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2 1 INTRODUCTION

1 Introduction

Let X be a compact complex surface and E a topological complex vector bundle on X

of rank r and Chern classes c1 ∈ H2(X,Z), c2 ∈ H4(X,Z) ∼= Z. When X is algebraic E

admits a holomorphic structure if and only if c1 lies in the Néron-Severi group NS(X) of

X (i.e. the image of c1 in H2(X,R) is of type (1,1)). If moreover c2 is large enough as

compared to r and c2
1 then E admits stable holomorphic structures with respect to any

fixed polarization on X ([21]) and their moduli spaces have nice geometric properties. In

particular they admit natural projective compactifications.

The situation changes if we let X be non-algebraic. For the existence of holomorphic

structures in E, the condition c1 ∈ NS(X) is still necessary but no longer sufficient. In

fact it was proved by Bănică and Le Potier that if E admits a holomorphic structure then

2rc2 − (r − 1)c2
1 ≥ 0

and that holomorphic structures exist when c2 is large enough with respect to r and c1. For

small values of c2 however, the existence problem remains in general open. This situation

is strikingly similar to that of the stable structures. Notice that the inequality above is

exactly the Bogomolov inequality which is satisfied by the topological invariants of any

stable vector bundle. A second problem arising in the non-algebraic case is finding a nice

complex-analytic compactification of the moduli space of stable vector bundles.

In this paper we address these problems as follows.

We use deformations of the complex structure of a torus keeping a suitable Riemannian

metric fixed in order to switch between stable structures in E over algebraic tori and so

called irreducible structures in E over non-algebraic tori. This enables us to solve the

existence problems for rank-two holomorphic vector bundles on non-algebraic tori and

for stable rank-two vector bundles of degree zero on any two-dimensional torus. More

precisely we prove:

Theorem 1.1 A topological rank 2 complex vector bundle E on a non-algebraic two-

dimensional complex torus X admits some holomorphic structure if and only if

c1(E) ∈ NS(X) and 4c2(E)− c1(E)2 ≥ 0.

Theorem 1.2 Let X be a complex 2-dimensional torus and ω a Kähler class on X. Let

c1 ∈ NS(X) such that c1 · ω = 0. Suppose that

c2
1 = max{(c1 + 2b)2 | b ∈ NS(X), b · ω = 0}.

Then a topological rank 2 vector bundle with Chern classes c1, c2 admits a holomorphic

structure stable with respect to ω if and only if

4c2 − c2
1 ≥ 0,
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except when

c1 = 0 and c2 ∈ {0, 1}, or

c2
1 = −2 and c2 = 0.

In the excepted cases the holomorphic structures on E are unstable with respect to any

polarization ω such that c1 · ω = 0.

Remark that c1 · ω = 0 implies c2
1 ≤ 0 by Hodge index and that the condition

c2
1 = max{(c1 + 2a) | a ∈ NS(X), a · ω = 0}

can always be fulfilled by twisting E with a suitable line bundle. Neither the stability nor

the invariant 4c2(E)− c2
1(E) are modified by such twists.

Remark also that if c2
1 < 0 or c1 = 0 there exist polarizations ω such that c1 · ω = 0.

For ”large c2” one can always construct locally free sheaves as extensions of coherent

sheaves of smaller rank. This method cannot work for all c2. In fact, for c2 below a certain

bound all existing holomorphic structures are ”irreducible” i.e. do not admit coherent

subsheaves of lower rank (cf. [5], [3]). Some holomorphic structures for E with ”small

c2” have been constructed in [33]. We fill in the gaps left by [33] in the following way.

We consider two suitable invariant metrics on our torus X and perform two ”quaternionic

deformations” (see 2.1.1 for the definition) such that the deformed torus has a convenient

algebraic structure (see section 3). We construct a stable holomorphic structure in E with

respect to this new complex structure of the base and use anti-self-dual connections to get

a holomorphic structure for E over our original X.

To prove Theorem 1.2 we perform again a quaternionic deformation, this time changing

the structure of X into a non-algebraic one. It is enough then to know which bundles

admit here ”irreducible” structures i.e. without coherent subsheaves of lower rank. So we

reduce ourselves to

Theorem 1.3 When X is a non-algebraic 2-dimensional torus and E a topological rank 2

vector bundle having c1(E) ∈ NS(X) such that c1(E)2 = max{(c1(E)+2a)2 | a ∈ NS(X)},
then E admits an irreducible holomorphic structure if and only if

4c2(E)− c1(E)2 ≥ 0,

unless

c1(E)2 = 0 and c2(E) ∈ {0, 1} or,

c1(E)2 = −2 and c2(E) = 0.

In the excepted cases all holomorphic structures are reducible.
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Remark again that the intersection form on NS(X) is negative semidefinite if X is a

non-algebraic surface and that the condition

c1(E)2 = max{(c1(E) + 2a)2 | a ∈ NS(X)}

is always fulfilled after a suitable twist of E.

In the last section we prove the existence of a natural compactification of the moduli space

of stable structures in E (see Theorem 5.9). For this we have to impose some restrictions

on X and E, the most important of which being to ask that there exist no semi-stable

sheaves having the same topological invariants as E. Under this same condition Buchdahl

constructed a compactification of the moduli space in [7]. But it is not clear whether his

construction leads to a complex analytic space. The compactification we shall consider

will be an open part of the corresponding moduli space of simple sheaves on X and thus

will inherit a natural complex analytic structure. The idea of the proof is to show that the

comparison map to the compactified space of anti-self-dual connections is proper. We have

restricted ourselves to the situation of anti-self-dual connections, rather than considering

the more general Hermite-Einstein connections, since our main objective was to construct

compactifications for moduli spaces of stable vector bundles over non-Kählerian surfaces.

(In this case one can always reduce oneself to this situation by a suitable twist). In

particular, when X is a primary Kodaira surface our compactness theorem combined with

the existence result of [33] gives rise to moduli spaces which are holomorphically symplectic

compact manifolds.

A common feature of our existence and compactness results is the emergence of an exotic

class of holomorphic vector bundles. These are such that all their deformations, including

non locally free ones, are irreducible (cf. Definition 2.17). For the existence question

this is precisely the class for which general construction methods are lacking. For tori

we used direct images through unramified coverings in [31] and [33] and ”quaternionic

deformations” in this paper. (The first method proved itself useful also in the case of

primary Kodaira surfaces whereas the second could be tried for K3 surfaces.) However

when turning to the compactification problem, this same class of holomorphic vector

bundles is the easiest to deal with. In fact over surfaces with odd first Betti number

we could prove the compactness of the moduli space of stable sheaves only for this class.

Acknowledgements My thanks are due to N. Buchdahl and P. Feehan who explained to

me some points from their papers [7] and [10] and to H. Spindler for his constant interest

and many discussions which accompanied the seminar on the geometry of four-manifolds

in Osnabrück.

Note: The present text is up to some minor corrections that of my Habilitationsschrift submitted
in September 1998 at the University of Osnabrück.
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2 Preliminary Material

2.1 Self-duality and complex structures

We recall here some simple basic facts about 4-dimensional geometry. For a thorough

discussion based on the representation theory of the involved symmetry groups see [26].

2.1.1 Self-duality

Let V be a 4-dimensional oriented real vector space. Further let g : V × V → R be a

metric (scalar product) on V . g induces canonical metrics on the dual vector space V ∗

and on the exterior algebra ΛV ∗ by

g(x1 ∧ . . . ∧ xm, y1 ∧ . . . ∧ ym) := det(g(xi, yk))i,k.

Then one defines the Hodge operator

∗ : ΛrV ∗ −→ Λ4−rV ∗

through the formula

α ∧ ∗β = g(α, β)ν,

where α, β ∈ ΛrV ∗ and ν ∈ Λ4V ∗ is the canonical volume form on V . For r = 2 we obtain

an endomorphism of Λ2V ∗ with ∗2 = 1. We denote by Λ+,Λ− its eigenspaces belonging

to the eigenvalues ±1. The elements of Λ+ and Λ− are called self-dual, respectively

anti-self-dual forms.

Λ+,Λ− are maximal positive, respectively negative orthogonal subspaces of Λ2V ∗ for the

”intersection” form:

(α, β) 7−→ α ∧ β/ν = α · β.

Conversely, one can show that starting with the oriented 4-dimensional space V and with

an orthogonal decomposition of Λ2V ∗ into maximal positive and negative subspaces for

the intersection form (it is of course enough to know one of them), there is a metric g

on V , unique up to a constant, such that the given subspaces of Λ2V ∗ coincide with the

eigenspaces of the associated Hodge operator.

2.1.2 Complex structures and quaternionic deformations

We further consider a complex structure I on V which is compatible with the orientation

and with the metric (i.e. g(Iu, Iv) = g(u, v)) and denote by VI the complex vector space

thus obtained. To g and I one can associate an element ωI ∈ Λ2V ∗ by ωI(u, v) := g(u, Iv).

Then g and ωI are the real and respectively the imaginary part of a hermitian metric h

on VI .
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One sees easily that ωI · ωI = g(ωI , ωI) = 2, so ωI belongs to the sphere of radius
√

2 in

Λ+.

One verifies that conversely, each element of this sphere is associated to a unique complex

structure on V compatible with the orientation and with the metric. In fact these complex

structures turn V into a module over the quaternions. (If ωI and ωJ are orthogonal, the

product K := IJ is a new complex structure corresponding to ωI × ωJ in Λ+.) We shall

therefore say that two such complex structures are quaternionic deformations of each

other (with respect to the fixed metric g).

2.1.3 Type decomposition and the positive cone

The complex structure I induces decompositions

VC := V ⊗ C = V 1,0 ⊕ V 0,1, V ∗C := V ∗ ⊗ C = V ∗1,0 ⊕ V ∗0,1

into eigenspaces of the extension of I to VC and V ∗C , and further decompositions into type

Λr
CV
∗

C =
⊕
p+q=r

Λp,q,

where

Λp,q := Λp
C(V ∗1,0)⊗ Λr

C(V ∗0,1).

In particular we get Λ2V ∗ = (Λ2,0 ⊕ Λ0,2)R ⊕ Λ1,1
R where the R-index denotes intersection

of the corresponding space with Λ2V ∗.

The property ωI(Iu, Iv) = ωI(u, v) means that ωI ∈ Λ1,1
R . The two orthogonal decompo-

sitions of Λ2V ∗,

Λ2V ∗ = Λ+ ⊕ Λ− and

Λ2V ∗ = (Λ2,0 ⊕ Λ0,2)R ⊕ Λ1,1
R ,

compare in the following way:

Λ+ = (Λ2,0 ⊕ Λ0,2)R ⊕ 〈ωI〉
Λ1,1

R = 〈ωI〉 ⊕ Λ−,

where 〈ωI〉 is the line spanned by ωI .

The intersection form on Λ1,1
R has type (1,3) and thus the set {η ∈ Λ1,1

R | η · η > 0}
has two components. The condition η(Iu, u) > 0 for one, or equivalently for all u 6=
0, u ∈ V , distinguishes one of these components which we call the positive cone, C :=

{η ∈ Λ1,1
R | η · η > 0, η(Iu, u) > 0 for some u 6= 0, u ∈ V }.

The above facts now show that C and the set of metrics on V compatible with a fixed

complex structure I are in a natural bijective correspondence.
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2.2 Line bundle cohomology on complex tori

Consider a 2g-dimensional real vector space V endowed with a complex structure I, a

lattice Γ ⊂ V and the complex torus X = XI := VI/Γ.

Using translation invariant differential forms on X we get the following natural isomor-

phisms for the de Rham and Dolbeault cohomology groups of X:

Hr(X,R) ∼= ΛrV ∗

Hp,q ∼= Λp,q

Hr(X,Z) ∼= ΛrΓ∗,

where Γ∗ := HomZ(Γ,Z) ⊂ V ∗.

The first Chern class of a holomorphic line bundle on X is an element of

H1,1 ∩H2(X,Z) ∼= Λ1,1 ∩ Λ2Γ∗

and thus it is represented by a real skew-symmetric bilinear form E on V taking integer

values on Γ× Γ and such that

E(Iu, Iv) = E(u, v), for all u, v ∈ V.

