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Uniform and weak stability of Bresse system with two infinite memories
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Abstract. In this paper, we consider one-dimensional linear Bresse systems in a bounded open domain under Dirichlet—
Neumann—Neumann boundary conditions with two infinite memories acting only on two equations. First, we establish the
well-posedness in the sense of semigroup theory. Then, we prove two (uniform and weak) decay estimates depending on
the speeds of wave propagations, the smoothness of initial data and the arbitrarily growth at infinity of the two relaxation
functions.
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1. Introduction

In this paper, we consider the Bresse system in one-dimensional open bounded domain under the ho-
mogeneous Dirichlet—~Neumann—Neumann boundary conditions and with two infinite memories acting on
the second and third equations
P1Ptt — kl(@w + 1/] + lw)m - lkS(ww - l@) = O?

+oo

p2¢tt - k27/}z't + kl(@z + 7/} + lw) + / gQ(S)wrx(Iat - 5) ds = Oa
0
+o0o
prwy — ks(we — o)y + k1 (@r + ¢ + lw) + / 93(8)Wee(x,t — s)ds =0, (1)
0
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or on the first and third equations

+ oo

prow — ki(pe + 0 +lw), — lks(wy —lp) + / 91(8)pua(w,t — s)ds =0,
0

p2bir — kathes + k1 (s + 1 + lw) =0,
+o0

prwy — ks(we — o)y + k1 (@r + 0 + lw) + / 93(8)Wee(x,t —s)ds =0, 2)
0

©(0,8) = ¥z (0,1) = we (0, 8) = o(L,t) = Yo (L, t) = wa(L, t) =0,
(e, —t) = po(z,1), ¢1(2,0) = @1 (),
¥(x,0) = Po(x), i(z,0) = 1 (2),

w(x, —t) = wo(x,t), we(z,0) = wi(x)

or on the first two equations

+oo
prpw — ki(pe + ¢ +1lw)y — lhs(we — lp) + / 91(8)paa(w,t —s)ds =0,
0
—+o0
ptht - karx + kl(cpr + w + lw) + / 92(5)1/1195(%15 - 5) dS = 07
0

prwy — ks(wy — 1p)y + k1 (05 + ¢ + lw) = 0,

©(0,t) = Y2 (0,1) = we (0, 8) = o(L,t) = Yo (L, t) = wa(L,t) =0,
p(x, —t) = @o(x,t), pi(z,0) = w1(z),

P(x, —t) = Yo(x,t), ¥e(x,0) = 1 (z),

w(z,0) = wo(x), wi(z,0) = wy(x),

where (2,t) €]0, L[xRy, g; : Ry — R, are given functions, and L, I, p;, k; are positive constants. The
infinite integrals in systems (1)—(3) represent the infinite memories, and the state (unknown) is

(¢, 9, w) 3]0, L[x]0, +o0[— R?.
The derivative of a generic function f with respect to a variable y is noted f, or d,f. If f has only
one variable, its derivative is noted f’. For simplicity of notation, the space x and/or the time ¢ and s
variables are used only when it is necessary to avoid ambiguity.

Our goal is to study the well-posedness and the asymptotic stability of these systems in terms of the
growth at infinity of g;, the smoothness of initial data (¢g, 1o, wo, ¥1, %1, w;) and the speeds of wave

propagations defined by
k
51 = 4 / Sg = \/>2 and s3 = \/>3 (4)
P2 P1

The Bresse system is known as the c1rcu1ar arch problem and is given by the following equations:
prow = Qz +IN + F,
P2y = My — Q + F,
prwy = Ny — 1Q + F3,
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where
N =ko(wy —lp), Q=k(p,+lw+1v) and M = b,

p1, p2, U, k, kg and b are positive constants, N, @ and M denote, respectively, the axial force, the shear
force and the bending moment, and w, ¢ and v represent, respectively, the longitudinal, vertical and
shear angle displacements. Here

pr=pA, py=pl, kg=FEA k=kKGA, b=FI and l=R!,

where p, E, G, k', A, I and R are positive constants and denote, respectively, the density, the modulus of

elasticity, the shear modulus, the shear factor, the cross-sectional area, the second moment of area of the

cross section and the radius of curvature. Finally, by F; we are denoting external forces in ]0, L[x]0, +o00[

together with initial and boundary conditions. For more details, we refer to Lagnese et al. [14] and [15].
If we consider

(F13F27F3) = (07 _’Y’l/}tao) (5)
with v > 0, we obtain the system considered by Bresse [3] consisting of three coupled wave equations.

The most important asymptotic behavior result of the Bresse system is due to Liu and Rao [16]
obtained for a thermoelastic Bresse system which consists of the Bresse system with

(Fl,Fg,Fg):(0,0,0) (6)

and two heat equations coupled in a certain manner, where the two wave equations about the longitudinal
and shear angle displacements are effectively globally damped by the dissipation from the two heat
equations. They proved that the norm of solutions in the energy space decays exponentially to zero at
infinity if and only if

§1 = S = S3. (7)

Otherwise, the norm of solutions decays polynomially to zero with rates depending on the regularity of
the initial data. For the classical solutions, these rates are t—ate or mste provided that the boundary
conditions are of Dirichlet—Neumann—Neumann or Dirichlet—Dirichlet—Dirichlet type, respectively, where
€ is an arbitrary positive constant. Very similar results to the ones of [16] are obtained in [8] for the
Bresse system (in case (6)) coupled with only one heat equation in a certain manner, where the obtained
decay rate for classical solutions when (7) is not satisfied is t=ste in general and t=3+¢ when s # S9
and s; = s3. Najdi and Wehbe [17] extended the results of [8] to the case where the thermal dissipation
is locally distributed, and improved the polynomial stability estimate when (7) is not satisfied by getting
the decay rate t2.

Concerning the stability of Bresse systems with (local or global) frictional dampings, we mention here
the most known stability results in the literature. Alabau-Boussouira et al. [1] considered the case (5)
and proved that the exponential stability is equivalent to (7). Otherwise, they got the same two decay
rates as in [8]. The results of [1] were extended and improved in [18] by considering a locally distributed
dissipation (that is, v in (5) is replaced by a nonnegative function a :]0, L[— R which is positive only
on some part of ]0, L[); the authors of [18] obtained a better decay rate when (7) does not hold. The
exponential stability result of [1] was also proved in [21] when v = a(z) and a :]0, L[— R has a positive

average on |0, L[ such that
L
a— /a(x) dx
0

is small enough. This implies that a is allowed to have some negative values on |0, L[, and in such situation,
atpy is called indefinite damping. Also, some optimal polynomial decay rates for Bresse systems in case
(5) were proved in [7] when (7) does not hold.

L2(]0,L[)
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In [23] and [24], the authors studied the stability of Bresse systems damped by two locally frictional

dampings
(F1, Fp, F3) = (0, —a1 ()Y, —az(x)wy),
where a; :]0, L[— R, are nonnegative functions which can vanish on some part of ]0, L[. They established
that the exponential stability remains valid if and only if s; = so. When s1 # so, a general decay rate
depending on the regularity of the initial data is obtained, where, in case of classical solutions, this rate
1

is ¢T3,

When only the first and second equations are controlled by linear frictional dampings; that is,

(F1, Fa, F3) = (=710t =721, 0)

with v; > 0, the equivalence between the exponential stability and the equality s; = s3 was proved in
[2]. When s; # s3, the polynomial stability was also showed in [2], where the decay rate depends on the
regularity of the initial data. In the particular case of classical solutions, the polynomial decay rate of [2]
is t~2 and it is optimal.

In his PhD thesis [24], Youssef treated the case where the three equations of the Bresse system are all
controlled by (linear or nonlinear) frictional dampings; that is,

(£, F2, F3) = (—ha(t), —ha (1), —hs(wy)),

where h; : R — R are given functions having a linear or a polynomial growth at zero and infinity, and
obtained, respectively, the exponential and polynomial stability for any weak solution. These results are
proved regardless to s;. The results of [24] were generalized in [4] and [20] to the case

(F1, By, F3) = (—ay(2)hi(pr), —az(z)ha (Y1), —az(x)hs(wy)),

where the nonnegative functions a; are (all or some of them) effective only on some part of |0, L[, and the
functions h; can have a general growth at zero (not necessarily of linear or polynomial type). The case
of three frictional dampings was also considered in [22] but in the whole space R (instead of 0, L[), and
some polynomial stability estimates were obtained.

Concerning the stability of Bresse systems with memories, there are only a few results. When the
three equations are controlled via infinite memories of the form

o0 +o00
= / 91(8) e (x,t —8)ds, Fo=— / 92(8) 0y (z,t — 8) ds
0 0
and
400
F3;=— / 93(8)wez(x,t — 8)ds,
0

where ¢; : Ry — R are differentiable, nonincreasing and integrable functions on R, the stability was
proved in [12] regardless to s;. The obtained decay estimate given in [12] depends only on the growth at
infinity of s+ g;(s), which is allowed to have a decay rate at infinity arbitrarily close to %

As far as we know, the more recent stability results for Bresse systems with memories are those in [6]
under only one infinite memory considered in the second equation

+oo
(FFo.Fy) = [ 0,— / 9()than(z,t — 5)ds,0 | (®)
0

where g : R; — R} is a differentiable, nonincreasing and integrable function on R satisfying

Jag, a0 > 0: —azg(s) < ¢'(s) < —aig(s), VseRy. (9)
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In [6], it was proved that the exponentially stability holds if and only if (7) is satisfied. Otherwise, the
polynomial stability with a decay rate of type t~2 and its optimality were shown. The condition (9)
implies that

g(0)e™2* < g(s) < g(0)e™™*, Vs e Ry, (10)

which implies that g converges exponentially to zero at infinity.

