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Abstract. — We study integrability and continuity properties of random series of Hermite functions.
We get optimal results which are analogues to classical results concerning Fourier series, like the Paley-
Zygmund or the Salem-Zygmund theorems. We also consider the case of series of radial Hermite functions,
which are not so well-behaved. In this context, we prove some Lp bounds of radial Hermite functions,
which are optimal when p is large.

1. Introduction

In this paper we prove some optimal integrability and regularity results on the convergence of

random Hermite expansions, i.e. on series of eigenfunctions of the harmonic oscillator with random

coefficients.

Before we enter in the details, let us recall an old result on the 1-D torus T = R/2πZ. Let

u(x) =
∑
n∈Z

cneinx and define the Sobolev space Hs(T) by the norm ‖u‖2Hs(T) =
∑
n∈Z

(1 + |n|)2s|cn|2. By

the usual Sobolev embeddings, if u ∈ H1/2−1/p(T) with p ≥ 2 then u ∈ Lp(T), but in general u /∈ C(T).

Paley and Zygmund (1930) have improved this result allowing random coefficients.

Theorem 1.1 (Paley-Zygmund). — Let uω(x) =
∑
n∈Z

εn(ω)cneinx where (εn)n∈Z is a sequence of

independent Rademacher random variables. If u ∈ L2(T) then for all 2 ≤ p < +∞, a.s uω ∈ Lp(T).

Moreover if for some α > 1,
∑
n∈Z

lnα(1 + |n|)|cn|2 < +∞ then a.s uω ∈ C(T).
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Many other results concerning random trigonometric series were obtained by Paley and Zygmund,

as it is detailed in the book of J-P. Kahane [9]. The study has been extended to random Fourier series

on Lie groups (see Marcus-Pisier [12]) and to Riemannian compact manifolds for orthonormal basis

of eigenfunctions of the Laplace-Beltrami operator (see Tzvetkov [21] and references therein).

On the torus Td = Rd/(2πZ)d, there is a natural choice of the basis for the expansion, namely

the (ein·x)n∈Z. In our context (or more generally, if one study expansions on eigenfunctions of the

Laplacian on a compact manifold) it is not clear which basis to choose, and the convergence properties

of the random series uω(x) =
∑
cnXn(ω)ϕn(x) might depend on the choice of the basis (ϕn)n≥0.

For instance, an analogous result to Theorem 1.1 has been obtained by Tzvetkov [21, Theorem 5] in

compact manifolds with a condition depending on the L∞ bound of the ϕn.

Here we show that by adding a squeezing condition (see condition (1.5) below), we can use the

intrinsic estimates of the spectral function, and obtain a convergence condition on the (cn) which does

not depend on the choice of the basis of Hermite functions. The idea to take profit of the bounds

of the spectral function and of the Weyl law comes from [18, 3] and has been fruitful in different

contexts (see [16, 15, 17]), where results have been obtained for a large class of probability laws.

Here we extend this approach by working in a space Zsϕ (instead of using condition (1.5)) and which

also enables to exploit the estimates of the spectral function and which is compatible with the Lévy

contraction principle of random series. We refer to the next paragraph for more details.

Let us now briefly describe our main contribution in this paper:

We first study integrability properties of the random series uω. We then detail the case of series of

radial Hermite functions, for which the situation is different than in the general case.

In a second time, we prove regularity results of the random series. We prove a Salem-Zygmund

theorem which describes the behaviour of partial sums. We are then able to obtain an analogous

result to Theorem 1.1 in our context, and we show that the ln factor is optimal. Finally, we state in

Theorem 2.7 some more precise regularity results. Notice that due to dispersive effects of the harmonic

oscillator on Rd, the randomisation yields better estimates than on the torus.

In Proposition 2.4 we state some Lp bounds of radial Hermite functions and which are optimal

at least for p ≥ 2 large enough. Even if the proof is elementary, using the well-known asymptotic

estimates of Laguerre functions, we did not find the result in the literature. Therefore, we have

written down the details, since the estimates we obtain are better than the bounds of general Hermite

functions.

Finally, we point out that the previous results have analogues for random series of eigenfunctions

of the Laplacian on a Riemannian compact manifold or for the Laplacian on Rd with a confining

potential. These results can be obtained with the same strategy by using the corresponding bounds

of the spectral function.
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1.1. Functional analysis. —

1.1.1. Some elements on the harmonic oscillator. — We consider the multidimensional harmonic

oscillator H := −∆ + |x|2 on L2(Rd) with d ≥ 1. The spectrum of H is d + 2N and we consider the

sequence of eigenvalues (λn)n≥0 by counting multiplicities:

d = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .

Fix any orthonormal basis (ϕn)n≥0 of normalized eigenfunctions for the harmonic oscillator H such

that Hϕn = λnϕn. For j ≥ 1 denote by

I(j) =
{
n ∈ N, 2j ≤ λn < 2(j + 1)

}
.

Observe that for all j ≥ d/2, I(j) 6= ∅ and that #I(j) ∼ Cdj
d−1 when j −→ +∞, and therefore

λn ∼ cdn1/d. Though (ϕn)n≥0 is arbitrary, the vector space spanned by {ϕn, n ∈ I(j)} is independent

of the choice of the Hilbert basis.

Now, we recall what are the natural Sobolev spaces for H:

∀s ≥ 0 ∀p ∈ [1,+∞) ∪ {+∞} Ws,p(Rd) := {u ∈ S ′(Rd), Hs/2u ∈ Lp(Rd)}.

Therefore, we define

(1.1) ‖u‖Ws,p(Rd) := ‖H
s
2u‖Lp(Rd).

It turns out (see [23, Lemma 2.4]) that a functional characterisation ofWs,p(Rd) for 1 ≤ p < +∞ and

s ≥ 0 is given by

u ∈ Ws,p(Rd) ⇔ ‖(I −∆)
s
2u‖Lp(Rd) + ‖〈x〉su‖Lp(Rd) < +∞.

In the Hilbertian framework, we have

Hs(Rd) :=Ws,2(Rd) = {u ∈ Hs(Rd), 〈x〉su ∈ L2(Rd)}

where Hs(Rd) = Dom((I −∆)s/2) is the classical Sobolev space. Thus, up to an equivalence of norm,

one can define

(1.2) ‖u‖Hs(Rd) = ‖Hs/2u‖L2(Rd) = ‖u‖Hs(Rd) + ‖〈x〉su‖L2(Rd).

Consequently, one can check that Hs(Rd) is an algebra if s > d
2 and is included in L∞(Rd).

We will need the L∞ estimate of the spectral function given by Thangavelu/Karadzhov (see [16,

Lemma 3.5]) which reads

(1.3) ‖Πj‖2L2(Rd)→L∞(Rd) = sup
x∈Rd

∑
n∈I(j)

|ϕn
(
x
)∣∣2 ≤ Cjγ(d),

with γ(1) = −1/6 and γ(d) = d/2 − 1 for d ≥ 2 and where Πj is the spectral projector of H on

the eigenspace associated to the unique eigenvalue which belongs to I(j). It is classical that the

function defined in (1.3) does not depend on the choice of the (ϕn)n≥0. For d = 1, (1.3) comes from

the simplicity of the spectrum of H and the classical estimate of the normalized Hermite functions:

‖ϕj‖L∞(R) . j−
1
12 .
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In the sequel we will also need the notation β(d) = d− 1− γ(d) as follows

(1.4)

γ(d) β(d)

d = 1 −1
6

1
6

d ≥ 2 d
2 − 1 d

2

1.1.2. The space Zsϕ(Rd). — Given a Hilbertian basis of Hermite functions (ϕn)n≥0 and s ∈ R, any

u ∈ Hs(Rd) can be written in a unique fashion

u =
∑
n≥0

cnϕn,
∑
n≥0

λsn|cn|2 < +∞.

We define the space Zsϕ(Rd) by the norm

‖u‖2Zsϕ =
∑
j≥1

js+d−1 max
n∈I(j)

|cn|2,

and we stress that this space depends on the choice of the basis (ϕn). It is clear that we have the

strict embeddings

Hs+d−1(Rd) ⊂ Zsϕ(Rd) ⊂ Hs(Rd).

In the works [16, 15, 17], the following assumption on the coefficients of u ∈ Hs(Rd) was made

(1.5) |ck|2 ≤
C

#I(j)

∑
n∈I(j)

|cn|2, ∀k ∈ I(j), ∀j ≥ 1.

Let us explain why the condition u ∈ Zsϕ(Rd) is more natural. Firstly, observe that if the coefficients

of u ∈ Hs(Rd) satisfy (1.5) then u ∈ Zsϕ(Rd). Secondly, consider two functions u, v ∈ Hs(Rd)

u =

+∞∑
n=0

cnϕn, v =

+∞∑
n=0

γncnϕn,

where (γn) is a real bounded sequence. The contraction principle for the random series (see Theo-

rem 5.5) states roughly that if one can prove an almost sure convergence for the random series coming

from u (see below (1.9)), then the same is true for v. But it is easy to see that condition (1.5) is

not stable by multiplication by bounded sequences whereas u ∈ Zsϕ(Rd) is the most general condition

which is implied by (1.5) and stable by multiplication by bounded sequences.

Sometimes, we also need the stronger condition

(1.6)
C1

#I(j)

∑
n∈I(j)

|cn|2 ≤ |ck|2 ≤
C2

#I(j)

∑
n∈I(j)

|cn|2, ∀k ∈ I(j), ∀j ≥ 1.
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1.2. Probabilistic setting. — Consider a probability space (Ω,F ,P) and let (Xn)n≥0 be indepen-

dent and identically distributed random variables which are not constant almost surely. All random

variables are real valued. In all the paper (except in the annex 5), we will make two different assump-

tions depending on whether we study integrability or regularity results:

(1.7) E[X1] = 0 and ∀k ≥ 1 E[|X1|k] < +∞.

(1.8) ∃σ > 0, ∀r ∈ R, E[erX1 ] ≤ e
1
2
σ2r2 .

