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Abstract. In this paper we propose a new approach to prove the nonlinear (internal or bound-
ary) stabilization of certain nondissipative distributed systems (the usual energy is not decreasing).
This approach leads to decay estimates (known in the dissipative case) when the integral inequalities
method due to Komornik [Exact Controllability and Stabilization. The Multiplier Method, Masson,
Paris, John Wiley, Chichester, UK, 1994] cannot be applied due to the lack of dissipativity.

First we study the stability of a semilinear wave equation with a nonlinear damping based on
the equation

u′′ −∆u+ h(∇u) + f(u) + g(u′) = 0.

We consider the general case with a function h satisfying a smallness condition, and we obtain uniform
decay of strong and weak solutions under weak growth assumptions on the feedback function and
without any control of the sign of the derivative of the energy related with the above equation.

In the second part we consider the case h(∇u) = −∇φ · ∇u with φ ∈ W 1,∞(Ω). We prove some
precise decay estimates (exponential or polynomial) of equivalent energy without any restriction on
φ.

The same results will be proved in the case of boundary feedback.
Finally, we comment on some applications of our approach to certain nondissipative distributed

systems.
Some results of this paper were announced without proof in [A. Guesmia, C. R. Acad. Sci. Paris

Sér. I Math., 332 (2001), pp. 633–636].
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1. Introduction. Consider the semilinear wave equation with a nonlinear inter-
nal dissipative term,

(P)



u′′ − ∆u+ h(∇u) + f(u) + g(u′) = 0 in Ω × R

+,

u = 0 on Γ × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω,

and the nonlinear boundary feedback,

(P′)



u′′ − ∆u+ h(∇u) + f(u) = 0 in Ω × R

+,

u = 0 on Γ0 × R
+,

∂νu+ g(u′) = 0 on Γ1 × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω,

where Ω ⊂ R
n (n ∈ N

∗) is an open bounded domain with smooth boundary Γ and
f, g : R → R and h : R

n → R are continuous nonlinear functions satisfying some

∗Received by the editors September 12, 2001; accepted for publication (in revised form) September
11, 2002; published electronically March 19, 2003.

http://www.siam.org/journals/sicon/42-1/39497.html
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general properties (see Assumptions 2.1–2.5 below). In (P′), ν represents the outward
unit normal to Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are closed and disjoint. In this paper
∆ and ∇ stand, respectively, for the Laplacian and the gradian with respect to the
spatial variables, ′ denotes the derivative with respect to time t, and R

+ = [0,∞[.
The main goal of this paper is to show that strong and weak solutions to problems

(P) and (P′) decay to zero when t→ ∞ and give some precise decay properties.
When h ≡ 0 the bibliography of works in this direction is truly long. We can

cite, for instance, the works of Nakao [18, 21, 22], Kawashima, Nakao, and Ono [11],
Nakao and Narazaki [19], Nakao and Ono [20], Haraux and Zuazua [10], Pucci and
Serrin [23], and Zuazua [27], among others.

In [21], Nakao considered the following initial boundary value problem:

(P1)



u′′ − ∆u+ ρ(u′) + f(u) = 0 in Ω × R

+,

u = 0 on Γ × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω,

where ρ(v) = |v|βv, β > −1, f(u) = bu|u|α, α, b > 0 (in this paper | · | denotes the
Euclidean norm in R and R

n), and Ω is a bounded domain of R
n (n ≥ 1), with a

smooth boundary Γ := ∂Ω. He showed that (P1) has a unique global weak solution
if 0 ≤ α ≤ 2/(n − 2), n ≥ 3, and a global unique strong solution if α > 2/(n − 2),
n ≥ 3 (of course if n = 1 or 2, then there is no restriction on α). In addition to
global existence the issue of the decay rate was addressed. In both cases, it has been
shown that the energy of the solution decays algebraically if β > 0 and it decays
exponentially if β = 0. This improves an earlier result obtained by the author in
[22], where he studied the problem in an abstract setting and established a theorem
concerning the decay of the solution energy only for the case α ≤ 2/(n − 2), n ≥ 3.
Later on, in a joint work with Ono [20], this result has been extended to the Cauchy
problem for the equation

u′′ − ∆u+ λ2(x)u+ ρ(u′) + f(u) = 0, (x, t) ∈ R
n × R

+,

where ρ(u′) behaves like |u′|βu′ and f(u) behaves like −bu|u|α. In this case the authors
required that the initial data be small enough inH1×L2 norm and of compact support.

Pucci and Serrin [23] discussed the stability of the problem

(P2)



u′′ − ∆u+Q(x, t, u, u′) + f(x, u) = 0 in Ω × R

+,

u = 0 on Γ × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω

and proved that the energy of the solution is a Liapunov function. Although they
did not discuss the issue of the decay rate, they did show that in general the energy
goes to zero as t approaches infinity. They also considered an important special case
of (P2), which occurs when Q(x, t, u, u′) = a(t)tαu′ and f(x, u) = V (x)u, and showed
that the behavior of the solutions depends crucially on the parameter α. If |α| ≤ 1,
then the rest field is asymptotically stable. On the other hand, when α < −1 or α > 1
there are solutions that do not approach zero or approach nonzero functions φ(x) as
t→ ∞.

Messaoudi [16] discussed an initial boundary value problem related to the equation

u′′ − ∆u+ a(1 + |u′|m−2)u′ + bu|u|p−2 = 0 in Ω × R
+,
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where a, b > 0, m ≥ 2, p > 2, and proved that the energy of the solution decays
exponentially. The proof of this result is based on a direct method used in [3] and [5].

Concerning the boundary feedback case, problem (P′) with h ≡ 0 has attracted
considerable attention in the literature and, in recent years, important progress has
been obtained in this context. New techniques were developed which allow us to
stabilize a system through its boundary or control it from an initial to a final state
(controllability). There is a large body of literature regarding boundary stabilization
with linear feedback; we refer the reader to the following works: Lagnese [13], Russell
[24], Triggiani [25], and You [26]. Now when the boundary feedback is nonlinear
we can cite the works of Zuazua [28], Lasiecka and Tataru [14], Komornik [12], and
Guesmia [5], among others. For such cases, the main purpose is to obtain the same
stabilization results when a boundary feedback of the form

∂νu+ a(x)u+ b(x)g(u′) = 0 on Γ1 × R
+

is applied on a part Γ1 of the boundary Γ of Ω which satisfies certain geometric
conditions and a, b, and g are given functions, whereas no feedback is applied on the
other part of the boundary, i.e.,

u = 0 on (Γ \ Γ1) × R
+.

However, when h �≡ 0 very little is known in the literature; more general and recent
results in this direction were obtained in [2]. In this paper the authors established
well-posedness of the following large class of hyperbolic equations:

K(x, t)u′′ − ∆u+ F (x, t, u, u′,∇u) = f(x)

with boundary conditions and initial data as in (P′), where K, F , and f are given
functions satisfying some hypotheses.

However, to obtain exponential stability of solutions using classical multipliers and
integral inequalities, they assumed some additional hypotheses on F which require,
in particular, that F is global Lipschitz with respect to its last variable, where the
Lipschitz constant is a function on t and converges exponentially to 0 at ∞. This
is a strong hypothesis which is not satisfied if, for example, the function F does not
depend on time t, as in our case.

Hyperbolic-parabolic equations are interesting from the point of view of not only
the general theory of PDEs but also to applications in mechanics. For instance, the
transonic Karman equation

u′u′′ − ∆u = 0

models flows of compressible gas in the transonic region where the velocity of gas
varies from subsonic values to supersonic ones (see [2] and the references therein).

We note that stability of problems with the nonlinear term h(∇u) requires careful
treatment because we have any information neither about the influence of the integral∫
Ω
h(∇u)u′ dx on the norm

‖(u, u′)‖2
H1

0 (Ω)×L2(Ω) =

∫
Ω

(|u′(x, t)|2 + |∇u(x, t)|2) dx
nor about the sign of its derivative; that is, the energy E defined by (2.7) is not
necessary decreasing (see identities (3.2) and (5.1)). Decrease of energy plays a crucial
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role in studying the asymptotic stability of the solution, as it was considered in the
prior literature, in particular, in the works cited above.

We also observe that our problem deals with nonlinearity, which involves the
gradient combined with a nonlinear feedback. This situation was not previously con-
sidered and leads to new difficulties. In order to overcome these difficulties and obtain
energy decay estimates, we give a new and direct approach based on a combination
of some ideas given by Guesmia in [3, 4] and the multiplier technique.

In the case where h is linear we introduce a nonincreasing equivalent energy (see
(2.14)) and then, by the use of appropriate multipliers and a well-known lemma due
to Haraux–Komornik (see [12, Theorem 9.1]), the exponential and polynomial decay
estimates are proved. In the case where h is nonlinear, the introduction of a such
equivalent energy seems to be not possible. In this case, the main ingredient for
proving the exponential stability is to obtain a generalized integral inequalities of the
form

(∗)
{∫ T

S
E(t)dt ≤ a1(E(S) + E(T )) + a2(E(S) − E(T )) ∀0 ≤ S ≤ T <∞,

E′(t) ≤ a3E(t) ∀t ≥ 0,

where ai, i = 1, 2, 3, are nonnegative constants and where E stands for the classical
energy (2.7). Then we show that if, in addition, 2a1a3 < 1 or a1 ≤ a2, E must
converge exponentially to 0 at ∞.