The proof of the results cited above is based on the spectral theory, the frequency domain method
and the multipliers technique.

Our goal is to study the well-posedness and asymptotic stability of systems (1)—(3) in terms of the
arbitrary growth at infinity of the kernels g;, the smoothness of initial data (¢g, Yo, wo, 1,11, w1) and the
speeds of wave propagations (4). We prove that these systems are well posed and their energy converges
to zero when time tends to infinity, and we provide two general decay estimates: a strong decay estimate
under some restrictions on v; and a weak decay one in general. The proof is based on the semigroup
theory for the well-posedness. For the decay estimates, we use the energy method and some differential
and/or integral equalities.

The paper is organized as follows. In Sect. 2, we present our assumptions on the functions g; state
and prove the well-posedness of (1)—(3). In Sect. 3, we consider some assumptions on the growth of g;
at infinity and state our stability results. Finally, the proof of our uniform and weak decay estimates are
given, respectively, in Sects. 4 and 5.

2. Well-posedness
In this section, we discuss the well-posedness of (1)—(3) using the semigroup approach. Following the
method of [5], we consider these new functionals
Cases (2) and (3) : m(z,t,8) = o(x,t) —p(x,t —s) in]0, L[xRy x Ry,
Cases (1) and (3) : n2(z,t,8) = ¥(x,t) —P(x,t —s) in |0, L[xR4 x Ry, (11)
Cases (1) and (2) : n3(z,t,s) = w(x,t) —w(x,t —s) in]0,L[xRy x Ry.

These functionals satisfy

O +0sm —e =0 in |0, L[xR; x Ry,
Ona + Osme — ¢y =0 in ]0, L[xRy x Ry,
Oz + 0smz —wy =0 in 0, L[xR4+ x Ry,
m(0,¢,8) =ni(L,t,8) =0 in Ry x Ry, (12)

0:m2(0,t,8) = Ozma(L,t,s) =0 in Ry x Ry,
0:13(0,t,8) = 0,m3(Lyt,s) =0 in Ry x Ry,
ni(x,t,0) =0 in ]0, L[xR.

Let nY(z,s) = n;(z,0,s),
T
Ui) — (S@O,1/]0,'[0(],90171/}171017,’78’773) ’
T
UQO = (()005w07w07§017¢17w15n?7ng) ’ (13)

T
Uy = (<p0,@bo,wo,whwhwhﬁ?ﬂ?g)
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and

A. Guesmia and M. Kirane

Ul = (¢7¢7wa<ﬁt>¢t7wt77727773)T7
U2 = (@adjawa(phwhwt?nlarrB)T

U3 = (¢7wawa¢t7wt7wt7nl7772

)

)T

Then, the system (i), i = 1,2, 3, is equivalent to the following abstract one:

atUi = AzUzy
Uit =0) = U?,

where A; is the linear operator defined by

AU,

AUy

Pt
(o

Wy

l2

k1 k3 k1 1
o1 Prz Pldgp o Yo + p1 (k1 + k3)ws,

“+oo
Btk (k= ) baa — 0= Bt & [ gadimds
0
—+oo
2
— (k1 k) pr — D 4 0 (ks — 98) waw — S w + - [ g30ams ds
0
wt - 83772
wy — g7
Pt
(o
Wy
—+oo
2 -
o (k1= 90) e — 20+ B + L (ky + kg)w, + o / 910201 ds
0
_%@m + %ﬂ)m - %1/1 - %w
+o00
2
_pl*l(kl + k?z)@x - %1/) + p% (k3 - gg) Wy — %w + p% 930z4:m3 ds
0

Yt — 83771
wy — 85773

ZAMP
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and
Pt
(o

W

+oo
2
0

.A3U3 - +oo

_%(P:r‘i‘p%(kQ_gg)wxw_%w_%w—’_é /928$I772d8

0

2
— o (B + ks) g — 00 + S, — lw

oy — Osm
’(/}t - 88772
Here, for i = 1,2, 3,

“+ o0

@ = [ gils)ds. (16)
/
Let

+

oo

Ly = {v: Ry — HE(0, L)), glvgdsdx<+oo},

8

Lo = {v : Ry — H(0, L)), gov2 dsdx < Jroo} , (17)

8

Tt — i T T
S+ O+ O

L3 = {v : Ry — HL(0, L)), gzvidsdr < —I—oo}

and
Hi = HE()0, L)) x (HL(0, L]))* x L*(10, L]) x (L2(0,L]))* x Ly x Ls,
Ho = H3(10, L]) x (H1(0, L))" x L2(0, L]) x (L2(10, L]))” x Ly x Ls, (18)
Hs = H3(10, L]) x (H1(J0, L])” x L2(10, L]) x (L2(J0, L))" x Ly x Lo,
where
L
L3(J0, L) = {v € L*(Jo, L)), /vdx = 0} (19)

0

and

L
H(0,L]) = {v € H'(Jo, L)), /vdz = o} : (20)
0
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The domain D(A;) of A; is defined by
D(A;) = {v = (v1,...,v8)" € Hi, AV €My, v7(0) = vs(0) = 0, pva(0) =0,
0y03(0) = Dyva(L) = Dyvs(L) = 0, 9yu;(-,0) = vy (-, L) = 0, j = 7,8if i = 1, j = 8if i = 2,3};
(21)
that is, according to the definition of #; and A;,
D(A) = { (01, 09)™ € it (v, sv6)T € HR(0, L) x (0, LD) x H3 (10, L)) x (H(0, LD)*,
v7(0) = v8(0) = 0, Ayv2(0) = Ay3(0) = Ayva(L) = Dyvs(L) = o} N D;,

where

Dy = {(m,---,vs)T € H; : Osvr € Lo, Osvs € L, v € H*(]0,L]),

Dpv7(+,0) = Qpw3(+,0) = Dpv7(-, L) = dpvs(-, L) = 0,

+o0 +o00

(k2 - gg) 8mcU2 + / gZamacU7 ds € Lz(]ov LDa (k3 - gg) amcUB + / gSaMEUS ds € Li(]ov L[)}a
0 0

Dy = {(vl,...,vg)T € Hi: Doy € Ly, Dyvs € Ly, va € H2()0, L), d,vs(-,0) = dyvs(-, L) = 0,
+o0 +o0

(kl - 9?) Opav1 + / 910007 ds € L*(]0, L), (k3 - 93) Opav3 + / 930,v8ds € Lf(]O,L[)}
0 0

and

D3 = {(1}1,. . .,1}8)T e H;: 851}7 S Ll, 831}8 S Lg, U3 € H2(]0,LD, 8;CU8(',O) = ax’ljg(',[/) = 0,

+o0 +oo
(ky — g?) Ozzv1 + / 10,207 ds € L2(]0, L), (ko — gg) Ogz¥2 + / G20,2v8 ds € L2(]0, L[)}
0 0
More generally, for n € N,
D(A7) = D(A;) ifn=1,

{v € DA™Y, AV € D(A;@*l)} ifn=203,...

endowed with the graph norm
n

IVilpap) = D 45V

k=0

Hi»

where || - ||, is defined in (43).

Remark 2.1. By integrating on ]0, L[ the second and third equations in (1)—(3), and using the boundary

conditions, we obtain
L N L " L
Oy /wdx +—1/1/1d9:+—1/wdx:0 (22)
) P2 / P2 J
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L L
1’k
1
0 0

Therefore, (22) implies that

and

L L L
/wdx p28tt /wdx —7/¢dx
lky
0 0 0
Substituting (24) into (23), we get

L

L
k I°k
Ottt /wdx -l-( ! +1> Ou /dex =0.
P2 1

0 0
Let Iy = 1/% + %. Then, solving (25), we find
/w dz = ¢ cos (lpt) + ¢asin (Igt) + ¢t + ¢4,

where ¢1,...,¢4 are real constants. By combining (24) and (26), we get

L

o (2258 _ LY s o (P25 1Y i o) —
/wdx—q(lkl i cos (lot) + Iy sin (Iot)
0

(to(x,0), wo(x,0)) in case (1),
(to(z), wo(x)) = ¢ (Yo(z),wo(x,0))  in case (2),
(Yo(x,0), wo(x)) in case (3).

