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1 Introduction

Let X be a compact complex surface and E a topological complex vector
bundle on X of rank  and Chern classes ¢; € H*(X,Z), ¢; € H{(X,Z) = Z.
When X is algebraic £ admits a holomorphic structure if and only if ¢; lies
in the Néron-Severi group NS(X) of X (i.e. the image of ¢; in H*(X,R) is
of type (1,1)). If moreover c, is large enough as compared to r and ¢? then F
admits stable holomorphic structures with respect to any fixed polarization
on X and their moduli spaces have nice geometric properties. In particular
they admit natural projective compactifications.

The situation changes if we let X be non-algebraic. For the existence of
holomorphic structures in £, the condition ¢; € NS(X) is still necessary but
no longer sufficient. In fact it was proved by Banica and Le Potier that if £
admits a holomorphic structure then

2rcog — (r—1)ef >0

and that holomorphic structures exist when ¢, is large enough with respect
to r and ¢;. For small values of ¢, however, the existence problem remains



in general open. This situation is strikingly similar to that of the stable
structures. Notice that the inequality above is exactly the Bogomolov in-
equality which is satisfied by the topological invariants of any stable vector
bundle. In this paper we show how this similarity can be made more precise
for two-dimensional tori.

We use deformations of the complex structure of a torus keeping a suit-
able Riemannian metric fixed in order to switch between stable structures
in F over algebraic tori and so called irreducible structures in £ over non-
algebraic tori. This enables us to solve the existence problems for rank-two
holomorphic vector bundles on non-algebraic tori and for stable rank-two
vector bundles of degree zero on any two-dimensional torus. More precisely
we prove:

Theorem 1.1 A topological rank 2 complex vector bundle E on a non-algebraic
two-dimensional complex torus X admits some holomorphic structure if and
only if

c1(E) € NS(X) and 4cy(E) — c1(E)* > 0.

Theorem 1.2 Let X be a complex 2-dimensional torus and w a Kdhler class
on X. Let ¢y € NS(X) such that ¢; -w = 0. Suppose that

¢ =max{(c; +2b)* | b€ NS(X), b-w = 0}.

Then a topological rank 2 vector bundle with Chern classes ci,co admits a
holomorphic structure stable with respect to w of and only if

4ey — cf >0,
except when

c1 =0 and ¢y € {0,1}, or

2 =—2and c, = 0.

In the excepted cases the holomorphic structures on E are unstable with re-
spect to any polarization w such that ¢y - w = 0.

Remark that ¢; -w = 0 implies ¢ < 0 by Hodge index and that the condition
3 =max{(c; +2a) | a € NS(X), a-w =0}

can always be fulfilled by twisting F with a suitable line bundle. Neither the
stability nor the invariant 4cy(E) — ¢2(F) are modified by such twists.
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Remark also that if ¢ < 0 or ¢; = 0 there exist polarizations w such that
cp-w=0.

)

For "large ¢;” one can always construct locally free sheaves as extensions of
coherent sheaves of smaller rank. This method cannot work for all ¢5. In
fact, for ¢ below a certain bound all existing holomorphic structures are
"irreducible” i.e. do not admit coherent subsheaves of lower rank (cf.[1]).
Some holomorphic structures for F with ”small ¢;” have been constructed
in [5]. We fill in the gaps left by [5] in the following way. We consider two
suitable invariant metrics on our torus X and perform two ”quaternionic
deformations” (see 2.1.1 for the definition) such that the deformed torus
has a convenient algebraic structure (see section 3). We construct a stable
holomorphic structure in E with respect to this new complex structure of the
base and use anti-self-dual connections to get a holomorphic structure for £
over our original X.

To prove Theorem 1.2 we perform again a quaternionic deformation, this
time changing the structure of X into a non-algebraic one. It is enough
then to know which bundles admit here irreducible structures. So we reduce
ourselves to

Theorem 1.3 When X is a non-algebraic 2-dimensional torus and E a
topological rank 2 vector bundle having c1(E) € NS(X) such that ¢,(E)? =
max{(c;(E)+2a)? | a € NS(X)}, then E admits an irreducible holomorphic

structure if and only if
4ea(E) — e1(E)* >0,

unless

c1(E)? =0 and cy(E) € {0,1} or,
c1(E)? = =2 and c3(E) = 0.