Notice that a positive function satisfying (∗) does not necessarily converge to 0
at ∞; if a1a3 ≥ 1 + a2a3, then the function E(t) = ea3t satisfies (∗). As an open
question, it would be interesting to know what happens if a1a3 ∈ [ 12 , 1 + a2a3[ and
a1 > a2.

The integral result (∗) gives a generalization to the Haraux–Komornik lemma,
which concerns nonincreasing functions (that is, a3 = 0).

The rest of this paper is organized as follows. In section 2 we establish assumptions
and state our main results. In section 3 we obtain the uniform stability of (P). In
section 4 we consider the case h(∇u) = −∇φ · ∇u, where φ ∈W 1,∞(Ω) and · denotes
the scalar product in R

n, and we prove some decay estimates of equivalent energy
of (P). In sections 5 and 6 we prove the same results for (P′). Finally, in the last
section we give some applications of our approach to Petrovsky, coupled, and elasticity
systems.

2. Assumptions and main results. We begin this section stating the general
hypotheses.

Assumption 2.1 (assumptions on f). f : R → R is a C1 function such that
f(0) = 0 and, deriving from a potential F , that is

F (s) =

∫ s

0

f(σ) dσ ∀s ∈ R,

F (s) ≥ −as2 ∀s ∈ R,(2.1)

with 0 ≤ a < 1
2c0

, where c0 is the smallest positive constant (depending only on Ω)
such that (Poincaré’s inequality)∫

Ω

∣∣v∣∣2dx ≤ c0

∫
Ω

∣∣∇v∣∣2dx ∀v ∈ H1
0 (Ω).(2.2)

Also, there exists b > 0 such that

2bF (s) ≤ sf(s) ∀s ∈ R.(2.3)
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Assumption 2.2 (assumptions on g). g : R → R is a C1 function, nondecreasing,
g(0) = 0, such that

g(s)s > 0 ∀s �= 0.(2.4)

Also, there exist two positive constants c1 and c2 such that

c1|s| ≤ |g(s)| ≤ c2|s| ∀s ∈ R.(2.5)

Assumption 2.3 (assumptions on h). h : R
n → R is a C1 function such that ∇h

is bounded and there exists β > 0 such that

|h(ζ)| ≤ β|ζ| ∀ζ ∈ R
n.(2.6)

We define the energy of the solution of (P) by the formula

E(t) =

∫
Ω

(∣∣u′∣∣2 +
∣∣∇u∣∣2 + 2F (u)

)
dx, t ∈ R

+.(2.7)

Remarks. 1. If the function f is increasing and f(0) = 0, then (2.1) and (2.3) are
satisfied with a = 0 and b = 1

2 .
2. Condition (2.1) assures the following inequality:

‖(u, u′)‖2
H1

0 (Ω)×L2(Ω) ≤ kE(t) ∀t ∈ R
+,(2.8)

where k = 1
1−2ac0

> 0. Indeed, (2.1) and (2.2) imply that

E(t) ≥
∫

Ω

(∣∣u′∣∣2 +
∣∣∇u∣∣2 − 2a

∣∣u∣∣2) dx
≥
∫

Ω

(∣∣u′∣∣2 + (1 − 2ac0)
∣∣∇u∣∣2) dx

≥ (1 − 2ac0)

∫
Ω

(∣∣u′∣∣2 +
∣∣∇u∣∣2) dx = (1 − 2ac0)‖(u, u′)‖2

H1
0 (Ω)×L2(Ω),

which gives (2.8).
3. Under Assumptions 2.1, 2.2, 2.3 and using analogous considerations like the

ones used in [2] (we omit the details), we can use Galerkin’s method (semigroup theory
is not suitable to treat degenerate problems) and prove that problem (P) possesses a
unique strong solution, u :]0,∞[→ R, such that

u ∈ L∞(]0,∞[;H1
0 (Ω) ∩H2(Ω)), u′ ∈ L∞(]0,∞[;H1

0 (Ω)),(2.9)

and

u′′ ∈ L∞(]0,∞[;L2(Ω)).

Moreover, supposing that {u0, u1} is in H1
0 (Ω) × L2(Ω) and using density argu-

ments, we can show that (P) has a unique weak solution u : Ω×]0,∞[→ R in the
space

C(]0,∞];H1
0 (Ω)) ∩ C1(]0,∞[;L2(Ω)).(2.10)
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Now we are in position to state our first main result.
Theorem 2.1. Assume that Assumptions 2.1, 2.2, 2.3 hold such that b < 1 and

β satisfies the following smallness hypotheses:

β

2

(√
c0 +

(
2

c1

)2

+
√
c0

)
+

√
c0c2β

2
√

2
≤ 1 − b,

β <
b

k2
√
c0
, or

k
√
c0

2
≤ 1

c1
+

1

2

√
c0c2√

2β
.

Then the energy determined by the strong solution u decays exponentially. That is, to
say for some positive constants c, ω, one has

E(t) ≤ cE(0)e−ωt ∀t ∈ R
+.(2.11)

Furthermore, (2.11) holds for the weak solution u.
Remark. If F is positive (for example, sf(s) ≥ 0 for all s ∈ R), then β and b can

be taken such that b > 0 and

β

2

(√
c0 +

(
2

c1

)2

+ (1 + 2k2)
√
c0

)
+

√
c0c2β

2
√

2
< 1, β <

b

k2
√
c0

or

β

2

(√
c0 +

(
2

c1

)2

+
√
c0

)
+

√
c0c2β

2
√

2
< 1,

k
√
c0

2
≤ 1

c1
+

1

2

√
c0c2√

2β
.

We consider now the case h(∇u) = −∇φ ·∇u, where φ ∈W 1,∞(Ω) and g satisfies
a hypothesis weaker than (2.5).

Assumption 2.4 (assumptions on g). g : R → R is a C1 function, nondecreasing,
g(0) = 0, such that (2.4) holds and there exist four constants r, p ≥ 1 and c1, c2 > 0
such that

c1 min{∣∣s∣∣, ∣∣s∣∣r} ≤ ∣∣g(s)∣∣ ≤ c2 max{∣∣s∣∣ 1r , ∣∣s∣∣p} ∀s ∈ R,(2.12)

(n− 2)p ≤ n+ 2.(2.13)

We have the following stabilization result.
Theorem 2.2. Let u be a solution of (P) in the class (2.10). Under Assumptions

2.1 and 2.4, there exist two positive constants ω, c such that the equivalent energy of
(P), defined by

E(t) =

∫
Ω

eφ(x)
(∣∣u′∣∣2 +

∣∣∇u∣∣2 + 2F (u)
)
dx, t ∈ R

+,(2.14)

satisfies (2.11) if r = 1, and

E(t) ≤ c(1 + t)
−2
r−1 ∀t ∈ R

+(2.15)

if r > 1.
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Remarks. 1. If we take g(s) = αs for all s ∈ R with α > 0 (that is, r = p = 1),
then we find the results obtained in [15]. On the other hand, the case of g(s) =

α(1 +
∣∣s∣∣m−2

)s for all s ∈ R with m > 2 (that is, p = m − 1 and r = 1) gives the
results obtained in [16].

2. In Theorem 2.1 we can weaken assumption (2.6) by taking β as the Lipschitz
constant of only the nonlinear part of h; that is, we assume that there exists ζ̄ ∈ R

n

such that

|h(ζ) + ζ̄ · ζ| ≤ β|ζ| ∀ζ ∈ R
n.

To prove this we have only to consider the equivalent energy defined by (2.14) where
φ(x) = ζ̄ · x.

3. It is possible to weaken the growth assumption (2.12) as was done for the study
of elasticity systems in [3, 7] and the Petrovsky system in [6]. In order to simplify we
shall only consider in this paper the case of assumption (2.12).

Now we are concerned by the stability of (P′). In order to obtain the estimates
(2.11) and (2.15), the following assumptions are made on Γ and f . Let x0 be a fixed
point in R

n. Then put

m = m(x) = x− x0, R = max
x∈Ω̄

∣∣m(x)
∣∣

and partition the boundary Γ into two nonempty sets:

Γ0 = {x ∈ Γ : m(x) · ν(x) ≤ 0}, Γ1 = {x ∈ Γ : m(x) · ν(x) ≥ δ > 0}.
Examples. Concerning the existence of such a partition of Γ, we can take Ω as

follows:
1. If n = 1, then Ω is a bounded open interval, say Ω =]x1, x2[⊂ R, and our

geometric hypotheses are satisfied in each of the following two cases:
(i) Γ0 = {x1}, Γ1 = {x2}, and x0 ≤ x1,
(ii) Γ0 = {x2}, Γ1 = {x1}, and x0 ≥ x2.
2. If n ≥ 2 and Ω = Ω1 \ Ω̄0, where Ω1 and Ω0 are two open domains with

boundary Γ1, and Γ0, respectively, Ω̄0 ⊂ Ω1, and Ω1 and Ω0 are star-shaped with
respect to some point x0 ∈ Ω0 (a domain Ω is called star-shaped with respect to x0 if
m · ν > 0 on ∂Ω), then our geometric hypotheses are satisfied.