Let

Using the initial data of ¢ and w in (1)—(3), we see that
L

- P212

L
/’Q;Q dx + wo da,
0 0

0
L L
63 _( - p§}2)/wl dz 2;8 /’LUl d.’E,
0 0
L Ik L
~ k1 " 1 ~
C4—( —pﬂg)/wod _p?l% ’LUod.T
0

Let
. 1
1/} = 1/} — Z (51 COS (lot) + 52 SiIl (lot) —+ Egt —+ &4)

Page 9 of 39 124

(23)

(24)

(25)

(28)
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_ 1 /. l 1 _ o1\ . C c
w=w- - (c (/2210 - l) cos (lopt) + (plel — l> sin (lot) — 7‘3t — ;) . (29)
Then, from (26) and (27) one can check that

and

and, hence,

L
ds = [ inds =0, (31)
0

(=)

where - -
Cases (1) and (3) : 7a(z,t,8) = P(x,t) —(z,t —s) in]0, L[xRy x Ry,
Cases (1) and (2) : 75(z,t,8) = w(x,t) —w(z,t —s) in]0,L[xRy x Ry.
Therefore, the Poincaré’s inequality

Y

L L
Jecp>0: /1}2 dz < co/vfc dr, Vv e H(]0,L]) (32)
0 0

is applicable for ¥, W, 7> and 73, provided that v, @ € H(]0, L[). In addition, (Wﬁ,w) satisfies the
boundary conditions and the first three equations in (1)—(3) with initial data

1 . - 1. . .
o — Z(Cl +¢4), U1 — Z(lo@ +¢3),

1 - png 1 54 1 - p2l8 1 63
o L< <lk1 z) z> and - w; L(CQlo(lkzl 1)

instead of g, ¥1, wo and w1, respectively. In the sequel, we work with L/?, w, 72 and 73 instead of ¢, w,
72 and 73, but, for simplicity of notation, we use 1, w, 12 and n3 instead of ¥, W, 72 and 73, respectively.

Now, to get the well-posedness of (15), we assume the following hypothesis:
(H1) The function g; : Ry — Ry is differentiable, nonincreasing and integrable on R such that there
exists a positive constant ko such that, for any

(¢, w)T € HY(0, L[) x (HL(0,L[)),

we have

L L

ko/(<p§+¢§+w ) da < / ko2 + k1 (z + 9 + lw)? + kz(wy, — lp)?) da
0 0

(95¢2 + gJw?) dz in case (1),

(918% + gjw? ) dz in case (2),

(g(l)goi + ggwi) dz in case (3).

I
Tt — i T Tt
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Moreover, there exists a positive constant § such that
— Bgj(s) < gj(s), VYseRy, (34)
where j € {1,2,3} \ {i} for system (4), i =1,2,3.

Remark 2.2. 1. The set of functions satisfying (H1) is very large; indeed, if, for example, the constants
L and [ satisfy

IL #mm, VYm e N, (35)

then, by contradiction arguments, we see that there exists a positive constant ko such that, for any
2
(0,9, w)" € Hy (10, L[) x (H;(]0, L[)",

L L
1?:0/ (@2 + 2 +w? / ko2 + ki (0o + 1 + lw)? + ks (wy — lp)?) da. (36)
0
To prove (36) in case (35), it is sufficient to prove that, if the right-hand side of (36) vanishes, then

(0,9, w) = (0,0,0). (37)

But (37) can be directly deduced from (30), (35) and the boundary conditions on ¢. Therefore, if (35)
holds and

max ¥V < ko incase (i), i=1,2,3, 38
J€{123}\{}{J} 0 Q (38)

then (33) is satisfied with
max {g3,¢5} in case (1),
ko = ko — { max{g?,¢5} in case (2),
max {g?,¢3} in case (3).
2. Thanks to (32) applied for ¢ and w, and the Poincaré’s inequality
L L
dé0>0: /vgdxgéo/vidx, vv € Hy(]0, L) (39)
0 0

applied for o, there exists a positive constant ko such that, for any

(g0, w)T € HY(0,L[) x (HL(0,L[)),

we have
L L

/ (k2v? + K1 (0 + ¢ + lw)? + ks(we —19)?) do < ko / (¢ + 93 +wl) da. (40)

0 0
Thus, from (36) and (40), we deduce that the right-hand side of the inequality (36) defines a norm on
H§(J0, L) x (HL(o, L[))2 for (p,1,w) equivalent to the usual norm of (Hl(]O,L[))B.

3. From (33), we conclude that, in case (i), ¢ = 1,2,3,
ko+gj —k; <0, Vje{1,2,3}\ {i}. (41)
Indeed, for the choice p = w =0, (33) in cases (1) and (3) gives
L L
(ot g8~ o) [w2do < [w?ds, Vo€ H20.L).
0

0
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This inequality implies, for ¢(z) = cos (Az) — 5} sin (AL) and A €]0, +o00| (notice that ¢ € H}(]0, L)),
(ko + g9 — k2) <L - % sin (2>\L)> < i; (L + % sin (2A\L) — AEL sin? (AL)) , YA>0.
By letting A go to +oo, we deduce (41), for j = 2. In the same way, using the choices
(o(2), (), w(z)) = (sin (%x) ,o,o) and (p(z), ¥(z), w(z)) = <0,0,cos (\z) — /\lLsin(AL)) :

for m € N and A\ €0, +oo[ (notice that ¢ € HZ(]0, L[) and w € H(]0, L)), and letting m and A go to
+00, we conclude (41), for j =1 and j = 3, respectively.

According to Remark 2.2, we notice that, under the hypothesis (H1), the sets L; and H; are Hilbert
spaces equipped, respectively, with the inner products that generate the norms, for v € L; and V =
(Ul,...,’Ug)T e H;,1=1,2,3,

L +oo

]2, = / / gi? ds dz (42)
0 0

and
L
||VH$11 = / (kg(@w’vz)g + ]{71(69;1)1 + vo + lU3)2 + kg(aw’l)g — l’l)l)z) dx
0
L
lorll2, + llosll3, - / (68(0r)? + g8(B)?) da ifi=1,
0
L L
+/ (p1v3 + p2v3 + prvg) do + < |lvrl|2, + [Jusll3, — / (91(0201)% + ¢3(0yv3)?) da  ifi =2,
0 0
L
lorll2, + llosll3, - / (62(0s1)? + g8(0y)?) dz ifi =3,
0

(43)

Now, the domain of D(A;) is dense in H;, and a simple computation implies that, for any V =

(v1,...,v8)T € D(A,),

(95(02v7) + g5(05vs)?) dsdz ifi =1,

o\%—

—+oo

1
(AiV, V), = 3 (91(92v7) + g5(05vs)?) dsdz if i = 2, (44)

(91(02v7)* + g5(05vs)?) dsdz if i = 3.

\g o\

T — T T

—~ O

Since g; is nonincreasing, we deduce from (44) that

(A:V, V>Hi <0. (45)
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This implies that A; is dissipative. Notice that, according to (34) and the fact that g; is nonincreasing,
we see that, for v € L;,

L +oo L 400
//ggvﬁdsdx *7//g;v§dsdx
0 0 0 0

L 400
Sﬂ//gwidsdx
0 0

so the integrals in the right-hand side of (44) are well defined.

Next, we prove that Id—A; is surjective, where Id is the identity operator. Let F' = (f1,..., fs)T € H;.
We prove the existence of V = (v1,...,v3)T € D(A;) solution of the equation

(Id— A;)V = F. (46)

Let us consider the case A; (the cases As and Aj can be treated similarly). The first three equations in
(46) reduce to

vy =1 — fi1,
Vs = V3 — fo, (47)

Vg = U3 — f3.

Using (47), the last two equations in (46) are equivalent to

Osv7 +v7 = v2 + fr — fo,
Osvg +vg = v3 + fs — f3.

By integrating the two differential equations in (48) and using the fact that v7(0) = vs(0) = 0 (from
(21)), we get

S

w@zu—amw—m+/aﬂMﬂw,
’ (49)

S

%@:ufﬁmwfm+/a*Mﬂw.

0

We see that, from (47), if (v1,v2,v3) € HE(]0,L]) x (Hi(}O,L[)f, then (vg,vs,vs) € HE(J0,L[) x

(HL(]o, L[))Q. On the other hand, using Fubini theorem, Hélder’s inequality and noting that f; € Lo, we
get
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/[

s 2

ga2(s) | e™? /eTazf7(T) dr | dsdzx

0

IN
+
8

e 2 go(s) /erT /e Dp f7(1))? dr dsdx

O\§

8

S

e ¥ (1—e" /e Oy f7(1))? dr ds dx

IN

8

IN
(‘D
Q
N

/e Oy f7(1))? dr ds dx
0

“+o00

e™ (0, f1(1))? / e %ga(s)dsdrda

T

IN

8

+oo

02(7) (Be fr(7))? / e dsdr de

T

IN

8

IN

St T T Tt Tt Tt
S St St S S o

92 (T)(0p f7(7))? d7 da

IN

f7||%2 < +00,

then

S

se® /e7f7(7') dr € Lo,

0

and therefore, (49) implies that v; € Lo. Moreover, Osv7 € Lo since (48). Similarly, we have vg, Osvs € Ls.
So, to prove that (46) (for i = 1) admits a solution V' € D(A;), it is enough to prove that

0,v7(+,0) = O,vs(+,0) = Ov7(+, L) = dpvs(-, L) =0 (50)

and (v1,ve,v3) exists and satisfies the required regularity and boundary conditions in D(.A,); that is,