In the excepted cases all holomorphic structures are reducible.

Remark again that the intersection form on NS(X) is negative semidefinite
if X is a non-algebraic surface and that the condition

c1(E)? = max{(c;(E) +2a)* | a € NS(X)}
is always fulfilled after a suitable twist of FE.

In a forthcoming paper ([6]) we show that the moduli spaces of stable sheaves
with "small ¢;” over a non-algebraic torus are compact.



2 Preliminary Material

2.1 Self-duality and complex structures

We recall here some simple basic facts about 4-dimensional geometry.

2.1.1 Self-duality

Let V be a 4-dimensional oriented real vector space. Furtherlet g : V xV —
R be a metric on V. The Hodge operator restricted to A2V* is involutive.
We denote by AT, A~ its eigenspaces belonging to the eigenvalues +1. The
elements of AT and A~ are called self-dual, respectively anti-self-dual
forms.

AT, A~ are maximal positive, respectively negative orthogonal subspaces of
A%V* for the ”intersection” form:

(@,f) —anflv=a-p

where v € A*V* is the canonical volume form on V. Conversely, one can show
that starting with the oriented 4-dimensional space V' and with an orthogonal
decomposition of A2V* into maximal positive and negative subspaces for the
intersection form, there is a metric g on V', unique up to a constant, such that
the given subspaces of A2V* coincide with the eigenspaces of the associated
Hodge operator.

2.1.2 Complex structures and quaternionic deformations

We further consider a complex structure I on V which is compatible with
the orientation and with the metric and denote by V; the complex vector
space thus obtained. To g and I one can associate an element w; € A2V*
by wr(u,v) := g(u, Iv). One sees easily that w; - w; = g(wy,wr) = 2, so wy
belongs to the sphere of radius v/2 in A™*.

One verifies that conversely, each element of this sphere is associated to a
unique complex structure on V' compatible with the orientation and with
the metric. In fact these complex structures turn V' into a module over the
quaternions. (If w; and w; are orthogonal, the product K := IJ is a new
complex structure corresponding to w; X wy in A*.) We shall therefore say
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that two such complex structures are quaternionic deformations of each
other (with respect to the fixed metric g).

2.1.3 Type decomposition and the positive cone

The complex structure I induces decompositions Vg := V@ C = V0 @
VOl Vi =V*@C = V"9 V*%! into eigenspaces of the extension of I to

Ve and V¢, and further decompositions into type AzVE = @ APY, where
ptg=r

AP = AP (VIO @AL(V*01). In particular we get A2V* = (A2°QA*?2)p@AR!
where the R-index denotes intersection of the corresponding space with A2V*.

The property w;(Iu, Iv) = w;(u,v) means that w; € Ay'. The two orthogo-
nal decompositions of A2V*,

AV =AT@® A" and

AQV* — (A2’0 D AO,Q)R D A]El,

compare in the following way:

A-‘r — (A2’0 D A0,2>R D <WI>
Ag' = (wr) @A,

where (wy) is the line spanned by w;.

The intersection form on Ag' has type (1,3) and thus the set {n € Ag' |
n-n > 0} has two components. The condition n(lu, u) > 0 for one, or
equivalently for all u # 0, u € V, distinguishes one of these components
which we call the positive cone, C := {n € Ag' | -7 > 0, n(Iu, u) > 0
for some u # 0, u € V}. The above facts now show that C and the set of
metrics on V' compatible with a fixed complex structure I are in a natural
bijective correspondence.

2.2 Line bundle cohomology on complex tori

Consider a 2¢g-dimensional real vector space V' endowed with a complex struc-
ture I, a lattice I' C V' and the complex torus X = X; := V;/T.