3. If n ≥ 2 and Ω is not of the form mentioned in the preceding example, then
in general there is no point x0 satisfying simultaneously the geometric hypotheses
assumed on Γ1 and Γ0. By applying an approximational method, one could consider-
ably weaken these geometric hypotheses, at least in dimensions n = 2, 3, by adapting
an analogous argument given by Komornik–Zuazua for the wave equation (see [12]
and the references therein).

Assumption 2.5 (assumptions on f). f : R → R is a C1 function such that (2.3)
and

F (s) ≥ 0 ∀s ∈ R.(2.16)

The well-posedness of the problem (P′) can be established by standard Galerkin’s
method (see [15]); we do not discuss this point here. We use the notations

V = {v ∈ H1(Ω) : v = 0 on Γ0} and W = H2(Ω) ∩ V ;

we have the following:
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1. For all (u0, u1) ∈ W × V such that ∂νu0 + g(u1) = 0 on Γ1, problem (P′) has
a unique strong solution, u :]0,∞[→ R, such that

u ∈ L∞(]0,∞[;W ), u′ ∈ L∞(]0,∞[;V ), and u′′ ∈ L∞(]0,∞[;L2(Ω)).

2. If {u0, u1} is in V × L2(Ω), then (using density arguments) the solution is
weak: u : Ω×]0,∞[→ R in the space

C(]0,∞];V ) ∩ C1(]0,∞[;L2(Ω)).(2.17)

Theorem 2.3. Let u be a solution of (P′) in the class (2.17). Assume, moreover,
that Assumptions 2.2, 2.3, 2.5 hold with β small enough and b > 1 or f is linear.
Then the energy of u, defined by (2.7), decays exponentially to zero in the sense of
(2.11).

We consider now the case h(∇u) = −∇φ · ∇u, where φ ∈W 1,∞(Ω).

We have the following stabilization result for (P′).
Theorem 2.4. Let u be a solution of (P′) in the class (2.17). Under Assumptions

2.5, 2.4 with p = 1, R‖∇φ‖∞ < min{2, n}, and b > n+R‖∇φ‖∞
n−R‖∇φ‖∞

or f is linear and

‖∇φ‖∞ is small enough, where ‖∇φ‖∞ = maxx∈Ω̄ |∇φ(x)|, the results of Theorem 2.2
hold true.

Remarks. 1. As an example of a function f satisfying Assumption 2.5, we can
take f(s) = γs |s|q−1

with γ ≥ 0 and q ≥ 1. Condition (2.3) is satisfied for all b ≤ q+1
2 .

2. We have many possibilities to take the function g such that condtions (2.12)
and (2.13) are satisfied, for example, g(s) = γ|s|r−1s if |s| ≤ 1, and g(s) = γs if
|s| ≥ 1, where γ > 0.

3. Thanks to (2.16), the function F is positive, and then the usual energy (2.7)
satisfies ∫

Ω

(∣∣u′∣∣2 +
∣∣∇u∣∣2) dx ≤ E(t).(2.18)

The quantity (
∫
Ω

∣∣∇u∣∣2dx)
1
2 defines a norm on V equivalent to the usual norm induced

by H1(Ω); consequently, V is a Hilbert space with this norm.

4. If h is nonlinear and r > 1, we do not know if the energy of (P) and (P′) decays
polynomially to zero.

5. In the case of uniform stability (Theorem 2.1 and Theorem 2.3), our proof
allows us to obtain explicit constants c and ω in (2.11).

6. Theorem 2.1, Theorem 2.3, and Theorem 2.4 probably remain valid without
the smallness conditions assumed on β, but we could not prove them.

3. Uniform decay: Proof of Theorem 2.1. To justify all the computations
that follow, we assume first that the solution is strong, and by a standard density
argument we deduce the result for weak solutions.

We are going to prove that the energy defined by (2.7) satisfies the estimate

E(S + T0) ≤ dE(S) ∀S ∈ R
+(3.1)

with 0 < d < 1 and T0 > 0. (This will be fixed later in the course of the proof.) Using
(3.1), inequality (3.9) below gives (2.11).
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We start this section by giving an explicit formula for the derivative of the energy.
A simple computation shows that

E′(t) = −2

∫
Ω

u′g(u′) dx− 2

∫
Ω

u′h (∇u) dx.(3.2)

Multiplying the first equation in (P) by u and integrating the obtained result over
Ω × [S, T ], we obtain

0 =

∫ T

S

∫
Ω

u (u′′ − ∆u+ h(∇u) + f(u) + g(u′)) dx dt(3.3)

=

[∫
Ω

uu′dx
]T
S

+

∫ T

S

∫
Ω

(
− |u′|2 + |∇u|2 + uf(u)

)
dx dt

+

∫ T

S

∫
Ω

ug(u′) dxdt+

∫ T

S

∫
Ω

uh (∇u) dx dt.

Hence, from (3.3), making use of the Cauchy–Schwarz inequality and taking assump-
tion (2.6) and property (2.2) into account, we infer

∫ T

S

∫
Ω

(
|u′|2 + |∇u|2 + uf(u)

)
dx dt

≤ −
[∫

Ω

uu′dx
]T
S

+

∫ T

S

∫
Ω

(
2 |u′|2 − ug(u′)

)
dx dt

+
β

2
√
c0

∫ T

S

∫
Ω

|u|2 dx dt+

√
c0

2β

∫ T

S

∫
Ω

|h (∇u)|2 dx dt

≤ −
[∫

Ω

uu′dx
]T
S

+

∫ T

S

∫
Ω

(
2 |u′|2 − ug(u′)

)
dx dt

+
β
√
c0

2

∫ T

S

∫
Ω

|∇u|2 dx dt+
β
√
c0

2

∫ T

S

∫
Ω

|∇u|2 dx dt.

Then, taking assumption (2.3) into account, from this inequality we deduce

∫ T

S

∫
Ω

(
|u′|2 + (1 − β√c0) |∇u|2 + 2bF (u)

)
dx dt(3.4)

≤ −
[∫

Ω

uu′dx
]T
S

+

∫ T

S

∫
Ω

(
2 |u′|2 − ug(u′)

)
dx dt.

Using (2.2), (2.8), and the Cauchy–Schwarz inequality, we can easily get

∣∣∣∫
Ω

uu′dx
∣∣∣ ≤ 1

2

∫
Ω

(√
c0 |u′|2 +

1√
c0

|u|2
)
dx

≤
√
c0
2

∫
Ω

(
|u′|2 + |∇u|2

)
dx ≤ k

√
c0

2
E(t);
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then

−
[∫

Ω

uu′dx
]T
S

≤ k
√
c0

2
(E(S) + E(T )) .

Next, we insert this inequality into (3.4); it follows that

∫ T

S

∫
Ω

(
|u′|2 + (1 − β√c0) |∇u|2 + 2bF (u)

)
dx dt(3.5)

≤ k
√
c0

2
(E(S) + E(T )) +

∫ T

S

∫
Ω

(
2 |u′|2 − ug(u′)

)
dx dt.

Next, we want to majorize the last term in the right-hand side of (3.5).

Estimate for
∫ T

S

∫
Ω

(
2|u′|2 − ug(u′)

)
dx dt. Using (3.2) and the Cauchy–Schwarz

inequality and taking the assumptions (2.4), (2.5), and (2.6) into account, it holds
that

2

∫ T

S

∫
Ω

|u′|2dx dt ≤ 2

c1

∫ T

S

∫
Ω

u′g(u′)dx dt

=
1

c1

∫ T

S

(
−E′(t) − 2

∫
Ω

u′h(∇u)dx

)
dt

≤ 1

c1
(E(S) − E(T )) +

1

c1

∫ T

S

∫
Ω

(
ε|u′|2 +

β2

ε
|∇u|2

)
dx dt;

we choose ε > 0 such that β2

εc1
= ε

c1
− β√c0, that is, ε = β

2 (
√
c12c0 + 4 + c1

√
c0); then

we deduce

2

∫ T

S

∫
Ω

|u′|2dx dt ≤ 1

c1
(E(S) − E(T ))(3.6)

+ β

∫ T

S

∫
Ω

(
1

2

(√
c0 +

(
2

c1

)2

+
√
c0

)
|u′|2 +

1

2

(√
c0 +

(
2

c1

)2

−√
c0

)
|∇u|2

)
dx dt.

Similary we have

−
∫ T

S

∫
Ω

ug(u′)dx dt ≤ 1

2

∫ T

S

∫
Ω

(
1

ε
g2(u′) + ε|u|2

)
dx dt

≤ 1

2

∫ T

S

∫
Ω

(c2
ε
u′g(u′) + εc0|∇u|2

)
dx dt

=
c2
2ε

∫ T

S

(
−1

2
E′(t) −

∫
Ω

u′h(∇u)dx

)
dt+

εc0
2

∫ T

S

∫
Ω

|∇u|2dx dt
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≤ c2
4ε

(E(S) − E(T )) +
εc0
2

∫ T

S

∫
Ω

|∇u|2dx dt

+
c2
2ε

∫ T

S

∫
Ω

(
ε′β2

2
|∇u|2 +

1

2ε′
|u′|2

)
dx dt;

we choose ε = β
√

c2ε′
2c0

and ε′ = 1√
2β

. It follows that

−
∫ T

S

∫
Ω

ug(u′)dx dt ≤
√
c0c2β

2
√

2

∫ T

S

∫
Ω

(|u′|2 + |∇u|2) dx dt(3.7)

+
1

2

√
c0c2√

2β
(E(S) − E(T )) .

