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Introduction

Irreducible Hermite-Einstein (or equivalently, stable) holomorphic vector bundles over a
Kähler compact manifold admit analytic moduli spaces (cf. [I1],[Kim], [Kob], [L-O], [F-
S1],...). These were endowed with a natural Kähler metric by Atiyah and Bott ([A-B])
when the base is a Riemann-surface, by Itoh ([I2]) for a 2-dimensional base, and in higher
dimensions by Kim ([Kim]) and Kobayashi ([Kob]).

On the other side for polarized non-uniruled compact Kähler manifolds moduli spaces
have been constructed in [F2] and [S1]. Generalizing the Petersson-Weil metric on the
Teichmüller space Koiso introduced in [K] a Kähler metric on the moduli space of Kähler-
Einstein manifolds.

In this paper we consider the same problems for pairs of polarized compact Kähler
manifolds and stable holomorphic vector bundles (see the main text for the definitions).
In fact we prove:

Theorem 1 Non-uniruled polarized Kähler manifolds equipped with isomorphism classes
of stable holomorphic bundles admit coarse moduli spaces.

Theorem 2 There exist a natural Kähler metric (Petersson-Weil metric) on the regular
part of the moduli space of polarized pairs of Kähler-Einstein manifolds (under extracon-
ditions when c1 > 0) and projectively flat vector bundles.
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1 Deformation theory

Definitions We denote by (X,
∼
E) a pair consisting of a compact complex manifold of

dimension n, X, and a holomorphic vector bundle on X of rank r,
∼
E.

An isomorphism of the pairs (X,
∼
E), (X ′,

∼
E ′) is a pair of maps (ϕ,Φ) such that ϕ :

X → X ′ is an isomorphism of complex manifolds and Φ :
∼
E→

∼
E ′ is an isomorphism of

holomorphic vector bundles over ϕ, i.e. we have a commutative diagram

Ẽ
∼
Φ−→ Ẽ

′

↓ ↓

X
∼
ϕ−→ X ′

The notation E will be used for the isomorphism class of
∼
E.

A family of pairs over a reduced analytic space with distinguished point (S, 0) is a pair
(X , Ẽ) consisting of a reduced complex space X and a holomorphic vector bundle Ẽ on X
together with a smooth (i.e. open and with smooth fibers) morphism f : X → S. If its
central fiber (f−1(0), Ẽ |f−1(0)) is isomorphic to a given pair (X, Ẽ) then (X , Ẽ , S, 0) will

be also called a deformation of (X, Ẽ). We’ll denote this situation by a diagram

Ẽ −→ Ẽ
↓ ↓
X −→ X
↓ ↓ f
0 −→ S

æ

1.1 Infinitesimal theory

Let ΣX denote the sheaf of infinitesimal automorphisms of the pair (X, Ẽ). It is the
middle term of the Atiyah sequence on X:

0 −→ End(Ẽ) −→ ΣX −→ ΘX −→ 0 (1)

where ΘX is the holomorphic tangent bundle of X (cf. [A; thm.1]). This can be described
as follows.

Let V be an open subset of X, and U = {Ui}i an open covering of X such that Ẽ |Ui
are trivial.

Let fi : Ẽ |Ui→ OrUi be trivializations and γij = fif
−1
j |Uij corresponding transi-

tion functions. Then an element in ΣX(V ) is given by a family of pairs ((λi), v)i ∈
End(OrUi)(V ∩ Ui)×ΘX(V ) such that

λj = γ−1
ij λiγij + γ−1

ij (dγij ∪ v) (2)

3



where ∪ denotes contraction.

A similar law holds for elements in Ap,q(V,ΣX).

A C∞-connection of E gives a C∞ splitting of (1) since in the given trivializations it
is expressed by a family (ω(i))i ∈ A1(End(OrUi)) satisfying

ω(j) = γ−1
ij ω

(i)γij + γ−1
ij dγij.

Thus we associate to a given element ((λi), v)i ∈ Ap,q(V,Σ) as above
(i.e. λi ∈ Ap,q(V, End(OrUi)(V ∩ Ui)), v ∈ A

p,q(V,ΘX) such that (2) holds) a pair
(µ, v) ∈ Ap,q(V, End(E))×Ap,q(V,ΘX)) where µi := fiµf

−1
i satisfy

µi = λi − ω(i) ∪ v (3)

Conversely one can start with (µ, v) satisfying (3) to get ((λi), v) with (2).