Using translation invariant differential forms on X we get the following na-
tural isomorphisms for the de Rham and Dolbeault cohomology groups of
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H'(X,R) & AV
Hp7q > Ap7q
H'(X,Z) = AT,

where I'* := Homgy(I', Z) C V*.
The first Chern class of a holomorphic line bundle on X is an element of
HY"' N H*(X,Z) =AM N AT

and thus it is represented by a real skew-symmetric bilinear form E on V' tak-
ing integer values on I' x I and such that E(lu, [v) = E(u,v), for all u,v €
V. To E one associates a hermitian form H on V; such that £ = Im H. The
pairs (H, «) consisting of a hermitian form H on V; such that E :=Im H is
integer valued on I' x ' and a map « : I' x I' — U(1) satisfying a(vy; +72) =
a(y1)a(y)(=1)F0172) are called Appell-Humbert data. Addition on the
first component and multiplication on the second induce a group structure
on the set of Appell-Humbert data. There is a natural way to construct
a holomorphic line bundle L(H,«) on X out of the data (H,«) and this
gives an isomorphism from the group of Appell-Humbert data to the Picard
group of X. Moreover, through this isomorphism c¢;(L(H, «)) corresponds to
E :=1mH. Let

KerH:={ueV | H(u,v)=0, YovelV}
={ueV|Euv)=0 YveV}

k = dim Ker H and n the number of negative eigenvalues of H. We denote
by pf(E) the Pfaffian of E: for an oriented symplectic basis (u;)1<i<ay of V
with respect to E (i.e. such that E(u;,u;) = 0 for |j —i| # g) pf(E) =
det(E(u;, ujtg))o<ij<g- Remark that there always exists such a basis which
is also a basis for I" over Z. Moreover this can be chosen in such a way
that d;|d;+1 where d; :== E(u;, u;14). In this case we shall call the sequence
(di,da,...,d,) the type of L(H,«). We can now state the results we shall
need on line bundle cohomology on tori (cf. [2]).

Theorem 2.1 (Mumford-Kempf)

(a) H(X,L(H,a)) =0 fori<mn ori>n+k.

(b) H""(X,L(H,«)) 2 H*(X, L(H,a)) ® H*(Ker H/T NKer H) for 0 <
i<k



(¢) HY(X,L(H,«)) =0 if and only if a‘FﬂKerH7_é 1.

Theorem 2.2 (Riemann-Roch)

X(L(H,a)) = > (=1)'dim H'(X, L(H, )

1=0
_ ich(H, 0))7 = %pf(E).

When g = 2 we distinguish the following cases:

o ci(L(H,a))>>0
implies H or —H is positive definite (which is equivalent to saying that
L(H,«) or L(H,«)™! is ample) and according to this, the cohomology
of L(H,«) is concentrated in degree 0 or 2.

o ci(L(H,a))* <0
implies H is indefinite and the cohomology of L(H, «) is concentrated
in degree one

. ci(L(H,«))*=0and H # 0
imply H or —H is positive semi-definite and thus the cohomology of
L(H, ) in degree 2, respectively 0, must vanish; for suitable o — s all
cohomology groups will vanish in this case.

3 Vector bundles on non-algebraic 2-tori

Let X be a 2 dimensional non-algebraic torus, and E a differential complex
vector bundle of rank 2 on X having ¢;1(E) € NS(X). As proved in [1] a
necessary condition for £ to admit some holomorphic structure is that

1 1
A(E) = 5(02(]:7) - ch(E)Q) > 0.
We shall show that this condition is also sufficient. If 4 divides ¢;(F)? this
has been proved in [4], [5]. The statement holds also when ¢;(F)?* = —2 since

we can construct a filtrable vector bundle £ as a direct sum of holomorphic
line bundles having

AE) = 5(0-50-2) =5

and then increase ¢y by applying the following
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Proposition 3.1 (/5/, [6]) Let X be a compact complex surface with Kodaira
dimension kod(X) = —oo or with kod(X) = 0 and p,(X) = 1. Let E be
a holomorphic vector bundle on X whose rank exceeds 1 and n a positive
integer. Then there exists a holomorphic vector bundle F' on X with

rank(F') = rank(FE), ¢1(F) = c1(E), co(F) = co(E) + n.

excepting the case when X is K3 without non-constant meromorphic func-
tions, E is a twist of the trivial line bundle by some line bundle and n = 1.

