ROUGH VOLTERRA EQUATIONS 2: CONVOLUTIONAL
GENERALIZED INTEGRALS

AURELIEN DEYA AND SAMY TINDEL

ABSTRACT. We define and solve Volterra equations driven by a non-differentiable signal,
by means of a variant of the rough path theory allowing to handle generalized integrals
weighted by an exponential coefficient. The results are applied to a standard rough path
x = (x1,x2) € CJ (R™) x C37 (R™™), with > 1/3, which includes the case of fractional
Brownian motion with Hurst index H > 1/3.

1. INTRODUCTION

This paper is part of an ambitious ongoing project which aims at offering a new point
of view on multidimensional stochastic calculus, via the semi-deterministic rough path
approach initiated by Lyons [24]. We tackle the issue of the non-linear Volterra system

t m t
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where T' stands for an arbitrary horizon, = : [0,7] — R™ a multidimensional »-Hélder
path, a € R? an initial condition and 0% : [0, T]?> x R? — R smooth enough functions.

The (ordinary) Volterra equation providing a relevant model in many biological or
physical situations, it is not surprising that its noisy version already gave birth to a
great amount of papers. A first analysis when z is a Brownian motion is contained
in the pioneering works [6, 7], and then generalized to the case of a semimartingale in
[31]. If the coefficients 0% are also seen as random functions, which often happens to be
more appropriate, some anticipative stochastic calculus techniques are required in order
to solve the system, and we refer to [1, 28, 30| for the main results in this direction.
It should be mentioned at this point that the last of those references [30] is motivated
by financial models of capital growth rate, which goes beyond the classical physical or
biological applications of Volterra equations. Several authors also envisaged the possibility
of a singularity for the application u < t — o(t,u,.) as t tends to w [10, 11, 37|, while
examples of a so-called backward stochastic Volterra equations recently appeared in the
literature |38, 40|, stimulated (here again) by new financial applications [39]. Besides,
one can find in [34, 21, 43| studies of infinite-dimensional versions of (1), often linked
to the context of stochastic partial differential equations. Tt is finally worth noticing
that the behaviour of the solutions to the It6-Volterra equation is now deeply understood,
through the consideration of numerical schemes [35, 42] or the existence of large deviations
[17, 33, 27, 42] and Strassen’s law [29] results.
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In this background, it seems quite natural to wonder if the interpretation and resolution
of (1) can be extended to a non-semimartingale driving process x. The existence of a
theoretical solution would for instance allow to study the influence of a more general
gaussian noise in the asymptotic equilibria observed in [4, 2, 3, 5. The interest in a
generalization of the system has also been recently reinforced by the emergence, in the
field of nanophysics, of a model involving a Volterra system perturbed by a fractional
Brownian motion (fBm in the sequel) with Hurst index H different from 1/2 [22, 23|. In
the latter references, the fractional process only intervenes through an additive noise: the
resolution of the system (1) in its general form would here open the way to a sophistication
of the model.

The particular case where x stands for a fBm with Hurst index H > 1/2 has been
thoroughly treated in [16]: the integral is therein understood in the Young sense. Notice
that in this situation, |8] provides a slighlty different approach to the equation, based on
fractional calculus techniques. If one wishes to go one step further in the procedure and
consider a ~-Holder path with v < 1/2; the rough paths methods must come into the
picture. However, the classical rough path theory introduced by Terry Lyons [25] (see
also the recent formulation in [18]) is mostly designed to handle the case of diffusion type
equations, and there have been an intensive activity during the last couple of years in
order to extend these semi-pathwise techniques to other systems, such as delay equations
[26] or PDEs [9, 20]. The current article fits into this global project, and we shall see how
to modify the original rough path setting in order to handle systems like (1). The method
then leads to what appears to the authors as the first result of existence and uniqueness
of a global solution ever shown for the rough Volterra equation (1), in case v < %

Our result more exactly applies to the convolutional Volterra equation:

m t
yiza%Z/ ot — o (y) dal, i=1,....d, te[0,T) (2)
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where ¢ : R — R and ¢ : R? — R are smooth enough applications. Notice that we have
included the drift term in the sum, by assuming that the first component of x coincides
with the identity function. In spite of its specificity, the formulation (2) covers most of
the model aforementioned (it is in particular the model at stake in [22, 23]). The main
result of this paper can be stated in the following way:

Theorem 1.1. Assume that the path x : [0,T] — R™ allows the construction of a geo-
metric 2-rough path x = (x*,x2) € CJ(R™) x C3'(R™™) for some coefficient v > 1/3.
If ¢ € C3(R;R) and 0¥ € C3P(RLR) for alli =1,...,d, j =1,...,m, then the system
(2), interpreted thanks to Propositions 5.5 and 6.2, admits a unique global solution y in
the space of controlled paths introduced in |19]| (see Definition 2.5). Moreover, the Ito
map associated to the system is locally Lipschitz continuous: if y (resp. §) stands for the
solution of the system driven by x (resp. ) with initial condition a (resp. a), then

Ny — 5:C](RY)] < exx {la — a| + Nz — ;C] (R™)] + N[x* — 2%,C3T(R™™)]},  (3)
where
exx = C (Na; €] (R™)], N #; € (R™)], N X% C37 (R™™)], N &% C3 7 (R™™)])

Jor some function C : (RT)* — RY growing with its four arguments.
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Beyond the interpretation and resolution of the fractional Volterra system, the conti-
nuity result (3) is likely to offer simplified proofs of the classical results (large deviations,
support theorem) obtained in the (standard) Brownian case. For the sake of conciseness,
we shall let the procedure in abeyance, though (this should follow the lines of Chapter 19
in [18]).

A first attempt to solve the deterministic system (2) has been initiated in [16| by
resorting to the standard rough paths formalism. As evoked earlier, the method turns out
to be successful in the Young case (v > 1/2) with the existence of a unique global solution.
Unfortunately, it incompletely answers the problem in the rough case (v < 1/2), allowing
a local resolution only. The difficulties raised by the extension of the path have been
extensively commented in [16]. They are essentially due to the dependence of the system
with respect to the past of the trajectory. To figure out this phenomenom, remember
that the usual resolution framework in rough paths theory is a (well-chosen) space of
Holder paths (or paths with bounded p-variations). Here, the variations of the (potential)
solution y between two times s < t are given by

Yo=Y = / Ot —u) o™ (yu) dal, + /O (ot —u) — ¢(s — w)] o (ya) dzl, (4)

and through the latter integral pops out the problem in question: the variations of y
between a time s (present) and a time ¢ (future) are linked to the past ([0, s]) of the path.
In the Young case, the right-hand-side of (4) can be estimated by an affine function of
y, which allows to overcome the dependence to the past and settle a global fixed-point
argument. The reasoning does not hold true anymore when v < 1/2, the estimate giving
this time rise to a (at least) quadratic term in y.