Combining (3.5), (3.6), and (3.7), we conclude that
1 − β

2

(√
c0 +

(
2

c1

)2

+
√
c0

)
−
√
c0c2β

2
√

2


∫ T

S

∫
Ω

(|u′|2 + |∇u|2) dx dt(3.8)

+ b

∫ T

S

∫
Ω

2F (u)dx dt

≤
(
k
√
c0

2
+

1

c1
+

1

2

√
c0c2√
2β

)
E(S) +

(
k
√
c0

2
− 1

c1
− 1

2

√
c0c2√
2β

)
E(T ).

Hence, if we take β small enough so that β
2 (
√
c0 + ( 2

c1
)2 +

√
c0) +

√
c0c2β

2
√

2
≤ 1 − b as

it is assumed in Theorem 2.1, then, from (3.8) and making use of definition (2.7) of
energy, we arrive at

∫ T

S

E(t)dt(3.9)

≤ k
√
c0

2b
(E(S) + E(T )) +

1

b

(
1

c1
+

1

2

√
c0c2√

2β

)
(E(S) − E(T )) .

If F is positive, then we assume that β
2 (
√
c0 + ( 2

c1
)2 +

√
c0) +

√
c0c2β

2
√

2
< 1 and we

obtain (3.9) with b replaced by

b̄ = min

{
b, 1 − β

2

(√
c0 +

(
2

c1

)2

+
√
c0

)
−
√
c0c2β

2
√

2

}
.

Now we return to equality (3.2). Using (2.4), (2.6), (2.8), and the Cauchy–Schwarz
inequality, we infer

E′(t) ≤ −2

∫
Ω

u′h(∇u)dx ≤
∫

Ω

(
β|u′|2 +

1

β
|h(∇u)|2

)
dx



STABILIZATION OF NONDISSIPATIVE SYSTEMS 35

≤ β

∫
Ω

(|u′|2 + |∇u|2) dx ≤ βkE(t);

then

E′(t) ≤ βkE(t).(3.10)

We may assume in the rest of this section that E(t) > 0 for all t ≥ 0. Otherwise
if E(t0) = 0 for some t0 ≥ 0, then from (2.8) we have u(t0, x) = u′(t0, x) = 0 in Ω;
hence v(t, x) := u(t + t0, x) solves (P) with (0, 0) as initial data. By the uniqueness
of solution we conclude that v = v′ = 0; hence E(t) = 0 for all t ≥ t0 and then we
have nothing to prove.

Now by Gronwall’s lemma, we conclude from (3.10) that

E(t) ≤ eβk(t−τ)E(τ) ∀ 0 ≤ τ ≤ t <∞.(3.11)

On the other hand, (3.10) implies that

E(t) ≥ 1

βk

∂

∂t

(
(1 − e−βk(t−τ))E(t)

)
∀ 0 ≤ τ ≤ t <∞.(3.12)

Now we distinguish two cases (corresponding to the hypothesis assumed on β in
Theorem 2.1).

Case 1. β < b
k2

√
c0

. We fix

T0 >
−1

βk
ln

(
1 − βk2√c0

b

)
.(3.13)

From (3.12) with τ = S we have

∫ S+T0

S

E(t)dt ≥ 1

βk
(1 − e−βkT0)E(S + T0).

Combining this inequality and (3.9) with T = S + T0, we arrive at(
1

βk
(1 − e−βkT0) +

1

b

(
1

c1
+

1

2

√
c0c2√

2β

)
− k

√
c0

2b

)
E(S + T0)

≤
(
k
√
c0

2b
+

1

b

(
1

c1
+

1

2

√
c0c2√

2β

))
E(S).

Thanks to our choice (3.13) of T0, we have

1

βk
(1 − e−βkT0) >

k
√
c0
b

;

then we obtain (3.1) with

d =

1
b

(
1
c1

+ 1
2

√
c0c2√

2β

)
+

k
√
c0

2b

1
βk (1 − e−βkT0) + 1

b

(
1
c1

+ 1
2

√
c0c2√

2β

)
− k

√
c0

2b

∈ ]0, 1[.
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We note that if a nonnegative function E : R
+ → R

+ satisfies the estimate (3.1),
then it also satisfies (2.11). Indeed, let t ∈ R

+; then t = mT0 + t0 with 0 ≤ t0 < T0

and m ∈ N. From (3.1) and taking (3.11) with t = t0 and τ = 0 into account, it holds
that

E(t) ≤ dE((m− 1)T0 + t0) ≤ · · · ≤ dmE(t0)

≤ d
1
T0

(t−t0)eβkt0E(0) ≤ eβkT0

d
E(0)e

ln d
T0

t;

then we deduce (2.11), where c = eβkT0

d and ω = − ln d
T0

.

Case 2.
k
√
c0

2 ≤ 1
c1

+ 1
2

√
c0c2√

2β
. Inequality (3.9) implies that

∫ T

S

E(t)dt ≤ a0E(S) ∀0 ≤ S ≤ T <∞,

where a0 =
k
√
c0

2b + 1
b ( 1

c1
+ 1

2

√
c0c2√

2β
). Let T go to ∞; we deduce

∫ ∞

S

E(t)dt ≤ a0E(S) ∀S ≥ 0.(3.14)

Introduce the function

ψ(S) =

∫ ∞

S

E(t)dt, S ≥ 0.

It is positive and nonincreasing. Differentiating and using (3.14), we find that

ψ′(S) ≤ − 1

a0
ψ(S),

hence (ln(ψ(S)))′ ≤ − 1
a0

. Integrating in [0, S] and using (3.14) again, we obtain that

ψ(S) ≤ a0E(0)e−
1
a0

S ∀S ≥ 0.(3.15)

On the other hand, E being nonnegative and satisfying (3.12) (with τ = S), ψ(S)
may be estimated as follows: let T0 > 0,

ψ(S) ≥
∫ S+T0

S

E(t)dt ≥
∫ S+T0

S

1

βk

∂

∂t

(
(1 − e−βk(t−S))E(t)

)
dt

=
1 − e−βkT0

βk
E(S + T0).

Therefore, taking t = S+T0 and choosing T0 = 1
βk ln(1+βka0) (for which the quantity

eT0/a0

1−e−βkT0
reachs its minimum), hence we deduce from (3.15) the estimate

E(t) ≤ (1 + βka0)
1+ 1

βka0E(0)e−
1
a0

t ∀t ≥ T0.(3.16)

This inequality holds, in fact, also for t ∈ [0, T0]. Indeed, by (3.11) with τ = 0, we
have

E(t) ≤ eβktE(0) ≤ e(βk+
1
a0

)T0E(0)e−
1
a0

t = (1 + βka0)
1+ 1

βka0E(0)e−
1
a0

t.

Then (3.16) holds true for all t ≥ 0 and hence the inequality (2.11) follows with

c = (1 + βka0)
1+ 1

βka0 and ω = 1
a0

.
This concludes the proof of Theorem 2.1.
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4. Energy decay estimates: Proof of Theorem 2.2. For the proof of Theo-
rem 2.2 which concerns the stability of (P) in the particular case h(∇u) = −∇φ · ∇u,
with φ ∈ W 1,∞(Ω), we are going to prove that the equivalent energy E defined by
(2.14) satisfies, for any 0 ≤ S <∞,∫ ∞

S

E
r+1
2 (t)dt ≤ cE(S).(4.1)

Here and in what follows we shall denote by c diverse positive constants, by ε diverse
positive constants small enough, and by cε diverse positive constants depending on ε.
(All these constants do not depend on S.) The inequality (4.1) gives (2.11) and (2.15)
(see [12, Theorem 9.1]).

Using the first equation of (P) and the boundary condition, we can easily prove
that the equivalent energy E satisfies

E′(t) = −2

∫
Ω

eφ(x)u′g(u′)dx, t ∈ R
+.(4.2)

Assumption (2.4) implies that the equivalent energy is nonincreasing. Given 0 ≤ S ≤
T <∞ arbitrarily, integrate (4.2) between S and T to get

∫ T

S

∫
Ω

eφ(x)u′g(u′)dx =
1

2
(E(S) − E(T )) .(4.3)

We multiply the first equation of (P) by E
r−1
2 (t)eφ(x)u and integrate over Ω×[S, T ]

to get ∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)

(∣∣u′∣∣2 +
∣∣∇u∣∣2 + uf(u)

)
dxdt(4.4)

=

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)

(
2
∣∣u′∣∣2 − ug(u′)) dxdt

+
r − 1

2

∫ T

S

∫
Ω

E
r−3
2 (t)E′(t)eφ(x)uu′dxdt−

[ ∫
Ω

E
r−1
2 (t)eφ(x)uu′dxdt

]T
S

.

The last two terms of (4.4) can be easily majorized by cE
r+1
2 (S) (see [3] and [5]). We

follow now the proof given in [5]. We note q = p+ 1,

Ω+ = {x ∈ Ω :
∣∣u′∣∣ > 1}, and Ω− = Ω \ Ω+.