Thus we only have to deal with the case
cl(B)? = —2(4k £ 1),

k a positive integer. (Recall that the self intersection of an element of N.S(X)
is non positive since X is non-algebraic). If L is a holomorphic line bundle
on X then

c(E®L)=c(E)+2c¢(L)
A(E® L) =A(E),

so it will be enough to solve the existence problem for some vector bundle
E’ of rank 2 with ¢;1(E') € ¢1(F) +2NS(X) and

In particular we may always suppose that ¢;(FE) is a primitive element in
NS(X). X will be considered as the quotient X; = V;/I' of a fixed real
4-dimensional vector space V endowed with a complex structure /I through
the fixed lattice I'. Let a be a primitive element in

NS(X;) =2 H*(X,Z) N HY = AT n A

We first connect the complex structure I to a new complex structure K by
two quaternionic deformations such that NS(X) is generated by a and an
ample class of a special type.

Lemma 3.2 Let X; be a complex 2-dimensional torus and a € NS(X) a
primitive element such that a®> < 0.

(a) There exists an invariant hermitian metric h on X; which makes a
(seen as an invariant 2-form) anti-self-dual. Moreover this metric may
be chosen such that all integer elements in A~ are multiples of a.
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(b)

()

If h is chosen as above and g is its real part, then there exists a dense
open set of quaternionic deformations J of I with respect to g, such
that NS(X ;) is cyclic generated by a.

If a®> = —2(4k=+1) there existsn € H*(X,Z) of type (1, k) with a-n = 0.

For a suitably chosen complex structure J as above there exists a quater-
nionic deformation K of it, with respect to a possibly new metric on
Xy, such that n is proportional to the imaginary part wx of the as-
sociated hermitian metric and NS(Xg) is generated over Q by a and

n.

Proof

(a)

By 2.1.3 it is enough to find an element w; € C with w; - a = 0 but
wr-b# 01if b € NS(X) is not a multiple of a. For the existence of such
an w; we just remark that the intersection form on the orthogonal of a
in Ag' has type (1,2), since a? < 0.

Using 2.1.2 one sees that it suffices to take w; on the sphere of radius
V2 in A" and not belonging to a line of the form ((b) @A~)NAT, where
be H*(X,Z)\{a).

We choose a symplectic integer basis for a. Since a was primitive the
associated matrix will have the form:

0o 0 1 0
0 0 0 —(4k=+1)
-1 0 0 0
0 (4k+1) 0 0

Any element n € H?(X,Z) is represented in this basis by an integer-
valued skew-symmetric matrix

0O 6 o p

g_ -0 0 ~ 9
-a —y 0 7

-3 =6 —1 0

The condition a - n = 0 becomes:

J = a4k +£1).



n is of type (1, k) if there exists some basis of I' with respect to which
its associated matrix is:

(1]
o R OO
o oo
oo o~
oo ™™o

We thus need a transformation matrix M € SL(4,Z) changing = into S by
S =MZEM

such that for S, § = a(4k £ 1). It is easy to see that such an M exists. (In
fact one can show that the 1 — s satisfying the given conditions span (a)*
over R.)

So let now 7 be of type (1, k) with n-a = 0. Let AT be the space of invariant
self-dual forms with respect to the metric which was fixed in (a).

If n € At we just take wy proportional to 7 on the sphere of radius v/2 in
AT, For the new complex structure K, NS(Xg) will be generated over Q by
a and 7. Let indeed b=c-n+ p € NS(Xk) with ¢ € R and g € A~. Since
n-b = cn? is an integer, ¢ must be rational and y lies in A"NH?(X,Q) = Q-a.

