > 0, where γ(t) := γ0
t+1 , γ0 ∈ (0, 1), and

θ(t) := −
t∫

0

g′(s)
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds ≤ c (E′(t) + E′

∗(t)) . (5.11)

Proof. Let us define the following functional:

η(t) := γ(t)

t∫

0

(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22
)
ds, ∀ t > 0. (5.12)

The use of (2.7), (2.8), (5.1) and (5.3) gives for any t ≥ 0,

γ(t)

t∫

0

(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22
)
ds

≤ 2γ(t)

t∫

0

(‖ψx(t)‖22 + ‖ψx(t − s)‖22 + ‖ψxt(t)‖22 + ‖ψxt(t − s)‖22
)
ds

≤ 4γ(t)
	

t∫

0

(
E(t) + E(t − s) + E∗(t) + E∗(t − s)

)
ds

≤ 8γ(t)
	

t∫

0

[E(0) + c (E∗(0))] ds

≤ 8γ0
	

[E(0) + c (E∗(0))] < +∞, ∀ t > 0.

(5.13)
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This allows us to pick 0 < γ0 < 1 such that η < 1. Thus, using Jensen’s inequality and (5.12), we obtain,
for any t > 0,

θ(t) = − 1
η(t)

t∫

0

η(t)g′(s)
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds

≥ 1
η(t)

t∫

0

η(t)ξ(s)G(g(s))
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds

≥ ξ(t)
η(t)

t∫

0

G(η(t)g(s))
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds

≥ ξ(t)
γ(t)

G

⎛

⎝γ(t)

t∫

0

g(s)
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds

⎞

⎠

≥ ξ(t)
γ(t)

G

⎛

⎝γ(t)

t∫

0

g(s)
(‖ψx(t) − ψx(t − s)‖22 + ‖ψxt(t) − ψxt(t − s)‖22

)
ds

⎞

⎠ ,

(5.14)

Then, (5.10) is established. �

Theorem 5.4. Let (ϕ0, ϕ1), (ψ0, ψ1) ∈ (
H2(0, L) ∩ H1

0 (0, L)
) × H1

0 (0, L). Assume that (A) holds and the
relation (1.3) is not satisfied, that is,

ρ1
K

�= ρ2
b

.

Then, there exist a positive constant C such that the solution of (1.1) satisfies, for all t ≥ 0,

E(t) ≤ C
E(0)
γ(t)

G−1
2

⎡

⎢
⎢
⎢
⎣

C +
t∫

0

ξ(s)G4 [Cγ(s)h1(s)] ds,

t∫

0

ξ(s)ds

⎤

⎥
⎥
⎥
⎦

, (5.15)

where γ, h1, G2 and G4 are functions defined earlier in this paper.

Proof. Combining (3.8) and (5.4), we have, for some m > 0,

L′(t) ≤ −mE(t) + c(g ◦ ψx)(t) +
(

ρ1b

K
− ρ2

) L∫

0

ϕtψxtdx

≤ −(m − ε)E(t) + c(g ◦ ψx)(t) +
c

ε

(
g ◦ ψxt(t) − E′(t)

)
, ∀ t ≥ 0.

After fixing ε small enough, we arrive at

L′(t) ≤ −m1E(t) + c
(
g ◦ ψx + g ◦ ψxt

)
(t) − cE′(t), ∀ t ≥ 0,

where m1 is a fixed positive constant. By setting F := L + cE ∼ E, we obtain, for any t ≥ 0,

F ′(t) ≤ −m1E(t) + c
(
g ◦ ψx + g ◦ ψxt

)
(t). (5.16)

Combining (3.2), (5.10) and (5.16), we have

F ′(t) ≤ −m1E(t) +
c

γ(t)
G−1

(
γ(t)θ(t)

ξ(t)

)

+ ch1(t), ∀ t > 0. (5.17)
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Let 0 < ε1 < r, then define a functional F1 by

F1(t) := G′
(

ε1
E(t)γ(t)

E(0)

)

F (t), ∀ t > 0.

Then, estimate (5.17) together with the facts that E′ ≤ 0, G′ > 0 and G′′ > 0 leads to

F ′
1(t) ≤ −m1E(t)G′

(
ε1

E(t)γ(t)
E(0)

)
+ cG′

(
ε1

E(t)γ(t)
E(0)

)
h1(t)

+ c
γ(t)G

′
(
ε1

E(t)γ(t)
E(0)

)
G−1

(
γ(t)θ(t)

ξ(t)

)
, ∀ t > 0. (5.18)

Let G∗ be the convex conjugate of G as in (4.9), set

A = G′
(

ε1
E(t)γ(t)

E(0)

)

and B = G−1

(
qθ(t)
ξ(t)(t)

)

.

Combining (4.9), (4.10) and (5.18) and selecting ε1 small enough, we obtain, ∀ t > 0 and m2 > 0,

F ′
1(t) ≤ −m2

E(t)
E(0)

G′
(

ε1
E(t)γ(t)

E(0)

)

+ c
θ(t)
ξ(t)

+ cG′
(

ε1
E(t)γ(t)

E(0)

)

h1(t).
(5.19)

Multiplying both sides of (5.19) by ξ(t) and using ε1
E(t)
E(0)

< r and inequality (5.11), we arrive at

ξ(t)F ′
1(t) ≤ −m2ξ(t)

E(t)
E(0)

G′
(

ε1
E(t)γ(t)

E(0)

)

+ cθ(t) + cG′
(

ε1
E(t)γ(t)

E(0)

)

ξ(t)h1(t)

≤ −m2ξ(t)
E(t)
E(0)

G′
(

ε1
E(t)γ(t)

E(0)

)

− c
(
E′(t) + E′

∗(t)
)

+ cG′
(

ε1
E(t)γ(t)

E(0)

)

ξ(t)h1(t), ∀ t > 0.