One checks that (1.8) implies (1.7). The usual laws we have in mind fulfill (1.8): the real Gaussian law

NR(0, 1) or the Rademacher law (in that case, we will write Xn = εn). More generally, any centered

and bounded r.v. satisfies (1.8).

We explain now the way we introduce randomness in Sobolev spaces. Let (cn)n≥0 be such that∑
n≥0 λ

s
n|cn|2 < +∞. Then we can define a random variable uω by

(1.9) uω =

+∞∑
n=0

Xn(ω)cnϕn.

It is clear that we have

E
[
‖uω‖2Hs(Rd)

]
= E

[
+∞∑
n=0

λsn|cn|2|Xn|2
]
≤ E[X2

1 ]

+∞∑
n=0

λsn|cn|2 < +∞,

In other words ω 7→ uω belongs to L2(Ω,Hs(Rd)) and almost surely uω belongs to Hs(Rd).

2. Main results of the paper

2.1. Integrability results for random Hermite series. — We state here convergence results in

the Lp(Rd) scale with p ∈ [2,∞). The following result (used in a slightly weaker form in [7]) will play

a key role. It is a combination of results of Hoffman-Jorgensen [8], Maurey-Pisier [13] and the fact

that Lp(Rd) has finite cotype.

Proposition 2.1. — Let p ∈ [2,+∞) and (fn)n≥0 be a sequence of Lp(Rd). Assume that the sequence

(Xn)n≥0 fulfills (1.7), the following statements are equivalent:

(i) the series
∑
εnfn converges almost surely in Lp(Rd),

(ii) the series
∑
Xnfn converges almost surely in Lp(Rd),

(iii) the function
∑
n≥0

|fn|2 belongs to L
p
2 (Rd).

This proposition is a synthesis of known results on the convergence of random series in Banach

spaces. For the reader’s convenience, we have gathered the elements of the proof in Section 5.

Here is our first result involving random Hermite series. Recall the definition (1.4) of γ and β.
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Theorem 2.2. — Let d ≥ 1 and 2 ≤ p < +∞. We assume that the r.v. (Xn)n≥0 fulfill (1.7) and that

u =
∑
n≥0

cnϕn belongs to Z
−2β(d)

(
1
2
− 1
p

)
ϕ (Rd), i.e. the sequence (cn)n≥0 is such that

(2.1)

+∞∑
j=1

j
γ(d)+

2β(d)
p max

n∈I(j)
|cn|2 < +∞.

Then uω =
∑
n≥0

Xncnϕn converges almost surely in Lp(Rd).

We will see in the proof that the exponent γ(d) + 2β(d)
p which appears in (2.1) is such that∥∥∥ ∑

n∈I(j)

|ϕn(x)|2
∥∥∥
Lp/2(Rd)

≤ Cjγ(d)+
2β(d)
p ,

We refer to [15, Proposition 2.1] where a result similar to Theorem 2.2 was given using the condi-

tion (1.5).

By considering radial functions as in Ayache-Tzvetkov [2] and in Grivaux [7], we introduce now a

natural example for which the gain of integrability may not hold in all the spaces Lp(Rd), in this case

condition (1.5) does not hold true and we may have u ∈ Zs(Rd) and u ∈ Hs+d−1(Rd)\Hs+d−1+ε(Rd).
Let d ≥ 2 and L2

rad(Rd) be the subspace of L2(Rd) invariant by the action of the rotation group SO(d).

One can prove that there exists a Hilbertian basis (ψn)n≥0 of L2
rad(Rd) of eigenfunctions of H. Indeed,

we have Hψn = (4n+ d)ψn, each eigenspace has dimension 1 and ψn may be expressed with Laguerre

polynomials (see Section 3 for more details).

Theorem 2.3. — Let d ≥ 2, assume that (Xn)n≥0 verifies (1.7) and that urad :=
∑
n≥0

cnψn belongs to⋂
ε>0
H−ε(Rd). The random series

uωrad(x) =
+∞∑
n=0

Xn(ω)cnψn(x).

converges almost surely in Lp(Rd) for any p ∈]2, d
α?(c) [ and diverges almost surely for any p > d

α?(c)

where

α?(c) := inf
{
α > 0 :

N∑
n=0

n
d
2
−1|cn|2 = O(Nα)

}
.

Let us give some examples:

• If d = 1, then by Theorem 2.2, the series uωrad (defined in the obvious way) converges a.s.

in Lp(Rd) for all p <∞.

• If (cn) is such that
∑

n≥0 n
d
2
−1|cn|2 < +∞, then d

α?(c) = +∞. Therefore uωrad converges a.s.

in Lp(Rd) for all p <∞.
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• Assume that cn ∼ n−κ with κ ≥ 1/2, then α?(c) = max
(
d
2 − 2κ, 0

)
and then

d

α?(c)
=

 min
( 2d

d− 4κ
,+∞

)
, if κ < d

4 ,

+∞, if κ ≥ d
4 .

An analogous result to Theorem 2.3, but with a different numerology, was first obtained in [2, 7]

for the family of the radial eigenfunctions of the Laplacian on the unit disc in Rd where the analogue

value of d
α?(c) is called the critical convergence exponent of c. We will follow the main lines of [7], the

difference in the proof involves the study of Lp(Rd) bounds of the radial Hermite functions.

Proposition 2.4. — Let d ≥ 2. Consider the family (ψn)n≥0 of the L2-normalized radial Hermite

functions which satisfies Hψn = (4n+ d)ψn. Then

(i) Assume that 2d
d−1 < p ≤ +∞. Then

cpn
d
2

( 1
2
− 1
p

)− 1
2 ≤ ‖ψn‖Lp(Rd) ≤ Cpn

d
2

( 1
2
− 1
p

)− 1
2 .

(ii) Assume that p = 2d
d−1 . Then

‖ψn‖Lp(Rd) ≤ Cpn−
1
4 ln

1
p (n).

(iii) Assume that 2 ≤ p < 2d
d−1 . Then

‖ψn‖Lp(Rd) ≤ Cpn
− d

2
( 1
2
− 1
p

)
.

The proof uses asymptotic estimates of Laguerre functions proved by Erdelyi (such a method has

been used in [4, Lemma 3.1] for d = 2 and is indicated in [20, Chapter 1]).

We do not know if the estimates stated in (ii) and (iii) are optimal or not. To get the lower bound

in (i) we show that there exist ε, c > 0 such that for all n ≥ 1 and all |x| ≤ ε√
n

, |ψn(x)| ≥ cn
d
4
− 1

2 , and

the result follows by integrating this estimate.

In the figures below, we represent the estimates of Proposition 2.4. The dashed lines represent

the bounds of Koch-Tataru [10, Corollary 3.2] obtained for general Hermite functions as defined in

Section 1.1. We see that in the range 2 < p < d−2
2d the radial functions enjoy better bounds than in

the general case, but not in the regime d−2
2d < p ≤ +∞.
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1/p

θ

0
•

3/10
•

1/4
•

1/2
•

−1/4
•

−1/10
• ◦

◦

Lp estimates of radial Hermite functions: the case d = 2

1/p

θ

1/p3•
1/p2•

1/p1•
1/2
•

d/4− 1/2
•

−1/4
•

−1/(2d+ 6)
•

◦

◦

Lp estimates of radial Hermite functions: the case d ≥ 3

In the second figure we have set

2 < p1 :=
2d

d− 1
≤ p2 :=

2(d+ 3)

d+ 1
≤ p3 :=

2d

d− 2
.

2.2. Continuity results for random Hermite series. — We are concerned with the random

behavior of the partial sums of (1.9) in the space L∞(Rd). Let us define for any λ ≥ d

(2.2) uωλ(x) =
∑
λn≤λ

cnXn(ω)ϕn(x).
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There is not an equivalent of Proposition 2.1 for the space L∞(Rd) (the reason is that L∞(Rd) is not

a Banach space with finite cotype, see Annex 5). Hence, we will use other methods to get probabilistic

results, like the following one which is in the spirit of the Salem-Zygmund inequality (see [9, Theorem,

page 55]).

Theorem 2.5. — Assume that (Xn)n≥0 is an i.i.d. family of r.v. which satisfies the subnormality

condition (1.8) with a real number σ > 0. For any positive integer N > 0, there is C := C(N, d, σ) > 0

such that for any λ� 1 one has for any sequence (cn)n≥0

(2.3) P

∥∥∥ ∑
λn≤λ

cnXnϕn

∥∥∥2

L∞(Rd)
≤ C ln(λ)

∑
j≤[λ/2]

jγ(d) max
n∈I(j)

|cn|2
 ≥ 1− 1

λN
,

where γ(d) is defined in (1.4). Furthermore, if d ≥ 2 holds and if the (Xn)n≥0 are independant

Gaussians NR(0, 1), then one can find a sequence (cn)n≥0 such that we cannot replace the function

λ 7→ ln(λ) with a slower function of order o(ln(λ)).

In particular the previous result shows that there exists C > 0 such that almost surely we have

lim sup
λ→+∞

∥∥∥∑λn≤λ cnXnϕn

∥∥∥
L∞(Rd)√

ln(λ)
≤ C

(∑
j≥0

jγ(d) max
n∈I(j)

|cn|2
)1/2

.

Furthermore there exists a sequence {cn} and c > 0 such that
∑

j≥0 j
γ(d) maxn∈I(j) |cn|2 = 1 and

lim inf
λ→+∞

∥∥∥∑λn≤λ cnXnϕn

∥∥∥
L∞(Rd)√

ln(λ)
≥ c.

It is straightforward that if the coefficients (cn)n≥0 satisfy (1.5), then (2.3) implies

(2.4) P

∥∥∥ ∑
λn≤λ

cnXnϕn

∥∥∥2

L∞(Rd)
≤ C ln(λ)

∑
λn≤λ

λ−β(d)
n |cn|2

 ≥ 1− 1

λN
,

with β(1) = 1/6 and β(d) = d/2 for d ≥ 2. The Salem-Zygmund inequality in the classical case of

random trigonometric polynomials is similar to (2.4) but holds for β(d) = 0. Thus, (2.4) shows that

randomness for Hermite series has a much more smoothing effect than for Fourier series. Indeed, this

is a consequence of a better behavior of the spectral function (1.3) of H in the space L∞(Rd).
Let us add that the proof of the classical Salem-Zygmund inequality [9, Theorem 1, page 55]

uses in an essential way that the torus T is compact. In our setting, the non-compactness of Rd
is counterbalanced by the localization of (2.2) in any subset or Rd which contains strictly the ball

B(0,
√
λ) (here we will choose the closed ball B(0, λ) which is much bigger than B(0,

√
λ)).