When 1 ¢ AT we have to change the metric on X. We do this as follows.
nt N A* is a 2-dimensional subspace of AT. Let w be an element of the
sphere of radius v/2 in At around 0, which is orthogonal to n* N A*. In
fact w is proportional to the projection of 7 on A*. We choose w; as in (b)
but close to w. We claim that the intersection form is positive definite on
(A% @AY @ (n). Indeed, let wg := ‘/32'77, ve (N @ AY)g =wr NAT of
norm v/2 and consider an element swg + tv in (A% ® A%?) @ (n); s,t € R.
We have (swg + tr)? = 252 + 2t% + 2stwy - v = 25? + 2t + 2st wy; - v, where
Wk = Wi + wy is the decomposition in self-dual and anti-self-dual parts of
wr. There exists a real number ¢ depending on 1 and A™ such that w} = cw.
When w; is sufficiently close to w we have |wj; - v| = [cw-v| < 5 for all v —s,

hence our claim. Thus we may view (A%’ @ A%*)g @ (1) as the space of self-

dual forms with respect to a new Riemannian metric ¢’ which is compatible
with J.

Since N'S(X}) is generated by a, a will span A, NH?(X,Z) too. The complex
structure K corresponding to wg is the quaternionic deformation of J (with
respect to g') we have been looking for. [
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The next move is to construct a stable vector bundle E on Xy with ¢;(E) = a
and smallest possible ¢3(E), i.e. such that A(E) = 1.

Lemma 3.3 Let Xi be a complex 2-dimensional torus whose Néron-Severi
group is generated over Q by a and n where a is primitive with a®> = —2(4k +
1), k a positive integer and n is an ample class of type (1,k) orthogonal to
a. Then there exists a rank 2 vector bundle EE on X, stable with respect to
n and having ¢i(E) = a, ¢(E) = 1(a® + 2).

Proof

We first prove the existence of a holomorphic rank2 vector bundle E on
X with the given invariants which is simple. We begin with the case a? =
—2(4k + 1). Let A, L be line bundles on Xk having ¢;(4) = a, ¢;(L) =
n. We have x(A™ ® L™?) = 3(a + 21)* = —1 by Riemann-Roch hence
Ext!(X; Lo A, L7') = H(Xg, A7'®L7?) # 0 and there exists a nontrivial
extension

0— L' —F—A®L—0.

Notice that E has the required Chern classes. The fact the E is simple is
implied by the vanishing of Hom(L™!, A® L) and of Hom(A ® L, L) as
one can easily check.

Let now a?> = —2(4k — 1), k > 1. As before we consider two line bundles
A and L on Xk having ¢;(A) = a and ¢;(L) = n. Since L is ample and
(2n+a)* =2 > 0, the bundle L?* ® A will have a nontrivial section vanishing
on a divisor, say D. For numerical reasons D must have a reduced component.
We may then choose a point p on the regular part of D, seen as a subvariety
of Xk. Let Z be the reduced subspace of Xk consisting of the point p.

We want to construct E as the middle term of an extension
0— L' —F—7T,A L — 0.

Such an extension is given by an element 6§ € Ext'(Xg;Z, ® A® L, L),
By a criterion of Serre FE is locally free if and only if the image of 6 through
the canonical mapping

Ext'(Xg; Z; @ AQ L, L) — HY(Xg, Ext' (T, @ A® L, L))

generates the sheaf Ext'(Z; @ A® L, L™Y)); cf. [3] L5.
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From the exact sequence of the first terms of the Ext spectral sequence.

0 — H' (Xg;Hom(I; @ A® L, L™Y))
— Ext'(Xg; I, @ A® L, LY) — H'(Xg,Eaxt* (I, @ A® L, L))
— H*(Xg, Hom(Z; @ A® L, L") — Ext*(Xg; I, @ A® L, L),

we see that in our situation
Ext'(Xp, Iz @ AQ L, L") — HY( Xy, Eat' (Ty @ A® L, L))
is an isomorphism, and since
Ext' (I, @ A® L, L™ = Oy,
a non-zero 6 will give a locally free middle term F.

Let then E be such a locally free sheaf. We shall prove that E is simple. The
first term of the exact sequence

0 — Hom(E,L™") — End(E) — Hom(E, I, ® A® L)
vanishes, so it will be enough to prove that
Hom(E,I; @ AQ L) 2 H( Xk, BV I, AQL) 2 H' Xk, E®RZ,;® L)
is one-dimensional. But this holds since
H' X, Z; 0T, L*® A) = H (Xk,ZT; @ I7(D))

is one-dimensional; (use the fact that p is a simple point on the regular part
of D and that D does not move, so Zz(D) can have no global section).