We exploit the Cauchy–Schwarz, Hölder, and Young inequalities and the Sobolev
imbedding H1

0 (Ω) ⊂ Lq(Ω) to get

−
∫ T

S

∫
Ω+

E
r−1
2 (t)eφ(x)ug(u′)dxdt

≤
∫ T

S

E
r−1
2 (t)eφ(x)

(∫
Ω+

∣∣u∣∣qdx) 1
q
(∫

Ω+

∣∣∣g(u′)∣∣∣1+ 1
p

dx

) p
p+1

dt
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≤
∫ T

S

E
r−1
2 (t)eφ(x)

(
ε

∫
Ω+

∣∣u∣∣qdx+ cε

∫
Ω+

∣∣∣g(u′)∣∣∣1+ 1
p

dx

)
dt

≤ ε

∫ T

S

E
r+q−1

2 (t)dt+ cεE
r−1
2 (S)

∫ T

S

∫
Ω+

eφ(x)u′g(u′)dxdt

≤ ε

∫ T

S

E
r+1
2 (t)dt+ cε

(
E

r+1
2 (S) − E r+1

2 (T )
)
.

On the other hand, using the growth assumption (2.12) and Poincaré’s inequality, we
have

−
∫ T

S

∫
Ω−
E

r−1
2 (t)eφ(x)ug(u′)dxdt

≤
∫ T

S

E
r−1
2 (t)eφ(x)

(
ε

∫
Ω−

∣∣u∣∣2dx+ cε

∫
Ω−
g2(u′)dx

)
dt

≤ ε

∫ T

S

E
r−1
2 (t)

∫
Ω−
eφ(x)

∣∣∇u∣∣2dxdt+ cε

∫ T

S

∫
Ω−
E

r−1
2 (t)

(
eφ(x)u′g(u′)

) 2
r+1

dxdt

≤ ε

∫ T

S

E
r+1
2 (t)dt+ cε (E(S) − E(T )) .

Taking the sum of the last two inequalities and substituting it into the right-hand
side of (4.4), using (2.3), and choosing ε ∈]0, b[, we obtain that∫ T

S

E
r+1
2 (t)dt ≤ c

(
E

r+1
2 (S) + E(S)

)
+ c

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)

∣∣u′∣∣2dxdt.(4.5)

Using another time (2.12) and (4.3), we have∫ T

S

∫
Ω+

E
r−1
2 (t)eφ(x)

∣∣u′∣∣2dxdt ≤ cE
r−1
2 (S)

∫ T

S

∫
Ω+

eφ(x)u′g(u′)dxdt

≤ c
(
E

r+1
2 (S) − E r+1

2 (T )
)
.

In the same way, using Young’s inequality, we get∫ T

S

∫
Ω−
E

r−1
2 (t)eφ(x)

∣∣u′∣∣2dxdt ≤ c

∫ T

S

∫
Ω−
E

r−1
2 (t)

(
eφ(x)u′g(u′)

) 2
r+1

dxdt

≤ ε

∫ T

S

E
r+1
2 (t)dt+ cε

∫ T

S

∫
Ω−
eφ(x)u′g(u′)dxdt

≤ ε

∫ T

S

E
r+1
2 (t)dt+ cε (E(S) − E(T )) .

Substituting the sum of these two estimates into the right-hand side of (4.5), choosing
ε small enough, and letting T go to ∞, we obtain∫ ∞

S

E
r+1
2 (t)dt ≤ c

(
1 + E

r−1
2 (0)

)
E(S) ≤ cE(S);

then (4.1) follows, which gives (2.11) and (2.15) and finishes the proof of Theorem 2.2.
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5. Uniform decay: Proof of Theorem 2.3. In this section we prove the ex-
ponential decay of energy (2.7) for strong solutions of (P′), and by a density argument
we obtain the same results for weak solutions.

The proof is similar to the one given in section 3.
Using the first equation in (P′) and the boundary conditions, we can easily prove

that

E′(t) = −2

∫
Γ1

u′g(u′) dx− 2

∫
Ω

u′h (∇u) dx.(5.1)

Using Assumptions 2.2, 2.3, and 2.5, from (5.1) it holds that (see section 3)

E′(t) ≤ −2

∫
Ω

u′h (∇u) dx ≤ β

∫
Ω

(
|u′|2 + |∇u|2

)
dx ≤ βE(t);

then E satisfies (3.11) and (3.12) with k = 1 (see (2.18)). Following the proof given
in section 3, it is sufficient to prove that, for all 0 ≤ S ≤ T <∞,

∫ T

S

E(t)dt ≤ ā(E(S) + E(T )) + â(E(S) − E(T ))(5.2)

with ā, â > 0 and 2βā < 1 or ā ≤ â. Then the proof can be completed as in section 3.
To prove (5.2), let ε0 ∈]0, 1[ (will be chosen later in the course of the proof); we

multiply the first equation in (P′) by

2m · ∇u+ (n− ε0)u,

integrating the obtained result over Ω× [S, T ] and using the boundary conditions. We
are going to estimate the terms of the result formula. We have

I1 :=

∫ T

S

∫
Ω

u′′
(
2m · ∇u+ (n− ε0)u

)
dxdt

=

[∫
Ω

u′
(
2m · ∇u+ (n− ε0)u

)
dx

]T
S

−
∫ T

S

∫
Ω

(
m · ∇(u′)2 + (n− ε0) |u′|2

)
dxdt

= ε0

∫ T

S

∫
Ω

|u′|2 dxdt−
∫ T

S

∫
Γ1

(m · ν) |u′|2 dΓdt

+

[ ∫
Ω

u′
(
2m · ∇u+ (n− ε0)u

)
dx

]T
S

.

We estimate the last term in this inequality; we have∫
Ω

(
2m · ∇u+ (n− ε0)u

)2

dx−
∫

Ω

(2m · ∇u)2dx

=

∫
Ω

(
(n− ε0)2 |u|2 + 2(n− ε0)m · ∇(u)2

)
dx
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=

∫
Ω

(
(n− ε0)2 |u|2 − 2(n− ε0)n |u|2

)
dx+ 2(n− ε0)

∫
Γ1

(m · ν) |u|2 dΓ

= (ε0 + n)(ε0 − n)

∫
Ω

|u|2 dx+ 2(n− ε0)
∫

Γ1

(m · ν) |u|2 dΓ

≤ 2(n− ε0)R
∫

Γ1

|u|2 dΓ;

then ∫
Ω

(
2m · ∇u+ (n− ε0)u

)2

dx ≤
∫

Ω

(2m · ∇u)2dx+ 2(n− ε0)R
∫

Γ1

|u|2 dΓ.(5.3)

Since, for all ε > 0,∣∣∣∫
Ω

(
2m · ∇u+ (n− ε0)u

)
u′dx

∣∣∣
≤ ε

2

∫
Ω

|u′|2 dx+
1

2ε

(∫
Ω

(2m · ∇u)2dx+ 2(n− ε0)R
∫

Γ1

|u|2 dΓ
)

≤
∫

Ω

(
ε

2
|u′|2 +

2R2

ε
|∇u|2 dx

)
+
R

ε
(n− ε0)c̄

∫
Ω

|∇u|2 dx,

where c̄ is the positive constant satisfying (Poincaré’s inequality)∫
Γ1

|v|2dΓ ≤ c̄

∫
Ω

|∇v|2dx ∀v ∈ V.

Choosing ε = 2
√
R(R+ c̄

2 (n− ε0)), we obtain

∣∣∣∫
Ω

(
2m · ∇u+ (n− ε0)u

)
u′dx

∣∣∣ ≤
√
R

(
R+

c̄

2
(n− ε0)

)
E(t) := a1E(t).

Then we deduce

I1 ≥ −a1(E(S) + E(T )) −R
∫ T

S

∫
Γ1

|u′|2 dΓdt+ ε0

∫ T

S

∫
Ω

|u′|2 dxdt.(5.4)

On the other hand, taking the generalized Green formula and recalling the identity

2∇u · ∇(m · ∇u) = 2 |∇u|2 +m · ∇(|∇u|2)
(note also that on Γ0 we have ∇u = ∂νuν), we infer

I2 :=

∫ T

S

∫
Ω

(−∆u)
(
2m · ∇u+ (n− ε0)u

)
dxdt

= (2 − ε0)
∫ T

S

∫
Ω

|∇u|2 dxdt−
∫ T

S

∫
Γ0

(m · ν) |∇u|2 dΓdt

+

∫ T

S

∫
Γ1

(
(m · ν) |∇u|2 − (n− ε0)u∂νu− 2(m · ∇u)∂νu

)
dΓdt.
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Using the definition of Γ0 and Γ1, we deduce

I2 ≥ (2 − ε0)
∫ T

S

∫
Ω

|∇u|2 dxdt

+

∫ T

S

∫
Γ1

(
δ |∇u|2 − (n− ε0)u∂νu− δ |∇u|2 − R2

δ
(∂νu)2

)
dΓdt;

then

I2 ≥ (2 − ε0)
∫ T

S

∫
Ω

|∇u|2 dxdt−
∫ T

S

∫
Γ1

(
(n− ε0)u∂νu+

R2

δ
(∂νu)2

)
dΓdt.(5.5)

Similarly, using (2.6), (5.3), and the Cauchy–Schwarz inequality, we have

I3 :=

∫ T

S

∫
Ω

h(∇u)
(
2m · ∇u+ (n− ε0)u

)
dxdt

≥ −R
β

∫ T

S

∫
Ω

h2(∇u)dxdt− β

4R

∫ T

S

(
4R2

∫
Ω

|∇u|2 dx+ 2(n− ε0)R
∫

Γ1

|u|2 dΓ
)
dt;

we conclude that

I3 ≥ −2βR

∫ T

S

∫
Ω

|∇u|2 dxdt− β

2
(n− ε0)