To E one associates a hermitian form H on VI such that E = ImH. The pairs (H,α)

consisting of a hermitian form H on VI such that E := ImH is integer valued on Γ × Γ

and a map α : Γ× Γ→ U(1) satisfying

α(γ1 + γ2) = α(γ1)α(γ2)(−1)E(γ1,γ2)

are called Appell-Humbert data. Addition on the first component and multiplication

on the second induce a group structure on the set of Appell-Humbert data. There is a

natural way to construct a holomorphic line bundle L(H,α) on X out of the data (H,α)

and this gives an isomorphism from the group of Appell-Humbert data to the Picard group

of X. Moreover, through this isomorphism c1(L(H,α)) corresponds to E := ImH. Let

KerH : = {u ∈ V | H(u, v) = 0, ∀ v ∈ V }
= {u ∈ V | E(u, v) = 0, ∀ v ∈ V },

k = dim KerH and n the number of negative eigenvalues of H. We denote by pf(E) the

Pfaffian of E: for an oriented symplectic basis (ui)1≤i≤2g of V with respect to E (i.e. such

that E(ui, uj) = 0 for |j − i| 6= g)

pf(E) = det(E(ui, uj+g))0≤i,j≤g.

Remark that there always exists such a basis which is also a basis for Γ over Z. Moreover

this can be chosen in such a way that di|di+1 where di := E(ui, ui+g). In this case we shall

call the sequence (d1, d2, . . . , dg) the type of L(H,α). We can now state the results we

shall need on line bundle cohomology on tori (cf. [18]).
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Theorem 2.1 (Mumford-Kempf)

(a) H i(X,L(H,α)) = 0 for i < n or i > n+ k.

(b) Hn+i(X,L(H,α)) ∼= Hn(X,L(H,α))⊗H0i(KerH/Γ ∩KerH) for 0 ≤ i ≤ k

(c) Hn(X,L(H,α)) = 0 if and only if α
∣∣
Γ∩KerH

6≡ 1.

Theorem 2.2 (Riemann-Roch)

χ(L(H,α)) :=

g∑
i=0

(−1)i dimH i(X,L(H,α)

=
1

g!
c1(L(H,α))g =

1

g!
pf(E).

When g = 2 we distinguish the following cases:

• c1(L(H,α))2 > 0

implies H or −H is positive definite (which is equivalent to saying that L(H,α) or

L(H,α)−1 is ample) and according to this, the cohomology of L(H,α) is concentrated

in degree 0 or 2.

• c1(L(H,α))2 < 0

implies H is indefinite and the cohomology of L(H,α) is concentrated in degree one

• c1(L(H,α))2 = 0 and H 6= 0

imply H or −H is positive semi-definite and thus the cohomology of L(H,α) in

degree 2, respectively 0, must vanish; for suitable α − s all cohomology groups will

vanish in this case.

2.3 Stable bundles and anti-self-dual connections

In this section we recall some definitions and facts on stability and anti-self-dual connec-

tions. For a broader treatment we refer the reader to [20].

Let X be a compact (non-singular) complex surface.

Definition 2.3 A hermitian metric on X is called Gauduchon metric if its associated

Kähler form is ∂∂̄-closed.

By a result of Gauduchon any hermitian metric on X is conformally equivalent to a

Gauduchon metric. We fix such a Gauduchon metric g on X and we denote by ω its

Kähler form. We shall call the couple (X, g) or (X,ω) a polarized surface and ω the

polarization. When ω is d-closed we replace (X,ω) by (X, [ω]) where [ω] is the de Rham



2.3 Stable bundles and anti-self-dual connections 9

cohomology class of ω. Let L be a holomorphic line bundle on X, h a hermitian metric in

its fibers, A the associated Chern connection and FA its curvature. Then the Chern class

c1(L) of L is represented by the closed differential form

c1(L, h) = − 1

2πi
FA

in the de Rham cohomology group. Two such representatives (coming from different

metrics on L) differ by a ∂∂̄-exact form. Thus one can define the degree of L with

respect to g by

degL = degω L = degg L :=

∫
c1(L, h) ∧ ω.

If ω is closed and [ω] is its de Rham cohomology class, one gets

degL = c1(L) · [ω] ∈ H4(X,R) ∼= R.

In general, however the degree is not a topological invariant:

Proposition 2.4 (a) The degree map degg : Pic(X) → R is a Lie-group homomor-

phism.

degg : Pic0(X) −→ R

is surjective when b1(X) is odd and trivial when b1(X) is even.

(b) When X is projective algebraic there exists to any Gauduchon metric g a Kähler

metric g′ such that degg = degg′ on NS(X).

Proof For (a) we refer the reader to [20].

(b) Let X be projective algebraic and ω the Kähler form of a Gauduchon metric g on X.

Let W be the space of real ∂∂̄-closed (1,1)-forms modulo d-(or ∂∂̄-) exact forms and [ω]

the class of ω in W .

NS(X) ⊗ R is a finite dimensional vector subspace of W on which the restriction of the

intersection form from W is non-degenerated. Therefore we may consider the orthogonal

projection p([ω]) ∈ NS(X) ⊗ R. p([ω]) gives the same ”degree function” on NS(X) ⊗ R
as ω.

We want to show that p([ω]) belongs to the ample cone of X. By Kleiman’s criterion

we need only to check that p([ω]) is positive on the closed cone generated by the effective

curves on X. But the elements of this cone are represented by closed positive (1,1)-currents

(cf. [8]) so the positivity condition is verified. �

For a torsion-free sheaf F of rank r on X we set

degF := deg(ΛrF)∨∨.

(For an OX-module G we denote by G∨ the dual sheaf HomOX
(G,OX)).
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Definition 2.5 A coherent torsion-free sheaf F on X will be called stable (respectively

semi-stable) with respect to the polarization ω if for any coherent subsheaf F ′ of F with

0 < rankF ′ < rankF the following inequality holds

degF ′

rankF ′
<

degF
rankF

(respectively
degF ′

rankF ′
≤ degF

rankF
).

This notion has a differential-geometric counterpart through the ”Kobayashi-Hitchin cor-

respondence” which we describe below in the important special case of anti-self-dual con-

nections.

For the space of complexified 2-forms A2 on X we have two decompositions induced fiber-

wise by the decompositions in 2.1:

A2 = A2,0 ⊕A1,1 ⊕A0,2

by type and

A2 = A+ ⊕A−

into self-dual and anti-self-dual parts.

Moreover

A+ = A2,0 ⊕A0,2 ⊕A0 · ω,
A1,1 = A0 · ω ⊕A−

and the sums are pointwise orthogonal. In particular the anti-self-dual forms are those

(1,1)-forms which are pointwise orthogonal to ω. Let now E be a holomorphic vector

bundle on X and h a hermitian metric in the fibers of E. (We shall denote also by E the

associated locally free sheaf). There is then a unique unitary connection A on E compatible

with the holomorphic structure of E, i.e. such that its (0,1)-part is exactly the ∂̄-operator

on sections of E. The associated curvature FA is of type (1,1), i.e. FA ∈ A1,1(X,EndE).

The following converse holds:

Theorem 2.6 If the curvature of a unitary connection in a hermitian vector bundle on

X is of type (1,1) then the (0,1)-part of this connection defines a holomorphic structure

in E.

Definition 2.7 A unitary connection A in a hermitian differentiable vector bundle (E, h)

on (X,ω) is called anti-self-dual if its curvature FA belongs to A−(End(E)). (This defini-

tion depends on the polarization ω, of course). In particular it follows that c1(detE, deth)∧
ω = 0.
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Remark 2.8 If A is an anti-self-dual connection of (E, h) then

c2(E)− 1

2
c2

1(E) ≥ 0.

One has indeed

c2(E)− 1

2
c2

1(E) =
1

8π2

∫
Tr(F 2

A)

=
1

8π2

∫
(|F−A |

2 − |F+
A |)dµ

=
1

8π2

∫
(|F−A |

2dµ =
1

8π2
‖F−A ‖

2 =
1

8π2
‖FA‖2.

Here we have denoted by F+
A , F

−
A the self-dual and anti-self-dual parts of FA, by | | the

punctual norms and by ‖ ‖ the corresponding L2-norms over X.

We shall make use of the following special case of the ”Kobayashi-Hitchin correspondence”:

Theorem 2.9 Let X be a compact complex surface, ω the associated (1,1)-form of a

Gauduchon metric on X and E a differential vector bundle on X.

If E admits an anti-self-dual connection then the induced holomorphic structure in E is

semi-stable (with respect to ω) and E splits holomorphically into a direct sum of stable

vector bundles of degree zero which are invariant under the connection.

Conversely, any stable holomorphic bundle of degree zero on (X,ω) admits a hermitian

metric (up to a positive constant unique) such that the associated connection is anti-self-

dual.

We mention one more property of stable sheaves. First a

Definition 2.10 A coherent sheaf F on X is called simple if its only (global) endomor-

phisms are the constant multiples of the identity.

Remark 2.11 (a) F is simple if and only if every non-zero endomorphism of F is an

automorphism.

(b) If a torsion-free coherent sheaf is stable with respect to some polarization ω on X

then it is simple.

Proof

(a) If every non-zero endomorphism of F is an automorphism then such an endomor-

phism ϕ generates a finite-dimensional field extension of C. But C is algebraically

closed so the extension is trivial.
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(b) Let ϕ be a non-zero endomorphism of a stable sheaf F . Then its image sheaf Imϕ

is non-trivial and torsion-free, thus rank(Imϕ) > 0. If rank(Imϕ) < rank(F) then

the slope inequalities for Imϕ as a subsheaf and as a quotient sheaf of F give

a contradiction. (One uses degF = deg(Imϕ) + deg(Kerϕ)). So rank(Imϕ) =

rank(F). If x ∈ X is a point where F is non-singular and λ an eigen-value of

ϕx : F/mxF → F/mxF , then det(ϕ−λ ·idF) : detF → detF will vanish identically.

Thus rank Im(ϕ− λ · idF) < rankF and ϕ ≡ λ · idF . �

2.4 Existence of holomorphic vector bundles on non-algebraic
surfaces

Let X be a compact complex surface. In this section we recall some facts around the

question: ”Which topological (complex) vector bundles admit holomorphic structures?”

For line bundles the answer is easy. If C∗,O∗ denote the sheaves of germs of continuous,

resp. holomorphic nonvanishing functions on X, then the topological and the holomor-

phic line bundles are classified by H1(X, C∗) and H1(X,O∗) respectively. Out of the

corresponding exponential sequences one gets a commutative square

H1(X, C∗)
c1∼ // H2(X,Z)

H1(X,O∗)

OO

c1 // H2(X,Z),

where c1 denotes taking the first Chern class. Thus a topological line bundle E admits a

holomorphic structure if and only if its first Chern class, c1(E), lies in the Néron-Severi

group of X,

NS(X) := Im(H1(X,O∗) −→ H2(X,Z)).

By Lefschetz’ theorem on (1,1)-classes, NS(X) is the pullback of H1,1(X) through the

natural morphism H2(X,Z)→ H2(X,C), (cf. 2.3).

Consider now topological vector bundles of rank r ≥ 2. By a result of Wu these are

classified by their Chern classes

c1 ∈ H2(X,Z), c2 ∈ H4(X,Z) ∼= Z;

(we shall always identify H4(X,Z) to Z using the orientation). More precisely: for every

(r, c1, c2) ∈ (N \ {0, 1})×H2(X,Z)× Z there exists exactly one topological vector bundle

(up to isomorphism) E having:

rankE = r, c1(E) = c1, c2(E) = c2.

Since E and detE := ΛrE have the same first Chern class, the condition c1(E) ∈ NS(X)

remains necessary for E to admit a holomorphic structure.
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When X is algebraic this condition is also sufficient by a theorem of Scharzenberger, [29],

i.e. for any (r, c1, c2) ∈ (N \ {0, 1})×NS(X)× Z there is a holomorphic vector bundle E

on X with

rank(E) = r, c1(E) = c1, c2(E) = c2.

This result does not hold any more when X is non-algebraic. Bănică and Le Potier showed

that in this case c2 cannot be arbitrarily small. In fact if one defines the discriminant of

a vector bundle E by

∆ = ∆(E) :=
1

r
(c2(E)− (r − 1)

2r
c1(E)2),

one has

Theorem 2.12 ([3]) The discriminant of a holomorphic vector bundle E (of rank r ≥ 2)

on a nonalgebraic-surface is always non-negative:

∆(E) ≥ 0.