We now turn to the proof of the stability of E (in both cases).

Suppose E were not stable. There would exist then a locally free subsheaf B
of rank 1 of £ having deg, B > 0. Let

b:=c(B)=sn+ta; s,teQ.

Since n and a are primitive, s and ¢t must be either both in Z or both in % - 7.
Moreover, deg B > 0 is equivalent to s > 0. We may also suppose that /B
is torsion-free.

Thus there exists a 2-codimensional subspace Y of X such that E sits in
an exact sequence

0—B-—F—ITy® A B! —0.
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Hence

411(@2 +9) = o(E) = b(a— b) + ea(Ty) = bla — b) + K(Oy).

On the other side, since F is simple
0=Hom(Zy ® A® B!, B) = H'(A™' ® B?)

and thus (2b — a)? < 0. This further gives 4h°(Oy) < 2, hence Y = () and
(2b—a)? = —2.

Using the two exact sequences we have for £ and again the fact that E is
simple we get

H (Lo A B ') #0and H'(L'® A™'® B) =0,
hence s € {0,1}. But then b cannot fulfill the condition (2b —a)* = —=2. O
Proof of Theorem 1.1

We start with a non-algebraic torus X;, a primitive element a € NS(X7)
with a®> = —2(4k £ 1), k > 1, and a differentiable vector bundle E on X;
with ¢;(F) = a and

a8y = ot - 2 -

We shall show that E admits a holomorphic structure.

Consider deformations X;, Xx of X; as in Lemma 3.2. Now Lemma 3.3
shows the existence over (X, n) of a stable holomorphic structure on E. By
the Kobayashi-Hitchin correspondence we get an anti-self-dual connection
on F with respect to the Riemannian metric which corresponds to 7. The
curvature of this connection remains of type (1,1) when considered on X,
and thus gives a holomorphic structure £; on E over X ;. Now

c1(F)? 1

1

By [1] £y must be irreducible (i.e. it will admit no coherent subsheaf of rank
1). Thus E; is stable with respect to any polarization on X ;. In particular
E; has an anti-self-dual connection with respect to w; too.

By deforming back to X; we obtain a holomorphic structure E; on E over
X7 in the same way as on X.

By Proposition 3.1 any rank 2 topological vector bundle with ¢;(E) = a and
A(E) > 0 will admit some holomorphic structure. [
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4 Stability versus irreducibility

Irreducible vector bundles are stable with respect to any polarization on
the base surface. In particular they admit anti-self-dual connections if their
associated determinant bundles do.

In this paragraph we construct stable vector bundles of rank two on any
polarized 2-dimensional torus X using the anti-self-dual connections which
exist on irreducible vector bundles over some non-algebraic quaternionic de-
formation of X. In order to do this we first prove Theorem 1.3 which tells
us which rank 2 vector bundles on a non-algebraic torus admit irreducible
structures.

We start with a non-existence result.

Lemma 4.1 Let X be a 2-dimensional complex torus, w a Kdihler class on
it and a € NS(X). When a =0 and c € {0,1} or when a®> = =2, a-w =0
and ¢ = 0, there exists no stable (with respect to w) rank 2 vector bundle E
on X with ¢;(F) = a and c3(E) = c.

Proof

Suppose that E is a stable rank 2 vector bundle on X of degree zero with
respect to w. We consider its Fourier-Mukai transform:

Let P be the Poincaré line-bundle on X x Pic’(X) where Pic’(X) denotes
the variety of topologically trivial holomorphic line bundles on X. Let p; :
X x Pic?(X) — X, py : X x Pic?(X) — Pic’(X) be the projections and
E" = R'py.(pi(E) ® P). Since H'(X;E ® L) and H*(X; E ® L) vanish
for all L € Pic’(X) it follows that E" is locally free of rank —y(E) =

e (E) — 5¢1(E)?.