Our next result gives a sufficient condition to get almost surely continuity as in Theorem 1.1.
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Theorem 2.6. — Let γ(d) be defined by (1.4), and let (cn)n∈N be such that

(2.5) ∃α > 1,
+∞∑
j=1

jγ(d)(ln j)α max
n∈I(j)

|cn|2 < +∞.

Assume that (Xn)n≥0 is an i.i.d. family of symmetric r.v. such that (1.8) holds. Denote by

uωλ =
∑
λn≤λ

cnXn(ω)ϕn.

Then uωλ −→ uω in L∞(Rd) almost surely when λ −→ +∞.

In particular for almost all ω ∈ Ω, uω is a bounded continuous function on Rd.

In the particular case where (cn)n≥0 are such that (1.5) holds, then the assumption (2.5) becomes

∃α > 1,

+∞∑
n=0

λ−β(d)
n (lnλn)α|cn|2 < +∞,

with β(1) = 1/6 and β(d) = d/2 for d ≥ 2. This shows that for d ≥ 2, u is in a slightly smaller space,

denoted by H−d/2+(Rd) (with a log correction), than H−d/2(Rd). In other words, under condition

(1.5) almost all series uω in the very irregular distribution space H−d/2+(Rd) is actually a continuous

function on Rd.
It is interesting to notice that if we forget the logarithmic term in in the assumption (2.5), we find

exactly the assumption (2.1) of Theorem 2.2 as p tends to infinity although methods of proofs are

different.

The symmetry assumption of the r.v. is only needed for the convergence of the partial sums, but

the continuity result holds without this assumption.

We shall give two different proofs of Theorem 2.6: one is an application of the Salem-Zygmund

inequality (Theorem 2.5), and the other relies on an entropy criterion (see Section 6).

From the Salem-Zygmund inequality we can also get a sufficient condition so that uω(x) satisfies a

global Hölder continuity condition. Recall the definition of the modulus of continuity of u : Rd → C,

mu(h) = sup
|x−y|≤h
x,y∈Rd

|u(x)− u(y)|, h > 0.

Theorem 2.7. — Let (cn)n≥0 be such that there exists C > 0 such that

(2.6)

2j+1∑
k=2j

max
n∈I(k)

|cn|2 ≤ C2(−γ(d)−µ)jj2ν , ∀j ≥ 0,

with C > 0, (ν ∈ R and 0 < µ ≤ 1) or (ν < −1 and µ = 0). Assume that (Xn)n≥0 is an i.i.d. family

of r.v. such that (1.8) holds. Then we have, almost surely in ω,

muω(h) = O(hµ| lnh|θ)

where
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• θ = 1
2 + ν if 0 < µ < 1

• θ = 1 + ν if µ = 0

• if µ = 1 then 
θ = 1 + ν, if ν ≥ −1

2

θ = 1
2 if − 1 ≤ ν ≤ −1

2

uω is a.e differentiable if ν < −1.

In particular, if (cn)n≥0 is a sequence which satisfies (1.5) and such that there exists C > 0 such

that ∑
n : 2j≤λn<2j+1

|cn|2 ≤ C2(β(d)−µ)jj2ν , ∀j ≥ 0,

then (2.6) is satisfied.

Remark 2.8. — With a slight modification of the proof of Theorem 2.7 we can get the following

extension of Theorem 2.6. If
+∞∑
j=1

jγ(d)+µ(ln j)α max
n∈I(j)

|cn|2 < +∞,

then almost surely in ω,

muω(h) = O(hµ| lnh|θ)
where

• θ = 1
2 − α+ ε for all ε > 0 if 0 < µ < 1

• θ = 1− α+ ε for all ε > 0 if µ = 0.

2.3. Notations and plan of the paper. —

Notations. — In this paper c, C > 0 denote constants the value of which may change from line to line.

These constants will always be universal, or uniformly bounded with respect to the other parameters.

We write a . b if a ≤ Cb and a ≈ b if ca ≤ b ≤ Ca, for some c, C > 0.

The rest of the paper is organised as follows. In Section 3 we prove the integrability results on the

Hermite series. Section 4 is devoted to the proof of the regularity results (Theorems 2.5, 2.6 and 2.7).

In Section 5 we review some results we need about the convergence of random series in Banach spaces.

Finally, in Section 6 we give an alternative proof of Theorem 2.6.

3. Proof of the integrability results

3.1. Proof of Theorem 2.2. — We see Theorem 2.2 as a consequence of Proposition 2.1, and it is

equivalent to check

(3.1)
∑
n≥0

|cn|2|ϕn|2 ∈ L
p
2 (Rd).
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By interpolating the L
p
2 norm and using that I(j) ∼ Cjjd−1, we get∥∥∥ ∑

n∈I(j)

|ϕn|2
∥∥∥
L
p
2 (Rd)

≤
∥∥∥ ∑
n∈I(j)

|ϕn|2
∥∥∥ 2
p

L1(Rd)

∥∥∥ ∑
n∈I(j)

|ϕn|2
∥∥∥1− 2

p

L∞(Rd)
. j

2
p

(d−1)+
(

1− 2
p

)
γ(d)

= jγ(d)+2β(d)/p,

as a consequence∥∥∥∑
n≥0

|cn|2|ϕn|2
∥∥∥
L
p
2 (Rd)

≤
∑
j≥1

(
max
n∈I(j)

|cn|2
)∥∥∥ ∑

n∈I(j)

|ϕn|2
∥∥∥
L
p
2 (Rd)

.
∑
j≥1

jγ(d)+2β(d)/p max
n∈I(j)

|cn|2 < +∞.

We get (3.1) and hence conclude.

3.2. Proof of Proposition 2.4. — Let us first recall some results concerning the Laguerre poly-

nomials, see [20, Chapter 1] or [19]. For α > −1, the Laguerre polynomial L
(α)
n of type α and

degree n ≥ 0 is defined by

(3.2) e−rrαL(α)
n (r) =

1

n!

dn

drn
(
e−rrn+α

)
, x ∈ R.

We need the following identities (see [19, lines (5.1.1),(5.1.3),(5.1.7) and (5.1.14)]):

(3.3)

∫ +∞

0
L(α)
n (r)L(α)

m (r)e−rrαdr =
Γ(n+ α+ 1)

Γ(n+ 1)
δnm,

(3.4) L(α)
n (0) =

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)
≈ nα,

(3.5) ∀n ≥ 1,
d

dr
L(α)
n (r) = −L(α+1)

n−1 (r),

(3.6) r
d2L

(α)
n

dr2
+ (α+ 1− r)dL

(α)
n

dr
+ nL(α)

n = 0.

We will need the following lemma

Lemma 3.1. — For any α > −1 there are c, ε > 0 such that

∀n ≥ 1, ∀r ∈
(

0,
ε2

n

)
, |L(α)

n (r)| ≥ cnα.

Proof. — As in [19, p. 176], we introduce the function

r 7→ nL
(α+1)
n−1 (r)2 + r

(
d

dr
L

(α+1)
n−1 (r)

)2

whose derivative is 2
(
r − 3

2 − α
)(

d
drL

(α+1)
n−1

)2
thanks to (3.6). Thus, one has

∀r ∈
[
0, α+

3

2

]
, |L(α+1)

n−1 (r)| ≤ |L(α+1)
n−1 (0)| . nα+1.

By using (3.5), we have

∀r ∈
[
0, α+

3

2

]
, |L(α)

n (r)− L(α)
n (0)| . rnα+1.
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We can conclude by using a new time (3.4).

Because of the orthogonality condition (3.3), it is usual to introduce the Laguerre functions nor-

malized in L2(0,+∞)

(3.7) Lαn(r) :=

√
n!√

Γ(n+ α+ 1)
L(α)
n (r)e−r/2rα/2,

√
n!√

Γ(n+ α+ 1)
≈ n−α/2.

Those functions satisfy the following uniform estimates (see [6, 1, 14]).

Proposition 3.2. — For any α > −1, there are C = C(α) and γ = γ(α) > 0 such that, by denoting

ν = 4n+ 2α+ 2, one has

|L(α)
n (r)| ≤



C(rν)α/2 if 0 ≤ r ≤ 1
ν

C(rν)−1/4 if 1
ν ≤ r ≤

ν
2

Cν−1/4(ν1/3 + |ν − r|)−1/4 if ν
2 ≤ r ≤

3ν
2

Ce−γr if 3ν
2 ≤ r.

Now, denote by ψn the nth L2(Rd)-normalized radial Hermite function for d ≥ 2. One can prove

that Hψn = (4n + d)ψn holds and that ψn is proportional to L
(d/2−1)
n (|x|2)e−|x|

2/2 (see for instance

[20, Corollary 3.4.1]). By using the orthogonality of Laguerre functions L( d
2
−1)

n , one easily gets

(3.8) ψn(x) := c(d)L( d2−1)
n (|x|2)|x|−( d

2
−1) = c(d)

√
n!√

Γ(n+ d
2)
L

( d
2
−1)

n (|x|2)e−|x|
2/2

with c(d) :=
√

2√
Vol(Sd−1)

(see below (3.9) for p = 2).

Let us estimate the Lp(Rd) norm of ψn for p ≥ 2 by using Proposition 3.2 with ν ∼ n and α = d
2−1.

The case p = ∞ is the easiest, and we get directly that |L(α)
n (r)|r−

α
2 ≤ Cν

α
2 , in other terms

‖ψn‖L∞(Rd) . n
d
4
− 1

2 . To get the lower bound, it is sufficient to combine Lemma 3.1 with (3.8) and

the equivalent in (3.7).