The fact which lies behind this result is a theorem of Kodaira asserting that a compact

complex surface is non-algebraic precisely when the intersection form onNS(X) is negative

semi-definite.

We recall at this place that Chern classes for arbitrary coherent sheaves may be easily

introduced over surfaces by using global locally free resolutions. These exist also in the

non-projective case in dimension two as proved by Schuster, [28]. For higher dimensions

more sophisticated constructions are needed; cf. [30], [14]. The above theorem remains

true for torsion-free coherent sheaves E as well.

In order to state the available existence results we need some more definitions.

Definition 2.13 A torsion-free coherent sheaf F on X is called reducible if it admits

a coherent subsheaf F ′ with 0 < rankF ′ < rankF , (and irreducible otherwise). F is

called filtrable if it has a filtration 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr−1 ⊂ Fr = F by coherent

subsheaves Fi with rankFi = i, for 0 ≤ i ≤ r = rankF .

We shall use the same terminology for holomorphic vector bundles thinking of their sheaves

of germs of holomorphic sections.

Remark that if X is algebraic (and thus projective), every torsion-free coherent sheaf F
on X is filtrable. (Consider a non-zero section in a twist of F by some sufficiently ample

line bundle). The situation is different in the non-algebraic case:

Theorem 2.14 There exist irreducible rank-two holomorphic vector bundles on any non-

algebraic surface.
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This theorem has been proved in [3] and [32] by showing that not all deformations of

holomorphic structures of a suitably chosen reducible vector bundle can be reducible.

For filtrable holomorphic structures one has the following existence result due to Bănică

and Le Potier.

Theorem 2.15 [3] If X is non-algebraic then a topological vector bundle E on X admits

a filtrable holomorphic structure if and only if c1(E) ∈ NS(X) and

c2(E) ≥ inf

{
c2

(rankE⊕
i=1

Li

) ∣∣∣ Li ∈ Pic(X)

}
,

with one exception:

When X is a K3 surface without non-constant meromorphic functions,

c2(E) = inf

{
c2

(rankE⊕
i=1

Li

) ∣∣∣ Li ∈ Pic(X)

}
+ 1

and c1(E) ∈ rank(E)NS(X) then there are no holomorphic structures on E.

For the proof one constructs extensions of non locally free sheaves having locally free

middle terms. These middle-terms provide the looked for holomorphic vector bundles.

A different construction strategy would be to start with a known locally free sheaf and

then construct others with larger second Chern class by surgery and deformation. This is

suggested by the following.

Proposition 2.16 Let X be a compact complex surface with Kodaira dimension kod(X) =

−∞ or with kod(X) = 0 and pg(X) = 1. Let E be a holomorphic vector bundle on X

whose rank exceeds 1 and n a positive integer. Then there exists a holomorphic vector

bundle F on X with

rank(F ) = rank(E), c1(F ) = c1(E), c2(F ) = c2(E) + n.

excepting the case when X is K3 without non-constant meromorphic functions, E is a

twist of the trivial line bundle by some line bundle and n = 1.

Proof

Take E as in the Proposition. We may assume that for given rank, rank(E) = r, and first

Chern class, c1(E) = a ∈ NS(X), the second Chern class of E is minimal among all c2(F )

with F holomorphic vector bundle of rank r on X with c1(F ) = a.

We consider a filtration 0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = E by coherent subsheaves such that

Ei/Ei−1 are irreducible of positive ranks ri for 1 ≤ i ≤ n. Since by taking double duals

the second Chern class decreases, the minimality assumption on c2(E) implies that the

quotient sheaves Ei/Ei−1 are locally free.
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When all ri equal 1, E is filtrable and the assertion follows from Theorem 2.15.

Let then ri0 > 1, take n distinct points x1, . . . , xn on X and let F0 be the kernel of a

surjective sheaf morphism from Ei0/Ei0−1 to the skyscraper sheaf Ox1 ⊕ · · · ⊕ Oxn .

Then c1(F0) = c1(Ei0/Ei0−1), c2(F0) = c2(Ei0/Ei0−1) + n and F0 is singular at x1, . . . , xn.

We look for a locally free sheaf F in the versal deformation of F0. If F exists we just

take F =
⊕
i 6=i0

(Ei/Ei−1) ⊕ F . In order to prove that a locally free deformation of F0

exists it is enough to show that the versal deformation of F0 is non-obstructed and thus is

smooth of the expected dimension. Then count dimensions as in Claim 3 in the proof of our

Theorem 5.9. The non-obstructedness follows if we show that Ext2(X;F0,F0) ∼= H2(X,O)

(cf. § 5.2). But Ext2(X,F0,F0) ∼= Hom(X;F0,F0 ⊗ KX)∗. By taking double duals

Hom(X;F0,F0 ⊗KX) injects into Hom(X;F∨∨0 ,F∨∨0 ⊗KX).

Let ϕ be a non-zero homomorphism ϕ : F∨∨0 → F∨∨0 ⊗ KX . Then detϕ : detF∨∨0 →
(detF∨∨0 )⊗K⊗ri0X cannot vanish identically since F∨∨0 = Ei0/Ei0−1 was irreducible. Thus

it induces a non-zero section of K
⊗ri0
X . This forces kod(X) = 0 and Pg(X) = 1 by

assumption.

Let s be a non-zero section of KX and consider λ ·idF∨∨0
⊗s−ϕ ∈ Hom(X;F∨∨0 ,F∨∨0 ⊗KX)

for λ ∈ C. For a point x ∈ X away from the vanishing locus of detϕ and from the vanishing

locus of s the polynomial det(λ · idF∨∨0
⊗ s − ϕ)(x) vanishes for some λ := λx ∈ C \ {0}.

Since kod(X) = 0, det(λx · idF∨∨0
⊗ s − ϕ) will vanish identically on X. Again by the

irreducibility of F∨∨0 this implies that ϕ = λx · idF∨∨0
⊗ s = idF∨∨0

⊗λx · s. Thus the natural

map H0(X,KX) → Hom(X;F∨∨0 ,F∨∨0 ⊗ KX) is an isomorphism, and this goes over to

H0(X,KX)→ Hom(X;F0,F0 ⊗KX) proving our claim. �

The existence problem remains in general open when c2(E) is smaller than the bound given

in the last Theorem. For such a value of c2(E) a holomorphic structure is automatically

non-filtrable. One can consider an even lower bound under which holomorphic structures

will be automatically irreducible.

The problem now is to construct such irreducible bundles (which cannot be deformed to

reducible ones). Then one may use them as building blocks for the construction of new

bundles. We introduce a definition which is actually on the topological invariants of a

vector bundle more than on the bundle itself, but we leave it in this form to preserve

analogy.

Definition 2.17 A torsion-free sheaf F on X is called stably irreducible if every

torsion-free sheaf F ′ with

rank(F ′) = rank(F), c1(F ′) = c1(F), c2(F ′) ≤ c2(F)

is irreducible.

Stably irreducible bundles have been constructed on 2-dimensional tori and on primary
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Kodaira surfaces in [31] and [33]. In both cases this was done by considering direct image

sheaves through unramified coverings of the base surface X.

In the next paragraph we use ”quaternionic deformations” of tori to construct new exam-

ples. This idea could also work for K3 surfaces but in general construction methods for

stably irreducible bundles are lacking.

Finally, since stably irreducible bundles as well as their deformations are stable with

respect to any polarization on X, we shall be able to construct some natural compacti-

fications for their moduli spaces in § 5. We shall further discuss the relation to stability

there.
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3 Vector bundles on non-algebraic 2-tori

Let X be a 2 dimensional non-algebraic torus, and E a differential complex vector bundle

of rank 2 on X having c1(E) ∈ NS(X). As recalled in 2.4 a necessary condition for E to

admit some holomorphic structure is that

∆(E) :=
1

2
(c2(E)− 1

4
c1(E)2) ≥ 0.

We want to prove that this condition is also sufficient. If 4 divides c1(E)2 this has been

proved in [31], [33]. The statement holds also when c1(E)2 = −2 since we can construct a

filtrable vector bundle E as a direct sum of holomorphic line bundles having

∆(E) =
1

2

(
0− 1

4
(−2)

)
=

1

4
,

and then apply the Proposition 2.16 to increase c2. Here we shall deal with the case

c1(E)2 = −2(4k ± 1),

k a positive integer. (Recall that the self intersection of an element of NS(X) is non

positive since X is non-algebraic). If L is a holomorphic line bundle on X then

c1(E ⊗ L) = c1(E) + 2c1(L)

∆(E ⊗ L) = ∆(E),

so it will be enough to solve the existence problem for some vector bundle E ′ of rank 2

with c1(E ′) ∈ c1(E) + 2NS(X) and

∆(E ′) = ∆(E).

In particular we may always suppose that c1(E) is a primitive element in NS(X). X

will be considered as the quotient XI = VI/Γ of a fixed real 4-dimensional vector space

V endowed with a complex structure I through the fixed lattice Γ. Let a be a primitive

element in

NS(XI) ∼= H2(X,Z) ∩H1,1 ∼= Λ2Γ∗ ∩ Λ1,1
I .

We first connect the complex structure I to a new complex structure K by two quaternionic

deformations such that NS(XK) is generated by a and an ample class of a special type.

Lemma 3.1 Let XI be a complex 2-dimensional torus and a ∈ NS(X) a primitive element

such that a2 < 0.

(a) There exists an invariant hermitian metric h on XI which makes a (seen as an

invariant 2-form) anti-self-dual. Moreover this metric may be chosen such that all

integer elements in Λ− are multiples of a.
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(b) If h is chosen as above and g is its real part, then there exists a dense open set

of quaternionic deformations J of I with respect to g, such that NS(XJ) is cyclic

generated by a.

(c) If a2 = −2(4k ± 1) there exists η ∈ H2(X,Z) of type (1, k) with a · η = 0.

For a suitably chosen complex structure J as above there exists a quaternionic de-

formation K of it, with respect to a possibly new metric on XJ , such that η is pro-

portional to the imaginary part ωK of the associated hermitian metric and NS(XK)

is generated over Q by a and η.

Proof

(a) By 2.1.3 it is enough to find an element ωI ∈ C with ωI · a = 0 but ωI · b 6= 0 if

b ∈ NS(X) is not a multiple of a. For the existence of such an ωI we just remark

that the intersection form on the orthogonal of a in Λ1,1
R has type (1,2), since a2 < 0.

(b) Using 2.1.2 one sees that it suffices to take ωJ on the sphere of radius
√

2 in Λ+ and

not belonging to a line of the form (〈b〉 ⊕ Λ−) ∩ Λ+, where b ∈ H2(X,Z)\〈a〉.

(c) We choose a symplectic integer basis for a. Since a was primitive the associated

matrix will have the form:
0 0 1 0
0 0 0 −(4k ± 1)
−1 0 0 0

0 (4k ± 1) 0 0

 .

Any element η ∈ H2(X,Z) is represented in this basis by an integer-valued skew-

symmetric matrix

S =


0 θ α β
−θ 0 γ δ
−α −γ 0 τ
−β −δ −τ 0

 .

The condition a · η = 0 becomes:

δ = α(4k ± 1).

η is of type (1, k) if there exists some basis of Γ with respect to which its associated

matrix is:

Ξ =


0 0 1 0
0 0 0 k
−1 0 0 0

0 −k 0 0

 .

We thus need a transformation matrix M ∈ SL(4,Z) changing Ξ into S by

S = M tΞM
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such that for S, δ = α(4k ± 1). It is easy to see that such an M exists. (In fact one can

show that the η − s satisfying the given conditions span 〈a〉⊥ over R.)

So let now η be of type (1, k) with η · a = 0. Let Λ+ be the space of invariant self-dual

forms with respect to the metric which was fixed in (a).

If η ∈ Λ+ we just take ωK proportional to η on the sphere of radius
√

2 in Λ+. For the

new complex structure K, NS(XK) will be generated over Q by a and η. Let indeed

b = c · η + µ ∈ NS(XK) with c ∈ R and µ ∈ Λ−. Since η · b = cη2 is an integer, c must be

rational and µ lies in Λ− ∩H2(X,Q) = Q · a.