The element (f−1
j dγijfi)ij ∈ Z1(U ,Ω1(End(Ẽ))) gives a cohomology class in

H1,1(X, End(Ẽ)) which we denote by Ω(E). Now (2) implies

Proposition 1 a) The equivalence class of the extension (1) is
Ω(E) ∈ H1(X,Ω1(End(Ẽ))) ∼= Ext1(X; ΘX , End(Ẽ)).

b) The edge homomorphisms of the long exact sequence associated to (1),

δq : Hq(X,ΘX) −→ Hq+1(X, End(Ẽ))

are given by the cup product with Ω(E).

Consider now a deformation situation:

Ẽ −→ Ẽ
↓ ↓
X −→ X
↓ ↓ f
0 −→ S

and define ΣX/S := Ker(ΣX → f ∗ΘS). Then we get a commutative diagram with exact
rows and columns:

0 0
↓ ↓

End(Ẽ) = End(Ẽ)
↓ ↓

0 −→ ΣX/S −→ ΣX −→ f ∗ΘS −→ 0
↓ ↓ ‖

0 −→ ΘX/S −→ ΘX −→ f ∗ΘS −→ 0
↓ ↓
0 0

(4)
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We can describe now the Kodaira-Spencer map

ρ : T0S −→ H1(X,ΣX)

in the usual way: take a local section of ΘS, lift it to ΘX (when dealing with Kähler-
Einstein manifolds this will be done in a canonical way, see §3), then to ΣX differentiably
in the middle column of (4), apply ∂̄ and get a closed form in A0,1(ΣX/S) which restricted
to X gives us the wanted cohomology class in H1(X,ΣX). (Thus ρ is the restriction to X
of the natural map f∗f

∗ΘS −→ R1f∗ΣX/S). For the space of infinitesimal deformations

of (X, Ẽ), H1(X,ΣX), we have:

0 −→ H1(X, End(E))/H0(X,ΘX) −→ H1(X,ΣX) −→

−→ Ker(δ1 : H1(X,ΘX) −→ H2(X, End(E))) −→ 0

whereH1(X, End(E))/H0(X,ΘX) describes the infinitesimal deformation space of E mod-
ulo Aut(X) and Kerδ1 the space of infinitesimal deformations of X which come from
deformations of the pair (X,E).

For the automorphism space of the pair (X, Ẽ), H0(X,ΣX), we have:

0→ H0(X, End(E))→ H0(X,ΣX)→ Ker(δ0 : H0(X,ΘX)→ H1(X, End(E)))→ 0.

In paticular this shows that if E is simple and H0(X,ΘX) = 0 then h0(X,ΣX) is con-
stant in a family hence any versal deformation of the pair (X, Ẽ) is universal since the
Schlessinger conditions are satisfied in this case. æ

1.2 Existence of versal deformations for pairs (X, Ẽ)

Although this has been proved in [B] and [S-T] we give here an argument based on results
of Flenner.

For a given pair (X, Ẽ) we consider the trivial extension space Y := X[Ẽ]. Then there
exists a versal deformation of the sequence of natural maps X → Y → X, (cf. [F]), which
we represent by

X −→ X1

α ↓ ↓ α1

Y −→ Y1

β ↓ ↓ β1

X −→ X1

↓ ↓
0 −→ S1

The equation (β1◦α1) |X1,s= idX1,s determines a subspace S2 ⊂ S1 and an induced diagram
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X −→ X2

↓ ↓ α2

Y −→ Y2

↓ ↓ β2

X −→ X2

↓ ↓
0 −→ S2

for which β2 ◦ α2 = id. Now if Z is a subspace of a complex space Q such that J 2
Z = 0

then there is an extension of sheaves of C-algebras:

0 −→ JZ −→ OQ −→ OZ −→ 0

and this is trivial if and only if there is a morphism σ : Q → Z such that σ |Z= idZ . So
we look at the subspace S of S2 where J 2

X2
|Ys= 0 for s ∈ S. This exists and has the

natural universal property by [P], Prop. 1.

