
EXTREMALS FOR HARDY-SOBOLEV TYPE INEQUALITIES:

THE INFLUENCE OF THE CURVATURE

FRÉDÉRIC ROBERT

Abstract. We consider the optimal Hardy-Sobolev inequality on a smooth

bounded domain of the Euclidean space. Roughly speaking, this inequality

lies between the Hardy inequality and the Sobolev inequality. We address the
questions of the value of the optimal constant and the existence of non-trivial

extremals attached to this inequality. When the singularity of the Hardy

part is located on the boundary of the domain, the geometry of the domain
plays a crucial role: in particular, the convexity and the mean curvature are

involved in these questions. The main difficulty to encounter is the possible
bubbling phenomenon. We describe precisely this bubbling through refined

concentration estimates. An offshot of these techniques allows us to provide

general compactness properties for nonlinear equations, still under curvature
conditions for the boundary of the domain.
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1. The Hardy-Sobolev inequality and two questions

We consider the Euclidean space Rn, n ≥ 3. The famous Sobolev theorem asserts
that there exists a constant C1(n) > 0 such that

(1)

(∫
Rn
|u|

2n
n−2 dx

)n−2
n

≤ C1(n)

∫
Rn
|∇u|2 dx
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for all u ∈ C∞c (Rn). Another very famous inequality is the Hardy inequality, which
asserts that there exists C2(n) > 0 such that

(2)

∫
Rn

u2

|x|2
dx ≤ C2(n)

∫
Rn
|∇u|2 dx

for all u ∈ C∞c (Rn). Interpolating these two inequalities, one gets the Hardy-
Sobolev inequality: more precisely, let s ∈ [0, 2], then there exists C(s, n) > 0 such
that

(3)

(∫
Rn

|u|2?(s)

|x|s
dx

) 2
2?

≤ C(s, n)

∫
Rn
|∇u|2 dx

for all u ∈ C∞c (Rn), where

2?(s) :=
2(n− s)
n− 2

.

Indeed, with s = 0, we recover the Sobolev inequality (1), and with s = 2, we
recover the Hardy inequality (2). The Hardy-Sobolev inequality is a particular case
of the family of functional inequalities obtained by Caffarelli-Kohn-Nirenberg [8].
When s ∈ (0, 2), it is remarkable that the Hardy-Sobolev inequality inherites the
singularity at 0 from the Hardy inequality and the superquadratic exponent from
the Sobolev inequality. For completeness and density reasons, given Ω an open
subset of Rn, it is more convenient to work in the Sobolev space

H2
1,0(Ω) := Completion of C∞c (Ω) for ‖ · ‖

where ‖u‖ :=
(∫

Ω
|∇u|2 dx

)1/2
. Therefore, inequality (3) is valid for u ∈ H2

1,0(Ω).

Following the programme developed for other functional inequalities, we saturate
(3): given Ω an open subset of Rn, we define

µs(Ω) := inf
u∈H2

1,0(Ω)\{0}
IΩ(u), where IΩ(u) :=

∫
Ω
|∇u|2 dx(∫

Ω
|u|2?(s)
|x|s dx

) .
It follows fom the Hardy-Sobolev inequality that µs(Ω) > 0. We address the two
following questions:

Question 1: What is the value of µs(Ω)?

Question 2: Are there extremals for µs(Ω)?
That is: is there some uΩ ∈ H2

1,0(Ω) \ {0} such that IΩ(uΩ) = µs(Ω)?

The main difficulty here is due to the fact that 2?(s) is critical from the view-
point of the Sobolev embeddings. More precisely, if Ω is bounded, then H2

1,0(Ω) is

embedded in the weighted space Lp(Ω, |x|−s) for 1 ≤ p ≤ 2?(s). And the embed-
ding is compact iff p < 2?(s) (in general, at least... see subsection 2.3 below). This
lack of compactness defeats the classical minimization strategy to gets extremals
for µs(Ω). In fact, when s = 0, that is in the case of Sobolev inequalities, the
same kind of difficulty occurs, and there have been some methods developed to
bypass them. Concerning the same questions in the Riemannian context, we refer
to Hebey-Vaugon [24] and Druet [10], and also to Aubin-Li [4].
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2. A few answers in some specific cases

In this section, we collect a few facts and answers to questions 1 and 2: these
results are essentially extensions of the methods developed in the case s = 0.