When η /∈ Λ+ we have to change the metric on X. We do this as follows. Since η /∈
Λ+, η⊥ ∩ Λ+ is a 2-dimensional subspace of Λ+. Let ω be an element of the sphere of

radius
√

2 in Λ+ around 0, which is orthogonal to η⊥ ∩ Λ+. In fact ω is proportional to

the projection of η on Λ+. We choose ωJ as in (b) but close to ω. We claim that the

intersection form is positive definite on (Λ2,0
J ⊕ Λ0,2

J )R ⊕ 〈η〉.

Indeed, let ωK :=
√

2·η
η2 , ν ∈ (Λ2,0

J ⊕Λ0,2
J )R = ω⊥J ∩Λ+ of norm

√
2 and consider an element

sωK + tν in (Λ2,0
J ⊕ Λ0,2

J )⊕ 〈η〉; s, t ∈ R. We have (sωK + tν)2 = 2s2 + 2t2 + 2stωK · ν =

2s2 + 2t2 + 2st ω+
K · ν, where ωK = ω+

K +ω−K is the decomposition in self-dual and anti-self-

dual parts of ωK . There exists a real number c depending on η and Λ+ such that ω+
K = cω.

When ωJ is sufficiently close to ω we have |ω+
K · ν| = |cω · ν| < 1

2
for all ν − s, hence our

claim. Thus we may view (Λ2,0
J ⊕Λ0,2

J )R ⊕ 〈η〉 as the space of self-dual forms with respect

to a new Riemannian metric g′ which is compatible with J .

Since NS(XJ) is generated by a, a will span Λ−g′ ∩H2(X,Z) too. The complex structure

K corresponding to ωK is the quaternionic deformation of J (with respect to g′) we have

been looking for. �

The next move is to construct a stable vector bundle E on XK with c1(E) = a and smallest

possible c2(E), i.e. such that ∆(E) = 1
4
.

Lemma 3.2 Let XK be a complex 2-dimensional torus whose Néron-Severi group is gen-

erated over Q by a and η where a is primitive with a2 = −2(4k ± 1), k a positive integer

and η is an ample class of type (1, k) orthogonal to a. Then there exists a rank 2 vector

bundle E on XK, stable with respect to η and having c1(E) = a, c2(E) = 1
4
(a2 + 2).

Proof

We first prove the existence of a holomorphic rank 2 vector bundle E on XK with the given

invariants which is simple. We begin with the case a2 = −2(4k + 1). Let A,L be line

bundles on XK having c1(A) = a, c1(L) = η. We have χ(A−1 ⊗ L−2) = 1
2
(a + 2η)2 = −1

by Riemann-Roch hence Ext1(X;L⊗A, L−1) ∼= H1(XK , A
−1⊗L−2) 6= 0 and there exists

a nontrivial extension

0 −→ L−1 −→ E −→ A⊗ L −→ 0.
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Notice that E has the required Chern classes. The fact that E is simple is implied by the

vanishing of Hom(L−1, A⊗ L) and of Hom(A⊗ L, L−1) as one can easily check.

Let now a2 = −2(4k− 1), k ≥ 1. As before we consider two line bundles A and L on XK

having c1(A) = a and c1(L) = η. Since L is ample and (2η + a)2 = 2 > 0, the bundle

L2⊗A will have a nontrivial section vanishing on a divisor, say D. For numerical reasons

D must have a reduced component. We may then choose a point p on the regular part of

D, seen as a subvariety of XK . Let Z be the reduced subspace of XK consisting of the

point p.

We want to construct E as the middle term of an extension

0 −→ L−1 −→ E −→ IZ ⊗ A⊗ L −→ 0.

Such an extension is given by an element θ ∈ Ext1(XK ; IZ ⊗A⊗ L, L−1). By a criterion

of Serre E is locally free if and only if the image of θ through the canonical mapping

Ext1(XK ; IZ ⊗ A⊗ L, L−1) −→ H0(XK , Ext1(IZ ⊗ A⊗ L, L−1))

generates the sheaf Ext1(IZ ⊗ A⊗ L, L−1)); cf. [25] I.5.

From the exact sequence of the first terms of the Ext spectral sequence.

0 −→ H1(XK ;Hom(IZ ⊗ A⊗ L, L−1))

−→ Ext1(XK ; IZ ⊗ A⊗ L, L−1) −→ H0(XK , Ext1(IZ ⊗ A⊗ L, L−1))

−→ H2(XK ,Hom(IZ ⊗ A⊗ L, L−1)) −→ Ext2(XK ; IZ ⊗ A⊗ L, L−1),

we see that in our situation

Ext1(XK , IZ ⊗ A⊗ L, L−1) −→ H0(XK , Ext1(IZ ⊗ A⊗ L, L−1))

is an isomorphism, and since

Ext1(IZ ⊗ A⊗ L, L−1) ∼= OZ ,

a non-zero θ will give a locally free middle term E.

Let then E be such a locally free sheaf. We shall prove that E is simple. The first term

of the exact sequence

0 −→ Hom(E,L−1) −→ End(E) −→ Hom(E, IZ ⊗ A⊗ L)

vanishes, so it will be enough to prove that

Hom(E, IZ ⊗ A⊗ L) ∼= H0(XK , E
∨ ⊗ IZ ⊗ A⊗ L) ∼= H0(XK , E ⊗ IZ ⊗ L)

is one-dimensional. But this holds since

H0(XK , IZ ⊗ IZ ⊗ L2 ⊗ A) ∼= H0(XK , IZ ⊗ IZ(D))
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is one-dimensional; (use the fact that p is a simple point on the regular part of D and that

D does not move, so I2
Z(D) can have no global section).

We now turn to the proof of the stability of E (in both cases).

Suppose E were not stable. There would exist then a locally free subsheaf B of rank 1 of

E having degη B ≥ 0. Let

b := c1(B) = sη + ta; s, t ∈ Q.

Since η and a are primitive, s and t must be either both in Z or both in 1
2
· Z. Moreover,

degB ≥ 0 is equivalent to s ≥ 0. We may also suppose that E/B is torsion-free.

Thus there exists a 2-codimensional subspace Y ofXK such that E sits in an exact sequence

0 −→ B −→ E −→ IY ⊗ A⊗B−1 −→ 0.

Hence

1

4
(a2 + 2) = c2(E) = b(a− b) + c2(IY ) = b(a− b) + h0(OY ).

On the other side, since E is simple

0 = Hom(IY ⊗ A⊗B−1, B) = H0(A−1 ⊗B2)

and thus (2b− a)2 ≤ 0. This further gives 4h0(OY ) ≤ 2, hence Y = ∅ and (2b− a)2 = −2.

Using the two exact sequences we have for E and again the fact that E is simple we get

H0(L⊗ A⊗B−1) 6= 0 and H0(L−1 ⊗ A−1 ⊗B) = 0,

hence s ∈ {0, 1
2
}. But then b cannot fulfill the condition (2b− a)2 = −2. �

Proof of Theorem 1.1

We start with a non-algebraic torus XI , a primitive element a ∈ NS(XI) with a2 =

−2(4k ± 1), k ≥ 1, and a differentiable vector bundle E on XI with c1(E) = a and

∆(E) :=
1

2

(
c2(E)− c1(E)2

4

)
=

1

4
.

We shall show that E admits a holomorphic structure.

Consider deformations XJ , XK of XI as in Lemma 3.1. Now Lemma 3.2 shows the ex-

istence over (XK , η) of a stable holomorphic structure on E. By the Kobayashi-Hitchin

correspondence we get an anti-self-dual connection on E with respect to the Riemannian

metric which corresponds to η. The curvature of this connection remains of type (1,1)

when considered on XJ , and thus gives a holomorphic structure EJ on E over XJ . Now

1

4
= ∆(E) <

c1(E)2

8
= k ± 1

4
.
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By Theorem 2.15 EJ must be irreducible. Thus EJ is stable with respect to any po-

larization on XJ . In particular EJ has an anti-self-dual connection with respect to ωJ
too.

By deforming back to XI we obtain a holomorphic structure EI on E over XI in the same

way as on XJ .

By Proposition 2.16 any rank 2 topological vector bundle with c1(E) = a and ∆(E) ≥ 0

will admit some holomorphic structure. �
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4 Stability versus irreducibility

Irreducible vector bundles are stable with respect to any polarization on the base surface.

In particular they admit anti-self-dual connections if their associated determinant bundles

do.

In this paragraph we construct stable vector bundles of rank two on any polarized 2-

dimensional torus X using the anti-self-dual connections which exist on irreducible vector

bundles over some non-algebraic quaternionic deformation of X. In order to do this we

first prove Theorem 1.3 which tells us which rank 2 vector bundles on a non-algebraic torus

admit irreducible structures.

We start with a non-existence result.

Lemma 4.1 Let X be a 2-dimensional complex torus, ω a Kähler class on it and a ∈
NS(X). When a = 0 and c ∈ {0, 1} or when a2 = −2, a · ω = 0 and c = 0, there exists

no stable (with respect to ω) rank 2 vector bundle E on X with c1(E) = a and c2(E) = c.

Proof

Suppose that E is a stable rank 2 vector bundle on X of degree zero with respect to ω.

We consider its Fourier-Mukai transform:

Let P be the Poincaré line-bundle on X × Pic0(X) where Pic0(X) denotes the variety of

topologically trivial holomorphic line bundles on X. Let p1 : X ×Pic0(X)→ X, p2 : X ×
Pic0(X)→ Pic0(X) be the projections and E∧ := R1p2∗(p

∗
1(E)⊗P). Since H0(X;E ⊗L)

and H2(X;E ⊗ L) vanish for all L ∈ Pic0(X) it follows that E∧ is locally free of rank

−χ(E) = c2(E)− 1
2
c1(E)2.

When one computes the Chern classes of E∧ with Grothendieck-Riemann-Roch, one gets:

rank(E∧) = c2(E)− 1

2
c1(E)2,

rankE = c2(E∧)− 1

2
c1(E∧)2

= c2(E∧)− 1

2
c1(E)2,

hence c2(E∧) = 2 + 1
2
c1(E)2.

Thus in the considered cases we get rank(E∧) ≤ 1 and c2(E∧) 6= 0 which contradicts the

locally freeness of E∧. �

Next we need a reformulation of part (b) of Lemma 3.1 which will ensure the existence of

a convenient quaternionic deformation of I.

Lemma 4.2 Let (XI , ωI) be a polarized 2-dimensional torus. There exists then a quater-

nionic deformation J of I such that NS(XJ) ⊂ Λ−.
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The proof is the same as for part (b) of Lemma 1: just take ωJ on the sphere of radius√
2 in Λ+ and not on lines of the type (〈b〉 ⊕ Λ−) ∩ Λ+ with b ∈ H2(X,Z) \ Λ−.

With these preparations the proofs of theorems 1.3 and 1.2 will follow from our Theorem

1.1 and the argument in [3] § 5 where irreducible vector bundles are found in the versal

deformation of reducible ones provided that the discriminant is sufficiently large.

More precisely, if X is a non-algebraic torus and E is a holomorphic rank 2 vector bundle on

X with c1(E) primitive in NS(X), then it is proved in [3] 5.10 that there exist irreducible

vector bundles in the versal deformation of E provided

∆(E) ≥ 1 +
1

8
c1(E)2.

Now let E be a topological vector bundle of rank 2 on a non-algebraic torus X with

c1(E) ∈ NS(X) and ∆(E) ≥ 0. We investigate when E admits an irreducible holomorphic

structure. We may suppose that c1(E) is a primitive element in NS(X), otherwise we twist

by a line bundle, etc. By Theorem 1.1 E admits a holomorphic structure which we denote

also by E. By Theorem 2.15 this holomorphic structure is necessarily irreducible if

∆(E) < −1

8
c1(E)2.

By the above mentioned result from [3] we find an irreducible structure in the versal

deformation of E as soon as

∆(E) ≥ 1 +
1

8
c1(E)2.

It remains to consider the case when

−1

8
c1(E)2 ≤ ∆(E) < 1 +

1

8
c2

1(E).