Let us say a few words about the strategy we have adopted in this paper in order to
exhibit a global solution when ~ € (1/3,1/2]:
(i) First, we will reformulate (2) (when z is differentiable) by writing ¢ as the Fourier
transform of a function ¢ € L'(R), that is to say using the representation

¢@=4@&@W@, S,(€) = ey [0,7). (5)

Thanks to Fubini theorem, the system (2) can now be equivalently presented as: for all
i=1,....d

t
vi=d'+ [ d€d0iO . 5O [ Sl o). tel Tl ©)
R 0
Owing to the additivity property Sy (§) = Si(§)Sp(§), it is easily seen that for any fixed
£ eR,

@@—mwz/&ﬂ@mmww+&&mm, (7)

with Ai(§) = Si—s(§) — 1, and the dependence w.r.t the past ([0, s]) is here reduced to
a dependence w.r.t the present (s) only, which makes it easier to control on successive
patching intervals Iy, I5,... Therefore, the system will first be solved under the form (7),
before we go back to the original setting (2).

(i1) The transition from y to ¢ is however not priceless: we leave the Euclidian context
of (2) to enter the framework of functional-valued paths. For instance, the definition of a



4 AURELIEN DEYA AND SAMY TINDEL

Hoélder path will then be relative to a norm of functions to be precised (see (26)). Besides,
observe that the expression

7€) = / Siul€)did oy, =0, (s)

is quite close to the mild formulation of an evolution equation: in order to analyze this
system, we have drown our inspiration from the method and formalism developped in [20]
for a class of rough partial differential equations. In particular, the interpretation of the
rough integral will involve an adaptation of the notion of 2-rough paths to the background
at stake here: the standard path (x*,x?) will be replaced (in a first phase at least) by a
convolutional path (X' v Xor X =¥, given, when z is differentiable, by the three formulas
(t,7=1,...,m)

K2i(€) = / Siu(€)dri, | XAmi(e) = / A (€) dat, (9)

Ko (g) = / Soul€) dai, (a7 — a1). (10)

If z is a Holder path, those three definitions are a priori only formal, but once we have
admitted the existence of those integrals (see for instance Hypothesis 5 for a more precise
statement), we can resort to an extension procedure for the integral [’ S, (&) dzl o (y,)
similar to the one used in the analysis of ordinary systems, and based on the intervention
of an inverse operator A (Proposition 3.8). The extension of the three expressions in (9)
and (10) will be analyzed in the end of the paper (Section 6): for sake of conciseness, the
question will actually be reduced to a loose integration by parts argument.

(#7i) In the case 1/3 < v < 1/2, the reasoning that leads us to the existence of a global
solution consists in a technical patching argument (Section 5) based on the following
observation: in spite of the simplification suggested by (7), the system keeps some depen-
dence w.r.t the past through the present. Consequently, if one wants to patch together
local solutions yj(k) on successive time intervals I, = [ly, l;.+1], one must control the Holder
norm of §*), but also the "initial condition" yjl(f). The general principle of the reasoning
is contained in the proof of Theorem 5.10, but it actually leans on the controls obtained
in Proposition 5.7, 5.8 and 5.9. It is worth noticing that the general scheme of the proof
in question, as well as the scheme of the proof of Theorem 4.3, are refered to in [14] and
[13] for the study of rough PDE models.

Here is how our article is organized: we recall some basic definitions of algebraic inte-
gration at Section 2, and we adapt those notions to the convolutional context at Section
3.2. Section 4 is devoted to the simpler case of Young equations, which allows to explain
our method with less technical apparatus. Then at Section 5 we move to the rough case of
our Volterra equation, and explain all the details of the method we have chosen in order
to solve it. Finally, we apply our theory to (standard) rough paths at Section 6.

2. ALGEBRAIC INTEGRATION

This section is devoted to recall the very basic elements of the algebraic integration
theory introduced in [19], in order to fix notations for the remainder of the paper.
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2.1. Increments. As explained in [19], the extension of the integral steming from the
standard differential system dy! = dx] 0/ (y,) is based on the notion of increment, together
with an elementary operator  acting on them. The notion of increment can be introduced
in the following way: for two arbitrary real numbers ¢, > ¢; > 0, a vector space V, and
an integer k > 1, we denote by Cix(V) the set of continuous functions g : [¢1, 6]F — V
such that g;,..., = 0 whenever ¢; = t,;; for some ¢ <k — 1. Such a function will be called
a (k—1)-increment, and we will set C.(V') = Ug>1Cx(V'). The operator § alluded to above
can be seen as an operator acting on k-increments, and is defined as follows on Ci(V):

k+1
0: Ck(v) — Ck-i-l(v) (5g)t1"'tk+1 = Z(_l)i+lgt1---f¢---tk+la (11)

i=1

where t; means that this particular argument is omitted. Then a fundamental property
of 0, which is easily verified, is that 66 = 0, where 66 is considered as an operator from
Ci(V') to Crra(V'). We will denote ZCi(V) = Ci(V)) N Kerd and BCy(V') = Cx(V') N Imd.

Some simple examples of actions of §, which will be the ones we will really use through-
out the paper, are obtained by letting g € C; and h € Cy. Then, for any t,u, s € [(1, (5],
we have

<5g)ts =Gt — Gs, and (6h)tus = hts - htu - hus- (12)

The above-mentionned ordinary system is then of course equivalent to

t
wo=a . Gy = / dzi 09 (y,). (13)

Furthermore, it is readily checked that the complex (C,,d) is acyclic, i.e. ZCpi1 (V) =
BC,(V) for any k > 1. In particular, the following basic property, which we label for
further use, holds true:

Lemma 2.1. Let k > 1 and h € ZCx41(V). Then there exists a (non unique) f € Cr(V)
such that h =90f.

Observe that Lemma 2.1 implies that all the elements h € Co(V') such that dh = 0 can be
written as h = ¢ f for some (non unique) f € C;(V'). Thus we get a heuristic interpretation
of 0|c,(v): it measures how much a given l-increment is far from being an ezact increment
of a function (i.e. a finite difference).