(v1,02,03)" € (H?(]0, L[) N Hy (J0, L[)) x H, (|0, L[) x H;(]0, L[), (51)
+oo +oo
(k2 — 99) Ouava + / 9200507 ds, (ks — g3) Opavs + / 9302,v8 ds € LZ(]0, L[) (52)
0 0
and
8951)2(0) = 8931)3(0) = 8xv2(L) = 81;113(1/) =0. (53)

Let us assume that (50)—(53) hold. Multiplying the fourth, fifth and sixth equations in (46) by p101,
p2Us and p;03, respectively, integrating their sum over |0, L[, using the boundary conditions (50) and
(53), and inserting (47) and (49), we get

a1 ((v1,v2,v3)", (01, 02,53)") = @1 (81,92, 73)7 ), (54)
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for any (&1, 9, 73)7 € H3(10,L]) x (HL(]0, L[))?, where

ay ((’U17 V2, U3)T7 (’517 627 @3)T)

L
= / (]{71 (6951)1 + vo + lU3)(a$1~J1 + U9 + 1@3) + k3(8zv3 — lvl)(amf)g — l’l~}1)) dz
0

(55)
+ / (prv1T1 + povals + p1vsls + (k — §3)02020, D2 — §30,v30,03) da,
0
+oo
)= / e %g;(s)ds and
0
L
a1 ((01,09,03)") = /(Pl(fl + fa)01 + p2(fa + f5)02 + p1(fs + f6)03) dz
0
L
+ [ (68 = 8902 20,52 + (6 — )02 120.10) o
0
L /e . (56)
7/ (/ efsgg(s)/eTaxj}(T) des) 0, 0o dz
0o \0 0
L [/ +oo s
—/ (/ efsgg(s)/eTaxfg(T) des) 0,03 dz.
0o \D0 0

We remark that, using Fubini’s theorem, Hélder’s inequality and noting that f; € Lo,

L +oo s 2 L +oo s 2
e %ga(s) 6T6$f7(7')d7'd8) dz < e %ga(s) eT|8$f7(T)|des) dx
[([] [\[ ]
L +o0 +o0 2
< €0y f7(1)] QQ(S)eSdeT) dx
[\[ o]
L +oo “+o0o 2
< 92(7)e" |0y f7(7)] e_sdsdr) dx
I\ T
L +o00 2
< gz(T)laxﬁ(T)dT) dz
I\
L +oo “+o0
< 92(7) dT) ( 92(7)31f7(7)|2d7) da
[\

< B f7lIZ, < +oo,
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which implies that

+oo s
x / e *ga(s) /eT(’?wf7(T) drds € L*(J0, L]).
0 0

Similarly, we have
+oo s
x / e °gs(s) /eTazfg(T) drds € L*(J0, L]).
0 0

On the other hand, g9 < ¢9 < ko (since (41)) and g§ < ¢3. Then, by virtue of (33) and (40), we have a;
is a bilinear, continuous and coercive form on

(Ho00.LD x (H1(0,LD)*) x (H5(0.LD x (H1(0,LD)?).

and @, is a linear and continuous form on Hg (]0, L[) x (H1(]0, L[))z. Consequently, using Lax-Milgram’s
theorem, we deduce that (54) has a unique solution

(v1,v2,u5) € H (10, L]) x (HX(J0, L]))” .

Therefore, using classical elliptic regularity arguments, we conclude that the forth, fifth and sixth equa-
tions in (46) are satisfied with (vq,v2,v3)T satisfying (51) and (53), and, using (47) and (49), v; and vs
satisfy (50) and (52). Thus, we deduce that (46) (for ¢ = 1) admits a unique solution V' € D(A;), and
then, Id — A; is surjective.

Finally, thanks to the Lumer—Phillips theorem (see [19]), we deduce from (45) and (46) that A;
generates a Cp-semigroup of contractions in H;. This gives the following well-posedness results of (15)
(see [13] and [19]).

Theorem 2.3. Assume that (H1) holds. For any U? € D(A?), n € N, (15) has a unique solution

U € Mp—oC" % (Ry5 D (AF)). (57)

3. Stability

In this section, we study the stability of (15), where the obtained two (uniform and weak) decay rates
of solution depend on the speeds of wave propagations (4), the smoothness of initial data U?, defined in
(13), and the growth of g; at infinity characterized by the following additional hypothesis:

(H2) Assume that g;(0) > 0, and there exist a positive constant o and an increasing strictly convex
function G : Ry — Ry of class C1(Ry) N C?(]0, +o0|) satisfying

G(0)=G'(0)=0 and lim G'(t) =+

t—+o0
such that
5(5) < —ag;(s). Vs e Ry (53)
or
Yo o
0/ g I a gy < o

where j € {1,2,3} \ {4}, for system (), i = 1,2, 3.
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We start by considering systems (1)—(3) in the case where the speeds of wave propagations (4) satisfy
s1 =82 in case (1),
s9 =81 in case (2), (60)
s3 =81 in case (3).

Theorem 3.1. Assume that (H1), (H2) and (60); are satisfied such that

g3 is small enough in case (1),
< \/% and g9 and g3 are small enough in case (2), (61)
g¥ is small enough in case (3).

Let UY € H; be such that, for any j € {1,2,3}\ {i},
+oo L
(58) holds or sup / / ﬂ)j t))2 dr ds < +o0. (62)
teRy
0
Then, there exist positive constants ¢, and ¢ such that the solution of (15) satisfies
IUiB)ll5,, < /G (ct), Vit ERy, (63)
where G (s f G(J(T) dr (s €]0,1]) and
5 if (58) holds for anyj € {1,2,3}/{i},
Go(s) =

(64)
sG'(s) otherwise.
When (60); does not hold, we prove the following weaker stability result for (15).

Theorem 3.2. Assume that (H1), (H2) and (61) are satisfied. Let n € N* and U € D(A?) be such that,
for any j €{1,2,3}\ {i},

L
(58) holds  or tsel;g m,ax’n/ reE T O/ (AR E s—t))2 dz ds < +o0. (65)
Then, there exists a positive constant c; such that
10O, < cinGin (1), >0, (66)
where G (s) = G1(sGm—1(5)), form =2,....n and s € Ry, G1 = Gy* and Gy is defined in (64).
Remark 3.3. 1. Estimates (63) and (66) imply the strong stability of (15); that is,
Jim_[U:(0) [, =0, (67)

2. If (58) holds, for any j € {1,2,3} \ {i}, then (63) and (66) give, respectively,
1Vl < e, vt eRy (63)

and

U ()12, < C;;l”, Vit > 0. (69)

The estimates (68) and (69) give the best decay rates which can be obtained from (63) and (66), respec-
tively.

3. Condition (58) implies that g; converges exponentially to zero at infinity. However, condition (59)
(introduced in [10]) allows s +— g;(s) to have a decay rate arbitrarily close to 1, which represents the
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critical limit, since g; is integrable on R;. For specific examples of g; and 7; satisfying (59), (62) and
(65), and the corresponding decay rates given by (63) and (66), see [10] and [11].

4. The abstract systems considered in [10] and [11] do not include (1)—(3) because the operator B in
[10] is assumed to be positive definite, and the operator B in [11] is assumed to be bounded.

To prove (63) and (66), we will consider suitable multipliers and construct Lyapunov functionals
satisfying some differential inequalities, for any U? € D(A;) and t € Ry; so all the calculations are
justified. By integrating these differential inequalities, we get (63) and (66) (for n = 1). By simple density
arguments (D(A;) is dense in H;) and induction on n, (63) remains valid, for any U? € H;, and (66)
holds, for any n € N*.

We will use ¢, throughout the rest of this paper, to denote a generic positive constant which depends
continuously on the initial data U and the fixed parameters in (1)—(3), (32) and (39) and can be different
from line to line. When ¢ depends on some new constants ¥, o, .. ., introduced in the proof, the constant
c is noted ¢y, , Cy, yo» - - -

Let us consider the energy functional E; associated with (15) defined by

1
Ei(t) = SlU:@)II, (70)
From (15) and (44), we see that

(g5(0m2)? + g5(0um3)?) dsdx  ifi =1,
(91(0em1)? + g5(0um3)?) dsdx  ifi =2, (71)

(91(0:2m)? + g5(0um2)?) dsdz  ifi=3.

&
Il
[NRIE
O\h O\h O\h
O\-é— O\—é— O\-é—

Recalling that g¢; is nonincreasing, (71) implies that E; is nonincreasing, and consequently, (15) is
dissipative. If no infinite memory is considered, then E! = 0; thus, (15) is a conservative system. This fact
shows that the infinite memories generate the unique dissipation in (15). On the other hand, if E;(¢9) = 0,
for some ¢y € Ry, then E;(t) = 0, for all ¢ > ¢, and therefore, (63) and (66) hold. Consequently, without
loss of generality, we can assume that E;(t) > 0, for all t € R.