We now consider p ∈ [2,+∞). Then we have

(3.9)

‖ψn‖pLp(Rd)
= c(d)pVol(Sd−1)

∫ +∞

0
|L(d/2−1)
n (r2)|pr−p(

d
2
−1)rd−1dr

= c(d)p−2

∫ +∞

0
|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr.

We begin by the following integrals:

(3.10)

∫ 1
ν

0
|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr . n

p
2 ( d2−1)

∫ 1
ν

0
r
d
2
−1dr . n

p
2 ( d2−1)− d2 = n

pd
2

(
1
2
− 1
p

)
− p

2∫ +∞

3ν
2

|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr .

∫ +∞

3ν
2

e−γrr−( p2−1)( d2−1)dr = O(n−∞).
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To study the integrals over the others intervals given by Proposition 3.2, we have to consider several

subcases.

• If p > 2d
d−1 holds, one has obviously 1

2 −
1
p >

1
2d and the comparison of different exponents of n

will rely on:

(3.11)
−d
2

(
1

2
− 1

p

)
<
d

2

(
1

2
− 1

p

)
− 1

2
.

Notice that one also has

(3.12)
p

4
+
(p

2
− 1
)(d

2
− 1

)
>

d

2(d− 1)
+

(
d

d− 1
− 1

)
d− 2

2
= 1,

which implies that the following integral is of interest near r = 0:

(3.13)

∫ ν
2

1
ν

|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr . n−

p
4

∫ ν
2

1
ν

r−
p
4
−( p2−1)( d2−1)dr .

. n−
p
4

+ p
4

+( p2−1)( d2−1)−1 ≈ n
pd
2

(
1
2
− 1
p

)
− p

2 .

The integral over [ν2 ,
3ν
2 ] is bounded by∫ 3ν

2

ν
2

|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr . n−

p
4

∫ 3ν
2

ν
2

dr

( 3
√
ν + |ν − r|)

p
4 r(

p
2
−1)( d2−1)

. n−
p
4
−( p2−1)( d2−1)

∫ 3ν
2

ν
2

dr

( 3
√
ν + |ν − r|)

p
4

. n
p
4

+ d
2
− pd

4
−1

∫ ν
2

0

dr

( 3
√
ν + r)

p
4

. n
p
4

+ d
2
− pd

4
−1ν

1
3
− p

12

∫ 1
2
ν
2
3

0

dr

(1 + r)
p
4

. n
p
6

+ d
2
− pd

4
− 2

3

∫ 1
2
ν
2
3

0

dr

(1 + r)
p
4

.

We have to use now the following fact if p > 4 holds (which is necessary for d = 2):

d

2

(
1

2
− 1

p

)
− 1

2
−
(

1

6
+

d

2p
− d

4
− 2

3p

)
=
d

2
− 2

3
−
(
d− 2

3

)
1

p
>
d

4
− 1

2
≥ 0.

That brings us to

(3.14)

∫ 3ν
2

ν
2

|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr .


n
p
6

+ d
2
− pd

4
− 2

3 ≤ np
[
d
2

(
1
2
− 1
p

)
− 1

2

]
if p > 4

n−
d
2 ln(n) . n

d
2 = n

− pd
2

(
1
2
− 1
p

)
if p = 4

n
p
6

+ d
2
− pd

4
− 2

3
+ 2

3(1− p
4 ) = n

− pd
2

(
1
2
− 1
p

)
if p < 4.

Thanks to (3.11), the comparison of exponents in (3.10), (3.13) and (3.14) gives ‖ψn‖Lp(Rd) .

n
d
2

(
1
2
− 1
p

)
− 1

2 .
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• If p < 2d
d−1 holds, one has 1

2 −
1
p <

1
2d and the contrary of (3.11) and (3.12) hold:

(3.15)
d

2

(
1

2
− 1

p

)
− 1

2
< −d

2

(
1

2
− 1

p

)
p

4
+
(p

2
− 1
)(d

2
− 1

)
< 1.

Hence, the integral over
[

1
ν ,

ν
2

]
is of interest for r � 1:

(3.16)

∫ ν
2

1
ν

|L(d/2−1)
n (r)|pr−( p2−1)( d2−1)dr . n−

p
4

∫ ν
2

1
ν

r−
p
4
−( p2−1)( d2−1)dr .

. n−
p
4

+1− p
4
−( p2−1)( d2−1) . n

− pd
2

(
1
2
− 1
p

)
.

We deal with the integral over
[
ν
2 ,

3ν
2

]
by the same way with the help of (3.14) and by noticing that

p < 2d
d−1 ≤ 4 holds. Hence we get

(3.17)

∫ 3ν
2

ν
2

|L(d/2−1)
n (r)|pr(1− p

2 )( d2−1)dr . n
− pd

2

(
1
p
− 1

2

)
.

Once again, we compare the exponents in (3.10), (3.16) and (3.17) with the help of (3.15) and we get

‖ψn‖Lp(Rd) . n
− d

2

(
1
2
− 1
p

)
.

• If p = 2d
d−1 holds, we follow the previous analysis and we see that ‖ψn‖pLp . n−

p
4 ln(n).

We have finished the proof of Proposition 2.4.

3.3. Proof of Theorem 2.3. — We will use Proposition 2.1 and Proposition 2.4.

We consider p > d
α?(c) and we write∫

Rd

(∑
n≥0

|cn|2|ψn(x)|2
) p

2
dx ≥ sup

N≥1

∫
|x|≤ ε√

N

( N∑
n=1

|cn|2|ψn(x)|2
) p

2
dx

≥ C sup
N≥0

εd

N
d
2

( N∑
n=1

|cn|2n
d
2
−1
) p

2

≥ +∞.

We consider p < d
α?(c) and we write∥∥∥∑

n≥0

|cn|2|ψn|2
∥∥∥
Lp/2(Rd)

≤
∑
n≥0

|cn|2‖ψ2
n‖Lp/2(Rd) =

∑
n≥0

|cn|2‖ψn‖2Lp(Rd).

If p belongs to (2, 2d
d−1 ], then ‖ψn‖Lp(Rd) is less than n−ε for some ε > 0 (see Proposition 2.4). By

using that
∑
n≥0

cnψn belongs to
⋂
ε>0
H−ε(Rd), it is clear that the series

∑
|cn|2‖ψn‖2Lp(Rd)

converges.
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If p is greater than 2d
d−1 , we use first an Abel summation and then two times the inequality α?(c) <

d
p

to bound the sum of the series
∑
|cn|2‖ψn‖2Lp(Rd)

by

C|c0|2 +
∑
n≥1

|cn|2n
d
2
−1n

− d
p ≤

≤ C|c0|2 +
(

lim
N→+∞

N
− d
p

N∑
n=1

|cn|2n
d
2
−1
)

+
∑
N≥1

( N∑
n=1

|cn|2n
d
2
−1
)
|N−

d
p − (N + 1)

− d
p |

. C|c0|2 + 0 +
∑
N≥1

1

N
1+ d

p

( N∑
n=1

|cn|2n
d
2
−1
)
< +∞.

Remark. If we define for any sequence (cn)n≥0

∀p > 2d

d− 1
‖c‖d,p := |c0|+ sup

N≥1

1

N
d
2p

(
N∑
n=1

|cn|2n
d
2
−1

) 1
2

,

then the previous proof shows that one has

∀ν > 0 C‖c‖d,p ≤

∥∥∥∥∥
√∑
n≥0

|cn|2ψ2
n

∥∥∥∥∥
Lp

≤ C(ν)‖c‖d,p+ν .

It is not clear if one can find a more precise norm on the sequence (cn)n≥0 which is equivalent to∥∥∥√∑n≥0 |cn|2ψ2
n

∥∥∥
Lp

. Indeed, this is essentially equivalent to decide whether or not the almost sure

convergence in Lp(Rd) holds if p is the critical convergence exponent d
α?(c) .

4. Proof of the regularity results

4.1. Proof of Theorem 2.5. — Let us begin by introducing the following notation:

∀λ > 0 EH(λ) := Span{ϕj , λj ≤ λ },

and let us recall the following bound on the spectral function of H (see [16, Lemmas 3.1, 3.2 and 3.5]:

there are constants C, c > 0 such that for any λ ≥ 1 and x ∈ Rd one has

(4.1) ∀u ∈ EH(λ), |u(x)| ≤ Cλ
d
4 exp

(
−c |x|

2

2λ

)
‖u‖L2(Rd),

The first tool we need to prove Theorem 2.5 is a Bernstein inequality for the harmonic oscillator.

In the Hilbertian framework, it is easy to check that one has

∀λ ≥ 1 ∀u ∈ EH(λ) ‖∂xu‖L2(Rd) ≤ C
√
λ‖u‖L2(Rd).

We need a version of the previous inequality by replacing the space L2(Rd) with L∞(Rd).
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Lemma 4.1. — For any dimension d ≥ 1, there are s(d) ≥ 0 and C = C(d) > 0 such that the

following inequalities hold

(4.2) ∀λ ≥ 1 ∀u ∈ EH(λ) ‖∇u‖L∞(Rd) ≤ Cλs(d)‖u‖L∞(Rd).

Proof. — For any real number s > d
2 , the Sobolev embedding Hs(Rd) ⊂ L∞(Rd) allows us to write

for each ` ∈ {1, 2, . . . , d}:

‖∂x`u‖L∞(Rd) ≤ C‖∂x`u‖Hs(Rd)

≤ C‖u‖Hs+1(Rd)

≤ C

∑
λj≤λ

λs+1
j

∣∣∣∣∫
Rd
ϕj(x)u(x)dx

∣∣∣∣2
 1

2

≤ Cλs+1λd‖u‖L∞(Rd) sup
λj≤λ

‖ϕj‖L1(Rd).

In view to get a bound of ‖ϕj‖L1(Rd) we just use the Cauchy-Schwarz inequality:∫
Rd
|ϕj(x)|dx =

∫
Rd
〈x〉−

d+1
2 〈x〉

d+1
2 |ϕj(x)|dx

≤ C‖〈x〉
d+1
2 ϕj(x)‖L2(Rd)

≤ C‖ϕj‖H d+1
2 (Rd)

≤ Cλ
d+1
4

j .