Let us now introduce a convenient notation for the product of increments:
Definition 2.2. Let V and W two normed spaces and I a subinterval of [0,T]. If g €

Cr(I; L(V,W)) and h € C(I; W), for some k,l € N*, we define the product gh as the
(k+1—2)-increment (with values in W ) given by the formula: for allt; <ty < ... <tpy_1,

(gh)t1---tk+z_1 = Oty...ty, htktk+1~--tk+z—1 : (14)

Notice again that our future discussions will mainly rely on k-increments with £ < 2,
for which we will use some analytical assumptions. Namely, we measure the size of these
increments by Holder norms defined in the following way: for f € Co(V) let

[ fesllv
fllu= sup
1/ 1L i v

,and CY(V) = {f € G(V); | fllu < o0}
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In the same way, for h € C3(V), set

”htuSHV
h = sup
[172]]. D Ta =PIt —al?

[hll, = inf {Znhinpivu—pi; h = Z hi, 0 < p; < M} )

where the last infimum is taken over all sequences {h; € C5(V')} such that h =), h; and
for all choices of the numbers p; € (0, z). Then |[|-||,, is easily seen to be a norm on C3(V'),
and we set

(15)

Cs(V) ={h € Cs(V); ||l < oo}

Eventually, let C37(V) = U,~1C5(V), and remark that the same kind of norms can be
considered on the spaces ZC3(V), leading to the definition of some spaces ZC§(V') and
ZC3" (V). In order to avoid ambiguities, we shall denote by N[f; C¥] the s-Hélder norm
on the space C;, for j = 1,2,3. For ¢ € C;(V), we also set N'[(; CJ(V)] = sup,ci, 4,511 Csllv-

With these notations in mind, the following proposition is a basic result which is at the
core of our approach to path-wise integration (see [19] for the original proof of the result,
based on Stokes Theorem, and [20] for a simplified version):

Theorem 2.3 (The sewing map). Let u > 1. For any h € ZC5([0,1]; V), there exists a
unique Ah € C5([0,1]; V) such that 6(Ah) = h. Furthermore,

IAR], < cu NB; C5(V), (16)

with ¢, = 2421577 k™. This gives rise to a linear continuous map A : ZC5([0,1]; V) —
Cy([0,1]; V) such that SA = Idzepjo13,v)-

The following corollary gives a first relation between the structures we have just intro-
duced and generalized integrals, in the sense that it connects the operators 6 and A with
Riemann sums.

Corollary 2.4 (Integration of small increments). For any 1-increment g € Co(V'), such
that 5g € C3T, set 0f = (Id—Ad)g. Then

— lim §jgt t
( |Ht5|—>0 1+1 U7

where the limit is over any partition My, = {to =t,... t, = s} of [t,s| whose mesh tends
to zero. The 1-increment 0 f is the indefinite integral of the 1-increment g.

Proof. For any partition II; = {s =ty < t; < ... <t, =t} of [s,t], write

(6f)is =D _(6f)essrt, nglt D A (89).
1=0 1=0

Observe now that for some p > 1 such that dg € CY,
| A9 = D G0) v < NIAGg)s CHON)] T e =]
i=0 i=0

and as a consequence, limyr,, |0 > i g Avyyr (0g) = 0. O
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2.2. Dissection of a standard rough integral. Let us say a few words about the way
the tools introduced in the previous subsection interact with each other to lead to an
. . . t i i
interpretation of the rough integral fs dz;, z,

In a first phase, those tools enable a real dissection of the ordinary version of the integral
(when z and possibly z are differentiable). For instance, by combining the elementary
decomposition f; dal, 2l = (0a")s 2L + f; dat (02"),s with the relation 4 ([ da' (0z7)) =
(62")(02"), one deduces from Theorem 2.3 the expression

t
/ dal, 2, = (02" )i 2% + Ags ((027)(827)) .

It is now readily checked that if x, z € C], with v > 1/2 (Young case), the right-hand-side
of the latter equality still makes sense: the development is then legitimately chosen as a
definition for the rough integral.

When v < 1/2, a deeper analysis of the ordinary integral is required. In order to bring
the procedure to a successful result, the class of potential integrands 2z has to be restricted
to a particular set of pre-integrated paths, that will be met again at Section 5:

Definition 2.5. Let I a subinterval of [0,T] and x € C{(I; R™) with v > 1/3. For any
1 € N*, a path y € Cy(I; R is said to be y-controlled (by x) on I, with values in R!, if its
increments oy can be decomposed in the following way: for all s <t €1,

(69 )es = (627)usys?" + i, avec y* € CU(LRY™) et yf € C(LR). (17)

The set of ~y-controlled paths will be denoted by Q) (I;RY) and provided with the seminorm
Nly; QUIR)] = Ny; € (LR + Ny™ 7 (LR + Ny GV (LGR)], - (18)
Then we define Q)(I;R*!) (k € N*) as the set of paths y € Cy(I; RM!) such that y' = y* €

QUI;RY) for all i = 1,...,k, and we associate to the elements of this set the quantity
Nly; QUL RE) = S, Ny’ QUL RY).

If z is differentiable and z € Q), a quick algebraic computation shows that, by setting
x2 = f; dat, (337 ) s, we get [ dat, 2% = (627)ys 2L+ X030 2297 4 1y, with 61 = (d27) 257 4
x24 §2%7 and so

t
/ dxz Z (51‘ )ts Z + X2 Jij x,]z + Ay, (((5$Z> S 4+ x 2 52967]'1') . (19)

The right-hand-side of the latter equality can now be extended to any 2-rough path
= (0z,x2) € CJ x CJ7 with v > 1/3, that is to say to any ~-Holder path z allowing the
construction of a Lévy area x.;” = [ dx’, (627),, (see [25] for a thorough definition), a

hypothesis which is for instance known to be satisfied by a fractional Brownian motion
with Hurst index H > 1/3 (see [12] or [36]).

In fact, if one permits to restrict the class of integrands to Q7, it is because the latter
space is large and stable enough to make possible the interpretation and resolution of the
ordinary rough system (0y);, = fst dx? 0% (y,) therein, for a sufficiently smooth vector
field o . It is indeed not difficult to see that if y € Q7 and o € C*P, then z = o(y) € Q7
while (19) immediately shows that [dzz € QJ.

All of those considerations will be kept in mind when analyzing the system (2).
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3. ALGEBRAIC CONVOLUTIONAL INTEGRATION

We already announced it in the introduction: in order to reduce the dependence of
equation (2) with respect to the past, we will appeal to a preliminary rewriting of the
system, based on the representation of ¢ as the Fourier transform of a function ¢. The
resulting formulation will be close to the model studied in [20]: just as in the latter
reference, it suggests a natural adaptation of the standard algebraic formalism presented
in the previous section.