4. Proof of uniform decay (63)

First, we consider the following functionals:
+oo

L

Cases (2) and (3): ©Ii(t)=—p1 [ ¢¢ | g1(s)n dsda, (72)
/=]
L +o0

Cases (1) and (3): Is(t) = —p2 [ ¥ | g2(s)nedsdx (73)
[+]

and

L
Cases (1) and (2):  I3(t) = —p1 /wt / g3(s)ns dsdx. (74)
0
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Lemma 4.1. For any dp > 0, there exists cs, > 0 such that
L L

It < —p1(g? 60)/<pfdw+5o/(¢§+(%+¢+lw)2+(wz—lw)2) d

0 0

91(5)) (9um)? ds du,

0\48»

L
+ ¢s,
[ ]
L
L) < —po (48 — ) /wt dx+6o/(wi+<%+w+zw)2) dz
0

0

+ € (92(s) = 95(5)) (Oam2)? ds dx

Tt~
O\§

and
L

IL(t) < —p1 (48 —(50)/éw?dm+5o/(wi+(<px+w+lw)2+(ww—l¢)2) da
0

L +oco
+650// (5)) (0pm3)? ds d.
0 0
Proof. First, noticing that
“+o00 t
o [ aemas=0. [ gt s)(elt) -~ elo)ds
0 —00
t t
= /gi(t*S)(w(t) —p(s))ds + (/ gl(tS)d5> ®t;
that is,
“+oo +oo
3t/91(5)771 ds = /91(8)771 ds + gy
0 0
Similarly,
+oo “+o0
at/92(8)772 ds = /gé(S)nzds+gSwt
0 0
and
+oo “+o00
3t/93(s)n3ds: /gé(S)nsnggw
0 0

(75)

(77)

(80)

Second, using Young’s and Hoélder’s inequalities, we get the following: For all A > 0, there exists ¢y > 0

such that, for any v € L?(]0, L[) and n € {m,&xm} i=1,2,3,
L +oo “+o0

L
/v/gi(s)ndsdx §/\/v dx+c>\//gz s)n 2dsdzx.
0 0

0 0 0

(81)
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Similarly,

gi(s)n? dsdz. (82)

L L
/v s)ndsdx <)\/U d:c—c,\/
0 0

Now, direct computations, using the first equation in (2) or (3), integrating by parts and using the
boundary conditions and (78), yield

o\—é—
o\—é—

L L +oo
10 =-ndh [eae | / Vo ds | do
0 0
L “+oo L “+oc0
+ kq /(goz + ¢+ lw) / 91(8)0ym dsdx — lks /(wm —1ly) / g1(s)m dsdzx
0 0 0 0
L +0o0 L 400
— P /% / g1 (s)m dsdz — gf / Pa / 91(5)0,m dsda.
0 0 0 0

Using (81) and (82) for the last four terms of this equality, Poincaré’s inequality (39) for 7 and (36) and
Hoélder’s inequality to estimate

L “+oc0 2

[ear ad | [ aomas)

0 0

respectively, we get (75).
Similarly, using the second equation in (1) or (3), the third equation in (1) or (2), (79), (80) and (32)
(instead of (39)), we find (76) and (77). O

Lemma 4.2. Let

Case (1): (t) = pa Wﬁw+mww+3&/%%

St~

L/ / %(t - S)
0
hboxds dx,
7 k
Case (2) : pg/sﬁl—Hﬁ—l—lw Py do — 2p1/¢1%0td$

+oo (84)

' L
0/ / 8)pz(t — s)

hboxds dx
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and
L L
) ]<E3P
Case (3): = | (g + 0 + lw)w; — 1) dx
0 0
L +o0
+ 2 / / 8)pz(t — s)dx.
0
Then, for any o, €o, €1, €2 > 0, there exists cs,, ce, > 0 such that
L L
, lk361
Ji(t) < —k1 | (o + 0 +1w)? dr+ | 6o+ —— o kg - 92 — lp)?
0 0

L L

L
ks 322 |
+50/¢f Aot 5o (ks — g0 /¢ dq;+/< P2, ;Qw?) da
€1
0

0

(92(s) = ga(s)) (Ozm2)? ds da,

ot~
o\§

+ (p kz/h /wtsﬁzt dx + cs,

L L
0 lkok
30 < (i +00+ 52 [ (ot vt do+ 2202 [, -
0 0
L

L L
lkk
Qg—/ 23/7,Zzidx+(fpg+6o+eo /wtderceo/wfdx
2]€1€2
0 0 0 0

(5 -0 / Vrpar du+cs, | [ (91(5) = 91(5)) (am)? ds do

St~
o\g

and

L L
¢ 1k3
Ji(t) < (lk‘l + o + lgg; ! / 0z + 1+ lw)? dr — k—f’ /(wx —lp)* dz
0 0

L L L
QL/ w—i—cgo/ gpt—i—wt dﬂr:—i—(—lpl—l—éo—i—eo)/w?dx
0 0 0

L 400

L
+ m (%—1)/wt<pg;t d$+c6o// )(@zm) ds dz.
0 0

0
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Proof. First, notice that
“+o0 t

o / 01(8)pa(t — 5)ds = &y / 1 (t — $)pu(s) ds

0 —o0

t

— 01 (0)pul(t) + / gt — 8)pa(s)ds

“+oo ) “+oo
- [ G@eds+ [ gilsett -9
0 0
that is,
+00 +oo
O | g1(s)pa(t —s)ds=— [ gi(s)0um ds (89)
/ /
Similarly,
+0oo +oo
O | g2(s)he(t —s)ds = — [ gh(s)Dumods. (90)
/ /

Now, by exploiting the first two equations in (1), integrating by parts, recalling (90) and using the
boundary conditions, we get

L

L
k
Ji(t) = —kl/(gom + 9+ lw)?de + <p2 - 2”1> /wt%t dz
1
0

L L
+P2/1/’td$+l721/7/1twtd$+f / —lp)th, dz
0 0
L +oco Ik L +oo
L/ /92 z772d5dx+kf13 —1ly) /gg(s)axngdsdx.
0 0

By applying (81), (82) and the Young’s inequality for the last four terms of the above equality and noting
that ks — g9 > 0 (by virtue of (41)), we deduce (86).

Similarly, using the first two equations in (2), and the first and third equations in (3), and exploiting
(89), we find

L L
k
:k1/(<pm+1/)+lw do —¢¥ /<px+¢+lw %cder( 201,02)/77[}“%“1:17
0 0

k1
L L
lkg
— P2 ¢t dx — lpg wtwt dx — ©), da
0 0
L “+00 L +oo

,%/y;t/ 1(s) desder/aquLerlw /gl(s)ammdsdx

0 0 0 0
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and
L L L
J4(t) = lky / Oz + 1+ lw)*dz — g} /(% + 1+ lw)p, dz + py (:i - 1) /wt%t dz
0 0
L L
— k—g/ 2dax — / (Zplwf + prprwy — lp];k?’ cpf) dx
0 0
L +oo +o0
- /wt / g1 (8)0zm dsdx + l/ Yz + P+ lw) / 1(8)0xm1 dsd.
0 0
Then, by proceeding as for (86), we conclude (87) and (88). O

Lemma 4.3. Let

0 in cases (1) and (3),
D(t) = A (91)
pz/wm/wt(y,t) dy dz in case (2).
0 0
Then, for any 41 > 0, we have
L s L b L
D’(t)gpQ/wfdx+(“+k)/¢ dx +g (pz + 1 + lw)? do (92)
01
0 0 0

in case (2), and D'(t) = 0 in cases (1) and (3).

Proof. By exploiting the second equation in (2), integrating by parts and using the boundary conditions,
we get

x

L L
= / (=p2t} + kotp?) dz — oy /wz/(%(y,t) +(y,t) + lw(y, 1)) dy dz (93)
0 0 0

in case (2), and D’(¢t) = 0 in cases (1) and (3). Now, noting that the function

- / (0 (y.8) + (. ) + h(y, 1) dy

vanishes at 0 and L (because of (30)), then, applying (39), we have

L
/ /wy,t)+w<y,t>+1w<y,t>>dy de < & /(%+¢+lw)2dx- (94)
0

0 0

By applying Young’s inequality for the last term in (93) and recalling (94), we conclude (92). O



124 Page 24 of 39 A. Guesmia and M. Kirane ZAMP

Lemma 4.4. Let

Case (1): Pi(t) = —plkg/ z — ) /wt t) dy dx

0

. . (95)
- pik / o /(% + ¢ +lw)(y, t) dy de,
0 0
Case (2): Py(t) = Pi(t) (96)
and
Case (3): Ps(t) = —Pi(t). (97)
Then, for any €y, dg, 01, 62, 93 > 0, there exists c.,, c5, > 0 such that
L Y L
/ 0o + U+ lw)? do + ( 3923 ! +6o—l<;3) /(wgc—lga)2 dx
0 0
L L boad L
+(—p1k1+eo)/gof dx+ceo/(¢t2+wt2) dz + 23(593 /wi dx (98)
0 0 Yo
L +oo
+ Cao/ / 93()(0am3)? ds da,
0 0
L L
/ 2, kig?ss k3gg§3 2 2
Pi(t) < (k:l + 5= +do / p + U+ lw)? dr + T+5O_k3 /(wx—lgo) dx
0 0
L L
kig? 2 k393 2
+€o/¢tdx+cso/(g@t+wt)dx+ /<p dx+—/wﬁdx (99)
209 203
0 0
L +oco
tes, [ [ (@060 + (o) @m)?) ds o
0 0
and
L L
/ klg 01 2
P3()<+( 219101 60—k1)/(gpw+w+lw d:v—f—k/ e —lp)? dz
0 0
L L k
+ st e) [ubdote [ (64 od) dot B2 / & (100)
0 0 !
+oo

g1(s (0pm1)? ds da.