Thus (4.2) is proved.

It is not clear for us if the exponent s(d) can be chosen to be independent of d or if we can find the

optimal value of s(d).

Corollary 4.2. — If λ is large enough, there is a constant c > 0 which is independent of λ such that

for any u ∈ EH(λ) there is y ∈ B(0, λ) for which we have

(i) ‖u‖L∞(B(0,λ)) = ‖u‖L∞(Rd),

(ii) ∀x ∈ B(y, cλ−s(d)) ∩B(0, λ), |u(x)| ≥ 1
2‖u‖L∞(B(0,λ)),

(iii) by denoting Vol the volume function, we have

Vol
{
B(y, cλ−s(d)) ∩B(0, λ)

}
≥ 1

3
Vol
{
B(y, cλ−s(d))

}
.

Proof. — By the same argument we used in the proof of Lemma 4.1, we claim that there is a constant

ν > 0, independent of λ, such that

(4.3) ∀u ∈ EH(λ) ‖u‖L2(Rd) ≤ Cλν‖u‖L∞(Rd).
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By combining (4.1) and (4.3), we understand that if λ is enough large and if |x| > λ holds then we

have

|u(x)| ≤ Cλ
d
4

+ν exp
(
− cλ

2

)
‖u‖L∞(Rd) ≤

1

2
‖u‖L∞(Rd).

That proves Point (i). Let us check Point (ii). By a compactness argument, there is y ∈ B(0, λ) which

maximizes u on the whole space Rd. For any x ∈ B(0, λ), Lemma 4.1 gives us

|u(x)− u(y)| ≤ C|x− y|λs(d)‖u‖L∞(Rd).

If |x− y| < C
2 λ
−s(d) holds then |u(x)| ≥ 1

2‖u‖L∞(Rd).

Point (iii) is a consequence of a geometric fact. Indeed, it is quite clear that we have

lim inf
R→0

inf
z∈B(0,1)

Vol
{
B(z,R) ∩B(0, 1)

}
Vol
{
B(z,R)

} =
1

2
.

Consequently, if λ is large enough then Point (iii) holds.

We can prove Theorem 2.5 by following [9, Theorem 1, page 55]. Our preliminaries allow us to deal

with the non-compactness of Rd. We define the random maximum

Mω
λ := ‖uωλ(x)‖L∞x (Rd) = ‖uωλ(x)‖L∞x (B(0,λ)).

We apply Lemma 4.2 to the random function uωλ ∈ EH(λ). If x belongs to the random set Aωλ :=

B(yω, cλ−s(d)) ∩B(0, λ) then we have

uωλ(x) ≥ 1

2
Mω
λ or − uωλ(x) ≥ 1

2
Mω
λ .

Thus, it comes for any r > 0

E
[

exp
(1

2
rMω

λ

)]
≤ E

[ 1

Vol(Aωλ)

∫
Aωλ

exp (ruωλ(x)) + exp (−ruωλ(x)) dx
]
.

From Point (iii) of Lemma 4.2, we get

E
[

exp
(

1
2rM

ω
λ

) ]
≤ Cλds(d)E

[ ∫
Aωλ

exp (ruωλ(x)) + exp (−ruωλ(x)) dx
]

≤ Cλds(d)

∫
B(0,λ)

E
[

exp (ruωλ(x)) + exp (−ruωλ(x))
]
dx.

By coming back to the definition (1.9) of uωλ , we can use the independence of the random vari-

ables Xn:

E
[

exp
(
ruωλ(x)

)]
=
∏
λn≤λ

E
[

exp
(
rcnXn(ω)ϕn(x)

)]
.
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Now we use (1.8) and (1.3) to get

E
[

exp
(
ruωλ(x)

)]
≤ exp

(
Cr2

∑
λn≤λ

|cn|2|ϕn(x)|2
)

≤ exp
(
Cr2

∑
j≤λ

[
max
n∈I(j)

|cn|2
∑
n∈I(j)

|ϕn(x)|2
])

≤ exp
(
Cr2ρλ

)
,(4.4)

where we have set

ρλ :=
∑
j≤λ

jγ(d) max
n∈I(j)

|cn|2.

Obviously, a similar argument gives the same bound for E
[

exp
(
− ruωλ(x)

)]
, and we have obtained

E
[

exp
(1

2
rMω

λ

)]
≤ Cλds(d)+d exp

(
C
r2

2
ρλ
)
,

which is totally equivalent to

∀L ≥ 1 ∀r > 0 E
[
exp

(
r

2

(
Mω
λ − Crρ2

λ −
2

r
ln(Cλds(d)+dL)

))]
≤ 1

L
.

From Markov’s inequality, it comes

P
[
Mω
λ − Crρ2

λ −
2

r
ln(Cλds(d)+dL) ≥ 0

]
≤ 1

L
.

Now we just have to optimize in r by choosing r2 = 1
ρ2λ

ln(Cλds(d)+dL). For another constant C > 0,

we have

P
[
Mω
λ ≥ Cρλ

√
ln(Cλds(d)+dL)

]
≤ 1

L
.

The conclusion comes with the choice L = λN .

Finally, we have to see that the term ln(λ) is optimal in (2.3) if d ≥ 2 holds, and when the (Xn)n≥0

are independent Gaussians NR(0, 1).

Let us suppose the contrary and consider a function ϑ(λ) = o(ln(λ)) such that Theorem 2.5 holds

true by replacing ln(λ) with ϑ(λ).

To see that implies a contradiction, let us recall a result proved in [16, Theorem 1.1](1) (with the

sequence dj = λ
− d

4
j cj and assuming (1.6)), there are real numbers C0 > 0 and c > 0 such that for any

j � 1 one has

P

[
C0 ln(j)

∥∥∥ ∑
n∈I(j)

λ
− d

4
n cnXnϕn

∥∥∥2

L2(Rd)
≤
∥∥∥ ∑
n∈I(j)

λ
− d

4
n cnXnϕn

∥∥∥2

W
d
2 ,∞(Rd)

]
≥ 1− 1

(j + 2)c
.

(1)[16, Theorem 1.1] is stated for complex Gaussians, but the result also holds for real r.v. (see [16, Assumption 1]).
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From the definition (1.1) and Theorem 2.5 with the function ϑ and any chosen positive integer N , we

have with probability greater than 1− 1
(j+2)N

− 1
jN∥∥∥ ∑

n∈I(j)

λ
− d

4
n cnXnϕn

∥∥∥
W

d
2 ,∞(Rd)

=
∥∥∥ ∑
n∈I(j)

cnXnϕn

∥∥∥
L∞(Rd)

≤
∥∥∥ ∑
λn<2j

cnXnϕn

∥∥∥
L∞(Rd)

+
∥∥∥ ∑
λn<2j+2

cnXnϕn

∥∥∥
L∞(Rd)

≤ C
√
ϑ(2j) + ϑ(2j + 2)

( ∑
λn<2j+2

λ
− d

2
n |cn|2

) 1
2
.

We have now to make use of the condition (1.6):( ∑
n∈I(j)

λ
− d

2
n |cn|2

)
× 1

#I(j)

∑
n∈I(j)

|Xn|2 ≤ C
∑
n∈I(j)

|λ−
d
4

n cnXn|2 = C
∥∥∥ ∑
n∈I(j)

λ
− d

4
n cnXnϕn

∥∥∥2

L2(R2)
.

By combining these arguments, we have with probability greater than 1− 1
(j+2)c −

1
(j+2)N

− 1
jN

1

#I(j)

∑
n∈I(j)

|Xn|2 ≤ C
ϑ(2j) + ϑ(2j + 2)

ln(j)

( ∑
λn<2j+2

λ
− d

2
n |cn|2

)( ∑
n∈I(j)

λ
− d

2
n |cn|2

)−1

.

One can obviously choose the sequence (cn)n≥0 such that (1.6) and the two following properties hold:

u ∈ H−
d
2 (Rd),

∑
j≥1

∑
n∈I(j)

λ
− d

2
n |cn|2 < +∞,

#

{
j ≥ 1,

∑
n∈I(j)

λ
− d

2
n |cn|2 ≥

(
ϑ(2j) + ϑ(2j + 2)

ln(j)

) 1
2
}

= +∞.

Hence, we get for probability greater than 1− 1
(j+2)c −

1
(j+2)N

− 1
jN

(4.5)
1

#I(j)

∑
n∈I(j)

|Xn|2 ≤ ε(j)

where lim inf
j→+∞

ε(j) = 0. Since lim
j→+∞

#I(j) = +∞ holds, the Law of Large Numbers ensures that the

left side of (4.5) converges almost surely to E
[
|X1|2

]
> 0. Since the almost sure convergence implies

the convergence in probability, we understand that (4.5) cannot hold. That proves that Theorem 2.5

is optimal for the function ln(λ).

4.2. Proof of Theorem 2.6. — We give here an argument which uses the Salem-Zygmund theorem.

In Section 6 we will present an alternative proof which relies on an entropy argument.
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4.2.1. Proof of Theorem 2.6 using the Salem-Zygmund Theorem 2.5. — For any positive integer K,

we introduce J(K) :=
{
n ∈ N, λn ∈ [22K , 22K+1 − 1]

}
and

uωK :=
∑

n∈J(K)

cnXn(ω)ϕn.

By using Theorem 2.5, we have

P
[
‖uωK‖L∞(Rd) ≥ C2K/2

( 22
K+1−1−1∑
j=22K−1

jγ(d) max
k∈I(j)

|cn|2
) 1

2
]
≤ 1

22K+1−1
.

The Borel-Cantelli lemma ensures that almost surely there is Cω > 0 such that

‖uωK‖L∞(Rd) ≤ Cω2K/2
( 22

K+1−1−1∑
j=22K−1

jγ(d) max
k∈I(j)

|cn|2
) 1

2

≤ Cω
1

2K(α−1)/2

( 22
K+1−1−1∑
j=22K−1

(ln j)αjγ(d) max
k∈I(j)

|cn|2
) 1

2

.

Now by (2.5) and by the Cauchy-Schwarz inequality since α > 1 holds we get∑
K≥1

‖uωK‖L∞(Rd) < +∞ a.s.