2.1. The case s = 0. In this context, the situation is well understood. In partic-
ular,

µ0(Rn) = n(n− 2)

(
ωn−1

2
·

Γ
(
n
2

)2
Γ(n)

) 2
n

=
n(n− 2)ω

2/n
n

4

where ωk is the volume of the standard k−sphere of Rk+1. The extremals exist
and are known: indeed, u ∈ H2

1,0(Rn) \ {0} is an extremal for µ0(Rn) if and only if
there exist x0 ∈ Rn, λ ∈ R \ {0}, α > 0 such that

(4) u(x) = λ

(
α

α2 + |x− x0|2

)n−2
2

for all x ∈ Rn.

These results are due to Rodemich [29], Aubin [2] and Talenti [31]. We also refer
to Lieb [25] and Lions [26] for other nice points of view.

Concerning general open subsets of Rn, one can show that

µ0(Ω) = µ0(Rn) =
n(n− 2)ω

2/n
n

4

for all Ω open subset of Rn. Moreover, if there is an extremal for µs(Ω), then it is
also an extremal for µ0(Rn) and it is of the form of (4). In particular, there is no
extremal for µs(Ω) if Ω is bounded (more general conditions involving the capacity
are available).

From now on, we concentrate on the case s ∈ (0, 2). Here, due to the singularity at
0, the situation will depend drastically on the location of 0 with respect to Ω

2.2. The case 0 ∈ Ω, s ∈ (0, 2). Here again, when Ω = Rn, the constant µs(Ω) is
explicit, and we know what the extremals are (see Ghoussoub-Yuan [20], Lieb [25],
we refer also to Catrina-Wang [9]). More precisely,

µs(Rn) = (n− 2)(n− s)

(
ωn−1

2− s
·

Γ2(n−s2−s )

Γ( 2n−2s
2−s )

) 2−s
n−s

and given α > 0, the functions

uα(x) :=

(
α

α2 + |x|2−s

)n−2
2−s

are extremals for µs(Rn), and u ∈ H2
1,0(Rn)\{0} is an extremal for µs(Rn) iff there

exists λ ∈ R \ {0} and α > 0 such that u = λ · uα. when s = 0, we recover some
of the extremals for the standard Sobolev inequality. Here, it is important to note
the following asymptotics for uα when α→ 0:

lim
α→0

uα(0) = +∞ and lim
α→0

uα(x) = 0 for all x 6= 0.

In other words, the function uα concentrates at 0 when α→ 0.
When dealing with an open subset Ω of Rn such that 0 ∈ Ω, one can follow the

approach developed for s = 0. Indeed, it follows from the definition of µs(Ω) that

µs(Ω) ≥ µs(Rn).
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The reverse inequality is obtained via the estimate of IΩ at a suitable test-function.
Let η ∈ C∞c (Ω) such that η(x) ≡ 1 in a neighborhood of 0. Then ηuα ∈ C∞c (Ω).
Simple computations then yield

IΩ(ηuα) = µs(Rn) + o(1)

where limα→0 o(1) = 0. It then follows that µs(Ω) ≤ µs(Rn), and then

µs(Ω) = µs(Rn).

Indeed, this is exactly the standard proof in the case s = 0. Concerning the
extremals, the same argument as for s = 0 proves that there is no extremal for
µs(Ω) if Ω is bounded. To conclude, one can say that the case s ∈ (0, 2) when
0 ∈ Ω is quite similar to the case s = 0.