L
+050/
0

o
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Proof. By exploiting the first and third equations in (1)—(3), integrating by parts and using (30), (31)
and the boundary conditions, we find
L L L
P!(t) = plkg/wf dz — p1ky /gof do — k3 /(wac —lp)?dz
0

T

0
L L
0 0 0

-wm/ /mmwwwmm@m

L L +oo
+ k3gy / —lp)w, dx—kg/ e — Lp) / 3(8)0xn3 ds dx
0 0
0 ifi =1,
n L L +oo (101)
—k1g¢ /goz—i-w—l—lw)apwdx—i-kl/(px—&-w—i—lw)/ 1(8)0ymdsdx ifi=2
0 0 0
and
L L
Pi(t) = —plkg/wfdw—i-plkl/(pt dz + k3 / e — lp)?
0 0
L T
—k%/( e + U+ lw)? dx—lplkg/got/wt(y,t)dydx
0 0 0 (102)

x

w/wmwﬂmwm@m

0

L
+P1k1/
0
L L “+oo
+ k19?9 /(9093 + ¢ +lw)p, dr — K /(sox + v+ lw) / 91(5)0xm dsdu.
0 0 0

Now, noting that the functions

wH/wt% dy and mH/wt%

vanish at 0 and L (because of (30)), then, applying (39), we have
2

L L
/ /m%ty mg%/ﬁm (103)
0 0

. 2

L L
/ /wt(y,t) dy | dz< éo/wf dz. (104)
0 0

0

and



124 Page 26 of 39 A. Guesmia and M. Kirane ZAMP

By applying Young’s inequality and (81) in (101) and (102), and recalling (103) and (104), we deduce
(98)-(100). O

Lemma 4.5. Let

Cases (1)=(3):  R(t) = [ (prppr + paibihy + prww) da. (105)

St~

Then, for any 6o > 0, there exists c5, > 0 such that

L
/ —kot)2 — k1(pa + ¢ + lw)? — k3(we — 19)? + pr} + paty + prwy) da
0
((50 + gg) P2+ (50 + gg) wi) dx + cs, (gg(s)(@mg)2 + gg(s)(awng)Q) ds dz in case (1),
(91(5)<8zn1)2 +—gg(s)(8wn3)2) ds dx in case (2)

((60 + g7) 2 + (d0 + g3) w2) dw + cs,

((50 + g?) 02+ ((50 + gg) wi) dz + cs, (gl(s)(@gml)2 + gg(s)(agmg)z) ds dx in case (3).

T t— Tt r Tt
o\-é o\_é- o\-é-

J’_
Tt —r T Tt

(106)
Proof. By using the first three equations in (1)—(3) and the boundary conditions, we obtain
L
/ —kat} — k1(po + 9+ w)? — ks(we — 19)* + prgf + patpi + pruwf) do
0
L L “+o0o L “+o00
/(921/}2 + gjw?) dx—/@/}z / 92(8)0xm2 dsdaﬂ—/wﬂE /gg(s)axng dsdz in case (1),
0 0 0 0 0
L L +oco L 400
+ /(glgam+g3w ) dx—/cpm / 91(8)0zm dsd:r—/wz /93(5)896173 dsdz in case (2),
0 0 0 0 0
L L +oco L +00
/(glgam —1—921/1 ) dx — /apx / 91(5)0xm dsdx — /1/)@ / 92(5)0zm2dsdx  in case (3).
0 0 0 0 0
(107)
By applying (81) for the last two terms in (107), we conclude (106). O
Let N, Ny, No, N3, Ny > 0 and, for i = 1,2, 3,
Fi:=NE;+Ji+ NaD+ N3P+ Ny\R+ Ny > I (108)

je{1231\(1}
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Then, by combining (75)—(77), (86)—(88), (92), (98)—(100) and (106), we obtain

L
< [ (16 + b o+ L2+ (1 -+ 9805 ) (e = 1) + (1o + 9806 (0 + 0 + 1)) o
0

L

L “+o0
+ / (g(l)l'ﬂpm + gSZSw ) dz + NE; ( ) + CNy N3, Nu,60 Z / / gJ g;(s)) (amnj)Q dsdx
0 7e{1,2,31\{i} o o

L
+mew/ﬂﬁ+ﬁ+@+wﬁw+MVﬂw—wF+ﬁ+w+ﬁ%m
0

CNs3,eo

L L
k
(¥ +w}) dx—l—eoCNS/gp? dz + ( 2p1> /wtcpm dv ifi=1, (109)
0 0

+ CNs,eo

kap
(7 +wt)d$+6001v3/¢td +( ko )/wt%tdx ifi = 2,

0

CNs3,eo

Tt — Tt Tt —

L
ks
(o7 +¥7) d:c—l—eocNS/wt dx + p1 (k )/wtwmdx if i = 3,
0 0

where
—p1k1 N3 + p1 Ny ifi =1, —p2gdNy + poNy  ifi=1,
li =14 —p1g{N1+p1Ny ifi=2, lo=1{ —paNo+ paNy—po ifi=2,
—p19YNy + p1 Ny if i =3, —p2gINy + p2 Ny ifi =3,
—p1gdN1 + p1 Ny ifi =1, (k= gQ) Ny + ol ey g
Is = { —p1g§ N1 + p1Ny if9=2, ly=q (B2 4 ky) Ny — ko Ny + Lh2ka ifj =2,
—p1ksN3 + p1 Ny —lp; ifi =3, —(k2—98> N, ifi =3,
KN — kg + Belbesd)a ey ki N i =1,
ls = § —k3N3 — ks N, + Uighaes ifi=2 ls=1q ka%Ny ifi=2
kN3 — kN — if i =3, 0 ifi=3,
k2N — ki Ny — ky ifi=1, 0 ifi=1,
lg =< BNy +kiNs —kaNy+ k. ifi=2, lg={ 82N+ ifi=2,
—k2N3 — ki Ny + Ik if i = 3, BN, L if =3,
0 ifi =1, 251Ng—|—N4 1fz:1,
lr =9 o Ns+ Nat g ifi=2 and lg=Q & N3+ N, ifi=2,
#LNz+ Ny + 55 ifi=3 0 ifi = 3.




124 Page 28 of 39 A. Guesmia and M. Kirane ZAMP

Using (33), (43), (70) and (71), we get from (109) that
L
2 2 2 2 07 2 07 2
< [ (1 + 1208 ot 4 1002+ (154 0805 ) (e = 190+ (1 + 680) (o + 6+ L)) d

0

L

+ / (901703 + g8lsw?) dz + Socn, NN, Ei(t)
0

gi(s xn]) dsdx

o\g

L
+ (N CN1,N3,Ny, 50)E( )+CN1 N3,Nuy, 50 7€{1,2,3}\ {3 }/
0

I
k

(¥} +w}) dz + eoen, /cpf dz + <p2 - ;—pl Vipgpde  ifi=1, (110)

0

L

(o7 +wy) dx+eocN3/z/dex+ ( 201 _ >

CN3,e0

— Tt

+ 9§ N, Vpppe dx ifi =2,

0

CNs €0 (apf + 1/1?) dz + eocn, wt2 dz + py ( -1 wypeede  ifi = 3.

T —r T T

T~
O t~—r ©

At this point, we choose carefully the constants N, N;, §;, €; to get suitable values of ;.
Case ¢ = 1. We choose

ks (kl + k3)k3

5y = P o Vi
! ko+g3 (ko — g9) k1

(notice that €; is well defined thanks to (41)),

lks
2k%e

l(kg — 98)61 Uf3
2k1 ’ 2]€161

and max {klNg, —1,—ksN3 + } < Ny < k1 N3.

We remark that N4 exists according to the choice of N3. By virtue of the choice of 1, €1, N3 and Ny, we
see that

max {ll7 ly,l5, ZG} < 0.
On the other hand, from (33) (in case (1)), we find that

L

L

ggls/wi da < kgis / (ks — g5 — ko2 + ki (s + 9 + lw)? + ks(w, — 1p)?) da. (111)
0

0 0

Because Zg =1y =0 and ly, I5, l~57 lg and lg do not depend on 987 then, if gg is small enough so that

ke — g9 — k kgl kg0l
Ao = max{l4 L 0) S s+ g0ls + 2938 g4 1958 } <0, (112)

k0—|— g3 k)o—|—g§7 k0+g§
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we get

(1402 + (15 + 305 ) (ws = 1) + (I + gl ) (9 + ¥ + 0)? + flr? + gflsw?) da

T~

L
< /\0/ (V2 + (wy — 1) + (9o + 9 + lw)?) daz. (113)
0

After, we choose €y > 0 small enough such that epcn, + 11 < 0 and N; large enough so that
max{la + CNy s I3 + CNg.e b < 0.