As a consequence, we have shown that a sub-sequence of the partial sum converges uniformly, a.s.

This implies that uω is a continuous and bounded function, a.s.

Now if we moreover assume that the (Xn) are symmetric, we can apply [11, Theorem II.5, p.120]

which yields that

uωλ =
∑
λn≤λ

cnXn(ω)ϕn,

also converges in L∞(Rd), a.s. for λ→ +∞.

4.3. Proof of Theorem 2.7. — The proof will follow the proof of J.-P. Kahane [9, Theorem 2,

p. 66], with the necessary modifications in our context.

Let κ ≥ 1 and let us introduce the notations:

νj = κ2j−1, Nj = 2νj ,

uω0 (x) =
∑

λn<N1

cnXn(ω)ϕn(x), for j ≥ 1,

uωj (x) =
∑

Nj≤λn<Nj+1

cnXn(ω)ϕn(x).
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Using the triangle inequality and the fundamental calculus theorem we have

muω(h) ≤ h‖∇xuω0 ‖L∞(Rd) + 2
∑

1≤j<+∞
‖uωj ‖L∞(Rd).

From Theorem 2.5 we have for j ≥ 1,

(4.6) P

∥∥∥uωj ‖L∞(Rd) ≥ C(lnNj+1)1/2
( ∑
Nj/2≤`<Nj+1/2

`γ(d) max
n∈I(`)

|cn|2
)1/2

 ≤ 1

N2
j+1

.

The j = 0 term satisfies the following

Lemma 4.3. — There exists C > 0 large enough such that

(4.7) P

∥∥∇xuω0∥∥L∞(Rd)
≥ C(lnN1)1/2

( ∑
`<N1/2

`1+γ(d) max
n∈I(`)

|cn|2
)1/2

 ≤ 1

N2
1

.

The lemma will be proved later.

Remark 4.4. — More generally, we can get a similar bound for a(x,D)uω0 , when a(x, ξ) is a polyno-

mial in (x, ξ) ∈ R2d. We leave the details to the reader.

Using this lemma we can prove Theorem 2.7.

Let us denote Ωj(κ) the event in (4.6), Ω0(κ) the event in (4.7) and Ω∞(κ) =
⋃
j≥0

Ωj(κ).

Using the definition of Nj we have

P
[
Ω∞(κ)

]
≤ 21−2κ.

Hence using the Borel-Cantelli lemma we get that

P
[

lim sup
κ→+∞

Ω∞(κ)
]

= 0.

On the other side denote by

E0 = (lnN1)1/2
( ∑
`<N1/2

`1+γ(d) max
n∈I(`)

|cn|2
)1/2

Ej = (lnNj+1)1/2
( ∑
Nj/2≤`<Nj+1/2

`γ(d) max
n∈I(`)

|cn|2
)1/2

.
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Using assumption (2.6) we have

E0 ≤ (lnN1)1/2
( κ−1∑
`=1

2`∑
k=2`−1

k1+γ(d) max
n∈I(k)

|cn|2
)1/2

≤ Cκ1/2
( κ−1∑
`=1

2`(1+γ(d))
2`∑

k=2`−1

max
n∈I(k)

|cn|2
)1/2

≤ Cκ1/2

( κ−1∑
`=1

2`(1−µ)`2ν
)1/2

,

and for all j ≥ 1

Ej ≤ C(κ2j)1/2

( ∑
νj≤`<νj+1

2`∑
k=2`−1

kγ(d) max
n∈I(k)

|cn|2
)1/2

≤ C(κ2j)1/2

( ∑
νj≤`<νj+1

2`γ(d)
2`∑

k=2`−1

max
n∈I(k)

|cn|2
)1/2

≤ C(κ2j)1/2

( ∑
νj≤`<νj+1

2−µ``2ν
)1/2

.

• Assume that 0 < µ < 1. We easily compute the following estimates

E0 ≤ Cκ
1
2

+ν2(1−µ)κ/2, Ej ≤ C(κ2j)
1
2

+ν2−µκ2j−2

and ∑
j≥1

Ej ≤ C
∑
j≥1

(κ2j)
1
2

+ν2−µκ2j−2 ≤ Cκ
1
2

+ν2−κµ/2.

Now taking h = hκ = 2−κ we have proved that for every ω /∈ lim sup
κ→+∞

Ω∞(κ) and

for every κ large enough

muω(hκ) ≤ Chµκ| ln(hκ)|
1
2

+ν .

Using that muω(h) is non increasing in h we have proved Theorem 2.7 for 0 < µ < 1.

• Assume that µ = 0 and ν < −1. Then in this case we get

E0 ≤ Cκ
1
2

+ν2κ/2, Ej ≤ Cκν+12(1+ν)j ,
∑
j≥1

Ej ≤ Cκν+1,

and the end of the proof is similar.

• The other cases are proved in the same way (see [9]) except the last one (µ = 1, ν < −1) where

the result is obtained by applying Theorem 2.6 to the partial derivatives ∂xju
ω, 1 ≤ j ≤ d.

Now we prove Lemma 4.3.
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Proof of Lemma 4.3. — It is more convenient here to index the Hermite basis by Nd. So we have

uω0 (x) =
∑

2|α|+d≤N1

cαXα(ω)ϕα(x)

where we have denoted |α| = α1 + · · ·+αd. We have Hϕα = λαϕα, with λα = 2|α|+ d. It is easier to

consider first the tensor basis:

ϕα(x) = hα(x) = hα1(x1) · · · hαd(xd).

Recall that in 1D the Hermite functions satisfy for all t ∈ R
d

dt
hk(t) = 2−1/2

(√
khk−1(t)−

√
k + 1hk+1(t)

)
.

So we get
√

2∂x1u
ω
0 (x) =

∑
2|α|+d≤N1

√
α1cαXα(ω)hα−e1(x)−

∑
2|α|+d≤N1

√
α1 + 1cαXα(ω)hα+e1(x)

where {ej}1≤j≤d is the canonical basis of Rd. Applying the Theorem 2.5 to each term of the sum we

have proved the Lemma 4.3 for the tensor basis hα.

For a general orthonormal basis (ϕα)α∈Nd of Hermite functions, we write

ϕα(x) =
∑
|α|=|β|

tα,βhβ(x)

where {tα,β} is a unitary matrix. So we have

√
2∂x1u

ω
0 (x) =

=
∑

2|α|+d≤N1

√
α1cαXα(ω)

∑
|β|=|α|

tα,βhβ−e1(x)−
∑

2|α|+d≤N1

√
α1 + 1cαXα(ω)

∑
|β|=|α|

tα,βhβ+e1(x).

Now we estimate separately the two sums by revisiting the proof of Theorem 2.5.

It is enough to consider the first one denoted by vωλ (x) where λ = N1. We have to estimate:

E
[

exp(rvωλ )
]
≤ exp

(
Cr2

∑
λα≤λ

α1|cα|2
∑
|β|=|α|

|tα,βhβ−e1 |
2
)
.

For λα ∈ I(j) we have∑
λα∈I(j)

α1|cα|2
∣∣ ∑
|β|=|α|

tα,βhβ−e1(x)
∣∣2 ≤ C(1 + j) max

λα∈I(j)
|cα|2

∣∣∣ ∑
|β|=|α|
λα∈I(j)

tα,βhβ−e1(x)
∣∣∣2.

Using that the matrix {tα,β} is unitary we have∣∣∣ ∑
|β|=|α|
λα∈I(j)

tα,βhβ−e1(x)
∣∣∣2 ≤ ∑

λα∈I(j−1)

|hα(x)|2 ≤ Cjγ(d)
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and

E
[

exp(rvωλ )
]
≤ exp

(
Cr2

∑
λα≤λ

λγ(d)+1
α |cα|2

)
.

This inequality has the same form as (4.4), hence we can conclude here as in the proof of Theorem 2.5.

5. Annex: about random series in Banach spaces

We present here some elements on the theory of random series in Banach spaces. We refer the

reader to the books [8], [5] and [11] for more elements on this subject.

Let B be a Banach space on the field of real or complex numbers. Let (εn)n≥0 be a sequence of

Rademacher i.i.d. random variables and let us define

(5.1) Σ(B) :=
{

(bn)n≥0,
∑

εnbn converges a.s.
}

It is clear that Σ(B) is a vector subspace of BN. The following theorem is well-known in the theory

of Banach random series (see for instance [11, Chapitre 3, IV.2]):

Theorem 5.1. — Let B a Banach space and consider a sequence (bn)n≥0 in B. The following facts

are equivalent

(i) the sequence (bn)n≥0 belongs to Σ(B),

(ii) the random series
∑
εn(ω)bn converges in probability,

(iii) the random series
∑
εn(ω)bn converges in law,

(iv) there is some p ≥ 1 such that the random series
∑
εn(ω)bn converges in Lp(Ω, B),

(v) for any p ≥ 1, the random series
∑
εn(ω)bn converges in Lp(Ω, B).

For instance, if B is a Hilbert space, the previous theorem can be used to see that Σ(B) is nothing

else than `2(B) (see also [9, Chapter 3]).

A natural question is to study what happens for the almost sure convergence of
∑
Xnbn if (Xn)n≥0

is i.i.d. with another reference law. A part of this question is solved by the following result proved by

Hoffman-Jorgensen.

Theorem 5.2 (Hoffman-Jorgensen). — Let (Xn)n≥0 be a sequence of real, non-constant and i.i.d.

random variables and (bn)n≥0 be a sequence which takes values in a general Banach space B, we assume

that the series
∑
Xn(ω)bn converges almost surely in B. Then the series

∑
εn(ω)bn converges almost

surely in B, in other words (bn)n≥0 belongs to Σ(B).

We emphasize the fact that no integrability assumption is made on the law of Xn. We do not know

any published reference of Theorem 5.2 and we give below a proof we learned from Hervé Queffélec.