We get in the end
X −→ X
↓ ↓
Y = X[Ẽ] −→ Y
↓ ↓
X −→ X
↓ ↓
0 −→ S

with OX = OY/J and J 2 = 0, hence OY = OX [Ẽ ] is the trivial extension of a coherent
sheaf Ẽ which can be assumed locally free for S small. Thus

X[Ẽ] −→ X [Ẽ ]
↓ ↓
0 −→ S

gives us the versal deformation of the pair (X, Ẽ). æ

2 Families of pairs of polarized compact Kähler man-

ifolds and stable vector bundles

Definitions We consider pairs (X,E) consisting of polarized compact Kähler manifolds
(X,λ), (i.e. X is a Kähler manifold and λ is a fixed Kähler class in H2(X,R)), and
isomorphism classes E of stable vector bundles on X with respect to this polarization.
Recall that E is stable with respect to λ if for any coherent subsheaf F ⊂ E with 0 <
rankF < rankE we have

c1(F) ∪ λn−1

rankF
<
c1(E) ∪ λn−1

rankE
,
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where n = dimX. From now on we shall not mention the polarization λ when it is
understood. An isomorphism of such pairs (X,E), (X ′, E ′) comes down to an isomorphism
of polarized Kähler manifolds ϕ : (X,λ) → (X ′, λ′), (ϕ∗λ′ = λ), such that ϕ∗E ′ = E.
Hence in the moduli space of the pairs, (X, Ẽ) and (X,ϕ∗Ẽ) will be identified for ϕ ∈
Aut(X,λ).

A holomorphic family of pairs of polarized compact Kähler manifolds and isomorphism
classes of stable vector bundles will be a family (X , Ẽ , S, 0) as in §1 together with the
prescription of an element λ̃ ∈ R2f∗R such that all restrictions λ̃ |Xs∈ H2(Xs,R) are
Kähler classes on Xs (thus (X → S, λ̃) is a polarized family) and that Ẽs are stable with
respect to λs.

For S small around 0, λ̃ is constant and moreover there exists a locally ∂∂̄-exact real
(1, 1)-form ωX such that its restriction to each fiber ωs := ωX |Xs are Kähler forms of class
λs (see [F-S2]).

An isomorphism of families of pairs as above over S is given in a natural way by a
commutative diagram

Ẽ −→ Ẽ ′
↓ ↓
X −→ X ′

↘ ↙
S

which also preserves the polarizations.

In order to get the existence of versal deformations for pairs of polarized compact
Kähler manifolds and stable vector bundles out of that for pairs as in §1 we need the
following stability property.

Theorem 3 Let (X → S, λ̃) be a polarized family of compact Kähler manifolds and E a
holomorphic vector bundle on X such that E0 := E |X0 is stable for 0 ∈ S. Then there is
a neighbourhood U of 0 in S such that for all s ∈ U , Es := E | Xs are stable.

For the proof we shall rephrase Theorem 3 in terms of Hermite-Einstein vector bundles.

Definition If X is a compact Kähler manifold with Kähler metric g and (E, h) a holo-
morphic Hermitian vector bundle with Ω and R associated curvature form and tensor of
the Hermitian connection, then (E, h) is called Hermite-Einstein if

√
−1ΛΩ = c · IdE (5)

i.e.
gαβ̄Rαβ̄ = c · IdE

with respect to local coordinates (zα) on X, where c is a real constant; (the sumation
convention is used). If, moreover, (E, h) admits no orthogonal holomorphic direct sum
decomposition it is called irreducible Hermite-Einstein.

By the solution of the Kobayashi-Hitchin conjecture there is a 1-1 correspondence
between stable and irreducible Hermite-Einstein bundles. Thus we get the following
equivalent statement:
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Theorem 4 Let (X → S, ωX ) be a holomorphic family of compact complex manifolds with
ωX a locally ∂∂̄-exact (1, 1)-form such that ωX |Xs is a Kähler form on Xs for all s ∈ S.
Let E be a holomorphic vector bundle on X such that E0 admits some metric h0 making
it an irreducible Hermite-Einstein bundle for 0 ∈ S. Then there exist a neighbourhood U
of 0 in S such that for all s ∈ U , Es are irreducible Hermite-Einstein for suitable metrics
hs.

Proof. We can restrict ourselves to the case when S is smooth by passing to a resolution
of singularities for instance.

Let A′′(s) : A0(Es) → A0,1(Es) be a family of integrable semiconnections on the un-
derlying C∞-complex vector bundle E corresponding to the holomorphic structures Es
(see [Kob] for the definitions). One can get such a family by extending the metric h0

smoothly to the whole E and then considering the induced Hermitian connections on
(Es, hs). We denote by Ω(A′′(s)) ∈ A1,1(Xs, End(Es)) the associated curvature forms of
these connections.