Finally, we choose dp > 0 small enough such that

N P 2 2 2o 2 2o
Cc1 = _max{pl(ll —‘rEQCNS),g(ZQ+CN3760),E(13+CN3760) ]f k‘g k‘l _5OCN1,N3,N4 > 0.
Then, using (43) and (70), we deduce from (110) that the estimate

L +oco
FI(0) € ~8Bi(0) + (N~ OB(0 + cTycpaana | / 95(5)(0amy)? ds de
0

L
(pg - %) /wtapzt dx ifi =1,
(114)
+ <k2p1 — /wtcpztdx ifi =2,
L
—1)/wt<pztdx ifi=3
0
is satisfied, for ¢ = 1.
Case i = 2. As in the previous case, we choose
Co 2k
0 — = —
1> 9 ) €2 lkg )
lkoeo — 2k 2k Ik lkoeo — 2k1(Noy + 1 201 — ¢g)N-
( 2€2 1)631 <N, < 2 1— 3 2€2 1( 2+)<N3<(51 Co) 2
2(/€1 + k3)(51 — Coks k151 2k €9 2k ks 2k101
k161 lks lkoeo CoNo
— N- —ksN. k1 N3 + 1 Ny < No+1
max{<2k2+) 2+2k12 3N3 + —— ok, 1Vs + 251+}< 4 < Ng+1,

€1, 02 and d3 are any positive numbers.
By virtue of the choice of §; and e» and the hypothesis on [ in (61), we see that No, N3 and N, exist and
max {lg, Iy, 15, lﬁ} < 0.

On the other hand, from (33) (in case (2)), we find, similarly to (111),

L L

0]
g?h/gﬁz dx < kog:j / ((kg - ko)d}i + k(o +0 + lw)2 + ks(w, — lgo)z) dz (115)
0 0
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and
L

L

Ol

ﬁ%/w%ushﬁzyfab—%w€+hwx+w+MV+mw@—wﬂ)m. (116)
3

0 0

Therefore, if g9 and g3 are small enough so that

Mo 1= max {la + (kz = ko) (0 + 285 ) 15 + ol + ks (2 + 240 ),

ko+g? ko+g9 ko+g? ko+g3
(117)

7 1 o1
lo+ ofls + I (52 + i)} <0

(notice that Iy, Is, Is, lg, ls, Iz and lg do not depend neither on g9 nor on g3), then (113) holds. After, we
choose €y > 0 small enough such that eycy, + l2 < 0 and N; large enough so that

max{li + cny,ep, I3 + Ny eo } < O.

Finally, we choose §y > 0 small enough such that

_ 2 2 2 2X0 2X0 2N

= —( € 771 ail 3,€0/)9 7. 0 7. 0 7.

c1 max{pl( 1+ Ny o) pQ( 2+ €cn;) p1(3 N ) 7 T
and we deduce (114), for i = 2, from (43), (70) and (110).
Case ¢ = 3. Similarly to the above two cases, we choose

} - 50CN1,N3,N4 >0,

max {l — k1 N3, ksN3 — l:f’} < Ny < ksN3 +1,
N3, 01 and €; are any positive numbers.
We have I5 = lg = 0 and thanks to the choice of Ny we see that
max {l3,14,15,l6} <O.

On the other hand, similarly to (111), we get from (33) (in case (3)) that
L

Ol
gﬁﬂ/wi¢r§kf;;%/(%z—93—k®¢€+kﬂ¢x+¢w+m02+kﬂwx—lwf)¢D (118)
1
0 0

Therefore, if ¢¢ is small enough so that

Az (k2 — 99 — ko) s + ksgll7
ko + gf 7 ko + g9’

o7 kigily
Ao :=max < Iy + lg + gllﬁ + (< 0, (119)

ko + g7
then (113) holds (the condition (119) holds, since 4, I5, lg, l¢ and I7 do not depend on g?). After, we
choose €y > 0 small enough such that eycy, + I3 < 0 and N; large enough so that

max{l; + CNg,e0s 12 + CN3760} <0.

Finally, we choose dy > 0 small enough such that

3 P 2 2 20 2\ 2Xo
€1 ‘= —max {Pl(ll + CN3760)7 E(ZQ + CN37€0)7 H(l?) =+ 6061\73)’ ?2’ ?3, ?1 - 5OCN1,N3,N4 >0,
Then, (43), (70) and (110) give (114), for i = 3.
Now, we estimate the integral of g;(9,m;)% in (114), for j € {1,2,3}/{i}. When (58) holds, we see
that, by virtue of (71),
—+o00

L
//gj(s)(amnj)2dsdx§—EEZ{(t). (120)
0 0
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When (59) holds, we apply Lemma 3.6 [11] (in the particular case B = =0y, and || - || = || - |z2qo,zp)) to
get the following inequality.

Lemma 4.6. There exists a positive constant ¢ such that, for any 19 > 0, we have

L +oco
G (roEi(t / / 9;(8)(02m;)? ds dx < —cEl(t) + cro B; (1) G’ (10 Ei(t)). (121)

Proof. See Lemma 3.6 [11]. O

Using (120) and (121), we get in both cases (58) and (59)

9;(8)(02m;)? dsdx < cGo(ToE;i(t)) — cEL(t)
(122)

o\%—

L
GO(ToEi(t))
ToEi(t) 16{1 2,31\ {i} /
0

G T i
— B B 1),

where Gy is defined in (64). By multiplying (114) by %ﬁﬁ(t)) and combining with (122), we obtain

GoloBiO) 11 (1) < — (& — emo) Go(moEi(t)) + ((N — ¢) SolpB®) _ cro) El(#)

(pg — k""“ /1/)t(,0a:t dx ifi =1,

Go(roE (123)
+W (@—m /wt%tdx ifi =2,

L
—1>/wtgpmtdx ifi=3.
0

On the other hand, from (33), (43) and (70), we deduce that there exists a positive constant ~; (not
depending on N) satisfying

Ji+ NaD+ NsP+ NyR+ N, Y Ij| < viE,
J€{1,2,3}\{i}
which, combined with (108), implies that
(N —)E; < F; < (N +)E;. (124)

Choosing N so that
N>c and N>
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(c is the constant in (123)) and using (123), (124) and E; < 0, we deduce that F; ~ E; and
GoCoBilt)) pi(t) < — (& — cro)GolmoEi(t)) — croEA(t)

Ei(t) v
(P2 kzpl /%‘Pu dz ifi =1,
- (125)
+ 70(;2(5@)) (m — p2 /'¢t‘ﬁxt dz ifi =2,
L
1 (Z—f — 1) /wtgaxt dx if ¢ = 3.
0
Let 7, > 0 and
- Go(ToFE;(t
F=7 (WF + croEi(t)) . (126)
Because %ﬁ)(ﬂ) is nonincreasing, then, thanks to (124),
- G FE; (0
ctitob; < Fy <7 (N + %)M +cmo | E;. (127)
E;(0)
Let us choose 7; > 0 such that
F; <7E; and F;(0)<1. (128)
We have, using (125), (126) and the fact that M is nonincreasing,
Fll(t) S 7”7:1(61 — CTo)Go(ToEi(t))
<P2 k2p1 /%:@zt dr ifi=1,
(129)

+ ?z‘4GO(;253(t)) <k2i - p2 /Ws%t do if i = 2,

L

01 (—1— )/wtgpwtdx if 1 = 3.

0

According to (60), the coefficients of the integrals in (129) vanish, and hence, by choosing 79 > 0 small
enough such that é&; — cm9 > 0 and using the first inequality in (128), we get, for ¢} = 7;(¢1 — ¢79),
F] < —¢jGo(F}), (130)
whereupon
(G(F)) > d, (131)
i 1
where G(t) = /G() ds. Integrating (131) over [0, ¢] yields
ols
t

G(Fy(t)) > ¢t + G(F;(0)). (132)
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Because F(0) < 1 (from (128)), G(1) = 0 and G is decreasing, we obtain from (132) that

G(Fi(t)) > cit,

which implies that

Then, (70) and (127) give (63).

5. Proof of weak decay (66)

In this section, we treat the case when (60) does not hold which is more realistic from the physical point of
view. We need to estimate the integrals in (125) using the following systems resulting from differentiating,
respectively, (1)—(3) with respect to time ¢:

p1oue — k1 (@at + e +lwy) g — lks(wee — L) = 0,
+o00
p2hit — kouar + ki (Qar + 0 + lwy) + / 92(8) Yzt (x,t — s)ds = 0,
0
. (133)
prwit — ks(wer — loy) s + k1 (Qur + 0 + lwy) + / 93(8)Wapt(w,t — 5)ds = 0,
0
@t(o,t) = wwt(oa t) = w:L't(07 t) - @t(lﬂt) = th(Lat) = w.Lt(L7t) = 07
—+oo
P1P1et — K1 (ot + U +lwy)y — lks(wee — log) + / 91(8)@aat(x,t — 5)ds =0,
0
P2t — Koz + k1 (e + ¥ + lwy) =0, (134)
+oo
p1wert — k3(War — lot) e + 1k (e + 0 + lwy) + / 93(8)Wapt(w,t — 5)ds = 0,
0
©e(0,t) = 124(0,t) = wee (0,1) = @4 (L, 1) = Ve (L, t) = wee(L,t) =0
and
—+o00
P10t — k1 (@ut + U + 1wy e — lks(wee — lpg) + / 91(8)Pzat(x,t — s)ds = 0,
0
+o00
p2iee — kothpar + k1 (@t + b + lwy) + / 92(8)Vgat(x,t — s)ds =0, (135)
0
p1wert — k3(War — lpt) s + k1 (par + e + lwy) =0,
©:(0,8) = 3¢(0,t) = wye(0,8) = (L, t) = (L, 1) = wae (L, t) = 0.