The converse question is not easy and needs assumptions on the geometry of the Banach space B. It
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is worthwhile now to recall Kahane-Khintchine’s inequalities. For any real numbers q, p ≥ 1 and any

finite sequence (bn)n≥0 in B there is a constant K(p, q) which depends only on p and q such that

(5.2) E
[∥∥∥∑

n≥0

εnbn

∥∥∥q]1/q

≤ K(p, q)E
[∥∥∥∑

n≥0

εnbn

∥∥∥p]1/p

.

For the specific case B = R, those inequalities are called Khinthine’s inequalities and we have

E
[∣∣∣∑

n≥0

εnbn

∣∣∣2]1/2

=

∑
n≥0

|bn|2
1/2

.

We can now define the notion of cotype of a Banach space.

Definition 5.3. — A Banach space B has cotype p ≥ 2 if there are real numbers q ≥ 1 and Cq > 0

such that for any finite sequence (bn)n≥0 in B one has

(5.3)

(∑
n≥0

‖bn‖p
)1/p

≤ CqE
[∥∥∥∑

n≥0

εnbn

∥∥∥q]1/q

.

Thanks to (5.2), notice that if (5.3) holds then it holds for any q ≥ 1. For instance, one can prove

that for any p ≥ 1 the Banach space B := Lp(Rd) has cotype max(2, p). To see this, we can make use

of Kahane-Khintchine’s inequalities for q = p:

E

[∥∥∥ N∑
n=1

εnfn

∥∥∥p
Lp(Rd)

]
=

∫
Rd

E

[∣∣∣ N∑
n=1

εn(ω)fn(t)
∣∣∣p] dt

∼ Cp

∫
Rd

( N∑
n=1

|fn(t)|2
) p

2
dt.

In the case p ≤ 2, by denoting ‖ · ‖2/p the obvious norm of RN , we can write∫
Rd

( N∑
n=1

|fn(t)|2
) p

2
dt =

∫
Rd

∥∥∥(|f1(t)|p, . . . , |fN (t)|p
)∥∥∥

2/p
dt

≥
∥∥∥∥∫

Rd
(|f1(t)|p, . . . , |fN (t)|p)dt

∥∥∥∥
2/p

≥
( N∑
n=1

‖fn‖2Lp(Rd)

) p
2
.

In the case p ≥ 2, we write∫
Rd

( N∑
n=1

|fn(t)|2
) p

2
dt ≥

∫
Rd

N∑
n=1

|fn(t)|pdt =
N∑
n=1

‖fn‖pLp(Rd)
.

As used in [7] for Gaussian random variables, we have the following astonishing result of Maurey

and Pisier:
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Theorem 5.4 (Maurey-Pisier). — The following assertions are equivalent

(i) the Banach space B has finite cotype (that means that there is p ≥ 2 such that B has cotype p),

(ii) for any sequence (bn)n≥0 of B, the almost sure convergence of
∑
εnbn implies the almost sure

convergence of
∑
Gnbn, where (Gn)n≥0 is a sequence of i.i.d. NR(0, 1) Gaussian random vari-

ables,

(iii) for any sequence (bn)n≥0 of B the almost sure convergence of
∑
εnbn implies the almost sure

convergence of
∑
Xnbn where (Xn)n≥0 is any sequence of real, centered and i.i.d random vari-

ables with finite moments of any order.

Proof. — The equivalence (i) ⇔ (ii) is done in [13, Corollaire 1.3]. Obviously, (iii) ⇒ (ii) is true by

choosing Xn = Gn. Let us explain arguments which are not explicitly written in [13, Corollaire 1.3].

To see (i) ⇒ (iii), we begin by assuming that the random variables Xn are symmetric. The proof

of [13, Corollaire 1.3, a) ⇒ b), page 69] shows that there is a positive constant C which involves a

moment E[|X1|q] (for some q > 0) such that for any sequence (bn)n≥0 we have

∀k, ` ≥ 1 E

[∥∥∥ ∑̀
n=k

Xnbn

∥∥∥2
]
≤ CE

[∥∥∥ ∑̀
n=k

εnbn

∥∥∥2
]
.

Since the series
∑
εnbn converges almost surely, it converges in L2(Ω, B) (see Theorem 5.1), so does∑

Xnbn. Now assume that Xn are merely centered. Clearly, Zn(ω, ω′) = Xn(ω)−Xn(ω′) is symmetric

on the probability space Ω×Ω′. Therefore, the previous analysis shows that
∑
Zn(ω, ω′)bn converges

in L2(Ω× Ω′, B) and also in L1(Ω× Ω′, B). Now we use that random variables Xn are centered:

∀` ≥ k Eω

[∥∥∥ ∑̀
n=k

Xn(ω)bn

∥∥∥] ≤ Eω,ω′
[∥∥∥ ∑̀

n=k

Xn(ω)bn −Xn(ω′)bn

∥∥∥] .
That means that

∑
Xnbn converges in L1(Ω, B), so converges in probability and almost surely in B

(see [11, Théorème II.3]).

5.1. Proof of Proposition 2.1. — Equivalence of (i) and (ii) comes from Theorem 5.2, Theo-

rem 5.4 and the fact that Lp(Rd) has finite cotype. In view to check the link with (iii), it is necessary

and sufficient to study convergence in Lp(Ω, Lp(Rd)) (see Theorem 5.1). Cauchy criterion leads to

handle terms of the following form:∫
Ω

∫
Rd

∣∣∣ ∑̀
n=k

εn(ω)fn(x)
∣∣∣pdP(ω)dx =

∫
Rd

Eω

[∣∣∣ ∑̀
n=k

εn(ω)fn(x)
∣∣∣p] dx.

By Khintchine’s inequalities (5.2), there exists Cp ≥ 1 so that

1

Cp

∫
Rd

∣∣∣ ∑̀
n=k

|fn(x)|2
∣∣∣p/2dx ≤ ∫

Ω

∫
Rd

∣∣∣ ∑̀
n=k

εn(ω)fn(x)
∣∣∣pdP(ω)dx ≤ Cp

∫
Rd

∣∣∣ ∑̀
n=k

|fn(x)|2
∣∣∣p/2dx,

and we conclude easily.
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5.2. Proof of Theorem 5.2. — We need the contraction principle (see for instance [11, Théorème

III.1] or [9, Chapter 2.6 in the Rademacher framework]) and a few lemmas.

Theorem 5.5 (contraction principle). — Let (Xn)n≥0 be a sequence of symmetric independent

random variables which takes values in a Banach space B. If
∑
Xn converges almost surely in B

then, for any bounded real sequence (λn)n≥0, the series
∑
λnXn converges almost surely in B.

Let us recall a classical lemma in the probability theory.

Lemma 5.6. — Let X be a real random variable, the following statements are equivalent:

(i) X is not almost surely constant,

(ii) there is ξ ∈ R such that |E[exp(iξX)]| < 1 holds,

(iii) the set
{
ξ ∈ R, |E[exp(iξX)]| = 1

}
is countable.

Proof. — The implications (iii)⇒ (ii) and (ii)⇒ (i) are obvious. Suppose now (i) and let ξ0 6= ξ1 ∈
R\{0} be two numbers such that |E[exp(iξ0X)]| = |E[exp(iξ1X)]| = 1. Since | exp(iξ0X)| ≤ 1 holds,

the equality |E[exp(iξ0X)]| = 1 ensures there is α0 ∈ R such that one has eiξ0x = eiα0 for µ-almost all

x ∈ R where µ is the law of X. Hence, x ∈ α0
ξ0

+ 2π
ξ0
Z for µ-almost all x ∈ R. The same is true by

replacing ξ0 with ξ1 and α0 with α1. Because X is not constant almost surely, there are at least two

numbers x 6= y which both belong to
{
α0
ξ0

+ 2π
ξ0
Z
}
∩
{
α1
ξ1

+ 2π
ξ1
Z
}

. We notice that x− y 6= 0 belongs to
2π
ξ0
Z ∩ 2π

ξ1
Z. Finally ξ0/ξ1 is rational and (iii) is proved.

Lemma 5.7. — For any sequence of real, non-constant and i.i.d. random variables (Y`)`≥1 we have

lim
N→+∞

P
[
|Y1 + · · ·+ YN | ≥ 1|

]
= 1.

Proof. — Let µ be the law of Y1 and ϕ ∈ L1(R) be a function such that ϕ̂(x) ≥ 1 holds for any

x ∈ (−1,+1). Then we have

P
[
|Y1 + · · ·+ YN | < 1

]
=

∫
R

1(−1,1)(x)d

N times︷ ︸︸ ︷
µ ? · · · ? µ(x)

≤
∫
R
ϕ̂(x)dµ ? · · · ? µ(x) =

∫
R
ϕ(ξ)µ̂(ξ)Ndξ.

Point (iii) of Lemma 5.6 ensures that |µ̂(ξ)| < 1 holds for almost all ξ in the sense of Lebesgue. We

conclude by the dominated convergence theorem if N tends to infinity.

Lemma 5.8. — Let G be a locally compact Abelian group, consider a subgroup G0 ⊂ G which has a

positive Haar measure and is everywhere dense. Then G0 is the whole group G.

Proof. — It is sufficient to prove that G0 is closed. Steinhaus theorem states that G0 − G0 ⊂ G0

contains an open neighbourhood of the origin. By using translations of G0, it turns out that G0 is an

open subgroup of G. A classical argument from the theory of topological groups asserts that G0 is

also closed: we just write G = ti∈I(G0 + gi) where (gi)i∈I is a family of elements of G and gi = 0 for

one i ∈ I, it appears that the complementary subset of G0 is open.
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We can now prove Theorem 5.2.