But now

c1(E)2 = 0 and c2(E) ∈ {0, 1} or c1(E)2 = −2 and c2(E) = 0.

By Lemma 3.1 there is a Kähler class ω on X such that c1(E) · ω = 0 and by Lemma 4.1

E cannot be stable with respect to ω. Thus this is exactly the case when E cannot admit

irreducible structures. The proof of theorem 1.3 is completed.

We can now prove Theorem 1.2. Let XI be a complex torus and ωI a Kähler class on it.

Let a ∈ NS(XI) such that a · ωI = 0 and

a2 = max{(a+ 2b)2 | b ∈ NS(X), b · ωI = 0}.

(Recall that the intersection form is negative definite on the orthogonal of ωI in H1,1).

Let c ∈ Z be such that

c ≥ 2 if a = 0,

c ≥ 1 if a2 = −2 and

c ≥ a2

4
if a2 ≤ −4.
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We have to show that stable rank 2 vector bundles E with c1(E) = a and c2(E) = c exist

on (XI , ωI). (The other implication follows from Lemma 4.1 already.)

For this we consider a quaternionic deformation J as in Lemma 4.2. XJ is non-algebraic

and Λ−I = Λ−J . Hence

a2 = max{(a+ 2b)2 | b ∈ NS(XI), b · ωI = 0}
= max{(a+ 2b)2 | b ∈ NS(XJ)}

and by Theorem 1.3 there exists an irreducible rank 2 vector bundle EJ on XJ with

c1(EJ) = a, c2(EJ) = c. In particular EJ is stable with respect to ωJ and thus ad-

mits an anti-self-dual connection. This connection remains anti-self-dual on (XI , ωI), as

the Riemannian structure does not change, and induces a holomorphic structure EI over

XI on the underlying differentiable bundle. By the Kobayashi-Hitchin correspondence EI
is stable or splits into a sum of line bundles of degree zero which are invariant under the

connection. In the last case we should get a splitting of EJ as a direct sum of holomorphic

line bundles on XJ , which is not the case. Thus EI is stable and Theorem 1.2 is proved.
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5 Compactifying moduli spaces of stable bundles

5.1 The stable irreducibility condition

In this paragraph we show that certain components of the moduli space of simple sheaves

over a compact complex surface X are compact. This will always work over the stable

irreducible range. However we should like to point out here that when X is Kählerian one

can relax the stable irreducibility condition in the following way.

Let g be a Gauduchon metric on X with Kähler form ω and let Mst(E,L) denote the

moduli space of stable holomorphic structures in a vector bundle E of rank r > 1, deter-

minant L ∈ Pic(X) and second Chern class c ∈ H4(X,Z) ∼= Z. We consider the following

condition on (r, c1(L), c):

(*) every semi-stable vector bundle E with rank(E) = r,

c1(E) = c1(L) and c2(E) ≤ c is stable.

Under this condition Buchdahl constructed a compactification of Mst(E,L) in [7]. We

shall show that under this same condition one can compactify Mst(E,L) allowing simple

coherent sheaves in the border. For simplicity we shall restrict ourselves to the case

degω L = 0. When b1(X) is odd we can always reduce ourselves to this case by a suitable

twist with a topologically trivial line bundle; (see the following Remark).

The condition (*) takes a different aspect according to the parity of the first Betti number

of X or equivalently, according to the existence or non-existence of a Kähler metric on X.

Remark 5.1 (a) When b1(X) is odd (*) is equivalent to: ”every torsion free sheaf F on

X with rank(F) = r, c1(F) = c1(L) and c2(F) ≤ c is irreducible”, i.e. (r, c1(L), c)

describes the topological invariants of a stably irreducible vector bundle.

(b) When b1(X) is even and c1(L) is not a torsion class in H2(X,Zr) one can find a

Kähler metric g such that (r, c1(L), c) satisfies (*) for all c.

(c) When b1(X) is odd or when degL = 0, (*) implies c < 0.

(d) If b2(X) = 0 then there is no coherent sheaf on X whose invariants satisfy (*).

Proof

It is clear that the stable irreducibility condition is stronger than (*). Now if a sheaf F is

not irreducible it admits some subsheaf F ′ with 0 < rankF ′ < rankF . When b1(X) is odd

the degree function degω : Pic0(X) −→ R is surjective, so twisting by suitable invertible

sheaves L1, L2 ∈ Pic0(X) gives a semi-stable but not stable sheaf (L1⊗F ′)⊕(L2⊗(F/F ′))
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with the same Chern classes as F . Since by taking double-duals the second Chern class

decreases, we get a locally free sheaf

(L1 ⊗ (F ′)∨∨ ⊕ (L2 ⊗ (F/F ′)∨∨)

which contradicts (*) for (rank(F), c1(F), c2(F)). This proves (a).

For (b) it is enough to take a Kähler class ω such that

ω(r′ · c1(L)− r · α) 6= 0 for all α ∈ NS(X)/Tors(NS(X))

and integers r′ with 0 < r′ < r. This is possible since the Kähler cone is open in H1,1(X).

For (c) just consider (L⊗ L1)⊕O⊗(r−1)
X for a suitable L1 ∈ Pic0(X) in case b1(X) odd.

Finally, suppose b2(X) = 0. Then X admits no Kähler structure hence b1(X) is odd. If

F were a coherent sheaf on X whose invariants satisfy (*) we should have

∆(F) =
1

r

(
c2 −

(r − 1)

2r
c1(L)2

)
=

1

r
c2 < 0

contradicting Theorem 2.12. �

5.2 The moduli space of simple sheaves

We fix as usual a complex surface X, although most constructions here should work over

a general base space.

The existence of a coarse moduli space SplX for simple (torsion-free) sheaves over a com-

pact complex space has been proved in [17] (also in the relative context). The idea is to

consider all versal deformations of simple sheaves over X, to show that they are universal

and to consider the union of these parameter spaces modulo the natural equivalence re-

lation; cf. [27]. The resulting complex space will be possibly non-Hausdorff. Each of its

points will have a neighborhood isomorphic to the base of the versal deformation of the

corresponding simple sheaf.

The following is a well-known separation criterion for the moduli space of simple sheaves.

Remark 5.2 If F1,F2 represent distinct non-separated classes of isomorphism of simple

sheaves in SplX then there exist non-trivial morphisms ε1 : F1 → F2, ε2 : F2 → F1 such

that ε1 ◦ ε2 = 0 and ε2 ◦ ε1 = 0.

In particular when F1 and F2 are stable with respect to some polarization on X, [F1] and

[F2] are separated in SplX .

Proof
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If [F1], [F2] are non-separated in SplX one gets sequences of points s1,n and s2,n converging

to the centers of the bases of versal deformations of F1 and F2 and such that Fs1,n
∼= Fs2,n .

By semi-continuity one deduces Hom(X;F1,F2) 6= 0 and Hom(X;F2,F1) 6= 0, (cf. [4]).

Hence non-trivial morphism ε1 : F1 → F2, ε2 : F2 → F1 exist. Since F1,F2 are simple but

non-isomorphic we have

ε1 ◦ ε2 = 0 and ε2 ◦ ε1 = 0.

Suppose now that F1,F2 are stable with respect to some polarization on X and let ε1, ε2
be morphisms as above.

Then
degF1

rankF1

<
deg Im(ε1)

rank Im(ε1)
<

degF2

rankF2

<
deg Im(ε2)

rank Im(ε2)
<

degF1

rankF1

gives a contradiction. (One could have relaxed the stability assumption on one of the

sheaves to semi-stability.) �

In order to give a better description of the base of the versal deformation of a coherent

sheaf F we need to compare it to the deformation of its determinant line bundle detF .

For surfaces the determinant line bundle may be constructed using a global locally free

resolution for F . (A more general construction is done in [16]). In fact, one can show that

locally free resolutions exist also in the relative case.

Proposition 5.3 Let X be a nonsingular compact complex surface, (S, 0) a complex space

germ, F a coherent sheaf on X × S flat over S and q : X × S → X the projection. If the

central fiber F0 := F|X×{0} is torsion-free then there exists a locally free resolution of F
over X × S of the form

0 −→ q∗G −→ E −→ F −→ 0

where G is a locally free sheaf on X.

Proof

In [28] it is proven that a resolution of F0 of the form

0 −→ G −→ E0 −→ F0 −→ 0

exists on X with G and E0 locally free on X as soon as the rank of G is large enough and

H2(X,Hom(F0, G)) = 0.

We only have to notice that when F0 and G vary in some flat families over S then one

can extend the above exact sequence over X × S. For this we use the spectral sequence

Hp(S, Extq(p;F , q∗G)) =⇒ Extp+q(X × S; F , q∗G)
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relating the relative and global Ext-s. Here p : X × S → S denotes the projection. There

is an exact sequence

0 −→ H1(S, p∗Hom(F , q∗G)) −→ Ext1(X × S,F , q∗G)

−→ H0(S, Ext1(p;F , q∗G)) −→ H2(S, p∗Hom(F , q∗G)).

If we choose S to be Stein we thus get surjectivity for the natural map

Ext1(X × S;F , q∗G) −→ H0(S, Ext1(p;F , q∗G)).

We can apply the base change theorem for the relative Ext1 sheaf if we know that

Ext2(X;F0, G) = 0 (cf. [4] Korollar 1). But in the spectral sequence

Hp(X, Extq(F0, G)) =⇒ Extp+q(X;F0, G)

relating the local Ext−s to the global ones, all degree two terms vanish since

H2(X;Hom(F0, G)) = 0 by assumption.

Thus by base change

Ext1(X;F0, G) ∼= Ext1(p;F , q∗G)0

/
mS,0 · Ext1(p;F , q∗G)

and the natural map

Ext1(X × S;F , q∗G) −→ Ext1(X;F0, G)

given by restriction is surjective. �

Let X,S and F be as above. Proposition 5.3 allows us to define a morphism

det : (S, 0) −→ (Pic(X), detF0)

by associating to F its determinant line bundle detF . More generally if F has a

locally free resolution

0 −→ F−m −→ . . . −→ F−1 −→ F 0 −→ F −→ 0

then detF :=
⊗
i

det(F i)(−1)i
where

detF i := Λrank(F i)F i.

We get a line bundle detF on X × S such that (detF)0 = (detF0) since F is flat. The

wanted map

det : S −→ Pic(X)

follows now from the universal property of Pic(X).

The tangent space at the isomorphy class [F ] ∈ SplX of a simple sheaf F is Ext1(X;F ,F)

since SplX is locally around [F ] isomorphic to the base of the versal deformation of F .

The space of obstructions to the extension of a deformation of F is Ext2(X;F ,F).
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In order to state the next theorem which compares the deformations of F and detF , we

have to recall the definition of the trace maps

trq : Extq(X;F ,F) −→ Hq(X,OX).

When F is locally free one defines trF : End(F) −→ OX in the usual way by taking local

trivializations of F . Suppose now that F has a locally free resolution F •. (See [30] and

[14] for more general situations.) Then one defines

trF • : Hom•(F •, F •) −→ OX

by

trF • |Hom(F i,F j)=

{
(−1)itrF i , for i = j

0 , for i 6= j.

Here we denoted byHom•(F •, F •) the complex havingHomn(F •, F •) =
⊕
i

Hom(F i, F i+n)

and differential

d(ϕ) = dF • ◦ ϕ− (−1)degϕ · ϕ ◦ dF •
for local sections ϕ ∈ Homn(F •, F •). trF • becomes a morphism of complexes if we see OX
as a complex concentrated in degree zero.

Thus trF • induces morphisms at hypercohomology level. Since the hypercohomology

groups of Hom•(F •, F •) and of OX are Extq(X;F ,F) and Hq(X,OX) respectively, we

get our desired maps

trq : Extq(X;F ,F) −→ Hq(X,OX).

Using tr0 over open sets of X we get a sheaf homomorphism tr : End(F) −→ OX . Let

End0(F) be its kernel. Then we have a naturally split exact sequence:

0 −→ OX −→ End(F) −→ End0(F) −→ 0

inducing a commutative diagram:

Hq(X,OX)⊕Hq(X, End0(F)) Hq(X, End(F))

Hq(tr)

��

// Extq(X;F ,F)

trq
uullllllllllllll

Hq(X,OX).