Assume A′′(0) is irreducible Hermite-Einstein. Then E0 is simple i.e. any holomorphic
endomorphism is a constant multiple of the identity. By semicontinuity this is also true
in the neighbouring fibers. So it will be enough to show that the Einstein condition (5)
holds for suitable connections on Es.

The idea of finding such connections is standard: one replaces the given connections
using the action of the gauge group. Let GL(E) be the group of C∞ vector bundle
automorphisms of E. GL(E) acts on the space of integrable connections

(A′′, f) 7→ A′′f := f−1 ◦ A′′ ◦ f = A′′ + f−1∂A′′f

such that two integrable connections induce isomorphic holomorphic structures on E
if and only if they lie in the same orbit of GL(E).

Consider the subgroup of GL(E) consisting of constant multiples of the identity and
let G := GL(E)/C∗ · id. We get an action of G on the space of connections.

Take the map

Φ : G× S −→ A0
0(X, End(E))

(f, s) 7−→
√
−1ΛsΩ(A′′(s)f )− c · id

where
A0

0(X, End(E)) = {ϕ ∈ A0(X, End(E)) |
∫

trϕ gdv = 0} (6)

is the space of C∞ endomorphisms of E of trace zero, c is the constant given by the
Einstein condition (5) for A′′(0), and the curvatures Ω(A′′(S)f )) are taken with respect
to the hermitian connections given by A′′(s)f and hs.

Now both the Kähler class of Xs and the first Chern class of Es are constant in s so
firstly one can take the volume element gdv = ωns /n! in (6) with respect to any of the
metrics ωs, and secondly the constants needed for the Einstein condition for A′′(s) will
be the same c.

Thus we have to solve the implicit function equation

Φ(f(s), s) = 0.
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The tangent space at id in G is naturally identified to A0
0(X, End(E)) and we get the

following first partial derivative

D1Φ |
s = 0
f = id

: A0
0(X, End(E)) −→ A0

0(X, End(E))

β 7−→ ∂
∗
∂β = 2β

(see [Kob],ch.VII§4, for related computations in the absolute case), which is bijective since
E0 is simple. Extending now Φ to the Sobolev completions we apply the implicit func-
tion theorem in this context and remark that the solution is smooth since the linearized
equation is elliptic.

Corollary There exist versal deformations of pairs of polarized compact Kähler manifolds
and stable vector bundles.

We define in the usual way the isomorphism functor IsomS((X , E), (X ′, E ′)) of two
families over S of pairs of polarized compact Kähler manifolds and isomorphism by asso-
ciating to each (reduced) analytic space S ′ over S the set of isomorphisms of the pull-backs
of the families to S ′.

Using the representability of the isomorphism functor IsomS(X ,X ′) of the under-
lying polarised families (and also for pairs of spaces (X ,X [E ]), [F1]) one gets that
IsomS((X , E), (X ′, E ′)) is representable by an analytic set IsomS((X , E), (X ′, E ′)) over
S.

For the existence of the moduli space of pairs of polarized non-uniruled compact Kähler
manifolds and isomorphism classes of stable vector bundles it is now enough to show that
IsomS((X , E), (X ′, E ′)) is proper over S, by a general criterion, cf.[S3].

Proposition 2 For two families over S of pairs of polarized non-uniruled Kähler mani-
folds and isomorphism classes of stable vector bundles (X , E), (X ′, E ′) the natural map,

α : IsomS((X , E), (X ′, E ′)) −→ S

is proper.

Proof. One has a factorization of α

IsomS((X , E), (X ′, E ′)) β−→IsomS(X ,X ′) γ−→S
where γ is known to be proper (see [F2], [S1]).

Let now (sν)ν be a sequence in S converging to 0 ∈ S and let ϕν : Xsν
∼−→X ′sν be

isomorphisms such that Esν = ϕ∗sνE
′
sν . Since γ is proper, a subsequence ϕν(µ) converges to

some ϕ0 : X0
∼−→X ′0. Take Hermite-Einstein connections ων , ω

′
ν on Esν and E ′sν respectively.

Then ϕ∗νω
′
ν = ων , (ω′ν)ν converges to ω′0 on E ′0 and (ων)ν converges to ω0 on E0 by the

uniqueness of the Hermite-Einstein connections. Hence we have

ϕ∗ν(µ)ω
′
ν(µ) −→ ϕ∗0ω

′
0
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and
ϕ∗ν(µ)ω

′
ν(µ) = ων(µ) −→ ω0 , for µ→∞.