3.1. Transformation of the ordinary system. Assume in this subsection that x is
differentiable. Let us go back for a short while on the transformation sketched out in the
introduction, and which started from the assumption that ¢ could be written as in (5).
Note here and now that this hypothesis is actually not very restricting. Indeed, insofar
as we are working with finite fixed horizon T', only the behaviour of ¢ on [0, 7] matters,
and it is possible to replace, in (2), ¢ with a compactly supported function ¢r such that
Pjo,1] = drj0,17- I ¢ is assumed to be continuous on R, then ¢ can be picked in L*(R),
and in this case

or = Fp, with ¢ = op = F o € L*(R),
where F stands for the Fourier transform. In fact, under the hypotheses of Theorem 1.1

(¢ € C3(R)), it is easy to show that ¢ is integrable (see Proposition 6.6). Nevertheless,
for the time being, we record this condition in the following hypothesis:

Hypothesis 1. We assume, in this section and the two following, that the function ¢
admits the representation (5), for some function ¢ € L'(R).

We are then allowed to apply Fubini Theorem and assert that the system (2) is equiv-

alent to _ A o
o= ) Bl de 0
~i t i g
5i(€) = [y Si—o(§)da], 0 (yo).
Besides, as we also evoked in the introduction, the increments (64"):(€) = 91(€) — 74 (€)
are governed by the equation

(07" (s = / Si—o()dad o™ () + Ass(€) /Os Si—o(&)dx] o™ (y,)

_/Ed&mwwn&ﬁMQ

where we have set
Aps(§) = Si—s(€) — L. (21)
Notice now that the first term f; Si_o(&)dzd 0 (y,) above is really similar to what one

obtains in the diffusion case, namely an integral of the form fst (see (13)). However, the
second term A (€)ys(€) is a little clumsy for further expansions. Hence, a straightforward
idea is to make it disappear by just setting

(09)15(€) = (05")15(€) — Ars(©)72(€) (22)
Then the last equation can be read as (5§°).s(€) = [1 Si—o(€)dad 0¥(y,), and the system
(20) becomes

v =a' + [y 5i(€) 6(6) dg (23)

(05):5(6) = [J Semo(€)dat o (1),
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with the initial condition gy = 0. In the sequel, we shall essentially focus on the path g,
by merging the two equations of the last system into a single one:

t
=0 . (55)u(6) = / Siu(€) dat [0 0 T, 5] (7). (24)
where the operator Ty, 4 is defined by
T, 5(¢) = a+ / dn d(n)e(i). (25)

The original solution path y can then be recovered in an obvious way, so that it will
be sufficient to solve the Volterra equation under the more suitable form (24), with a
right-hand-side written as an integral from s to ¢ against = (compare with (13)).

Actually, if we take the liberty of focusing on 4 rather than on the standard increment
0, it is because the former operator also makes possible the building of an integration
theory, by means of an inversion mapping similar to A, and that will be denoted by A
(see Proposition 3.8). This is what we mean to elaborate on in the following subsections.

3.2. Convolutional increments. Notice that, due to the fact that Sy, 4, (&) is studied
only for ¢; > t5, our integration domains will be of the form S,, = S, ([¢1, ls]), where S,
stands for the n-simplex

Sn:{(tl,,tn)EQZtlthZZthEL}

For any Banach space F, the notation C,([¢1,¢5]; E) will henceforth refer to the set of
paths h which are continuous on S, with values in £, and such that hy, ,, = 0 if there
exist ¢ # j for which ¢; = ¢;.

According to the (first) definition (22), § is supposed to act on functional-valued paths.
Let us anticipate here the next sections by introducing the spaces of functions that will
spontaneously arise during the study of (24) (see for instance Proposition 4.2). Those are
the L£l-type spaces induced by the norm

NG Ls(V)] = Ng; L 5(V)] = /Rdf\d;(ﬁ)l(l +1E @ lv, (26)

where 5 > 0 is a fixed parameter and V' a Euclidian space. Then we define
Crp(L5V) = CulT; Ls(V). (27)
The standard incremental operator ¢ acts on those spaces through the obvious formula:
IWheChs(liV), (0h).1r(§) = 80Ut EER. (28)

As for 4, it can be naturally extended to any Cj(I; V) (k € N*):

Definition 3.1. Let I an interval of R+ and V' a Buclidian space. For any 0 > 0,
we define the sequence of operators 6 : Crp(L;V) — Cry15(L;V) by the formula: if
heCpp(l;V), then for all £ € R,

(Skﬁ)tl-ntkﬂ (5) = (6kﬁ>t1»..tk+1 (5) - Atltz (5) Et2-~-tk+1 (5)7 (tlv .- ‘tk+1) S Sk-i-l(])' (29)
In particular, if s <u <tel,

(Slil)ts(g) = Et(g) - Stfs(é) Bs(f) ’ (52il)tus(€) = ;lts(g) - }Nltu(g) - Stfu(f) BUS(é)

For sake of clarity, we shall use the same notation 5 for the operators o, ke N*.
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Remark 3.2. In the rest of the paper, we will explicitly write down the "space" variable £
only when there might be a confusion. Thus, we will for instance simply write 0h = dh—ah.

The convention given by (14) for products of increments can be translated in this
context as:

Lemma 3.3. If M ¢ C~n75(I;Rk7l) and L € Cp(I;RY), then the product ML, defined by
the relation

(ML>tl~--tm+n—l<€) = Mtlmtn (5) Ltn~--tm+n—17
belongs to C~m+n_1”3([;Rk). Moreover, when n = 2, the following algebraic relations are

satisfied: 3 ) . o o .