In particular trq are always surjective. If one denotes the kernel of trq : Extq(X;F ,F) −→
Hq(X,OX) by Extq(X,F ,F)0 one gets natural mapsHq(X, End0(F)) −→ Extq(X,F ,F)0,

which are isomorphisms for F locally free.

This construction generalizes immediately to give trace maps

trq : Extq(X;F ,F ⊗N) −→ Hq(X,N)

for locally free sheaves N on X or for sheaves N such that T orOX
i (N,F) vanish for i > 0.

The following easy Lemma says that the trace map is graded symmetric with respect to

the Yoneda pairing

Extp(X;F ,G)× Extq(X;G, E) −→ Extp+q(X,F , E).
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Lemma 5.4 If F and G are sheaves on X allowing finite locally free resolutions and

u ∈ Extp(X;F ,G), v ∈ Extq(X;G,F) then

trp+q(u · v) = (−1)p·qtrp+q(v · u).

Theorem 5.5 Let X be a compact complex surface, (S, 0) be a germ of a complex space

and F a coherent sheaf on X ×S flat over S such that F0 := F
∣∣∣
X×{0}

is torsion-free. The

following holds.

(a) The tangent map of det : S → Pic(X) in 0 factorizes as

T0S
KS−→ Ext1(X;F ,F)

tr1−→ H1(X,OX) = T[detF0](Pic(X)).

(b) If T is a zero-dimensional complex space such that OS,0 = OT,0/I for an ideal I of

OT,0 with I ·mT,0 = 0, then the obstruction ob(F , T ) to the extension of F to X × T
is mapped by

tr2 ⊗C idI : Ext2(X;F0,F0 ⊗C I) ∼= Ext2(X;F0,F0)⊗C I −→
−→ H2(X,OX)⊗C I ∼= Ext2(X; detF0, (detF0)⊗C I)

to the obstruction to the extension of detF to X × T which is zero.

Proof

(a) We may suppose that S is the double point (0,C[ε]). We define the Kodaira-Spencer

map by means of the Atiyah class (cf. [13]).

For a complex space Y let p1, p2 : Y × Y → Y be the projections and ∆ ⊂ Y × Y
the diagonal. Tensoring the exact sequence

0 −→ I∆/I2
∆ −→ OY×Y /I2

∆ −→ O∆ −→ 0

by p∗2F for F locally free on Y and applying p1,∗ gives an exact sequence on Y

0 −→ F ⊗ ΩY −→ p1,∗(p
∗
2F ⊗ (OY×Y /I2

∆)) −→ F −→ 0.

The class A(F) ∈ Ext1(Y ;F ,F ⊗ ΩY ) of this extension is called the Atiyah class

of F . When F is not locally free but admits a finite locally free resolution F • one

gets again a class A(F) in Ext1(Y ;F ,F ⊗ ΩY ) seen as first cohomology group of

Hom•(F •, F • ⊗ ΩY ).

Consider now Y = X × S with X and S as before, p : Y → S, q : Y → X the

projections and F as in the statement of the theorem.

The decomposition ΩX×S = q∗ΩX ⊕ p∗ΩS induces

Ext1(X × S; F ,F ⊗ ΩS×X) ∼=
Ext1(X × S; F ,F ⊗ q∗ΩX)⊕ Ext1(X × S; F ,F ⊗ p∗ΩS).
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The component AS(F) of A(F) lying in Ext1(X × S; F ,F ⊗ p∗ΩS) induces the

”tangent vector” at 0 to the deformation F through the isomorphisms

Ext1(X × S; F ,F ⊗ p∗ΩS) ∼= Ext1(X × S; F ,F ⊗ p∗mS,0) ∼=
Ext1(X × S; F ,F0) ∼= Ext1(X;F0,F0).

Applying now tr1 : Ext1(Y ;F ,F⊗ΩY )→ H1(Y ; ΩY ) to the Atiyah class A(F) gives

the first Chern class of F , c1(F) := tr1(A(F)), (cf. [14], [30]).

It is known that

c1(F) = c1(detF), i.e. tr1(A(F)) = tr1(A(detF)).

Now detF is invertible so

tr1 : Ext1(Y, detF , (detF)⊗ ΩY )) −→ H1(Y,ΩY )

is just the canonical isomorphism. Since tr1 is compatible with the decomposition

ΩX×S = q∗ΩX ⊕ p∗ΩS we get tr1(AS(F)) = AS(detF) which proves (a).

(b) In order to simplify notation we drop the index 0 from OS,0,mS,0, OT,0, mT,0 and we

use the same symbols OS,mS,OT ,mT for the respective pulled-back sheaves through

the projections X × S → S, X × T → T .

There are two exact sequences of OS-modules:

0 −→ mS −→ OS −→ C −→ 0, (1)

0 −→ I −→ mT −→ mS −→ 0. (2)

(Use I ·mT = 0 in order to make mT an OS-module.)

Let j : C→ OS be the C-vector space injection given by the C-algebra structure of OS. j

induces a splitting of (1). Since F is flat over S we get exact sequences over X × S

0 −→ F ⊗OS
mS −→ F −→ F0 −→ 0

0 −→ F ⊗OS
I −→ F ⊗OS

mT −→ F ⊗OS
mS −→ 0

which remain exact as sequences over OX . Thus we get elements in

Ext1(X;F0,F⊗OS
mS) and Ext1(X;F⊗OS

mS,F⊗C I) whose Yoneda composite ob(F , T )

in Ext2(X;F0,F ⊗C I) is represented by the 2-fold exact sequence

0 −→ F ⊗OS
I −→ F ⊗OS

mT −→ F −→ F0 −→ 0

and is the obstruction to extending F from X × S to X × T , as is well-known.

Consider now a resolution

0 −→ q∗G −→ E −→ F −→ 0
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of F as provided by Proposition 5.3, i.e. with G locally free on X and E locally free on

X × S. Our point is to compare ob(F , T ) to ob(E, T ).

Since F is flat over S we get the following commutative diagrams with exact rows and

columns by tensoring this resolution with the exact sequences (1) and (2):

0

��

0

��

0

��
0 // q∗G⊗C mS

��

// q∗G

��

// G0

��

// 0

0 // E ⊗OS
mS

//

��

E //

��

E0
//

��

0 (1′)

0 // F ⊗OS
mS

//

��

F //

��

F0
//

��

0

0 0 0

0

��

0

��

0

��
0 // q∗G⊗C I

��

// q∗G⊗C mT

��

// q∗G⊗C mS

��

// 0

0 // E ⊗OS
I //

��

E ⊗OS
mT

��

// E ⊗OS
mS

//

��

0 (2′)

0 // F ⊗OS
I //

��

F ⊗OS
mT

//

��

F ⊗OS
mS

//

��

0

0 0 0

Using the section j : C→ OS we get an injective morphism of OX sheaves

G0

idq∗G⊗j−−−−→ q∗G⊗C mT −→ E ⊗OS
mT

which we call jG.

From (1′) we get a short exact sequence over X in the obvious way

0 −→ (E ⊗OS
mS)⊕ jG(G0) −→ E −→ F0 −→ 0

Combining this with the middle row of (2′) we get a 2-fold extension

0 −→ (E ⊗OS
I)⊕G0 −→ (E ⊗OS

mT )⊕G0 −→ E −→ F0 −→ 0

whose class in Ext2(X;F0, (E ⊗OS
I)⊗G0) we denote by u.
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Let v be the surjection E → F and

v′ :=

(
v ⊗ idI

0

)
: (E ⊗OS

I)⊕G0 −→ F ⊗OS
I,

v′′ =

(
v0

0

)
: E0 ⊕G0 −→ F0,

the OX-morphisms induced by v.

The commutative diagrams

0 // (E ⊗OS
I)⊕G0

//

v′

��

(E ⊗OS
mT )⊕G0

//

(v⊗idmT
0 )

��

//

��

E //

��

F0
//

��

0

0 // F ⊗OS
I // F ⊗OS

mT
// F // F0

// 0

and

0 // (E ⊗OS
I)⊕G0

//

��

(E ⊗OS
mT )⊕G0

//

id
��

E ⊕G0
//

( id
jG

)
��

//

��

E0 ⊕G0
//

v′′

��

0

0 // (E ⊗OS
I)⊕G0

// (E ⊗mT )⊕G0
// E // F0

// 0

show that ob(F , T ) = v′ · u and

(ob(E, T ), 0) = u · v′′ ∈ Ext2(X;E0 ⊕G0, (E ⊗OS
I)⊕G0).

We may restrict ourselves to the situation when I is generated by one element. Then we

have canonical isomorphisms of OX-modules E0
∼= E ⊗OS

I and F0
∼= F ⊗OS

I. By these

one may identify v′ and v′′. Now the Lemma 5.4 on the graded symmetry of the trace

map with respect to the Yoneda pairing gives tr2(ob(F , T )) = tr2(ob(E, T )).

But E is locally free and the assertion (b) of the theorem may be proved for it as in the

projective case by a cocycle computation.

Thus tr2(ob(E, T )) = ob(detE) and since det(E) = (detF) ⊗ q∗(detG) and q∗(detG) is

trivially extendable, the assertion (b) is true for F as well. �

The theorem should be true in a more general context. In fact the proof of (a) is valid

for any compact complex manifold X and flat sheaf F over X × S. Our proof of (b) is

in a way symmetric to the proof of Mukai in [24] who uses a resolution for F of a special

form in the projective case (see also [2]). The middle term of his resolution is a trivial

bundle over X × S, whereas in our case we use Proposition 5.3 to get a resolution whose

last term is trivial in the S-direction. Therefore we need to require that the assumptions

of Proposition 5.3 are fulfilled.

Notation For a compact complex surface X and an element L in Pic(X) we denote by

SplX(L) the fiber of the morphism det : SplX → Pic(X) over L.
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Corollary 5.6 For a compact complex surface X and L ∈ Pic(X) the tangent space to

SplX(L) at an isomorphy class [F ] of a simple torsion-free sheaf F with [detF ] = L is

Ext1(X;F, F )0. When Ext2(X;F, F )0 = 0, SplX(L) and SplX are smooth of dimensions

dim Ext1(X;F, F )0 = 2 rank(F )2∆(F )− (rank(F )2 − 1)χ(OX)

and

dim Ext1(X;F, F ) = dim Ext1(X;F, F )0 + h1(OX)

respectively.

Proof It is enough to notice that tensoring with an element B of Pic(X) gives an iso-

morphism between SplX(L) and SplX(L ⊗ Brank(F )) making det : SplX → Pic(X) into a

fibre bundle over each connected component of Pic(X). One applies then the Theorem

and computes the dimensions with Riemann-Roch. �

We end this paragraph by a remark on the symplectic structure of the moduli space SplX
when X is symplectic.

Recall that a complex manifold M is called holomorphically symplectic if it admits

a global nondegenerate closed holomorphic two-form ω. For a surface X, being holo-

morphically symplectic thus means that the canonical line bundle KX is trivial. The

Enriques-Kodaira classification of surfaces gives us exactly three classes of holomorphi-

cally symplectic surfaces:

– 2-dimensional complex tori

– K3 surfaces (i.e. surfaces X with h1(OX) = 0 and KX trivial) and

– primary Kodaira surfaces (i.e. topologically non-trivial elliptic principal bundles

over elliptic curves).

For such an X, SplX is smooth and holomorphically symplectic as well. The smoothness

follows immediately from the above Corollary since for a simple sheaf F on X one has by

Serre duality:

Ext2(X;F, F ) ∼= Ext0(X;F, F ⊗KX)∗

= Hom(X;F, F ⊗KX)∗ = Hom(X;F, F )∗ ∼= C.

A two-form ω is defined at [F ] on SplX as the composition:

T[F ]SplX × T[F ]SplX ∼= Ext1(X;F, F )× Ext1(X;F, F ) −→

−→ Ext2(X;F, F )
tr2−→ H2(X,OX) ∼= H2(X,KX) ∼= C.

It can be shown exactly as in the algebraic case that ω is closed and nondegenerate on

SplX (cf. [24], [13]).