(5.20)

Thus, by setting F2 = ξF1+c(E+E∗) and noting that 0 ≤ G′
(
ε1 · E(t)γ(t)

E(0)

)
≤ G′(ε1) and 0 ≤ ξ(t) ≤ ξ(0),

we deduce that F2 ≥ cE∗ ≥ cE and because ξ is nonincreasing, the estimate (5.20) becomes,

F ′
2(t) ≤ −m2ξ(t)

E(t)
E(0)

G′
(

ε1
E(t)γ(t)

E(0)

)

+ cξ(t)G′
(

ε1
E(t)γ(t)

E(0)

)

h1(t)

= − m2

γ(t)
ξ(t)G2

(

ε1
E(t)γ(t)

E(0)

)

+ cξ(t)G′
(

ε1
E(t)γ(t)

E(0)

)

h1(t), ∀ t > 0.

(5.21)

Since G′
2(t) = G′(ε1t)+ε1tG

′′(ε1t), then, using the strict convexity of G on (0, r], we find that G′
2(t), G2(t) >

0 on (0, 1]. Using the generalized Young inequality (4.10) on the last term in (5.21) with B = c
dh1(t) and

A = G′
(
ε1

E(t)γ(t)
E(0)

)
, we have

ch1(t)G′
(

ε1
E(t)γ(t)

E(0)

)

=
d

γ(t)

[ c

d
γ(t)h1(t)

] [

G′
(

ε1
E(t)γ(t)

E(0)

)]

≤ d

γ(t)
G3

(

G′
(

ε1
E(t)γ(t)

E(0)

))

+
d

γ(t)
G∗

3

[ c

d
γ(t)h1(t)

]

≤ d

γ(t)

(

ε1
E(t)γ(t)

E(0)

)(

G′
(

ε1
E(t)γ(t)

E(0)

))

+
d

γ(t)
G4

[ c

d
γ(t)h1(t)

]

≤ d

γ(t)
G2

(

ε1
E(t)γ(t)

E(0)

)

+
d

γ(t)
G4

[ c

d
γ(t)h1(t)

]
.

(5.22)
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Now, combining (5.21) and (5.22) and choosing d small enough, we arrive at

F ′
2(t) ≤ −m2

ξ(t)
γ(t))

G2

(

ε1
E(t)γ(t)

E(0)

)

+
dξ(t)
γ(t)

G2

(

ε1
E(t)γ(t)

E(0)

)

+
dξ(t)
γ(t)

G4

( c

d
γ(t)h1(t)

)

≤ −c
ξ(t)
γ(t)

G2

(

ε1
E(t)γ(t)

E(0)

)

+
cξ(t)
γ(t)

G4

( c

d
γ(t)h1(t)

)
.

(5.23)

Since E′ < 0 and γ′ < 0, then G2

(
E(t)q(t)

E(0)

)
is decreasing functions. Hence, for 0 ≤ t ≤ T , we have

G2

(

ε1
E(T )γ(T )

E(0)

)

≤ G2

(

ε1
E(t)γ(t)

E(0)

)

. (5.24)

Combining (5.23) with (5.24) and multiplying by γ(t), we get

γ(t)F ′
2(t) + cξ(t)G2

(

ε1
E(T )γ(T )

E(0)

)

≤ cξ(t)G4

( c

d
γ(t)h1(t)

)
, (5.25)

since γ′ < 0, then
(

γ(t)F2

)′
(t) + cξ(t)G2

(

ε1
E(T )γ(T )

E(0)

)

≤ cξ(t)G4

( c

d
γ(t)h1(t)

)
. (5.26)

Integrating (5.26) over [0, T ], we have

G2

(

ε1
E(T )γ(T )

E(0)

) T∫

0

ξ(t)dt ≤ F2(0)γ(0)
c

+

T∫

0

ξ(t)G4

( c

d
γ(t)h1(t)

)
dt, (5.27)

and then

G2

(

ε1
E(T )γ(T )

E(0)

)

≤

⎡

⎢
⎢
⎢
⎣

F2(0)
c +

T∫

0

ξ(t)G4

(
c
dγ(t)h1(t)

)
dt,

T∫

0

ξ(t)dt

⎤

⎥
⎥
⎥
⎦

. (5.28)

Thus,

ε1
E(T )γ(T )

E(0)
≤ G−1

2

⎡

⎢
⎢
⎢
⎣

F2(0)
c +

T∫

0

ξ(t)G4

(
c
dγ(t)h1(t)

)
dt,

T∫

0

ξ(t)dt

⎤

⎥
⎥
⎥
⎦

. (5.29)

Then, we obtain

E(T ) ≤ C
E(0)
γ(T )

G−1
2

⎡

⎢
⎢
⎢
⎣

C +
T∫

0

ξ(t)G4 (Cγ(t)h1(t)) dt,

T∫

0

ξ(t)dt

⎤

⎥
⎥
⎥
⎦

, (5.30)

where C = max
{
1, F2(0)

c , c
d , 1

ε1

}
�

Remark 5.5. We notice that, for any g, estimate (5.15) does not lead to any stability estimate. In this
case, (5.15) becomes just an upper bound estimate for E. However, estimate (5.15) is obtained without
the boundedness condition on ψ0xt assumed in the literature such as the one concerned with Timoshenko
in [27].
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