Thus ϕ∗0ω
′
0 = ω0 showing that E0 = ϕ∗0E ′0 and proving the claim.

Theorem 1 is now proved. æ

3 Representatives in terms of Kähler-Einstein and

Hermite-Einstein metrics for the Kodaira-Spencer

map

We recall that a Kähler compact manifold (X, g) is called Kähler-Einstein if its tangent
bundle with the metric g is Hermite-Einstein i.e.

Ric(g) = k · ωX
where

Ric(g) =
√
−1∂̄∂ lg(det(gαβ̄))

is the Ricci form of g, ωX the Kähler form and k some real constant.

Taking cohomology classes this gives

2πc1(X) = kλX

where λ = λX = [ωX ]. k may be normalized to ±1 or 0, and as such we have the cases:

a) c1(X) negative definite, (k = −1), i.e. the canonical bundle KX is ample. For
canonically polarized manifolds moduli spaces were constructed from Hilbert
schemes. Also the existence and uniqueness of a Kähler-Einstein metric was
proved.

b) c1(X) = 0, (k = 0). The construction of the moduli space of polarized
such manifolds is based upon Yau’s solution of the Calabi problem. (For
the Petersson-Weil metric in this case cf. also [S2]).

c) c1(X) positive definite (k = 1). According to [F-S2] there exist moduli spaces
of Kähler-Einstein manifolds with positive curvature whose automorphism
groups are finite. For the existence of Kähler-Einstein metrics cf. [Siu], [T1],
[T2].

Suppose now (X → S, λ̃) is an effective polarized family of Kähler-Einstein manifolds.
Then one gets a natural Kähler metric (Petersson-Weil metric) on the regular part of S
by taking the inner product of harmonic representatives of Kodaira-Spencer classes. This
can be visualized in the following way.

First one has locally with respect to S a real (1 − 1)-form ωX on X inducing the
Kähler-Einstein forms when restricted to the fibers, ωX |Xs= ωs. For k 6= 0 one just takes
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ωX =

√
−1

k
∂X ∂̄X log g,

where g = g(s) = det(gαβ̄(s))αβ̄. (We denote by (si)i, (zα)α local coordinates on S,
and on the fibers, respectively).

Then one lifts tangent vector fields ∂
∂si
∈ Θ(S) horizontally with respect to ωX to

Θ(X ). Locally the lifts have the form ∂
∂si

+aαi
∂
∂zα

, with aα = aαi = −giβ̄gβ̄α where (gβ̄α) is

the inverse of (gαβ̄)αβ̄. Let Aαβ̄ = Aαiβ̄ := ∂
∂zβ̄

(aαi ) |X0 . Then Aαiβ̄
∂
∂zα
⊗ dzβ̄ ∈ A0,1(X0,Θx0)

will be the harmonic representative for the Kodaira-Spencer class ρ( ∂
∂si

) ∈ H1(X0,Θx0).

Let’s compute now the representatives for Kodaira-Spencer classes in H1(X,ΣX) for
an effective local family of pairs (f : X → S, E) of polarized Kähler-Einstein manifolds and
Hermite-Einstein bundles, in terms of these metrics. Let ωX , hE be global metrics inducing
the given metrics on the fibers. Consider as before a tangent vector field ∂

∂si
∈ ΘS(S), its

horizontal lift

vi =
∂

∂si
+ aαi

∂

∂zα
∈ ΘX (X )

with respect to ωX , and then the lifting to ΣX in (4) of §1, given by the splitting induced
by the associated holomorphic connection of hE , (ω(j))j, for a covering (Uj)j of X . In the
notations of §1 we get a family

((λj), vi) ∈ A0(Uj,OrUj)×A
0(X ,ΘX )

where

λj = ω(j) ∪ vi = ω
(j)
i + aαi · ω(j)

α

by (3), since we want µ = 0. Applying ∂̄ to this element and restricting to the central
fiber X = X0 we get the element

(Ω ∪ vi |X +(Aαβ̄ ∪ ω
(j)
α )dzβ̄, Aαβ̄

∂

∂zα
⊗ dzβ̄)

in A0,1(X,ΣX), where Ω denotes now the curvature form of the holomorphic connection
(ω(j))j on E associated to h.

Using the C∞-splitting again this is identified to the pair

(Ω ∪ vi |X , Aαβ̄
∂

∂zα
⊗ dzβ̄) ∈ A0,1(X, EndE)×A0,1(X,ΘX)

which represents ρ( ∂
∂si

) ∈ H1(X,ΣX).