2.3. The case 0 6∈ Ω, s ∈ (0, 2). This case is not the most interessant. Indeed,
when 0 6∈ Ω and Ω is bounded, then L2?(s)(Ω, |x|−s) = L2?(s)(Ω) and the embedding
H2

1,0(Ω) ↪→ L2?(s)(Ω) is compact since 1 ≤ 2?(s) < 2n
n−2 . Therefore, the standard

minimization methods work and there are extremals for µs(Ω). However, finding
the explicit value of µs(Ω) is almost impossible in general.

2.4. The case 0 ∈ ∂Ω, s ∈ (0, 2): first results. This case is much more intricate.
If we want to mimick the arguments above, one is stuck by the fact that ηuα 6∈
H2

1,0(Ω) when 0 ∈ ∂Ω. Indeed, around 0, the set Ω looks like Rn− := {x ∈ Rn/ x1 <
0} (and not like Rn in the case 0 ∈ Ω): therefore, we are going to compare µs(Ω)
with µs(Rn−).

Since Ω is smooth, there exists U, V open subsets of Rn such that 0 ∈ U , 0 ∈ V
and there exists ϕ : U → V a C∞−diffeomorphism such that ϕ(0) = 0 and

ϕ(U ∩ {x1 < 0}) = ϕ(U) ∩ Ω, ϕ(U ∩ {x1 = 0}) = ϕ(U) ∩ ∂Ω.

Up to an affine transformation, we can assume that the differential of ϕ at 0 is the
identity map. Let u ∈ H2

1,0(Rn−) \ {0} and let a sequence (µi)i∈N ∈ R>0 such that
limi→+∞ µi = 0 and η ∈ C∞c (U) such that η(x) ≡ 1 in a neighborhood of 0. We
define

vi(x) := η(x)µ
−n−2

2
i u

(
µ−1
i ϕ−1(x)

)
for x ∈ U ∩ Rn− and 0 elsewhere. One easily gets that vi ∈ H2

1,0(Ω) for all i ∈ N.
Straightforward computations yield

IΩ(vi) =

∫
Rn−
|∇u|2 dx(∫

Rn−
|u|2?(s)
|x|s dx

) + o(1)

where limi→+∞ o(1) = 0. Therefore, taking the infimum for all u, we get that

(5) µs(Ω) ≤ µs(Rn−).

Indeed, aguing as in the case 0 ∈ Ω, one gets that when Ω ⊂ Rn−, then the reverse
inequality holds, and then

µs(Ω) = µs(Rn−) when Ω ⊂ Rn−.
Moreover, if Ω ⊂ Rn− and Ω is bounded, then there is no extremal for µs(Ω).

Actually, in case 0 ∈ ∂Ω, the method for s = 0 can be extended only when Ω ⊂
Rn−, which is an hypothesis of convexity at 0. In particular, this hypothesis is
satisfied for balls. In the sequel, we are going to tackle our problem when 0 ∈ ∂Ω
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without convexity assumptions: what is interesting here is that the geometry of the
boundary will be concerned.

3. The case 0 ∈ ∂Ω: statement of the results

In this context, one of the first contributions is due to Egnell:

Theorem 1 (Egnell [15]). Let D be a nonempty connected domain of Sn−1, the
unit sphere in Rn. Let C := {rθ/ r > 0, θ ∈ D} be the cone based at 0 induced by
D. Then there are extremals for µs(C).

Indeed, in the spirit of Lions [26], Egnell takes advantage of the invariance of
the problem after rescaling in the directions of D to prove relative compactness of
minimizers of µs(C) after rescaling. An important point here is that the domain
C is not necesseraly smooth at 0. Moreover, Theorem 1 proves that there are
extremals for µs(Rn−). But we do not know the value of µs(Rn−).

More recently, Ghoussoub and Kang came back to this problem when the domain
Ω is bounded and smooth at 0:

Theorem 2 (Ghoussoub-Kang [16]). Let Ω be a smooth bounded domain of Rn
such that 0 ∈ ∂Ω. Assume that

(6) µs(Ω) < µs(Rn−).

Then there are extremals for µs(Ω).