∫ T

S

∫
Γ1

|u|2 dΓdt.(5.6)

Using (2.3) and the fact that F is nonnegative and F (0) = 0, we obtain

I4 :=

∫ T

S

∫
Ω

f(u)
(
2m · ∇u+ (n− ε0)u

)
dxdt

≥ (n− ε0)b
∫ T

S

∫
Ω

2F (u)dxdt+

∫ T

S

∫
Ω

2m · ∇(F (u))dxdt

≥ ((n− ε0)b− n)

∫ T

S

∫
Ω

2F (u)dxdt+

∫ T

S

∫
Γ1

2(m · ν)F (u)dΓdt;

then we deduce

I4 ≥ ((n− ε0)b− n)

∫ T

S

∫
Ω

2F (u)dxdt.(5.7)

Now we distinguish two cases.
Case 3. If b > 1, then assuming that βR < 1 and choosing ε0 = min{1 −

βR, b−1
b+1n}, we deduce that min{ε0, 2 − ε0 − 2βR, (n − ε0)b − n} = ε0. Combining

(5.4)–(5.7), taking the fact that I1 + I2 + I3 + I4 = 0 in account, we obtain

ε0

∫ T

S

∫
Ω

(
|u′|2 + |∇u|2 + 2F (u)

)
dxdt ≤ a1(E(S) + E(T ))
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+

∫ T

S

∫
Γ1

(
R |u′|2 +

β

2
(n− ε0) |u|2 + (n− ε0)u∂νu+

R2

δ
(∂νu)2

)
dΓdt.

Case 4. If f is linear, f(s) = αs for some positive constant α, then b = 1 and we
conclude from (5.7) that

I4 ≥ −ε0
∫ T

S

∫
Ω

2F (u)dxdt = ε0

∫ T

S

∫
Ω

2F (u)dxdt− 2ε0

∫ T

S

∫
Ω

2F (u)dxdt

= ε0

∫ T

S

∫
Ω

2F (u)dxdt− 2ε0α

∫ T

S

∫
Ω

|u|2 dxdt

≥ ε0

∫ T

S

∫
Ω

2F (u)dxdt− 2ε0αĉ

∫ T

S

∫
Ω

|∇u|2 dxdt,

where ĉ is the smallest imbedding positive constant satisfying∫
Ω

|v|2 dx ≤ ĉ

∫
Ω

|∇v|2 dx ∀v ∈ V.(5.8)

Assuming that βR < 1 and choosing ε0 = 1−βR
1+αĉ , then min{ε0, 2−ε0−2βR−2ε0αĉ} =

ε0 and the same inequality obtained in Case 3 holds true.

We now use the boundary condition on Γ1; we have in both previous cases

ε0

∫ T

S

E(t)dt ≤ a1(E(S) + E(T ))(5.9)

+

∫ T

S

∫
Γ1

(
R |u′|2 +

R2

δ
g2(u′) +

β

2
(n− ε0) |u|2 − (n− ε0)ug(u′)

)
dΓdt.

Using (5.1), the Cauchy–Schwarz inequality and taking the assumptions (2.4), (2.5),
and (2.6) into account, it holds that

∫ T

S

∫
Γ1

(
R|u′|2 +

R2

δ
g2(u′)

)
dx dt ≤

(
R

c1
+
R2

δ
c2

)∫ T

S

∫
Γ1

u′g(u′)dx dt

=
1

2

(
R

c1
+
R2

δ
c2

)∫ T

S

(
−E′(t) − 2

∫
Ω

u′h(∇u)dx

)
dt

≤ 1

2

(
R

c1
+
R2

δ
c2

)
(E(S) − E(T )) +

1

2

(
R

c1
+
R2

δ
c2

)
β

∫ T

S

∫
Ω

(|u′|2 + |∇u|2) dx dt;
we note a2 := 1

2 ( Rc1 + R2

δ c2) and deduce

∫ T

S

∫
Γ1

(
R|u′|2 +

R2

δ
g2(u′)

)
dx dt ≤ a2 (E(S) − E(T )) + βa2

∫ T

S

E(t)dt.(5.10)
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Similarly, we have

(n− ε0)
∫ T

S

∫
Γ1

(
β

2
|u|2 − ug(u′)

)
dx dt

≤ 1

2
(n− ε0)

∫ T

S

∫
Γ1

(
1

ε
g2(u′) + (β + ε)|u|2

)
dx dt

≤ 1

2
(n− ε0)

∫ T

S

∫
Γ1

(c2
ε
u′g(u′) + (β + ε)|u|2

)
dx dt

=
c2
2ε

(n− ε0)
∫ T

S

(
−1

2
E′(t) −

∫
Ω

u′h(∇u)dx

)
dt

+
1

2
(β + ε)(n− ε0)c̄

∫ T

S

∫
Ω

|∇u|2dx dt

≤ c2
4ε

(n− ε0)(E(S) − E(T )) +
1

2
(β + ε)(n− ε0)c̄

∫ T

S

∫
Ω

|∇u|2dx dt

+
c2
2ε

(n− ε0)
∫ T

S

∫
Ω

(
ε′β2

2
|∇u|2 +

1

2ε′
|u′|2

)
dx dt,

we choose ε = β
√

c2ε′
2c̄ , ε′ = 1

β
√

2
, and we note a3 := 1

2 (n − ε0)
√

c̄c2√
2β
, a4 := (n −

ε0)(
βc̄
2 +

√
c̄c2β

2
√

2
). It follows that

(n− ε0)
∫ T

S

∫
Γ1

(
β

2
|u′|2 − ug(u′)

)
dx dt(5.11)

≤ a4

∫ T

S

E(t)dt+ a3 (E(S) − E(T )) .

Combining (5.9), (5.10), and (5.11), we have

(ε0 − βa2 − a4)

∫ T

S

E(t)dt(5.12)

≤ a1 (E(S) + E(T )) + (a2 + a3) (E(S) − E(T )) .

If β is small enough so that 2βa1 < a5 := ε0 − βa2 − a4, that is,

β(2a1 + a2) + a4 < ε0 =

{
min{1 − βR, b−1

b+1n} if b > 1,
1−βR
1+αĉ if f is linear

(note that β(2a1 +a2)+a4 goes to 0 when β goes to 0), we conclude (5.2) with ā = a1

a5

and â = a2+a3

a5
. We fix then T0 >

−1
β ln(1 − 2βā). Using (3.12) with τ = S, we have∫ S+T0

S

E(t)dt ≥ 1

β
(1 − e−βT0)E(S + T0).
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We insert this inequality into (5.2) with T = S + T0 and obtain(
1

β
(1 − e−βT0) + â− ā

)
E(S + T0) ≤ (â+ ā)E(S).

Thanks to the hypothesis on T0, we have 1
β (1− e−βT0) > 2ā, which implies (3.1) with

d = â+ā
1
β (1−e−βT0 )+â−ā

.

If βa2 + a4 < ε0 and a1 ≤ a2 + a3 (that is,
√
R(R+ c̄

2 (n− ε0)) ≤ 1
2 ( Rc1 + R2

δ c2) +

1
2 (n− ε0)

√
c̄c2√
2β

), we conclude from (5.12) that (3.14) follows with a0 = a1+a2+a3

a5
.

Then in both cases the proof of Theorem 2.3 can be completed as in section 3.

6. Decay estimates: Proof of Theorem 2.4. To prove Theorem 2.4, which
concerns the stability of (P′) in the particular case h(∇u) = −∇φ · ∇u, with φ ∈
W 1,∞(Ω), it is sufficient to prove that the equivalent energy E defined by (2.14)
satisfies (4.1) (see section 4).

In this section, we shall denote by c diverse positive constants, by ε diverse positive
constants small enough (which can be changed from a line to another), and by cε
diverse positive constants depending on ε.

A simple computation shows that

E′(t) = −2

∫
Γ1

eφ(x)u′g(u′)dx, t ∈ R
+.(6.1)

Assumption (2.4) implies that the equivalent energy is nonincreasing.
We fix ε0 > 0 and we multiply the first equation in (P′) by

E
r−1
2 (t)eφ(x)

(
2m · ∇u+ (n− ε0)u

)
,

integrating the obtained result over Ω× [S, T ] and using the boundary conditions. We
have

I1 :=

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)u′′

(
2m · ∇u+ (n− ε0)u

)
dxdt

=

[∫
Ω

E
r−1
2 (t)eφ(x)u′

(
2m · ∇u+ (n− ε0)u

)
dx

]T
S

− r − 1

2

∫ T

S

∫
Γ1

E
r−3
2 (t)E′(t)eφ(x)

(
2m · ∇u+ (n− ε0)u

)
dxdt

−
∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)

∫
Ω

(
m · ∇(u′)2 + (n− ε0) |u′|2

)
dxdt

=

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)(ε0 +m · ∇φ) |u′|2 dxdt−

∫ T

S

∫
Γ1

E
r−1
2 (t)eφ(x)(m · ν) |u′|2 dΓdt

+
[∫

Ω

E
r−1
2 (t)eφ(x)u′

(
2m · ∇u+ (n− ε0)u

)
dx
]T
S

− r − 1

2

∫ T

S

∫
Γ1

E
r−3
2 (t)E′(t)eφ(x)

(
2m · ∇u+ (n− ε0)u

)
dxdt.
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The last two terms of this equality can be easily majorized by cE
r+1
2 (S); then we

deduce

I1 ≥ −cE r+1
2 (S) −R

∫ T

S

∫
Γ1

E
r−1
2 (t)eφ(x) |u′|2 dΓdt(6.2)

+(ε0 −R‖∇φ‖∞)

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x) |u′|2 dxdt.