Its norm with respect to h0 and ω0 gives the looked for expression of the Petersson-Weil
metric:

‖ ∂

∂si
‖2
PW=‖ Aαiβ̄

∂

∂zα
⊗ dzβ̄ ‖2 + ‖ (Riβ̄ + aαi Rαβ̄)dzβ̄ ‖2 . (7)

æ
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4 Kähler property of the Petersson-Weil metric

In this paragraph we prove theorem 2.

We consider simple projectively flat hermitian vector bundles of rank r, (E, h), on a
polarized n-dimensional Kähler manifold (X,λ), (i.e. the associated projectified bundle
P (E) is induced by an irreducible representation π1(X)→ PU(r) := U(r)/U(1)Ir)

Definition In the above situation (X,λ;E, h) shall be called a polarized pair (with factor
c) if moreover

2nπ

r
c1(E) = c · λ (8)

for some (real) constant c.

Proposition 3 Let (X,λ;E, h) be a polarized pair with factor c and ωX =
√
−1gαβ̄dz

α ∧
dzβ̄ representing the polarization λ of X. Then a conformal change of h will be Hermite-
Einstein with respect to ω and in this case the associated curvature is expressed locally
by

Rαβ̄ =
c

n
· gαβ̄ · IdE (9)

Proof. Since (E, h) is projectively flat the curvature tensor associated to its hermitian
connection has locally the form

Rαβ̄ = ϕαβ̄IdE .

h will be adapted to be Hermite-Einstein by the following standard argument.

A conformal change of h, i.e. replacing h by h′ = a · h for a positive smooth function
a, induces a corresponding curvature tensor

R′αβ̄ = Rαβ̄ +
∂2

∂zα∂zβ̄
(log a)IdE =: ϕ

′

αβ̄IdE ,

hence gαβ̄ϕ′αβ̄ = gαβ̄ϕαβ̄ + 2 log a.

How (8) implies
∫
X(c−gαβ̄ϕαβ̄)gdv = 0 which shows that there is a solution of 2 log a =

c− gαβ̄ϕαβ̄. For such an a we have gαβ̄ϕαβ̄ = c showing that (E, h′) is Hermite-Einstein.

In order to prove (9) remark that by (8) the forms n
√
−1ϕ′αβ̄dz

α ∧ dzβ̄ and c · ωX are

cohomologous and hence they differ by a ∂∂̄-exact (1, 1)-form. There exists thus a real
C∞ function χ on X such that

nϕ′αβ̄ = c · gαβ̄ +
∂2

∂zα∂zβ̄
χ .

Taking trace with respect to g we get 2χ = 0 and hence (9).
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In proving the Kähler property for moduli spaces of pairs of polarized Kähler-Einstein
manifolds and stable holomorphic bundles we shall have to restrict ourselves to isomor-
phism classes of polarized pairs as above.

Remark that these form an open and closed subset in the whole moduli space since they
can be described by topological conditions. For this, recall that a Hermite-Einstein vector
bundle E of rank r is projectively flat if and only if [2rc2(E)− (r − 1)c1(E)2] ∪ λn−2 = 0
where λ is the Kähler class of the polarized manifold. (cf.[Kob]).

Remark also that for the Riemann surface case the whole interesting range will be still
covered.

For the proof of theorem 2 we consider (X f−→S, E) an effective local family of polarized
pairs of Kähler-Einstein manifolds and simple projectively flat vector bundles. We use
the conventions and notations of §3.

For ∂
∂si
∈ ΘS(S) and vi = ∂

∂si
+ aσi

∂
∂zσ

its horizontal lift, set

ηi := vi ∪ Ω = (Riβ̄ + aσi Rσβ̄)dzβ̄ + (Rī + aσi Rσ̄)ds
̄

and ηı̄ := (ηi)
∗ =t (η̄i).

Since the Kähler property is known for the contribution in the X -direction of the
Petersson-Weil metric (i.e. for the first term of its expression (7)), we only have to deal
with the E-contribution which is

GPW
ī (s) := (

∂

∂si
,
∂

∂sj
)PW :=

∫
X/S

tr(ηi ∧ η∗̄ ) ∧ ωn−1
X .

These integrals are

GPW
ī (s) =

∫
Xs

trgβ̄α(ηiβ̄ ∧ η∗̄α) gdv .