This kind of condition is very classical in best constant problems, see Aubin [3],
Brézis-Nirenberg [5].

Proof. Let us briefly sketch the proof of this result. First, given ε ∈ (0, 2?(s)− 2),
consider the approximate minimization:

µεs(Ω) := inf
u∈H2

1,0(Ω)\{0}

∫
Ω
|∇u|2 dx(∫

Ω
|u|2?(s)−ε
|x|s dx

) 2
2?(s)−ε

.

Since the exponent is subcritical, there is compactness of the embedding H2
1,0(Ω) ↪→

L2?(s)−ε(Ω, |x|−s) and we get that there is a minimizer uε ∈ H2
1,0(Ω)\{0} of µεs(Ω).

Moreover, regularity theory yields that uε ∈ C∞(Ω \ {0}) ∩ C1(Ω) and we can
assume that uε verifies the system

∆uε =
u2?(s)−1−ε
ε

|x|s in Ω

uε > 0 in Ω
uε = 0 on ∂Ω

Concerning the energy, we have that

(7)

∫
Ω

u
2?(s)−ε
ε

|x|s
dx = µεs(Ω)

2?(s)−ε
2?(s)−ε−2 .

The standard strategy is then to let ε → 0: this is not straightforward since
the embedding H2

1,0(Ω) ⇀ L2?(s)(Ω; |x|−s) is not compact. In the case s = 0,
Struwe [30] gave a very nice decomposition describing precisely this lack of com-
pactness for Palais-Smale sequence. Struwe’s result was extended to our situation
by Ghoussoub-Kang. We need to define a bubble:
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Definition 1. A family (Bε)ε>0 ∈ H2
1,0(Ω) is a bubble if there exists a family

(µε)ε>0 ∈ R>0 such that limε→0 µε = 0, there exists u ∈ H2
1,0(Rn−) \ {0} such that

∆u =
|u|2?(s)−2u

|x|s
in D′(Rn−)

and

Bε(x) = η(x)µ
−n−2

2
ε u

(
k−1
ε ϕ−1(x)

)
for x ∈ U ∩ Rn− and 0 elsewhere, where

kε = µ
1− ε

2?(s)−2
ε and lim

ε→0
kεε = c ∈ (0, 1].

In the definition, η and ϕ are as in Subsection 2.4.

An important remark is that a consequence of the definition of µs(Rn−) is that
the same computations as in Subsection 2.4 yield∫

Ω

|Bε|2
?(s)−ε

|x|s
dx+ o(1) ≥ µs(Rn−)

2?(s)
2?(s)−2 + o(1)

for any bubble. Then, in the spirit of Struwe and following the proofs of Ghoussoub-
Kang [16] and Robert [28], we get that for any family (uε)ε>0 of solutions to (3)
such that there exists Λ > 0 such that ‖uε‖H2

1,0(Ω) ≤ Λ for all ε > 0, there exists

u0 ∈ H2
1,0(Ω), there exists N ∈ N and there exists N positive bubbles (Bi,ε)ε>0,

i ∈ {1, ..., N} such that

(8) uε = u0 +

N∑
i=1

Bi,ε +Rε

where limε→0Rε = 0 strongly in H2
1,0(Ω).

We apply (8) to the function uε in (3). Assume that there is a bubble in the
decomposition, then one gets that∫

Ω

u
2?(s)−ε
ε

|x|s
dx ≥

∫
Ω

B
2?(s)−ε
i,ε

|x|s
dx+ o(1) ≥ µs(Rn−)

2?(s)
2?(s)−2 + o(1)

where limε→0 o(1) = 0. Since limε→0 µ
ε
s(Ω) = µs(Ω), we get with (7) that

µs(Ω) ≥ µs(Rn−),

a contradiction with the initial hypothesis. Therefore there is not bubble and
limε→0 uε = u0 in H2

1,0(Ω), and u0 is an extremal for µs(Ω). �

But when is inequality (6) fulfilled? For this type of problems, the traditional
method (see Aubin [3]) is to compute the functional IΩ at bubbles modelized on
extremals for µs(Rn−) and to make a Taylor expansion, hoping that one succeeds
in getting below the energy threshold. But at this stage, a difficulty occurs: the
extremals for µs(Rn−) are not explicit, and therefore, the coefficients that appear in
the estimate of IΩ at the bubbles are not explicit, and we do not have informations
on their sign in general. Then, it is not possible to prove that one goes below the
energy threshold with this method.