On the other hand, taking the generalized Green formula (see section 5), we infer

I2 :=

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)(−∆u−∇φ · ∇u)

(
2m · ∇u+ (n− ε0)u

)
dxdt

= (2 − ε0)
∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x) |∇u|2 dxdt−

∫ T

S

∫
Γ0

E
r−1
2 (t)eφ(x)(m · ν) |∇u|2 dΓdt

+

∫ T

S

∫
Γ1

E
r−1
2 (t)eφ(x)

(
(m · ν) |∇u|2 − (n− ε0)u∂νu− 2(m · ∇u)∂νu

)
dΓdt.

Using the definition of Γ0 and Γ1, we deduce

I2 ≥ (2 − ε0)
∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x) |∇u|2 dxdt(6.3)

−
∫ T

S

∫
Γ1

E
r−1
2 (t)eφ(x)

(
(n− ε0)u∂νu+

R2

δ
(∂νu)2

)
dΓdt.

Using (2.3) and the fact that F is nonnegative, we obtain

I3 :=

∫ T

S

∫
Ω

E
r−1
2 (t)eφ(x)f(u)

(
2m · ∇u+ (n− ε0)u

)
dxdt

≥ (n− ε0)b
∫ T

S

∫
Ω

2E
r−1
2 (t)eφ(x)F (u)dxdt+

∫ T

S

∫
Ω

2E
r−1
2 (t)eφ(x)m · ∇(F (u))dxdt

≥
∫ T

S

∫
Ω

((n− ε0)b− n−m · ∇φ)2E
r−1
2 (t)eφ(x)F (u)dxdt

+

∫ T

S

∫
Γ1

2E
r−1
2 (t)eφ(x)(m · ν)F (u)dΓdt;

then we conclude that

I3 ≥ ((n− ε0)b− n−R‖∇φ‖∞)

∫ T

S

∫
Ω

2F (u)dxdt.(6.4)

Thanks to the assumptions in Theorem 2.4, we have the following.
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Case 5. If R‖∇φ‖∞ < min{2, n} and b > n+R‖∇φ‖∞
n−R‖∇φ‖∞

, we can choose ε0 ∈
]R‖∇φ‖∞,min{2, n− n+R‖∇φ‖∞

b }[ and then

min{ε0 −R‖∇φ‖∞, 2 − ε0, (n− ε0)b− n−R‖∇φ‖∞} > 0.

Case 6. If f is linear, f(s) = αs for some positive constant α, then b = 1 and we
conclude from (6.4) that

I3 ≥ (−ε0 −R‖∇φ‖∞)

∫ T

S

∫
Ω

2F (u)dxdt

= (ε0 −R‖∇φ‖∞)

∫ T

S

∫
Ω

2F (u)dxdt− 2ε0

∫ T

S

∫
Ω

2F (u)dxdt

= (ε0 −R‖∇φ‖∞)

∫ T

S

∫
Ω

2F (u)dxdt− 2ε0α

∫ T

S

∫
Ω

|u|2 dxdt

≥ (ε0 −R‖∇φ‖∞)

∫ T

S

∫
Ω

2F (u)dxdt− 2ε0αĉ

∫ T

S

∫
Ω

|∇u|2 dxdt,

where ĉ is the positive constant defined by (5.8). Then, assuming that R‖∇φ‖∞ <
2

1+2αĉ and taking ε0 ∈]R‖∇φ‖∞, 2
1+2αĉ [, the quantity min{ε0 − R‖∇φ‖∞, 2 − (1 +

2αĉ)ε0} is positive.
Combining (6.2)–(6.4), taking the fact that I1 + I2 + I3 = 0 into account, and

using the boundary condition on Γ1, we obtain in both previous cases

∫ T

S

∫
Ω

E
r+1
2 (t)dt ≤ cE

r+1
2 (S)(6.5)

+ c

∫ T

S

∫
Γ1

E
r−1
2 (t)eφ(x)

(
|u′|2 + g2(u′) + |ug(u′)|

)
dΓdt.

We now estimate the last term of (6.5). We exploit the Cauchy–Schwarz inequality
and the Sobolev imbedding V ⊂ L2(Γ1) to get∫

Γ1

|ug(u′)|dΓ ≤ ε

∫
Γ1

|u|2dΓ + cε

∫
Γ1

g2(u′)dΓ ≤ εE(t) + cε

∫
Γ1

g2(u′)dΓ.

Substituting this inequality into the right-hand side of (6.5) and choosing ε > 0 small
enough, we obtain that

∫ T

S

∫
Ω

E
r+1
2 (t)dt ≤ cE

r+1
2 (S)(6.6)

+ c

∫ T

S

∫
Γ1

E
r−1
2 (t)eφ(x)

(
|u′|2 + g2(u′)

)
dΓdt.

We follow now the proof given in section 4. We note

Γ+ = {x ∈ Γ1 :
∣∣u′∣∣ > 1} and Γ− = Γ1 \ Γ+.
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By (2.12) and (6.1) we have

∫ T

S

∫
Γ+

E
r−1
2 (t)eφ(x)

(∣∣u′∣∣2 + g2(u′)
)
dxdt ≤ cE

r−1
2 (S)

∫ T

S

∫
Γ+

eφ(x)u′g(u′)dxdt

≤ c
(
E

r+1
2 (S) − E r+1

2 (T )
)
.

In the same way (using Young’s inequality), we get

∫ T

S

∫
Γ−
E

r−1
2 (t)eφ(x)

(∣∣u′∣∣2 + g2(u′)
)
dxdt ≤ c

∫ T

S

∫
Γ−
E

r−1
2 (t)

(
eφ(x)u′g(u′)

) 2
r+1

dxdt

≤ ε

∫ T

S

E
r+1
2 (t)dt+ cε

∫ T

S

∫
Γ−
eφ(x)u′g(u′)dxdt

≤ ε

∫ T

S

E
r+1
2 (t)dt+ cε (E(S) − E(T )) .

Substituting the sum of these two estimates into the right-hand side of (6.6), choosing
ε small enough, and letting T go to ∞, we obtain (4.1). This finishes the proof of
Theorem 2.4.

Remark. Using the method developed above, the same results can be easily
obtained if we replace the first equation in (P) by

u′′ − ∆u+ q1(x)h(∇u) + q2(x)f(u) + q3(x)g(u′) = 0 in Ω × R
+,

and the first equation and the boundary condition on Γ1 in (P′) by{
u′′ − ∆u+ q1(x)h(∇u) + q2(x)f(u) = 0 in Ω × R

+,

∂νu+ q4(x)u+ q3(x)g(u′) = 0 on Γ1 × R
+,

where qi : Ω → R are bounded functions such that q2(x) ≥ 0, q4(x) ≥ 0, q3(x) ≥
a0 > 0. If q4(x) ≥ b0 > 0, we may take Γ0 = ∅.

We define the equivalent energy of (P) and (P′), respectively, by

E(t) =

∫
Ω

eϕ(x)
(∣∣u′∣∣2 +

∣∣∇u∣∣2 + 2q2(x)F (u)
)
dx,(6.7)

E(t) =

∫
Ω

eϕ(x)
(∣∣u′∣∣2 +

∣∣∇u∣∣2 + 2q2(x)F (u)
)
dx+

∫
Γ1

eϕ(x)
∣∣u∣∣2dΓ(6.8)

if h(∇u) = −∇φ · ∇u with φ ∈ W 1,∞(Ω), where ϕ ∈ W 1,∞(Ω) satisfying ∇ϕ =
q1(x)∇φ.

In the general case, we assume that β‖q1‖∞ is small enough as in Theorem 2.1
and Theorem 2.3, where β, c1, and c2 are replaced by β‖q1‖∞, a0c1, and c2‖q3‖∞,
respectively, and we define the energy of (P) and (P′), respectively, by (6.7) and (6.8)

with ϕ ≡ 0. In order to get ride of the lower-order term, which is
∫
Γ1

∣∣u∣∣2dΓ, we use

the solution of an auxiliary elliptic problem as an additional multiplier (see [4, Lemma
4.2]).
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7. Some applications of our method. In [6], we considered the following
Petrovsky system:


u′′ + ∆2u+ q(x)u+ g(u′) = 0 in Ω × R

+,

u = ∂νu = 0 on Γ × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω,

(7.1)

where Ω is a bounded domain in R
n (n ≥ 1) with a smooth boundary Γ and ν is the

outward unit normal vector to Γ. For g continuous, increasing, satisfying g(0) = 0,
and q : Ω → R

+ a bounded function, we proved a global existence and a regularity
result. We also established, under suitable growth conditions on g, decay results for
weak, as well as strong, solutions. Precisely, we showed that the solution decays
exponentially if g behaves like a linear function, whereas the decay is of a polynomial
order otherwise. Similar results to the above system, coupled with a semilinear wave
equation, have been established by Guesmia in [5]. In [17], Messaoudi studied the
problem 


u′′ + ∆2u+ au′

∣∣u′∣∣m−2 − bu∣∣u∣∣p−2
= 0 in Ω × R

+,

u = ∂νu = 0 on Γ × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω,

where a, b > 0 and p, m > 2. This is a similar problem to (7.1), which contains a
nonlinear source term competing with the damping factor. He established an existence
result and showed that the solution continues to exist globally if m ≥ p; however, it
blows up in finite time if m < p. In this paper no result of stability was announced.