(L
Systems (133)—(135) are well posed for initial data U € D(A?), i = 1,2,3, respectively, and n € N*
thanks to Theorem 2.3, where

oU; € ﬂZ;éC”fl*k (R+§D (Af)) .
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Let U? € D(A;) and E;, i = 1,2,3, be the energy of (133)(135), respectively, defined by

Ei(t) = l00:(1) 5, (136)

As for (71), we have

(gé(axﬂh)Q + 95(@1%3)2) dsdz ifi=1,
(91(0uem)® + g5(Omims)?) dsda  ifi =2, (137)

(95 (Dtm)? + g5(0aen2)?) dsdx  if i =3,

!

I
Tt —r T Tt
o\§ o\ér o\ér

so E; is nonincreasing. Let 7; = 1 in (126). Then, (125) leads to
F{(t) < —(&1 — e0)Go(roEi(1))

L
’“’) /wt%dx ifi=1,

| (138)
4 GolpBie (1o _ ) /wt%dm ifi=2

L
- )/wt@mtdx if 1 = 3.
0

We use an idea introduced in [9] to get the following lemma.

Lemma 5.1. For any € > 0, (1)-(3) imply that,

L L +oco
(2 — For) Colpr / Vepar dv SC‘GO(;%@)/ / 92(5) Oxte)” ds da 139
J s (139)
+ €Go(0E1 (1)) — ce GO(E%)(O)) Eq(t),
L o0
(52— pa) SO [y < 0 SB[ [ g1(6)0m)? s do
0 0 0 (140)
Go(10E2(0
+ €Go(T0Ea(t)) — CEO(EZ(S)())Ez( )
and
L L 400
(5 0) S8 [ <S80 [ [ooanpan
/ s (141)

+ €Go(ToEs3(t)) — ce 700%2%)(0))]%@)
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Proof. We have, by integrating with respect to  and using the definition of 7,

L
k2p1 /wt@xt dz = — ( kZpl) /@t¢xt dz
L +oo
= ’fzm /%/ Dz ds da (142)
0

+o00

L
- - k2p1 /gat / $)pe(t — s)dsdax.
0

Using (81) (for n = d,4m2 and v = ¢;) and (70) (for i = 1), we get, for all € > 0,

L +oo
& (2= 2) / o1 / )0uiz ds dz| < §E1(1)
0

L +oco (143)
/ / G2(8)(Dgma)? ds da.

0 0

On the other hand, by integrating with respect to s and using the definition of 75, we obtain
L +oo L “+o0
/gpt / 92(8)1at(t — s)dsda = f/got / 92(8)0s (W (t — s)) dsdx
0 0 0 0
L “+o00
~ [or| w0+ [ g~ s)as) @
0 0
L “+o0
= —/got / g5 (8)0zm2 ds du.
0 0
Therefore, using (82) (for n = 9,12 and v = ¢;) and (71) (for i = 1),
1 i L +oo
€
. < gp1> /% / g2(s)ime(t — s) dsda| < SBy(t) = c B (1), (144)
2
0 0

Inserting (143) and (144) into (142), multiplying by and noting that M is nonincreasing,

we obtain (139). Using the same arguments, we get (140) and (141). O

Go(m0E1)
E
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Now, by combining (138)-(141), and choosing € = &, we get

/() < — (% — 7o) Go(ro B (1)) — eColmEaO) pr )

L +oo
/ /92 Ort12) 2dsdx ifi =1,
4 ColroEi() 0 (145)

Ei(t) L 4o
//gl (Optm)*dsda ifi=2ori=3.
00

Similarly to (120) and (121), using (137), we find, for j € {1,2,3} \ {i},
L +oo
[ [ (e @um)? asaz < -2 Eiqe) (146)
00

when (58) holds. When (59) holds, there exists a positive constant ¢ such that, for any 79 > 0, we have
as for (121) (see the proof of Lemma 3.6 [11])

L +oco
G (o Ei(t / / 9;(8)(Opm;)? dsda < —CcEl(t) + croBi ()G (1o By (1)). (147)

From (146) and (147), we find that, in both cases (58) and (59),
L +oco

GO(T(JE ) / / 95 (5)(arm) 2dsdz < ctoGo(ToEi(t)) — C%WE’IU) (148)

—croEI(t), Vi€ {1,2,3}\ {i}.

Inserting (148) in (145), choosing 79 > 0 small enough such that & — c¢7o > 0 and using the fact that

B) - . . -
%"_") is nonincreasing, we find, for some ¢y > 0,

- Go(moE; (0 -
Go(ToE;(t)) < —GoF/(t) — ¢ (1 + W) (E;(t) + E;(t)) . (149)
By integration with respect to ¢ and using (127), we get, for some é5 > 0,
T
/GO(TOEi(t)) dt < és (1 + CW) (Ei(S) + Ei(S)) , VI'>S5>0. (150)

Choosing S = 0 in (150) and using the fact that Go(79E;) is nonincreasing, we obtain

Go(m0Ei(0))

E:(0) > (Ei(O) +Ez—(0))- (151)

T
0

Because Gy ! is increasing, (66) for n = 1 is deduced from (70) and (151) with
o 2 Go(ToEi(O)) ~
¢i1 = max {7'07 3 (1 + B0 (E,(O) + El(O)) .

By induction on n, suppose that (66) holds and let U € D(A?*!) be such that (65) holds, for n + 1
instead of n. We have 0,U;(0) € D(A?) (thanks to Theorem 2.3) and 0,U; satisfies the first three equations



ZAMP Uniform and weak stability of Bresse system Page 37 of 39 124

and the boundary conditions of system (i), i = 1,2,3 (that is, (133)—(135) are satisfied). On the other
hand, let 7; = Oy, @ = 1,2,3. From (11), we remark that

or(z,t) + Os(p(x,t — ) ifi=1,
ﬁi(x,t,s) = 'l/)t(xvt)”"as(w(matis)) ifi=2,
wi(z,t) + Os(w(x,t —s)) ifi=3.

Then,
p1(z) + Ospo(m,s) ifi=1,
i (z,8) = i;(x,0,8) = { P1(x) + Ostho(, ) ifi=2,
wy () + Oswo(x,s) ifi=3,
therefore, for k =1,...,n,

Otlpg(z,s) ifi=1,
O nd(x,8) = { OF pg(w,s) ifi=2,
Oy (z,s) ifi=3.
But, again from (11),
—0ktlpg(z,s) ifi=1,
= 9, (2,0,5) = { —OF g (a,s) ifi=2,

—0F gy (x,s) ifi=3.

oLy (,5)

Then,

057} (w, 8) = =0 ] (w, 5).
Consequently, (65) is satisfied, for ﬁ? instead of 77?, Jj € {1,2,3} \ {i} (because (65) is supposed being
satisfied, for n + 1 instead of n). Hence, for some positive constant é; ,

00, < G (%) >0 (152

Choosing § = £ in (150) and combining with (66) and (152), we conclude that (Go(7oE;) is nonincreasing)

Go(roE;(T))T < Q/TGO(TOEi(t))dt < & (1 n GO(T(JE%‘(O))) <Ci,nGn (2(;n) L anCn (2(;”)) |

E;(0)

2

which implies that, for

2 - - GO(TOEZ(O)) -
i,m = ) i,m i,m 1 72 in72 i,m
Cin+1 maX{TO és(e, —|—c7)( + E:(0) Cins 26,

and any T > 0 (notice that G, is increasing),

_ Cin Cin Cn Cn
\|Ui(t)||§1i:2Ei(T)§cw+1G01( ’T“Gn( ’T“)):ci,nHGl( C,TlGn( 7fl))
Ci,n+1)

T

= Ci,n+1Gn+1 (

so (66) holds, for n + 1.
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Remark 5.2. 1. It is possible to prove some similar results under other kinds of boundary conditions like
the homogeneous Dirichlet—Dirichlet—Dirichlet ones.

2. One of the interesting questions related to our results is the optimality of the decay estimates
(63) and (66). In case of linear frictional dampings or infinite memories with kernels satisfying (58), the
optimality of (69), when n =1 and (7) does not hold, was proved in [2] and [6].

3. Another interesting question concerns the stability of Bresse systems with only one infinite memory
and a kernel having a general growth at infinity (not necessarily of exponential type). The case (8) has
been treated in [6] but for kernels ¢ satisfying (9), which implies (10); that is, g converges exponentially
to zero.

4. Our stability results (63) and (66) hold under the smallness conditions (61) on I, g and ¢, and
the boundedness conditions (62) and (65) on the initial data 77?. It is interesting to drop these purely
technical conditions (61), (62) and (65).
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