S(ML)=6ML—-MJL, et O6(ML)=0ML— MG{L. (30)
Proof. The first part of the assertion is obvious. As for the algebraic relations when n = 2,
the first one is immediate, while for the second one, it suffices to notice that

S(ML) 6<ML> - AtthMtthLtg...tm+2

t1...tm2 t1...tma2
- (5M)t1t2t3Lt3---tm+2 - Mt1t2 (5L)t2---tm+2 - Atltth2t3Lt3---tm+2
- [(5M)t1t2t3 - Atltth2t3]Lt3~~tm+2 - (M 6L)t1~~tm+2'

O

With those notations and preliminary results in hand, we are in position to prove that
the starting property of standard algebraic integration (summed up in Section 2), namely
the cohomological relation 60 = 0, remains true for 9:

Proposition 3.4. 60 = 0. More precisely, for any 8> 0 and any k € N*, Imgm SLV) =
Ker(5|ék+1,ﬁ(1;v)'

Proof. It F € (fkﬂ(l; V'), then using the relation §§ = 0 and the result of Lemma 3.3, we
deduce

0O0F = (0—A)[(0—A)F|=00F —6(AF)— ASF+AAF
—6AF + ASF — ASF + AAF = AAF — SAF.
It is then readily checked, owing to the additivity S; - Sy = Sy, that
(0A) s = Apy Aus, (t,u,s) € Ss3(1),
which gives 66 F = 0.
Now, if C' € CNk+1”3(I; V') is such that 6C = 0, we set Btl‘..tn = étl...tns; for some arbitrary
time s € I. Then

[Sé]tl...tn+1 = [5C]t1...tn+18 + <_1)n+1ét1..‘tn+1 - At1tzét2...tns
= [5é]t1...tn+1s + <_1)n+1ét1...t = (—1)n+lét1...t

Therefore, by setting D = (—1)"*'B, we get D = C.

n+1 n+1°

O

Remark 3.5. A straightforward iteration of the relation 66 = 0 leads to the formula: for
any partition {s =1ty <t <...<t, =t} of [s,t], for any f € C15([s,t]; V),

n—1
(Sf)ts = Z St*ti“ : (5f)ti+1ti‘ (31)
=0
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This kind of decomposition will be appealed to several times in the sequel, especially in
the proofs of Lemma 3.7 and Corollary 3.9. In some way, this is the convolutional analog
of the usual telescopic sum (5f), = >y (5f)

tiyati-

The cochain complex (Cj,5(I;V),d) will stand for the structure at the base of all the
constructions in this paper. Let us try to give an idea of the relevance of this structure in
the context of equation (24). To this end, we set, for two smooth paths f : [0,T] — W,
9:10,T] = LW, V),

Tl O = [ Seu@dgufu €€ A (32)
and for any smooth h : [0,T]> — W,
Tuldgh)(©) = [ Si-ul) dgu o (33)

The usual Chasles relation & (f dg f) = 0 becomes here:

Proposition 3.6. With the notations (32) and (33), one has, if f : [0,T] — W and
g:10,T) — LW, V) stand for two differentiable paths,

5(agn) =0 . 5(Igsf)) =Tdg)os. (34)
Proof. This is a matter of straightforward computations: if s < u < t,

5(7dgf)), = Fuldg f) = Fuldg ) = i Tusldy £),
and Sy, - Tua(dg f) = [ S,y dgy f,, which easily yields S(j(dg f)) — 0. In the same
way,

5 (70 = [ sevisn 60 [ Sivion 6= ([ 5 dan) 6

u

O

3.3. Convolutional Hlder spaces and A map. In order to cope with (24), the notion
of generalized Holder path presented in the previous section has to be adapted to the
convolutional formalism we have just introduced. We first define, for all (fixed) parameters
i, 3,7 > 0, any interval I of R™ and any Euclidian space V/,

g el oy NGes; Ls(V
Cop(L; V) ={g € Cop(L;V) 1 N[g;Chs(1; V)] = sggl% < oo},
s<
CN1M,,3U§ V)={g€Cisl;V): dj€ (fgﬂ(]; V)}. (35)

As for paths with three variables, we define, as in the standard case, the intermediate
space Cé};ﬁ)(f; V) induced by the norm

po

N[ﬁ;égﬁ’p)(l; V)] = sup

s<u<tel |t - u|7 |U - 8’
and then set égﬁ(l; V)= @Ogaguégég_a(j; V). We also provide the latter space with the
norm

Nh;Cy 4(I; V)] = inf {ZN[hi;éggWi)(I; V) h=> hi, 0<p; < u} .
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It is worth noticing that the elementary results asserting that Imd; N C5 (V) = {0} if
@ > 1, admits a direct analog:

Lemma 3.7. Fiz § > 0. If > 1, then Imdyg, 14, N Ch 5(V) = {0}.

Proof. Let M =6f € Im 5|C~1 IV ﬂCNQ/B(V). According to (31), we can write, for all s < ¢,
M, = Z?:_OI St—tiir Mti“ti, for any partition I,y = {s =ty < t; < ... <t, =t} of [s,t].
Since |S:(€)| = 1, this entails

n—1

NTMy; Ls(V)] < Y N [Mgpn; L5(V)] < NM;Co (V][ = s [T
=0

and the latter estimate tends to 0 as mesh |II;| tends to 0. O

With all of those results in hand, it is now easy to follow the same lines as in the proof
of Theorem 2.3 in order to establish the existence of an inverse operator for § (see [20] for
a similar adaptation):

Proposition 3.8. Let > 1,8 > 0, I an interval of R and V a Euclidian space. For
c~zll~f~L € [567“5@3,5(1;‘/) NCy4(L; V), there exists a unique path Ah € Cy 4(I; V') such that
d(Ah) = h. Moreover, the following contraction property holds true:

NTAR; CY5(1; V)] < eu N[h; C 4(1; V)], (36)
with ¢, a constant that only depends on p. This statement gives birth to a continuous
linear mapping 3 3 3

A Kerdie, )N Cys(L;V) = Cyp(L; V)
such that

oA = Idyeys, and A = Idgy | rv)- (37)

B(I;V)ﬁéf;,g(f;‘/)
We also have the following equivalent of Corollary 2.4 at our disposal:

Corollary 3.9. Let g € C~275(I; V) such that 0§ € é?’iﬁ(l; V), for some coefficient p > 1.
If6f = (Id—A6)g, then

(5f)t5 = 11m Z St*ti+1 : gti+1ti ZTL £67
=0

|Ht5‘—>0

where the limit is over any partition My, = {to =t,... t, = s} of [t,s| whose mesh tends
to zero.

Proof. Here again, it suffices to use the same arguments as in the standard case (Corollary
2.4), starting from the decomposition (31). O

4. THE YOUNG CASE

Remember that we first wish to solve the system in the form (24), which can also be
written, with the notation (32), as

Jo=0  0j=J (dxﬂ' a"j(y)) v Y =T, 5() =a+ /Rdﬁ A(€)Tu(9). (38)

For the time being, the right-hand-side of the latter equality only makes sense for a
differentiable path x. The aim of this section is to extend the definition of the equation
to a y-Holder path x with v > 1/2, and then solve it with the resulting interpretation.
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To this end, we will follow the same general strategy as in the standard case (Subsection
2.2), which begins with a dissection of the ordinary integral.

4.1. Heuristic considerations and interpretation of the system. Let us assume for
the moment that x and § are differentiable (in time) and let us successively set y = T, 5(7),
2 = ¢i(y), so that the integral at stake here is given by J(da’ 27).