However, Ghoussoub and Kang were able to prove an existence result:
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Theorem 3 (Ghoussoub-Kang [16]). Let Ω be a smooth bounded domain of Rn
such that 0 ∈ ∂Ω. Assume that the principal curvatures at 0 are all negative and
that n ≥ 4. Then there are extremals for µs(Ω).

Concerning terminology, the principal curvatures are the eigenvalues of the sec-
ond fundamental form of the hypersurface ∂Ω oriented by the outward normal
vector. The second fundamental form being

II0( ~X, ~Y ) = (dn0( ~X), ~Y ) for ~X, ~Y ∈ T0∂Ω

where dn0 is the differential of the outward normal vector at 0 and (·, ·) is the
Euclidean scalar product. Concerning the proof, Ghoussoub and Kang are able to
exhibit a family (wi)i∈N ∈ H2

1,0(Ω) \ {0} such that IΩ(wi) < µs(Rn−) for i large
and under the assumptions of the theorem: this family is not constructed via the
bubbles and the construction is quite intricate.

The condition in Theorem 3 means that the domain is locally concave at 0: a
condition that is consistant with the non-existence of extremals when Ω ⊂ Rn−.
However, these two cases do not cover all situations, and dimension 3 is not treated
in Theorem 3. In fact, in the proof of Ghoussoub-Kang, the bubbling phenomenon
is ruled out at the beginning of the argument for energy considerations. To get more
general results, the strategy is to describe precisely the potential bubbling and then
to get a contradiction: techniques different from the standard minimization ones
are required to go any further.

The suitable quantity to consider is the mean curvature (that is the trace of the
second fondamental form). In a joint work with N.Ghoussoub, we use blow-up
techniques to prove the following:

Theorem 4 (Ghoussoub-Robert [17]). Let Ω be a smooth bounded domain of Rn
such that 0 ∈ ∂Ω. Assume that the mean curvature of ∂Ω at 0 is negative and that
n ≥ 3. Then there are extremals for µs(Ω).

This results clearly includes Theorem 3. Qualitatively, Theorem 4 tells us that
there are extremals for µs(Ω) when the domain is ”more” concave than convex
at 0 in the sense that the negative principal directions dominate quantitatively
the positive principal directions. This allows us to exhibit new examples neither
convex or concave for which the extremals exist. Note that this results does not
tell anything about the value of the best constant.

4. Sketch of the proof of Theorem 4

As in the proof of Theorem 2, we consider the subcritical problem. Indeed, given
ε ∈ (0, 2?(s)− 2), there exists uε ∈ H2

1,0(Ω) ∩ C∞(Ω \ {0}) ∩ C1(Ω) such that

(9)


∆uε =

u2?(s)−1−ε
ε

|x|s in Ω

uε > 0 in Ω
uε = 0 on ∂Ω

and

(10) lim
ε→0

∫
Ω

u
2?(s)−ε
ε

|x|s
dx = µεs(Ω)

2?(s)
2?(s)−2 .
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With (5) and Theorem 2, we can assume that µs(Ω) = µs(Rn−). With the de-
composition (8) above, we get that we are in one and only one of the following
situations:

a. either there exists u0 ∈ H2
1,0(Ω) \ {0} such that limε→0 uε = u0 in H2

1,0(Ω),
b. or there exists a bubble (Bε)ε>0 such that

(11) uε = Bε + o(1)

where limε→0 o(1) = 0 in H2
1,0(Ω). Moreover, the function u ∈ H2

1,0(Ω) defining the

bubble in Definition 1 is positive: in particular, u ∈ H2
1,0(Rn−) ∩ C∞(Rn− \ {0}) ∩

C1(Rn−) and satisfies

(12) ∆u =
u2?(s)−1

|x|s
in D′(Rn−), u > 0 in Rn−, u = 0 on ∂Rn−.