Moreover, it is easy to see that the restriction of ω to the fibers SplX(L) of det : SplX →
Pic(X) remains nondegenerate, in other words that SplX(L) are holomorphically symplec-

tic subvarieties of SplX .
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5.3 The moduli space of ASD connections and the comparison
map

5.3.1 The moduli space of anti-self-dual connections

In this subsection we recall some results about the moduli spaces of anti-self-dual connec-

tions in the context we shall need. The reader is refered to [9], [12] and [20] for a thorough

treatment of these questions.

We start with a compact complex surface X equipped with a Gauduchon metric g and a

differential (complex) vector bundle E with a hermitian metric h in its fibers. The space

of all C∞ unitary connections on E is an affine space modelled on A1(X,End(E, h)) and

the C∞ unitary automorphism group G, also called gauge-group, operates on it. Here

End(E, h) is the bundle of skew-hermitian endomorphisms of (E, h). The subset of anti-

self-dual connections is invariant under the action of the gauge-group and we denote the

corresponding quotient by

MASD =MASD(E).

A unitary connection A on E is called reducible if E admits a splitting in two parallel

sub-bundles. This happens exactly then when the holonomy group HA of A is reducible,

i.e. when the linear representation of HA on Cr induced by the canonical representation

of U(r) is reducible, where r := rankE.

It is easy to see that the isotropy group of A, ΓA := {u ∈ G | u(A) = A}, coincides with

the centralizer of HA in U(r). On the other side , by Schur’s Lemma a subgroup of U(r)

is irreducible if and only if its centralizer is the center of U(r).

When A is anti-self-dual we consider the following elliptic complex:

0 // A0(End(E, h))
dA // A1(End(E, h))

d+A // A+(End(E, h)) // 0

where dA is the derivation associated to A and d+
A is dA followed by projection on the anti-

self dual component of A2(End(E, h)). Let H i
A be the cohomology groups of this complex.

The cohomology in degree zero H0
A measures the irreducibility of A. Indeed, by the above

remarks, A is irreducible if and only if H0
A
∼= iR · idE. The two other cohomology spaces

describe the tangent space ofMASD at [A] and the obstruction space respectively: locally

around [A],MASD(E) looks like f−1(0)/ΓA, where f : H1
A −→ H2

A is a ΓA-invariant map.

In particular, if A is irreducible and H2
A = 0, then MASD(E) is smooth at A.

In order to improve this smoothness criterion we use as in the previous section the deter-

minant map

det :MASD(E) −→MASD(detE)

which associates to A the connection detA in detE. (On detE we consider the hermitian

metric deth induced by h). This is a fiber bundle over MASD(detE) and the fibers
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MASD(E, [a]) are described locally by the deformation complex

0 // A0(End0(E, h))
dA // A1(End0(E, h))

d+A // A+(End0(E, h)) // 0.

Here [a] denotes the gauge equivalence class of the unitary connection a in detE and

End0(E, h) the bundle of trace-free skew-symmetric endomorphisms of E. If now H i
A,0

are the cohomology groups of this complex, one sees that the vanishing of H0
A,0 and H2

A,0

entails smoothness for MASD(E, [a]) and MASD(E) at [A].

We recalled in 2.3 that the (0,1) part ∂̄A of an anti-self-dual connection A induces a

semi-stable holomorphic structure on E. We can compare the deformation complex for

MASD(E, [a]) to the Dolbeault complex of End0(E) := End0(E, ∂̄A) using the natural

projections

Ai(End0(E, h)) −→ A0,i(End0(E)).

The morphism of complexes thus obtained induces natural isomorphisms on cohomology:

H0(X, End0(E)) ∼= H0
A,0 ⊗ C,

H1(X, End0(E)) ∼= H1
A,0

H2(X, End0(E)) ∼= H2
A,0.

In fact, there is a more precise formulation of the Kobayashi-Hitchin correspondence as

in the following Theorem. We denote by Mst(E) = Mst
g (E) the moduli space of stable

holomorphic structures in E and by Mst(E,L) the fiber of the determinant map det :

Mst(E) −→ Pic(X) over an element L of Pic(X).

Theorem 5.7 Let X be a compact complex surface, g a Gauduchon metric on X, E a

differentiable vector bundle over X, a an anti-self-dual connection on detE (with respect

to g) and L the element in Pic(X) given by ∂̄a on detE. Then Mst(E,L) is an open part

of SplX(L) and the mapping A 7→ ∂̄A gives rise to a real-analytic isomorphism between

the moduli space MASD,∗(E, [a]) of irreducible anti-self-dual connections which induce [a]

on detE and Mst(E,L).

We may also look at MASD(E, [a]) in the following way. We consider all anti-self-dual

connections inducing a fixed connection a on detE and factor by those gauge transforma-

tions in G which preserve a. This is the same as taking gauge transformations of (E, h)

which induce a constant multiple of the identity on detE. Since constant multiples of

the identity leave each connection invariant, whether on detE or on E, we may as well

consider the action of the subgroup of G inducing the identity on detE. We denote this

group by SG, the quotient space byMASD(E, a) and byMASD,∗(E, a) the part consisting

of irreducible connections. There is a natural injective map

MASD(E, a) −→MASD(E, [a])

which associates to an SG-equivalence class of a connection A its G-equivalence class. The

surjectivity of this map depends on the possibility to lift any unitary gauge transformation
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of detE to a gauge transformation of E. This possibility exists if E has a rank-one differen-

tial sub-bundle, in particular when r := rankE > 2, since then E has a trivial sub-bundle

of rank r − 2. In this case one constructs a lifting by putting in this rank-one component

the given automorphism of detE and the identity on the orthogonal complement.

Another case when the lifting exists is when rankE = 2 and detE is topologically trivial,

for now a choice of a non-trivial section in detE leads to an SU(2)-structure in E. The

automorphism of detE leads to a change of SU(2)-structures and it is known that over

a (complex) surface all SU(2)-structures in a given vector bundle are equivalent, being

classified by the second Chern class (cf. [11] Theorem E5).

Finally, a lifting also exists for all gauge transformations of (detE, deth) admitting an

r-th root. More precisely, denoting the gauge group of (detE, deth) by U(1), it is easy to

see that the elements of the subgroup U(1)r := {ur | u ∈ U(1)} can be lifted to elements

of G. Since the obstruction to taking r-th roots in U(1) lies in H1(X,Zr), as one deduces

from the corresponding short exact sequence, we see that U(1)r has finite index in U(1).

From this it is not difficult to infer that MASD(E, [a]) is isomorphic to a topologically

disjoint union of finitely many parts of the form MASD(E, ak) with [ak] = [a] for all k.

5.3.2 The Uhlenbeck compactification

We continue by stating some results we need on the Uhlenbeck compactification of the

moduli space of anti-self-dual connections. References for this material are [9] and [12].

Let (X, g) and (E, h) be as in 5.3.1. For each non-negative integer k we consider hermitian

bundles (E−k, h−k) on X with rankE−k = rankE =: r, (detE−k, deth−k) ∼= (detE, deth),

c2(E−k) = c2(E)− k. Set

M̄U(E) :=
⋃
k∈N

(MASD(E−k)× SkX)

M̄U(E, [a]) :=
⋃
k∈N

(MASD(E−k, [a])× SkX)

M̄U(E, a) :=
⋃
k∈N

(MASD(E−k, a)× SkX)

where SkX is the k-th symmetric power of X. The elements of these spaces are called

ideal connections. The unions are finite since by Remark 2.8 the second Chern class

of a hermitian vector bundle admitting an anti-self-dual connection is bounded below (by
1
2
c2

1).

To an element ([A], Z) ∈ M̄U(E) one associates a Borel measure

µ([A], Z) := |FA|2 + 8π2δZ

where δZ is the Dirac measure whose mass at a point x of X equals the multiplicity mx(Z)

of x in Z. We denote by m(Z) the total multiplicity of Z.
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A topology for M̄U(E) is determined by the following neighborhood basis for ([A], Z):

VU,N,ε([A], Z) = {([A′], Z ′) ∈ M̄U(E) | µ([A′], Z ′) ∈ U and there is an

L2
3 -isomorphism ψ : E−m(Z) |X\N−→ E−m(Z′) |X\N

such that ‖A− ψ∗(A′)‖L2
2(X\N) < ε}

where ε > 0 and U and N are neighborhoods of µ([A], Z) and supp (δZ) respectively.

This topology is first-countable and Hausdorff and induces the usual topology on each

MASD(E−k) × SkX. Most importantly, by the weak compactness theorem of Uhlenbeck

M̄U(E) is compact when endowed with this topology. MASD(E) is an open part of

M̄U(E) and its closure M̄ASD(E) inside M̄U(E) is called the Uhlenbeck compactifi-

cation ofMASD(E). Analogous statements are valid forMASD(E, [a]) andMASD(E, a).

Using a technique due to Taubes, one can obtain a neighborhood of an irreducible ideal

connection ([A], Z) in the border of MASD(E, a) by gluing to A ”concentrated” SU(r)

anti-self-dual connections over S4. One obtains ”cone bundle neighborhoods” for each such

ideal connection ([A], Z) when H2
A,0 = 0. For the precise statements and the proofs we

refer the reader to [9] chapters 7 and 8 and to [12] 3.4. As a consequence of this description

and of the connectivity of the moduli spaces of SU(r) anti-self-dual connections over S4

(see [22]) we have the following weaker property which will suffice to our needs.

Proposition 5.8 Around an irreducible ideal connection ([A], Z) with H2
A,0 = 0 the bor-

der of the Uhlenbeck compactification M̄ASD(E, a) is locally non-disconnecting in

M̄ASD(E, a), i.e. there exist arbitrarily small neighborhoods V of ([A], Z) in M̄ASD(E, a)

with V
⋂
MASD(E, a) connected.

5.3.3 The comparison map

We fix (X, g) a compact complex surface together with a Gauduchon metric on it, (E, h)

a hermitian vector bundle over X, a an unitary anti-self-dual connection on (detE, deth)

and denote by L the (isomorphy class of the) holomorphic line bundle induced by ∂̄a on

detE. Let c2 := c2(E) and r := rankE. We denote by Mst(r, L, c2) the subset of SplX
consisting of isomorphy classes of non-necessarily locally free sheaves F (with respect to

g) with rankF = r, detF = L, c2(F ) = c2.

In 5.3.1 we have mentioned the existence of a real-analytic isomorphism betweenMst(E,L)

andMASD,∗(E, [a]). When X is algebraic, rankE = 2 and a is the trivial connection this

isomorphism has been extended to a continuous map from the Gieseker compactification of

Mst(E,O) to the Uhlenbeck compactification of MASD(E, 0) in [23] and [19]. The proof

given in [23] adapts without difficulty to our case to show the continuity of the natural

extension

Φ :Mst(r, L, c2) −→ M̄U(E, [a]).

Φ is defined by Φ([F ]) = ([A], Z), where A is the unique unitary anti-self-dual connection

inducing the holomorphic structure on F∨∨ (which is locally free and which we pre-endow
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with a hermitian metric as in 5.3.2) and Z describes the singularity set of F with multi-

plicities mx(Z) := dimC(F∨∨x /Fx) for x ∈ X. The main result of this paragraph asserts

that under certain conditions for X and E this map is proper as well.

Theorem 5.9 Let X be a non-algebraic compact complex surface which has either Kodaira

dimension kod(X) = −∞ or has trivial canonical bundle and let g be a Gauduchon metric

on X. Let (E, h) be a hermitian vector bundle over X, r := rankE, c2 := c2(E), a

an unitary anti-self-dual connection on (detE, deth) and L the holomorphic line bundle

induced by ∂̄a on detE. If (r, c1(L), c2) satisfies condition (*) from 5.1 then the following

hold:

(a) the natural map Φ :Mst(r, L, c2) −→ M̄U(E, [a]) is continuous and proper,

(b) any unitary automorphism of (detE, deth) lifts to an automorphism of (E, h) and

(c) Mst(r, L, c2) is a compact complex (Hausdorff) manifold.

Proof

Under the Theorem’s assumptions we prove the following claims.

Claim 1. SplX is smooth and of the expected dimension at points [F ] of Mst(r, L, c2).

By Corollary 5.6 for such a stable sheaf F we have to check that Ext2(X;F, F )0 = 0. When

KX is trivial this is equivalent to dim(Ext2(X;F, F )) = 1 and by Serre duality further to

dim(Hom(X;F, F )) = 1 which holds since stable sheaves are simple. (See Remark 2.11).