Before we turn to the dissection procedure for this integral, it is important to ponder
about the regularity one can expect for z, or equivalently for y (we will suppose that o
is smooth enough), when z and 3 become non-differentiable. To answer the question,
observe the decomposition

(64)es = / 4 3(€) (57)us(€) = / 0 3(€) (57 )ul€) + / 0E 5(6) An(©) 7 (E).  (39)

As 7 stands for the (potential) solution of (38) and |S;(€)| = 1, 67 is expected to inherit
the regularity of z, or otherwise stated |(6§)(€)| < ¢, |t — s|” (uniformly in &), which
would lead, as we have assumed [, d¢ |6(€)] < oo (Hypothesis 1), to an estimate such
that: | [ d€ ¢(&) (07')es(§)] < ca [t — 5| i

To retrieve [t — s|-increments from the term [, d€ ¢(&) Ags(€) 72(€), we shall lean on the
elementary estimate

[Ass ()] = [Si-5(8) = 1| < ey [t =5 ¢ (40)
This is where the spaces L5(V) defined by (26) occurs. Indeed, from (40), one has

/R 0 3(€) A(E)7()] < & |t — 5" N[fu: £ (R)]. (41)

Going back to decomposition (39), we see that, by starting with a path g that takes values
in EW(Rd), we should retrieve a path y, and then a path z, both Holder-continuous in the
classical sense.

Those considerations (that will be precised through Proposition 4.2) will help us in the
dissection procedure of the integral 7 (dz? z%7). Indeed, we will not hesitate anymore to
let the standard increment 6z come (back) into the picture, and we will thus start, just
as in the diffusion case, with the decomposition (x is still assumed to be differentiable)

Tis(da? 27) = J(d77) 259 + Jpo(di? §27), (42)
where Ji,(da?) = Jis(da? 1) = [! S, dz]. When z becomes rough (that is to say ~-
Holder with 0 < v < 1), the integral f: S;_udzd can still be understood as a Young
integral ([41]). In the spirit of the rough paths methodology and by anticipating the

computations of Proposition 4.1 and Theorem 4.3 below, we will make the following more
precise hypothesis:

Hypothesis 2. Let x € C]([0,T];R™), with v > 1/2. We admit the existence of a
sequence x° of differentiable paths that satisfies

Nzt = z;¢7([0, T); R™)] =3 0,

and such that the associated sequence of paths

~. &2 ¢ .
Xei(e) = / S,-ul€) das
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converges to )fosl ) = f Si_u(&) dx!, (understood as a Young integral) w.r.t the topology
of the space é; ([0,T;R™). In partzcular,

X e Cy.([0,T;R™)  and 0X" = 0.

If x s differentiable, we assume that this result holds true for x° = x.

Proposition 4.1. Let z : [0,7] — R™ a path that satisfies Hypothesis 2, I a subinterval
of [0, T). For any z € C](I;R*™) and £ € R, set
T(d 20)(€) = X29(6) 219 + AR 5:29)(€) = (1—R3)(X*0 20)(¢).  (43)
Then
(1) J(dx? 2 is well-defined as an element of Cgﬁ(I;Rd), and it coincides with the
usual Riemann integral fst Si—v(&) dx,, 2, when x is differentiable.
(2) The following estimate holds true (remember that we have set N[z;C)(I; R*™)] =
SUP,ey |2s]):
NJ(dx 2); €3 (LRY] < e {N[z;CLRY™)] + [I[' Nz C (RY™)]} . (44)
(3) Foralls<tel,

Tis(d? 29) = nlffl OZ Sttys - Xi? oz in L, (45)
where the limit is taken over any partition Il;s = {tg =t,...,t, = s} of [s,t] whose

mesh tends to 0.

Proof. To show that the increment defined by (43) coincides with the Riemann integral
[1Si—u(€) dd, 2% in case = is differentiable, let us go back to the decomposition (42), that
can also be written as

Tos(dx? 629) = Jpo(da? 29) — X757 29,

s

By applying 4 to the two sides of the relation, and then using (34) and (30), we get

J (J((jxj z”)) = X 29 4 XTIFR0 = XTI 529,
and so, via (37),
J(dx? 627) = A (X’“’j 52“) :

which enables to recover (43). The fact that formula (43) is well-defined in CW is a
straightforward consequence of Hypothesis 2. Indeed, owing to the latter hypothe31s we
know that X%z € C%’ L (I R?) N Ker Olc,.. (1;r4), and we are thus in position to apply A.
The estimate (44) is then due to the contraction property (36). As for the expression
(45), it stems from Corollary 3.9.

O

In order to give sense to the system (38) through the definition (43), we will rely on
the following proposition, which actually summarizes the above considerations:
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Proposition 4.2. Let I = [ly,lo] a subinterval of [0,T] and o € C**(R%R™™). For any
yeCl (I;RY), weset y =T, ;(y) and define

NG GO RY)] = N(g: G (LRY)] + N5 €7 (LR,
with N'j; C_(I;RY)] = sup,e; Niis; £,(RY)]. Then o(y) € CJ(I;R™) and

Nlo(y); €7 (I;RY™)] < ¢ Ng; €Y (I;RY)]. (46)

Moreover, if gV, 5 € C~17,7(I§ R%) are such that gjl(ll) = ?31(12): then
Nio(y™) —o(y®); CULRY™)] < ¢y [I]T NG — 5P P (1 RY), (47)
No(y®) = o(y@); LR < o {1+ NGO CULRY]F MY - 5250715 RY).
(48)

Proof. By using (40), we get
Sewhel < Dol [ dE1dO1(60(O)
R

IA

|Do ]l { [ detd@Gnl+ [ delieliae |y~s<§>|}
< ol|Da ot = sl {N TG €T, ] + N3 L

which corresponds to (46). The inequality (47) can be obtained in the same way, after
noticing that, for any s € I,

o(yY) — o (y?)| < HDUHoo/Rdéld;(é)\ 6T = 550, (€)] -
As for (48), this is a consequence of the classical estimate
[6(0(y™) = a(y™))es| < 1Dolc [5(y™ = 42 )us] + 1 D?0 ]| |65 )ss]

(47 =2 |+ 12 -]

Yt
O
4.2. Solving the equation. Proposition 4.1, together with Proposition 4.2, provides a
reasonable interpretation of (38). We can now state the main result of this section:

Theorem 4.3. Let x a path that satisfies Hypothesis 2. If o € C*°(R% R4™), then the
equation (38), interpreted with Propositions 4.1 and 4.2, admits a unique solution in the

space éﬁv([O,T];Rd) defined by (35).