We are going to prove that b. does not hold when the mean curvature is negative

at 0. Indeed, if b. does not hold, then situation a. holds and u0 is an extremal for
µs(Ω), and Theorem 4 is proved.

We argue by contradiction and assume that b. holds. The idea is to prove that the
family (uε)ε>0 behaves more or less like the bubble (Bε)ε>0. In fact (11) indicates
that these two families are equal up to the addition of a term vanishing in H2

1,0(Ω).
We need something more precise, indeed a pointwise description, not a description
in Sobolev spaces. This requires a good knowledge of the bubbles: a difficult
question since bubbles are not explicit here.

4.1. Strong pointwise estimate. When u ∈ H2
1,0(Rn−) ∩ C1(Rn−) is a positive

weak solution to (12), we prove that there exists a constant C > 0 such that

1

C
· |x1|

(1 + |x|2)n/2
≤ u(x) ≤ C |x1|

(1 + |x|2)n/2

for all x ∈ Rn−. Coming back to the definition of the bubble, and letting (µε)ε>0 ∈
R>0 the parameter in Definitin 1, we get that

Bε(x) ≤ C µ
n/2
ε d(x, ∂Ω)

(µ2
ε + |x|2)n/2

for all x ∈ Ω. Instead of comparing directly with the bubble, we are going to prove
the following claim:

Claim: there exists C1 > 0 such that

(13) uε(x) ≤ C1
µ
n/2
ε d(x, ∂Ω)

(µ2
ε + |x|2)n/2

for all x ∈ Ω and all ε > 0.

This type of optimal pointwise estimates have their origin in Atkinson-Peletier [1]
and Brézis-Peletier [6]. In the general case when s = 0, such an estimate was
obtained by Han [22] with the use of the Kelvin transform and in Hebey [23] and
in Robert [27]. In the Riemannian context, such pointwise estimates are in Hebey-
Vaugon [24], Druet [10] and Druet-Robert [14]. These techniques were used by
Druet [11] to solve the three-dimensional conjecture of Brézis. In the context of
high energy, that is with arbitrary many bubbles, we refer to the monography
Druet-Hebey-Robert [13] and to Druet [12].
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The proof we present here uses the machinery developed in Druet-Hebey-Robert
[13] for equations of Yamabe-type on manifolds: in particular, this allows to tackle
problems with arbitrary high energy. These techniques can be extended to our
context where there is a singularity at 0, a point on the boundary. The proof of
(13) proceeds in three steps:

Step 1: We have that

lim
ε→0

µ
n−2
2

ε uε(ϕ(µεx)) = u in C1
loc(Rn−).

Indeed, rescaling (11) yields that the convergence above holds locally in H2
1,0(Rn−).

The convergence in C1 is a consequence of elliptic regularity.

Step 2: For all ν ∈ (0, 2?(s)− 2), there exists Rν > 0 and Cν > 0 such that

(14) uε(x) ≤ Cνµ
n
2−ν(n−1)
ε

d(x, ∂Ω)1−ν

|x|n(1−ν)

for all ε > 0 small enough and all x ∈ Ω \ ϕ(BRνµε(0)).