So let now X be non-algebraic and kod(X) = −∞. By surface classification b1(X) must

be odd and Remark 5.1 shows that F is irreducible. In this case Ext2(X;F, F ) = 0 as in

the proof of Proposition 2.16.

Claim 2. Mst(r, L, c2) is open in SplX .

This claim is known to be true over the open part of SplX parameterizing simple locally

free sheaves and holds possibly in all generality. Here we give an ad-hoc proof.

If b1 is odd or if the degree function degg : Pic(X) −→ R vanishes identically the assertion

follows from the condition (*). Suppose now that X is non-algebraic with b1 even and

trivial canonical bundle. Let F be a torsion-free sheaf on X with rankF = r, detF = L

and c2(F ) = c2. If F is not stable then F sits in a short exact sequence

0 −→ F1 −→ F −→ F2 −→ 0

with F1, F2 torsion-free coherent sheaves on X. Let r1 := rankF1, r2 := rankF2.

We first show that the possible values for degF1 lie in a discrete subset of R.
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An easy computation gives

−c1(F1)2

r1

− c1(F2)2

r2

= −c1(F )2

r
+ 2r∆(F )− 2r1∆(F1)− 2r2∆(F2).

Since by Theorem 2.12 all discriminants are non-negative we get

−c1(F1)2

r1

− c1(F2)2

r2

≤ −c1(F )2

r
+ 2r∆(F ).

In particular c1(F1)2 is bounded by a constant depending only on (r, c1(L), c2). Since X

is non-algebraic the intersection form on NS(X) is negative semi-definite. In fact, by [6]

NS(X)/Tors(NS(X)) can be written as a direct sum N
⊕

I where the intersection form

is negative definite on N , I is the isotropy subgroup for the intersection form and I is

cyclic. We denote by c a generator of I. It follows the existence of a finite number of

classes b in N for which one can have c1(F1) = b+ αc modulo torsion, with α ∈ N. Thus

degF1 = deg b+ α deg c lies in a discrete subset of R.

Let now b ∈ NS(X) be such that 0 < deg b ≤ | degF1| for all possible subsheaves F1 as

above with degF1 6= 0. We consider the torsion-free stable central fiber F0 of a family of

sheaves F on X × S flat over S. Suppose that rank(F0) = r, detF0 = L, c2(F0) = c2. We

choose an irreducible vector bundle G on X with c1(G) = −b. Then H2(X,Hom(F0, G)) =

0, so if rankG is large enough we can apply Proposition 5.3 to get an extension

0 −→ q∗G −→ E −→ F −→ 0

with E locally free on X × S, for a posssibly smaller S. (As in Proposition 5.3 we have

denoted by q the projection X × S −→ S.) It is easy to check that E0 doesn’t have any

subsheaf of degree larger than − deg b. Thus E0 is stable. Hence small deformations of E0

are stable as well. As a consequence we get that small deformations of F0 will be stable.

Indeed, it is enough to consider for a destabilizing subsheaf F1 of Fs, for s ∈ S, the induced

extension

0 −→ G −→ E1 −→ F1 −→ 0.

Then E1 is a subsheaf of Es with degE1 = degG + degF1 ≥ 0. This contradicts the

stability of Es.

Claim 3. Any neighborhood in SplX of a point [F ] of Mst(r, L, c2) contains isomorphy

classes of locally free sheaves.

The proof goes as in the algebraic case by considering the ”double-dual stratification” and

making a dimension estimate. Here is a sketch of it.

If one takes a flat family F of torsion free sheaves on X over a reduced base S, one may con-

sider for each fiber Fs, s ∈ S, the injection into the double-dual F∨∨s := Hom(Hom(Fs,OX×{s}),OX×{s}).
The double-duals form a flat family over some Zariski-open subset of S. To see this con-

sider first F∨ := Hom(F ,OX×S). Since F is flat over S, one gets (Fs)∨ = F∨s . F∨ is flat

over the complement of a proper analytic subset of S and one repeats the procedure to
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obtain F∨∨ and F∨∨/F flat over some Zariski open subset S ′ of S. Over X × S ′, F∨∨ is

locally free and (F∨∨/F)s = F∨∨s /Fs for s ∈ S ′.

Take now S a neighborhood of [F ] in Mst(r, L, c2). Suppose that

length(F∨∨s0 /Fs0) = k > 0

for some s0 ∈ S ′. Taking S ′ smaller around s0 if necessary, we find a morphism φ from

S ′ to a neighborhood T of [F∨∨s0 ] in Mst(r, L, c2 − k) such that there exists a locally free

universal family E on X×T with Et0 ∼= F∨∨s0 for some t0 ∈ T and (idX ×φ)∗E = F∨∨. Let D

be the relative Douady space of quotients of length k of the fibers of E and let π : D −→ T

be the projection. There exists an universal quotient Q of (idX ×π)∗E on X × D. Since

F∨∨/F is flat over S ′, φ lifts to a morphism φ̃ : S ′ −→ D with (idX × φ̃)∗Q = F∨∨/F .

By the universality of S ′ there exists also a morphism (of germs) ψ : D −→ S ′ with

(idX ×ψ)∗F = Ker((idX ×π)∗E −→ Q). One sees now that ψ ◦ φ̃ must be an isomorphism,

in particular dimS ′ ≤ dimD. Since S ′ and T have the expected dimensions, it is enough

to compute now the relative dimension of D over T . This is k(r + 1). On the other side

by Corollary 5.6 dimS ′−dimT = 2kr. This forces r = 1 which is excluded by hypothesis.

After these preparations of a relatively general nature we get to the actual proof of

the Theorem. We start with (b).

If b−2 (X) denotes the number of negative eigenvalues of the intersection form on H2(X,R),

then for our surface X we have b−2 (X) > 0. This is clear when KX is trivial by classification

and follows from the index theorem and Remark 5.1 (d) when b1(X) is odd. In particular,

taking p ∈ H2(X,Z) with p2 < 0 one constructs topologically split rank two vector bundles

F with given first Chern class l and arbitrarily large second Chern class: just consider

(L⊗P⊗n)⊕ (P ∗)⊗n where L and P are line bundles with c1(L) = l, c1(P ) = p and n ∈ N.

If E has rank two we take F with detF ∼= detE and c2(F ) ≥ c2(E) = c2. (When r > 2

assertion (b) is trivial; cf. section 5.3.1). We consider an anti-self-dual connection A in

E inducing a on detE and Z ⊂ X consisting of c2(F ) − c2(E) distinct points. By the

computations from the proof of Claim 1 we see that A is irreducible and H2
A,0 = 0. Using

the gluing procedure mentioned in section 5.3.2 , one sees that a neighborhood of ([A], Z)

in M̄U(F, [a]) contains classes of irreducible anti-self-dual connections in F . We have seen

in section 5.3.1 that any unitary automorphism of detF lifts to an unitary automorphism

u of F . If we take a sequence of anti-self-dual connections (An) in F with detAn = a and

([An]) converging to ([A], Z), we get by applying u a limit connection B for subsequence

of (u(An)). Since M̄U(F, [a]) is Hausdorff, there exists an unitary automorphism ũ of E

with ũ∗(B) = A. It is clear that ũ induces the original automorphism u on detF ∼= detE

.

In order to prove (a) we need the following elementary topological lemma.

Lemma 5.10 Let π : Z −→ Y be a continuous surjective map between Hausdorff topo-

logical spaces. Suppose Z locally compact, Y locally connected and that there is a locally

non-disconnecting closed subset Y1 of Y with Z1 := π−1(Y1) compact and
◦
Z1 = ∅. Suppose
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further that π restricts to a homeomorphism

π |Z\Z1,Y \Y1 : Z \ Z1 −→ Y \ Y1.

Then for any neighborhood V of Z1 in Z, π(V ) is a neighborhood of Y1 in Y . If in addition

Y is compact, then Z is compact as well.

Proof Under the above assumptions let V be a neighborhood of Z1 in Z. We shall show

that π(V ) is a neighborhood of Y1 in Y . When Z1 = ∅ the conclusion is trivial, so suppose

the contrary holds. Since Z is locally compact, there is a compact neighborhood K of Z1

with K ⊂ V . So Z1 ⊂
◦
K but Z1 6=

◦
K since

◦
Z1 = ∅. The partition

Z = Z1

⋃
∂K

⋃
(
◦
K \ Z1)

⋃
(Z \K)

induces by taking images a partition of Y . π(∂K)
⋂
Y1 = ∅ so W := Y1

⋃
π(
◦
K\Z1)

⋃
π(Z\

K) is an open neighborhood of Y1 in Y .

Let y be a point in Y1 and Uy a connected neighborhood of y with Uy ⊂ W . Y1 is locally

non-disconnecting, hence Uy \ Y1 is contained either in π(
◦
K \Z1) or in π(Z \K). Let now

z ∈ π−1(y) and Vz be a neighborhood of z such that Vz ⊂
◦
K and π(Vz) ⊂ Uy. Since Z1

has no interior points, ∅ 6= π(Vz \ Z1) ⊂ π(
◦
K \ Z1)

⋂
Uy and thus Uy ⊂ π(

◦
K). This shows

that π(
◦
K) is an open neighborhood of Y1.

If Y is compact, then Y \ π(
◦
K) is also compact and Z is the union of the two compact

sets K and π−1(Y \ π(
◦
K)) = Z \

◦
K. Thus Z is compact too and the Lemma is proved.

We complete now the proof of the Theorem by induction on c2. For fixed r and c1(E),

c2(E) is bounded below if E is to admit an anti-self-dual connection; cf. Remark 2.8. If

we take c2 minimal, then Mst(r, L, c2) =Mst(E,L) and MASD,∗(E, [a]) =MASD(E, [a])

is compact. From Theorem 5.7 we obtain that Φ is a homeomorphism in this case.

Take now c2 arbitrary but such that the hypotheses of the Theorem hold and assume that

the assertions of the Theorem are true for any smaller c2. We apply Lemma 5.10 to the

following situation:

Z :=Mst(r, L, c2), Y := M̄U(E, [a]) = M̄ASD(E, [a]) ∼= M̄ASD(E, a).

The last equalities hold according to Claim 3 and Claim 4. Let further Y1 be the bor-

der M̄ASD(E, a) \ MASD(E, a) of the Uhlenbeck compactification and Z1 be the locus

Mst(r, L, c2) \Mst(E,L) of singular stable sheaves in SplX . Z is smooth by Claim 1 and

Hausdorff by Remark 5.2, Y1 is locally non-disconnecting by Proposition 5.8,
◦
Z1 = ∅ by

Claim 3 and π |Z\Z1,Y \Y1 is a homeomorphism by Theorem 5.7. In order to be able to

apply Lemma 5.10 and thus close the proof we only need to check that Z1 is compact.
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We want to reduce this to the compactness of Mst(r, L, c2 − 1) which is ensured by the

induction hypothesis.

We consider a finite open covering (Ti) of Mst(r, L, c2 − 1) such that over each X × Ti
an universal family Ei exists. The relative Douady space Di parameterizing quotients

of length one in the fibers of Ei is proper over (Ti). In fact it was shown in [15] that

Di
∼= P(Ei). If πi : Di −→ Ti are the projections, we have universal quotients Qi of

π∗Ei and Fi := Ker(π∗Ei −→ Qi) are flat over Di. This induces canonical morphisms

Di −→ Z1. It is enough to notice that their images cover Z1, or equivalently, that any

singular stable sheaf F over X sits in an exact sequence of coherent sheaves

0 −→ F −→ E −→ Q −→ 0

with lengthQ = 1 and E torsion-free. Such an extension is induced from

0 −→ F −→ F∨∨ −→ F∨∨/F −→ 0

by any submodule Q of length one of F∨∨/F . (To see that such Q exist recall that

(F∨∨/F )x is artinian over OX,x and use Nakayama’s Lemma). The Theorem is proved.

�

Remark 5.11 As a consequence of this theorem we get that when X is a 2-dimensional

complex torus or a primary Kodaira surface and (r, L, c2) is chosen in the stable irreducible

range as in section 3 or in [1], then Mst(r, L, c2) is a holomorphically symplectic compact

complex manifold.
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