2
"

Proof. Consider a constant ¢ > 0, [ € N, and assume that we have already constructed
a solution ) € CYN([O,ZS]). If | = 0, then 7 = §” = 0. The proof will consist in
showing that one can extend §() into a solution 7!+ € CNYW([O, (I + 1)e]), by means of a
fixed-point argument.

Step 1: Ezistence of invariant balls. Let g € CNK,Y([O, (I + 1)e]) such that g = 9, and
denote by Z = I'() the element of C; ([0, (I + 1)¢]) characterized by %, = ) and for

all s,t € [0,(1+ 1)e], (Sg)ts = Jis (Jx a(y)), where, as in Proposition 4.2, y = Tvq;(g])

a

(remember the notation (25)).
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First, the estimate (44) provides
N2 CL ([, (1 + De])] < o {NTo(); €10, (4 De])] + £ No(y): €110, (1 4+ Del)]}
which, together with (46), gives
NIz CL (e, 1+ 1e))] < e, {14+ N5 (0, 1+ Vel
If0<s<le<t<(l+1)e, we use (31) to deduce
NG 5] < NIO)oiei £5] + N[(02)resi £
< 2max (N[5 CL ([, (0 + De)), N33 C1 (0, 12])]) |t — sl (49)

Besides, for any s € [0, (I + 1)e], Z, = (§%)40, and so
N5CLL ([0, (1 + De])] < NE ([0, (1 + 1e))T. (50)
We are thus led to set
e = (4ct,(1+17)""
Nyi = max (2(1 + TONGO;C ([0, 1])], 4ck (1 + T'Y)) .

Indeed, for such values, it is readily checked from (49) and (50) that if N[y; C?,? ([0, (I +

De])] < Niwa, then N[2:CL ([0, (1 + De])] < % and N[2CP ([0, (1+ De])] < 73517,

hence N[%;C7([0, (I + 1)e])] < Nig1. In other words, the ball

Byt e = 15 € CL7(0, (L + De)) = Gipoe = 5% N5 ([0, (L + D)) < N}

g0, (1+1)e
is invariant by I'.

The independence of € with respect to ) will allow us to repeat the procedure (with
the same ¢) and thus to get a sequence of radii (Ng)g>; such that the sets BZ]}\{‘;) L. are

invariant by I'. Of course, the definition of the latter application has to be adapted to
each of those sets.

Step 2: Contraction property. We are now going to look for a splitting of [le, (14 1)e] into
subintervals [le, le + 1], [le + n,le + 27n)],... of the same length n (that could depend on e
and 1), on which T is a contraction mapping.

Let 7, 5° € C ([0, le+n)) such that §f, . = 3P, = 7, N[5 Y ([0, le+n))] < Nig,
NT5?;CY7([0,le + n])] < Nivq, and set 22 = T(§2), 22 = T(§°), where T is defined just as
in Step 1, but restricted to CYJ([O, le +n]). By using (44) again, we deduce

N[ = 2200 ([l le + 1)) < e, {NTo(y?) — o (y°);: CY([le, e + n))]
+1'Nlo(y®) — o(y®); €7 ([le, e + )]},
and then, according to (47) and (48),
Nzt = 2201 ([l le + )] < €6 {1+ N} NG — 5.6 ([le, le + ).

b

Since the paths 7® — P, 22 — ZP vanish on [0, [¢], the latter estimate implies

N = 2%C1 ([0, le + )] < 2, {1+ Nipa } " N[5 — §°;C1 ([0, le + n))].
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Besides, (32 — %), = 0(2* — 2°),4, so that N[2® — 2%C0_((0,1e + 7])] < N[ —
22 CY7([0,le + n])]n". Therefore,

Nz = 225G ([0, e + )] < € {1+ N} (LT NG = 5% CU5([0, e + ). (51)

Fix n = inf (¢, (2¢2, {1+ N1} (1 +77))77) so as to make I a strict contraction of the
set

{5 €CYI(0,le+n]) : Gose =3V, N[5 20,12 + )] < N}
Niga
FO (1+1)e
(see Lemma 4.4 below). Consequently, there exists a unique fixed-point in this set, that
we denote by 7. Insofar as n does not depend on §*), the reasoning remains true on
the (invariant) set

[5€ COI(0,1e +20) + Fogern = 507, N3 G0, 12 + 2n))] < Niwa .

Using the invariance of B , it is easily seen that the latter set is invariant by I' too

Thus, 7" can be extended into a solution §?" defined on [0, le + 27] and by iterating

the procedure until the interval [le, (I + 1)e] is covered, we get the expected extension

g(l—i—l).

The uniqueness of the solution can be easily shown with the arguments of Step 2 (replace
72 7P with 2, 4" in (51)). The details are left to the reader.
O

Lemma 4.4. With the notations of the previous proof, the set
{5€ClI([0,le +n) : Goss = 3V, N5 CLI(0, le + )] < Niga}
s tnvariant by T.

Proof. Consider an element ¢ in the set in question and denote Z = I'(7). Then define

. Ut ift<le+n
Yt = ~ .
' St—(l£+77) * Yie4n ift € [l5 +1n, (l + 1)5]'

The path ¢ is clearly continuous and accordingly belongs to C~1,7([O, (I + 1)e]). Moreover,
if st € [le +n, (1 +1)e], (07)1s = 0, while if s < le +n <t, (60)1s = Si_gesn) - (07 icrns)
so that N[5;C7 ([0, (I + 1)e])] < NT§;C7,([0,le + n])]. Since NTg;CY ([0, (I + 1)e])] <
N5; €Y ([0,1e + )], we deduce N[g; CY7([0, (1 + 1)e])] < N[5; Cr7([0,le + n])] < Ny,

which means that § € Bgf(*lirl)a. According to Step 1 of the previous proof, B;\{fzrlirl)g

invariant by T, and so, if 2 = I'(§)), then N[2;C;7([0, (I + 1)e])] < Nyp1. It is now obvious
that 2 = 2 jet,, Which finally leads to N[2;C{7([0, le +n])] < N2 CP2([0, (I + 1)e])] <
Niyi.

is

O
To conclude with this section, let us go back to the original setting of the equation:

Corollary 4.5. Under Hypothesis 2, and assuming that o € C**(R%RE™), the system
(2), interpreted with Proposition 4.1, admits a unique solution y in C] ([0, T]; R?).