Proof. This is one of the most difficult steps: we only briefly outline the proof.
Thanks to Step 1, proving (13) amounts to proving that

uε(x) ≤ C1
µ
n/2
ε d(x, ∂Ω)

|x|n

for Ω \ ϕ(BR0µε(0)) for some R0 > 0. We denote by G the Green’s function for
∆− ε0 with ε0 > 0 small, that is

∆G(x, ·)− ε0G(x, ·) = δx in D′(Ω) and G(x, ·) = 0 in ∂Ω

for all x ∈ Ω. In particular, denoting by ∂/∂1~ν the exterior normal derivative with
respect to the first variable, one proves that there exists δ > 0 such that

0 < −∂G(0, x)

∂1~ν
≤ C2

d(x, ∂Ω)

|x|n

for all x ∈ Ω ∩ Bδ(0), and, up to multiplication by a constant, the right-hand-side
is exactly what we want to compare uε with. Given ν > 0 small enough, with the
use of a comparison principle and some refined estimates, we are able to compare
uε and

Cε ·
(
−∂G(0, x)

∂1~ν

)1−ν

on Ω\ϕ(BRνµε(0)) for Rν large enough and a suitable constant Cε depending on ε.
Then we get (14). We refer to the articles [17, 18] for the proof of this assertion. �

Step 3: We plug the above estimates of Steps 1 and 2 into Green’s representation
fomula

uε(x) =

∫
Ω

H(x, y)u2?(s)−1−ε
ε (y) dy

for all x ∈ Ω, where H is the Green’s function for ∆ with Dirichlet boundary
conditions. Then, it is necessary to divide the domain Ω in various subdomains,
and on each of these subdomains, we use different estimates for uε. At the end, we
get (13). This proves the claim.
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4.2. Pohozaev identity. The final contradiction comes from the Pohozaev iden-
tity. Indeed, integrating by parts, we get that∫

Ω

xi∂iuε∆uε dx+
n− 2

2

∫
Ω

uε∆uε dx = −1

2

∫
∂Ω

(x, ν)|∇uε|2 dσ

and then, with the system (9), we get that(
n− 2

2
− n− s

2?(s)− ε

)∫
Ω

u
2?(s)−ε
ε

|x|s
dx = −1

2

∫
∂Ω

(x, ν)|∇uε|2 dσ.

The left-hand-side is easy to estimate with (10). For the right-hand-side, we need
to use the optimal estimate (13), and we get that

lim
ε→0

ε

µε
=

(n− s)
∫
∂Rn−

II0(x, x)|∇u|2 dx

(n− 2)2
∫
Rn−
|∇u|2 dx

where II0 is the second fondamental form at 0 defined on the tangent space of ∂Ω
at 0 that we assimilate to ∂Rn−.

In addition, in the spirit of Caffarelli-Gidas-Spruck [7] and Gidas-Ni-Nirenberg
[21], we prove that the positive function u satisfying (12) enjoys the best symmetry
possible: indeed, writing x = (x1, x̄) ∈ Rn with x1 ∈ R, we get that u(x1, x̄) =
ũ(x1, |x|) where ũ : R× R→ R. Therefore, the limit above rewrites as

lim
ε→0

ε

µε
=

(n− s)
∫
∂Rn−
|x|2 · |∇u|2 dx

n(n− 2)2
∫
Rn−
|∇u|2 dx

·H(0),

where H(0) is the mean curvature at 0. Since the left-hand-side is nonnegative, we
get that H(0) ≥ 0: a contradiction with our initial assumption. Then b. does not
hold and we have extremals for µs(Ω). This proves Theorem 4.

4.3. General compactness. The proof that we have sketched here involved func-
tions developing one bubble in the Struwe decomposition. As in Druet-Hebey-
Robert [13], this analysis can be extended to functions developing arbitrary many
bubbles, that is when the energy is arbitrary. The new difficulty here is that many
bubbles accumulate at 0. The following result holds:

Theorem 5 (Ghoussoub-Robert [18]). Let Ω be a smooth bounded domain of Rn,
n ≥ 3, with 0 ∈ ∂Ω. Let (uε)ε>0 ∈ H2

1,0(Ω) and (aε)ε>0 ∈ C1(U) (with Ω ⊂⊂ U) be
a family of solutions to the equation

∆uε + aεuε =
|uε|2

?(s)−2−εuε
|x|s

in D′(Ω).

Assume that there exists Λ > 0 such that ‖uε‖H2
1,0(Ω) ≤ Λ and that limε→0 aε = a∞

in C1
loc(U). Assume that the principal curvatures at 0 are nonpositive, but not all

null. Then there exists u ∈ C1(Ω) such that, up to a subsequence, limε→0 uε = u in
C1(Ω).