When one computes the Chern classes of E” with Grothendieck-Riemann-
Roch, one gets:

rank(E") = cp(F) — %Cl(E)27
rank £ = cy(E") — %Cl(EA)2
~ alBY) - a (B,
hence co(E") =2 + 1¢i(E)2.
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Thus in the considered cases we get rank(E”") < 1 and c3(E") # 0 which
contradicts the locally freeness of E. [

Next we need a reformulation of part (b) of Lemma 3.2 which will ensure the
existence of a convenient quaternionic deformation of I.

Lemma 4.2 Let (X;,wy) be a polarized 2-dimensional torus. There ezists
then a quaternionic deformation J of I such that NS(X;) C A~.

The proof is the same as for part (b) of Lemma 1: just take w; on the
sphere of radius v/2 in A™ and not on lines of the type ((b) ® A7) N A* with
be H*(X,Z)\ A~.

With these preparations the proofs of theorems 1.3 and 1.2 will follow from
our Theorem 1.1 and the argument in [1] § 5 where irreducible vector bundles
are found in the versal deformation of reducible ones provided that ¢y is
sufficiently large.

More precisely, if X is a non-algebraic torus and FE is a holomorphic rank 2
vector bundle on X with ¢;(FE) primitive in NS(X), then it is proved in
[1] 5.10 that there exist irreducible vector bundles in the versal deformation
of E provided

A(E) > 1+ écl(E)Q.

Now let E be a topological vector bundle of rank 2 on a non-algebraic torus
X with ¢;(F) € NS(X) and A(E) > 0. We investigate when £ admits an
irreducible holomorphic structure. We may suppose that ¢;(F) is a primitive
element in NS(X), otherwise we twist by a line bundle, etc. By Theorem
1.1 £ admits a holomorphic structure which we denote also by E. By the
above mentioned result from [1] we find an irreducible structure in the versal
deformation of E as soon as

A(E) > 1+ %cl(E)Q.

On the other side it is easy to check that for

A(E) < —écl(E)2.

every holomorphic structure of E is irreducible (cf. [1]). It remains to con-
sider the case when

—écl(E)Q <A(E)<1+ %cf(E).
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But now
c1(E)* =0 and cy(E) € {0,1} or ¢;(E)* = —2 and ¢,(F) = 0.

By Lemma 3.2 there is a Kéhler class w on X such that ¢;(E)-w = 0 and by
Lemma 4.1 E cannot be stable with respect to w. Thus this is exactly the
case when E cannot admit irreducible structures. The proof of theorem 1.3
is completed.

We can now prove Theorem 1.2. Let X; be a complex torus and w; a Kéhler
class on it. Let a € NS(X7) such that a - w; = 0 and

a® = max{(a+2b)* | b€ NS(X), b-w; =0}

(Recall that the intersection form is negative definite on the orthogonal of
wr in HY).

Let ¢ € Z be such that

c>2ifa=0,
c>1if a? = -2 and

2

a
> — if ¢? < —4.
c_41a <

We have to show that stable rank 2 vector bundles E with ¢, (F) = a and
c2(E) = c exist on (Xj,wy). (The other implication follows from Lemma 4.1
already.)

For this we consider a quaternionic deformation J as in Lemma 4.2. X is
non-algebraic and A; = A;;. Hence

a® = max{(a+2b)* | b€ NS(X;), b-w; =0}
= max{(a + 2b)* | b€ NS(X,)}

and by Theorem 1.3 there exists an irreducible rank 2 vector bundle E; on
Xy with ¢1(FEy) = a, c2(Ey) = ¢. In particular E; is stable with respect to
wy and thus admits an anti-self-dual connection. This connection remains
anti-self-dual on (X7, wy), as the Riemannian structure does not change, and
induces a holomorphic structure E; over X; on the underlying differentiable
bundle. By the Kobayashi-Hitchin correspondence Ej is stable or splits into
a sum of line bundles of degree zero which are invariant under the connection.
In the last case we should get a splitting of E; as a direct sum of holomorphic
line bundles on X ;, which is not the case. Thus Ej is stable and Theorem
1.2 is proved.
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