We shall compute ∂
∂sk
Gī with respect to Lie derivatives Lvk in the vk-direction. First

we need some lemmas. The semi-colon stands for covariant derivative in fiber direction.

Lemma 1 Lvk(vi) = 0

Lemma 2 Lvk(v
∗
̄ ) = −(vk, vj);β̄g

β̄α ∂
∂zα
− (vk, vj);αg

β̄α ∂
∂zβ̄

in local coordinates on X .

Proof. Since coordinate fields on S commute we will have only fiber direction components
for Lvk(vi) = [vk, vi] and Lvk(v

∗
̄ ) = [vk, v̄]. For simplicity we denote ∂i := ∂

∂si
, ∂α := ∂

∂zα
,

. . .

1.

Lvk(vi) = [∂k + aσk∂σ, ∂i + aσi ∂σ] =

=
{
∂k(a

σ
i ) + aλk∂λ(a

σ
i )− ∂i(aσk)− aλi ∂λ(aσk)

}
∂σ.
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Now

∂k(a
σ
i ) = ∂k(g

τ̄σaiτ̄ ) =

= −gτ̄ νgν̄σ∂k(gµν̄) · aiτ̄ + gτ̄σ∂k(aiτ̄ ) =

= gτ̄µgν̄σ∂µ(akν̄) · aiτ̄ − gτ̄σ∂k(giτ̄ ) =

= aµi · aσk;µ − gτ̄µ∂µ(gν̄σ)akν̄ · aiτ̄ − gτ̄σ∂k(giτ̄ )

where the last term is symmetric in i and k. Thus ∂k(a
σ
i )−∂i(aσk) = aµi ·aσk;µ−a

µ
k ·aσi;µ

which replaced in the expression of Lvk(vi) proves Lemma 1.

2. We compute the β̄- component the other one being similar.

Lvk(v
∗
̄ )
β̄ =

[
∂k + aσk∂σ, ∂̄ + aτ̄̄ ∂τ̄

]β̄
=

= ∂k(a
β̄
̄ ) + aσk · aβ̄̄;σ =

= ∂k(g
β̄σāσ) + aσk · aβ̄̄;σ =

= gβ̄γaσk;γ · āσ − gβ̄σ∂k(gσ̄) + aσk · aβ̄̄;σ =

= −gβ̄σ · gk̄;σ + aσ;β̄
k · āσ + aσk · āσ ;β̄ =

= −gk̄;β̄ + (aσk · āσ);β̄

On the other side

(vk, vj) = (∂k + aσi ∂σ, ∂̄ + aτ̄̄ ∂τ̄ ) =

= gk̄ + gkτ̄a
τ̄
̄ + aσk · gσ̄ + aσka

τ̄
̄ gστ̄ =

= gk̄ − akτ̄aτ̄̄ − aσkāσ + akτ̄a
τ̄
̄ =

= gk̄ − aσkāσ

proving the claim of Lemma 2.

Lemma 3 Lvk(Ω) = ∂(vk ∪ Ω)

Proof. We show the equality for the αβ̄-component since the others follow in the same
way. We now use covariant derivative with respect to the hermitian connection of E .

[vk, R]αβ̄ = [∂k + aσk∂σ, R]αβ̄ =

= Rαβ̄;k + aσkRαβ̄;σ +Rσβ̄a
σ
k;α =

= (Rkβ̄ + aσkRσβ̄);α =

= (ηkβ̄);α

Lemma 4 vi ∪ Lvk(Ω) = vk ∪ Lvi(Ω)
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Proof. We use ”≡” for an equality holding modulo symmetric terms in i and k.

vi ∪ Lvk(Ω) = (∂i + aσi ∂σ) ∪ ∂ηk =

= ηkβ̄;i + aσi ηkβ̄;σ =

= Rkβ̄;i + (aσkRσβ̄);i + +aσi Rkβ;σ + aσi a
λ
kRλβ̄;σ + aσi a

λ
k;σRλβ̄ ≡

≡ ∂i(a
σ
k)Rσβ̄ + (aσkRσβ̄;i + aσi Rσβ̄;k) + aσi a

λ
k;σRλβ̄ ≡

≡ ∂i(g
τ̄σ) · akτ̄Rσβ̄ + gτ̄σ∂i(akτ̄ )Rσβ̄ + aσi a

λ
k;σRλβ̄ ≡

≡ aσi;αa
α
kRσβ̄ + aσk;σRλβ̄ ≡

≡ 0

Lemma 5 (Lvk(ωX ))αβ̄ = 0

Proof.