Proof of Theorem 5.2. — Step 1. It is well known that we can realize any sequence of independent

real random variables on the probability space [0, 1] endowed with the Lebesgue measure [22] (p. 34

and p.43). For any n ≥ 0, we consider a sequence (Ẑn,`)`≥1 of i.i.d. random variables on [0, 1] and

such that Xn = Ẑn,0 for any n ≥ 0. The following random variables

Zn,` : [0, 1]N → R
(ω0, ω1, . . . ) 7→ Ẑn,`(ωn)

are i.i.d with the same law than the random variables Xn. The assumption of Theorem 5.2 ensures

that the series
∑

n≥0 Zn,`(ω)bn =
∑

n≥0 Ẑn,`(ωn)bn converges in B almost surely in ω ∈ [0, 1]N. By

combining Lemma 5.6 and the equations

∀` ≥ 1 E
[

exp(iξZn,2`−1 − iξZn,2`)
]

=
∣∣E[exp(iξX1)]

∣∣2,
we see that Zn,2`−1 − Zn,2` is not constant almost surely. By using Lemma 5.7 with the sequence

Y` = Zn,2`−1 −Zn,2`, we see that there is an integer N ≥ 1 which depends only on the law of X1 such

that
1

2
≤ P [|Zn,1 − Zn,2 + · · ·+ Zn,2N−1 − Zn,2N | ≥ 1] and is independent of n.

By setting Sn := Zn,1 − Zn,2 + · · ·+ Zn,2N−1 − Zn,2N , we have the three properties:

(i) the series
∑

n≥0 Snbn converges almost surely in B in ω ∈ [0, 1]N,

(ii) (Sn)n≥0 is a sequence of real, non-constant, symmetric and i.i.d. random variables,

(iii) for any n ≥ 0 one has P[|Sn| ≥ 1] ≥ 1
2 .

By construction, Sn(ω) = Ŝn(ωn) with Ŝn := Ẑn,1 − Ẑn,2 + · · ·+ Ẑn,2N−1 − Ẑn,2N .

Step 2. On the probability space [0, 1]N × [0, 1], one checks that the sequence (Sn(ω)εn(ω′))n≥0 is

i.i.d. and has the same common law than S1. From (i) and (ii), the series
∑
Sn(ω)εn(ω′)bn converges

almost surely in (ω, ω′) ∈ [0, 1]N × [0, 1]. Fubini’s theorem ensures that almost surely in ω ∈ [0, 1]N

the sequence (Sn(ω)bn)n≥0 belongs to Σ(B) (see definition (5.1)). Since Sn(ω) = Ŝn(ωn), we also have

P(|Ŝn| ≥ 1) = P(|Sn| ≥ 1) ≥ 1
2 . Thus, we can consider a Borel subset An ⊂ [0, 1] such that

P(An) =
1

2
and An ⊂

{
ωn ∈ [0, 1], |Ŝn(ωn)| ≥ 1]

}
.

Let us define ρn(ω) := 1An(ωn) ≤ |Sn(ω)| for each ω ∈ [0, 1]N. It is obvious that (ρn)n≥0 is a sequence

of i.i.d. random variables with the 1
2 -Bernoulli law. From the contraction principle (Theorem 5.5), we

know that almost surely in ω the sequence (ρn(ω)bn)n≥0 belongs to Σ(B).

Step 3. Let us identify Z/2Z with {0, 1} and introduce the compact group G := (Z/2Z)N which

becomes now our reference probability space. It is clear that the maps g ∈ G 7→ gn ∈ {0, 1} seen as

random variables are independent and identically distributed with a 1
2 -Bernoulli law. Let us define

G0 ⊂ G the subset of elements (gn)n≥0 such that (gnbn)n≥0 belongs to Σ(B). Since Σ(B) is a vector

space, G0 is a subgroup of G. We directly get from the previous analysis in Step 2 that G0 has a

full Haar measure in G. Furthermore, G0 contains obviously the everywhere dense subgroup of G
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of elements (gn)n≥0 which satisfy gn = 0 for n � 1. We use Lemma 5.8 to conclude that (1, 1, . . . )

belongs to G0, in other words (bn)n≥0 belongs to Σ(B).

6. Annex: An alternative proof of Theorem 2.6 inspired by [21]

We give here a different proof of Theorem 2.6 we learnt from [21], which we decided to detail for

pedagogical reasons.

Lemma 6.1. — Let (ϕn)n≥0 be any Hilbertian basis of eigenfunctions for the harmonic oscillator H.

Let γ(1) = −1/6 and γ(d) = d/2− 1 for d ≥ 2. Then for all j ≥ 1 and x, y ∈ Rd we have( ∑
n∈I(j)

|ϕn(y)− ϕn(x)|2
)1/2

≤ C|y − x|jγ(d)/2+1/2.

Proof. — By the Taylor formula and Cauchy-Schwarz we get, for n ∈ I(j)

|ϕn(y)− ϕn(x)|2 ≤ |y − x|2
(∫ 1

0

∣∣∇ϕn(x+ (y − x)t
)∣∣dt)2

≤ |y − x|2
∫ 1

0

∣∣∇ϕn(x+ (y − x)t
)∣∣2dt

≤ Cj|y − x|2
∫ 1

0

∣∣ϕn(x+ (y − x)t
)∣∣2dt,(6.1)

where in the last line we used∫ 1

0

∣∣∇ϕn(x+ (y − x)t
)∣∣2dt ≤ ∫ 1

0

∣∣H1/2ϕn
(
x+ (y − x)t

)∣∣2dt = λn

∫ 1

0

∣∣ϕn(x+ (y − x)t
)∣∣2dt.

Now we sum up the inequalities (6.1) and get with (1.3)∑
n∈I(j)

|ϕn(y)− ϕn(x)|2 ≤ Cj|y − x|2 sup
z∈R

∑
n∈I(j)

|ϕn
(
z
)∣∣2 ≤ Cjγ(d)+1|y − x|2,

which was the claim

We follow the main lines of the proof of N. Tzvetkov [21, Theorem 5]. We define the pseudo-

distance δ by

δ(x, y) =
(∑
n≥0

|cn|2|ϕn(y)− ϕn(x)|2
)1/2

.

For α > 1, we define the function Φα : (0,+∞) −→ (0,+∞)

Φα(t) =

{
(− ln t)α/2 if 0 < t < 1/a,

Φα(1/a) if t ≥ 1/a,

where a > 1 is chosen in such a way that the function t 7→ tΦα(t) is increasing on (0,+∞). Observe

also that t 7→ Φα(t) is non-increasing on (0,+∞). Then we have a result similar to [21, Theorem 5].
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Lemma 6.2. — Assume that the coefficients (cn) satisfy (2.5), then

δ(x, y) ≤ C

Φα(|y − x|)
.

Proof. — We clearly have

(δ(x, y))2 ≤ C
+∞∑
j=1

(
max
k∈I(j)

|ck|2
) ∑
n∈I(j)

|ϕn(y)− ϕn(x)|2.

We split the previous sum into two parts. Then, by Lemma 6.1

I1(x, y) :=
∑

j: aj1/2≤|y−x|−1

(
max
k∈I(j)

|ck|2
) ∑
n∈I(j)

|ϕn(y)− ϕn(x)|2

≤ C
∑

j: aj1/2≤|y−x|−1

jγ(d)+1 max
k∈I(j)

|ck|2|y − x|2

=
C

Φ2
α(|y − x|)

∑
j: aj1/2≤|y−x|−1

jγ(d)+1 max
k∈I(j)

|ck|2
(
|y − x|Φα(|y − x|)

)2
.(6.2)

Now we use that the function t 7−→ tΦα(t) is increasing, thus for aj1/2 ≤ |y − x|−1 we have(
|y − x|Φα(|y − x|)

)2 ≤ j−1(ln j)α,

therefore from (6.2) and the assumption (2.5) on the cn, we get

I1(x, y) ≤ CΦ−2
α (|y − x|)

+∞∑
j=1

jγ(d)(ln j)α max
k∈I(j)

|ck|2 ≤ CΦ−2
α (|y − x|).

Next, by (1.3)

I2(x, y) :=
∑

j: aj1/2>|y−x|−1

(
max
k∈I(j)

|ck|2
) ∑
n∈I(j)

|ϕn(y)− ϕn(x)|2

≤ C
∑

j: aj1/2>|y−x|−1

jγ(d) max
k∈I(j)

|ck|2.(6.3)

Now we use the fact that Φα is non-increasing and for aj1/2 > |y − x|−1 we get

Φα(|y − x|) ≤ Φα(a−1j−1/2) ≤ C(ln j)α/2.

As a consequence, from (6.3) and the assumption (2.5) on the cn, we deduce that

I2(x, y) ≤ CΦ−2
α (|y − x|)

+∞∑
j=1

jγ(d)(ln j)α max
k∈I(j)

|ck|2 ≤ CΦ−2
α (|y − x|),

which completes the proof.

Proof of Theorem 2.6. — It is enough to prove that on every compact set K ⊂ Rd, a.e. in ω, uω is

continuous on K. Hence we can follow the proof given in [21, Theorem 5] using an entropy argument

(Dudley-Fernique criterion), together with the result of Lemma 6.2.
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Remark 6.3. — Let’s compare the two different proofs. This proof relies on both a decomposition

in space and in frequencies, while in the other proof one only needs a decomposition in frequencies.

Observe also that in the first proof one moreover gets that for almost all ω ∈ Ω, uω is bounded.

Acknowledgments. The authors would like to thank warmly Hervé Queffélec for very interesting

discussions about random Banach series, and in particular for the proof of Theorem 5.2.

References

[1] R. Askey & S. Wainger – “Mean convergence of expansions in Laguerre and Hermite series”, American
Journal of Mathematics 87 (1965), no. 3, p. 695–708.

[2] A. Ayache & N. Tzvetkov – “Lp properties for Gaussian random series”, Trans. Amer. Math. Soc. 360
(2008), no. 8, p. 4425–4439.

[3] N. Burq & G. Lebeau – “Injections de Sobolev probabilistes et applications.”, Ann. Sci. Éc. Norm.
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[19] G. Szegö – Orthogonal polynomials, Colloquium Publications, Vol. 23, AMS, 1939.

http://arxiv.org/abs/1307.4976


ON RANDOM HERMITE SERIES 33

[20] S. Thangavelu – Lectures on Hermite and Laguerre expansions., Mathematical Notes, vol. 42, Princeton
University Press, Princeton, NJ, 1993.

[21] N. Tzvetkov – “Riemannian analogue of a Paley-Zygmund theorem”, Séminaire EDP X, 2008-2009,
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Houssinière, 44322 Nantes Cedex 03, France • E-mail : didier.robert@univ-nantes.fr
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