In [7], we obtained some stabilization results of the following elasticity system:



u′′i − σij,j + gi(u

′
i) = 0 in Ω × R

+,

ui = 0 on Γ × R
+,

ui(x, 0) = u0
i (x) and u′i(x, 0) = u1

i (x) in Ω,

i = 1, . . . , n,

(7.2)

where the unknown u = (u1, . . . , un) : Ω → R
n. Here, σij,j =

∑j=n
j=1

∂σij

∂xj
, σij =∑k,l=n

k,l=1 aijklεij , εij = 1
2 (ui,j + uj,i), ui,j = ∂ui

∂xj
, uj,i =

∂uj

∂xi
, and aijkl ∈W 1,∞(Ω). We

proved some decay estimates which are crucially dependent on the behavior of the
damping gi at the origin and infinity. In [8], we extended these results to the case
of localized dissipations; that is, the damping is effective only in a neighborhood of a
suitable subset of the boundary.

In [4], we considered the problem of exact controllability and boundary stabi-
lization of elasticity systems with coefficients aijkl depending also on time t. The
stabilization results obtained in [4] were generalized in [3] to the nonlinear feedback
case. The results obtained in [3] and [4] improve and generalize some ones obtained
earlier by Alabau and Komornik [1] in the case where gi is linear and aijkl = const.

The decrease of energy plays a crucial role in studying the asymptotic stability of
the systems cited above. The situation of nondissipative systems (that is, the energy
is not decreasing) was not previously considered.

Using the method developed in previous sections, we can extend Theorems 2.1–2.4
to the following more general nondissipative problems.
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7.1. Petrovsky system.

u′′ + ∆2u+ q1(x)h(∆u) + q2(x)f(u) + q3(x)g(u′) = 0 in Ω × R

+,

u = ∂νu = 0 on Γ × R
+,

u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω,

where h, f, g : R → R are three given functions satisfying Assumptions 2.1–2.5 and qi
are three given functions defined as in the remark above. Here c0 > 0 is the smallest
imbedding positive constant (depending only on Ω) satisfying∫

Ω

∣∣v∣∣2dx ≤ c0

∫
Ω

∣∣∆v∣∣2dx ∀v ∈ H2
0 (Ω).

The energy and the equivalent energy are, respectively, defined by

E(t) =

∫
Ω

(∣∣u′∣∣2 +
∣∣∆u∣∣2 + 2q2(x)F (u)

)
dx, t ∈ R

+,

in the general case, and

E(t) =

∫
Ω

eϕ(x)
(∣∣u′∣∣2 +

∣∣∆u∣∣2 + 2q2(x)F (u)
)
dx, t ∈ R

+

if h(∆u)= −φ(x)∆u, with φ ∈L∞(Ω), where ϕ ∈W 2,∞(Ω) satisfying ∆ϕ= q1(x)φ(x).

7.2. Coupled system. We consider the nonlinear coupled wave equation and
Petrovsky system:



u′′1 + ∆2u1 + q1(x)h1(∆u1) + q2(x)f1(u1)

+ q3(x)g1(u
′
1) + a1(x)u2 = 0 in Ω × R

+,

u′′2 − ∆u1 + l1(x)h2(∇u2) + l2(x)f2(u2)

+ l3(x)g2(u
′
2) + a2(x)u1 = 0 in Ω × R

+,

u2 = u1 = ∂νu1 = 0 on Γ × R
+,

ui(x, 0) = u0
i (x) and u′i(x, 0) = u1

i (x), i = 1, 2 in Ω,

where a1, a2 are two bounded functions with norms small enough (see [5]) and the li,
hi, fi, and gi are given functions defined as qi, h, f , and g, respectively.

If h1(∆u1) = −φ1(x)∆u1 and h2(∇u2) = −∇φ2 · ∇u2 with φ1 ∈ L∞(Ω) and
φ2 ∈W 1,∞(Ω), then we assume that a1(x)eϕ1(x) = a2(x)eϕ2(x), where ϕ1 ∈W 2,∞(Ω)
and ϕ2 ∈ W 1,∞(Ω) satisfying ∆ϕ1 = q1(x)φ1(x) and ∇ϕ2 = l1(x)∇φ2; we define the
equivalent energy by

E(t) =

∫
Ω

eϕ1(x)
(∣∣u′1∣∣2 +

∣∣∆u1

∣∣2 + 2q2(x)F1(u1)
)
dx(7.3)

+

∫
Ω

eϕ2(x)
(∣∣u′2∣∣2 +

∣∣∇u2

∣∣2 + 2l2(x)F2(u2)
)
dx+ 2

∫
Ω

eϕ1(x)a1(x)u1u2dx,

which is nonincreasing,

E′(t) = −2

∫
Ω

(
eϕ1(x)q3(x)u′1g1(u

′
1) + eϕ2(x)l3(x)u′2g2(u

′
2)
)
≤ 0.

In the general case, we assume that a1(x) = a2(x) and we define the energy by (7.3)
with ϕ1 ≡ ϕ2 ≡ 0.
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7.3. Elasticity systems. We are interested in the precise decay property of the
solution for elasticity systems:



u′′i − σij,j + q1,i(x)hi(σi1, . . . , σin)

+ q2,i(x)fi(ui) + q3,i(x)gi(u
′
i) = 0 in Ω × R

+,

ui = 0 on Γ × R
+,

ui(x, 0) = u0
i (x) and u′i(x, 0) = u1

i (x) in Ω,

i = 1, . . . , n,

(7.4)

with the same notations as before. Here for i = 1, . . . , n, hi, fi, and gi satisfy the
same hypothesis as h, f , and g in section 2, respectively, and q1,i, q2,i, and q3,i are
defined as q1, q2, and q3 in section 7.1, respectively.

We define the equivalent energy of (7.4) by the formula

E(t) =

∫
Ω

i=n∑
i=1

eϕi(x)

(∣∣u′i∣∣2 +

j=n∑
j=1

σijεij + 2q2,i(x)Fi(ui)

)
dx,

where ϕi ≡ 0 if hi is nonlinear, and if hi is linear, hi(ζ) = −∇φi · ζ for all ζ ∈ R
n

with φi ∈W 1,∞(Ω), then we take ϕi ∈W 1,∞(Ω) such that ∇ϕi = q1,i(x)∇φi. In the
case where all the functions hi are linear, our system is dissipative:

E′(t) = −2

∫
Ω

i=n∑
i=1

eϕi(x)q3,i(x)u′igi(u
′
i)dx ≤ 0.

We obtain the results of Theorem 2.1 and Theorem 2.2.
Under some geometric condition as in [3], the results of Theorem 2.3 and Theorem

2.4 can be easily proved in the case of boundary feedback; that is, we consider the
homogenous Dirichlet condition on Γ0, and we consider the following one on Γ1 (see
[3]):

j=n∑
j=1

σijνj + q4,i(x)ui + q3,i(x)gi(u
′
i) = 0.

Remark. The method developed in this paper is direct and very flexible; it can be
applied to various nondissipative problems (elasticity, thermoelasticity, Kirchoff, von
Karman, coupled systems, . . . ) with an internal or a boundary feedback, and it can
generalize the decay estimates (known in the dissipative case) to the nondissipative
one.

Open questions. The main restrictive assumptions under which the stability
results are valid are the smallness conditions on β (defined by (2.6)) assumed in
Theorems 2.1, 2.3, and 2.4. In the case of nonlinear function h, these assumptions
are required to obtain the inequalities (∗) (given in the introduction). In Theorem 2.4
(stability of (P ′) with h(∇u) = −∇φ ·∇u), the smallness assumption on β is required
to absorb some terms caused by the use of the second multiplier m · ∇u. It would be
interesting to know if the stability estimates still hold true under weaker assumption
on β, using more sophisticated tools, for example, general multipliers. And if it is not
the case, it would be interesting to know if other weaker stability estimates can be
obtained.

Another important aspect of the case of nonlinear function h is assumption (2.5)
imposed on the damping g. It would be interesting to prove the same polynomial
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stability (obtained in the case of linear function h) under the weaker assumption
(2.12). With this perspective, it would be interesting to look at what we can conclude
at ∞ on a positive function satisfying the following inequalities more general than (∗):{∫ T

S
Ea0(t)dt ≤ a1(E(S) + E(T )) + a2(E(S) − E(T )) ∀0 ≤ S ≤ T <∞,

E′(t) ≤ a3E(t) ∀t ≥ 0,

where ai, i = 0, 1, 2, 3, are nonnegative constants.
It would also be very interesting (particularly from the point of view of applica-

tions) to explore a more general class of hyperbolic equations based on the equation

K(x, t)u′′ −Au+ F (x, t, u, u′,∇u) = 0,

where K and F are given functions and Au =
∑n

i,j=1 ∂xi(aij(x, t)∂xju) is a second-
order elliptic differential operator with smooth coefficients aij .
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