[∂k + aσk∂σ, g]αβ̄ = ∂kgαβ̄ + aσk∂σ(gαβ̄) + gσβ̄∂α(aσk) =

= ∂α(−akβ̄) + ∂α(gσβ̄a
σ
k) =

= 0

Lemma 6 ∂̄∗ηi = ∂̄∗(vi ∪ Ω) = 0

Proof. Here we shall make use of the Einstein property.

In the following computation ω will denote the connection form of E .

0 = ∂i(g
β̄αRαβ̄) =

= ∂i(g
β̄α)Rαβ̄ + gβ̄α∂i(Rαβ̄) =

= gβ̄γaαi;γRαβ̄ + gβ̄α(Rαβ̄;i −
[
ωi, Rαβ̄

]
) =

= gβ̄σaσi;αRσβ̄ + gβ̄αRiβ̄;α =

= gβ̄α(Riβ̄;α + aσi;αRσβ̄ + aσi Rαβ̄;σ) =

= gβ̄α(Riβ̄ + aσi Rσβ̄);α =

= −∂̄∗ηi

Proof of Theorem 2. We need to show that the following partial derivative is symmetric
in i and k.

∂kGij(s) = ∂k

∫
X/S

tr
[
(vi ∪ Ω) ∧ (v∗̄ ∪ Ω)

]
∧ ωn−1

X =

=
∫
X/S

tr
[
(Lvk(vi) ∪ Ω) ∧ (v∗̄ ∪ Ω)

]
∧ ωn−1 +

+
∫
X/S

tr
[
(vi ∪ Lvk(Ω)) ∧ (v∗j ∪ Ω)

]
∧ ωn−1 +

+
∫
X/S

tr
[
(vi ∪ Ω) ∧ (Lvk(v

∗
j ) ∪ Ω)

]
∧ ωn−1 +

+
∫
X/S

tr
[
(vi ∪ Ω) ∧ (v∗̄ ∪ Lvk(Ω))

]
∧ ωn−1 +

+
∫
X/S

tr
[
(vi ∪ Ω) ∧ (v∗j ∪ Ω)

]
∧ Lvk(ωn−1).
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Now the first and last terms are zero by Lemmas 1 and 5 respectively, while the second
one is symmetric by Lemma 4.

For the fourth term we need the (1, 0)-component of

v̄ ∪ Lvk(Ω) = v̄ ∪ ∂(vk ∪ Ω).

∂(vk ∪ Ω) = ∂(ηkβ̄dz
β̄ + ηkl̄ds

l̄) =

= ηkβ̄;αdz
α ∧ dzβ̄ + ηkβ̄;mds

m ∧ dzβ̄ + ηkl̄;αdz
α ∧ dsl̄ + ηkl̄;mds

m ∧ dsl̄

So

(v̄ ∪ Lvk(Ω))α = ηk̄;α + ηkτ̄ ;αa
τ̄
̄ =

= (ηk̄ + ηkτ̄a
τ̄
̄ );α − ηkτ̄ · Aτ̄̄α =

= (vk ∪ v̄ ∪ Ω);α − ηkτ̄ · Aτ̄̄α

Now the fourth term equals at s, using Lemma 6

∫
Xs

tr [(vi ∪ Ω) ∧ ∂(vk ∪ v̄ ∪ Ω)] ∧ ωn−1
Xs −

∫
Xs

tr(ηiβ̄ · ηkτ̄ )Aτ̄ β̄̄ · gdv =

= −
∫

tr(ηiβ̄ · ηkτ̄ )Aτ̄ β̄̄ · gdv .

This is symmetric since Aτ̄ β̄̄ = Aβ̄τ̄̄ .
For the third term we need the (1, 0)-component of Lvk(v̄) ∪ Ω. This is

Lvk(v̄) ∪ Ω)α = −
[
((vi, vj)

;α∂α + (vk, vj)
,β̄∂β̄) ∪ Ω

]
α

= (vk, vj)
;τ̄Rατ̄ .

Then our third term equals at s

−
∫
Xs

tr
[
ηiβ̄ · (vk · v̄);σg

τ̄σgβ̄αRατ̄

]
gdv =

∫
tr

[
ηiβ̄;σ(vk · v̄) ·Rατ̄g

αβ̄gστ̄
]
gdv.

At this point we need the assumption that (Xs, Es) is a polarized pair in order to apply
relation (9) and make this last term also vanish.

This ends the proof. æ
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