In other words, there is no bubble under the assumption on the curvature at 0.
Here, as in the proof of Theorem 4, we prove that the uε’s are controled pointwisely
by a sum of bubbles. Then, plugging uε in the Pohozaev identity, we get that,
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in case there is at least one bubble, there exists v ∈ H2
1,0(Rn−) \ {0}, C > 0 and

(µε)ε>0 ∈ R>0 such that limε→0 µε = 0 and

lim
ε→0

ε

µε
= C ·

∫
∂Rn−

II0(x, x)|∇v|2 dx.

Under the assumptions of the theorem, the right-hand-side is negative. A contra-
diction. Then there is no bubble and one recovers compactness. Note that since we
have no information on the sign of v, we cannot prove symmetry as in the proof of
Theorem 4.

5. About low dimensions

A remarkable point here is that there is not low-dimensional phenomenon in
Theorems 4 and 5. Moreover, there is no condition on the function a to recover
compactness: the geometry of ∂Ω dominates the linear perturbation a.

This is quite surprising in view of some existing results for Yamabe-type equations.
Here is an example: consider the functional

JΩ(u) :=

∫
Ω

(|∇u|2 + au2) dx(∫
Ω
|u|

2n
n−2 dx

) n−2
n

for u ∈ H2
1,0(Ω) \ {0}, where ∆ + a is coercive and a ∈ C∞(Ω). We let Ga be the

Green’s function for ∆ + a with Dirichlet boundary conditions on ∂Ω and when
n = 3, we define ga(x, y) by

Ga(x, y) =
1

ω2|x− y|
+ ga(x, y).

In particular, one gets that ga ∈ C0(Ω× Ω). Then the following theorem holds:

Theorem 6. i. if n ≥ 4, infu∈H2
1,0(Ω)\{0} JΩ(u) is achieved iff there exists x ∈ Ω

such that a(x) < 0 (Brézis-Nirenberg [5]).
ii. if n = 3, infu∈H2

1,0(Ω)\{0} JΩ(u) is achieved iff there exists x ∈ Ω such that

ga(x, x) > 0 (Druet [11]).

Therefore, in dimension n ≥ 4, the geometry of Ω is not to be taken into account;
but in dimension n = 3, the condition relies on both a and Ω (the Green’s function
depends on the geometry).

Another example arises from Yamabe-type equations on manifolds. We denote by
Rg the scalar curvature of a metric g. O.Druet proved the following:

Theorem 7 (Druet [12]). Let (M, g) be a compact manifold of dimension n ≥ 3.
Let (hε)ε>0 ∈ C2(M) such that limε→+∞ hε = h0 in C2(M) with ∆g + h0 coercive.
Let (uε)ε>0 ∈ C2(M) such that

∆guε + hεuε = u2?(0)−1
ε in M.

Assume that there exists Λ > 0 such that ‖uε‖2?(0) ≤ Λ for all ε > 0. Moreover,
assume that

i. h0(x) 6= n−2
4(n−1)Rg(x) for all x ∈M if n ≥ 4, n 6= 6,

ii. hε(x) ≤ n−2
4(n−1)Rg(x) for all x ∈M for all x ∈M and all ε > 0 and (M, g) is

not conformally diffeomorphic to the n−sphere in case h0 ≡ n−2
4(n−1)Rg.
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Then, up to a subsequence, there exists u0 ∈ C2(M) such that limε→0 uε = u0.

Here again, there is a difference depending of the dimension and on the linear
term h. In this context, dimension six is a quite intriguing dimension.
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[6] Brézis, H.; Peletier, L.A. Asymptotics for elliptic equations involving critical Sobolev ex-

ponent. In Partial Differential equations and the calculus of variations, eds. F.Colombini,
A.Marino, L.Modica, and S.Spagnolo, Birkhaüser, Basel, 1989.
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