Proof. 1f g stands for the solution of (38) given by Theorem 4.3, it suffices to set, for any
t €[0,T], y» = T, 5(9:). The details are left to the reader. O

a
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5. THE ROUGH CASE

Our aim still consists in studying the system (38), but we will suppose in this section
that the Holder coefficient v of x belongs to (1/3,1/2]. Definition (43) does not make
sense anymore, and some developments at order 2 are required. To this end, we will resort
to the same strategy as in the diffusion case (see Subsection 2.2), divided into two steps:

(1) Identifying the algebraic structure of the potential solution g, which will lead to
the introduction of a space Q of controlled paths. .
(2) Extending the integral of the system above 2 € C] when § € Q.

5.1. Convolutional controlled paths. Let us start with some heuristic considerations.
As in the Young case, the system will be analyzed in the form (remember the notation

(32)
=0, 5 =T (0w, =Tl =at [ dEHORE. (52

Assume for the moment that « is a differentiable path. Equation (52) admits in this case
a unique solution g, whose (convolutional) increments can be expanded into

(67')1s(€) = /t Si-a(€) da, o (y) = X127 (€)™ (ys) + 71,(), (53)

with . S .
X2© = [ Se@del o O= [ S©dd o) 6
This elementary dec;mposition lets already emerge the structure likely to replace Q)
(Definition 2.5) in the convolutional setting. Let us go a little bit deeper into the analysis

of (53): if x and y are y-Holder (y € (1/3,1/2]), it is natural to expect that, on the one
side, X* belongs to a space such that Cj 4([0,T];R™), for some coefficient 3 > 0, and on

the other side, 7 € ngj([O,T];Rd). For some technical reasons that will pop out in the
proof of Theorem 5.10, we shall actually be prompted to take 8 = 1 in order to exhibit a
global solution for (52).

Notations: For sake of clarity, we henceforth use the shortcut
CUL;V)=Cl(I;V), ke{l,2,3}. (55)

As in the previous section, let us label the appropriate regularity assumptions relative
to the path X*:

Hypothesis 3. Let z € C{([0,T);R™), with v € (1/3,1/2]. We assume that there exists
a sequence x° of differentiable paths that satisfies

Nla* = ;¢1([0, T R™)] == 0,
and such that the sequence of paths defined by
t
X© = [ s di
converges to X' (€) = f; Si_u(&) dzt (understood as a Young integral) w.r.t the topology
of C3([0, T];R™). In particular,
X®eCJ([0,T;R™) and 6X* =0.

If x is a differentiable path, we assume that this result holds true for x° = x.
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With the decomposition (53) in mind, the most natural and consistent framework to
study the system (52) is the following:

Definition 5.1. Assume that Hypothesis 3 is satisfied. For any interval I of [0, TL we call
convolutional controlled path (by X*) on I, with values in R, any element § in C] (I; R?)
whose convolutional increments can be written as

07 )es = X0 929 + 4, with §° € CJ (I;RY™) and §* € C(I;RY),  (56)

The set of convolutional controlled paths on I will be denoted by Q1(I;RY) and we provide
the latter space with the seminorm

N1g; QU RY)]
= N{g; C(LRY] + N[5 (LR + N[5 CF (1 RY™)] + N € (IR, (57)

Remark 5.2. Tt may be worth noticing that in spite of its notation, the path y* defined
through (56) takes values in a Euclidian space, and not in a functional space.

In order to give sense to the system (52) when § € Q)(I;R¥), it is now important to
identify the algebraic structure of the integrand o(y.), where y, = T, 5(4.). To begin

with, observe that if 67 admits the decomposition (56), then the increments of y can be
written as:

N R GILNG
= [ a6 + [ dd6) A
= [aca@x©n+ [ o0 © + [ daoaene
S AR R TG AGEY R GGG (58)

where X/ = [, d¢ B(6) X5 (€) is well-defined as an element of C ([0, T]; R™), thanks to
Hypothesis 3. Let us analyze (58) as far as Holder-continuity is concerned. For the last
term of the composition, remember the obvious estimate |A(€)| < c|€] |t — s|, which
entails here

/R de 3(€) Aus ()77 (€)

and consequently suggests that the path at stake is quite smooth. Besides, the regularity
assumption on §** immediately gives

< |t = 8| Ngs; L£4],

SO ©)| < o~ o N5 Q1.
R
With those two controls in hand, it would be tempting to envisage an algebraic structure
such that
{y: (0y'hs = X57y0" + i, with y* € CJ(R™) and o € C37(R")}.

It is indeed possible to show that the latter set is invariant when composing the path with
a smooth enough mapping, which would ensure the transition between y and o(y).
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Nevertheless, a little bit more subtle analysis of (58) leads to more convenient algebraic
handlings. It actually suffices to observe that the path X* can be decomposed as

560 = [ Se@don =60+ [ Au@dn

When = € C](R™), the latter transformation is at this point purely formal. Let us record
it through the following theoretical hypothesis, that will examined into details at Section
6:

Hypothesis 4. Under Hypothesis 3, we admit that the sequence of paths defined by
t
X = [ Aule) st
converges w.r.t to the topology of the space C. +7(Rm) (we recall that this space has been
defined at Subsection 3.3). In particular,
XA e G (R™) and - X(i(§) = xi, + Xi"(€), (59)

where we have denoted, according to [25], x' = dz.
If x is a differentiable path, we assume that this result holds true for x* = x.

Remark 5.3. The regularity assumption contained in (59) is of course suggested by the
estimate |A;5(€)] < c[€] |t — s|, having also in mind the fact that we are working with the
underlying functional space £; (Notation (55)).

Going back to (58), the increments of y can now be expanded into

(0 )se = x5 (L3 579) + [XA”ﬂf”+ / de BE)TH(€) + / de GO An(©)7 (O] . (60)
R R
where we have set
= / de3(E) and X[ = / de $(E) X/ (), (61)
R R

Therefore, owing to the regularity assumption (59), we recover here the same structure
of controlled paths as in the analysis of standard systems (see Definition 2.5), and we
have established the following transition:

PropOSItlon 5.4. Under Hypotheses 3 and 4, if y € QV(I R?) admits the decomposition
Ot = X®Igeii 4 ghi then the path y = T, 5(9) belongs to QY(I; R?) and admits the
decomposition 6y* = x¥7 y®U b with

g = Lyttt = X / 0 S (€) + / 0E O An(E)F).  (62)

The expected structure for the integrand o(y) immediately arises from this result.
Indeed, we have already recalled the invariance property: if y € Q)([;R?Y) and o €
C?P(R%; R4™) then 2z = o(y) € QI(I;R*™), where the space Q)(I; R%™) has also been
introduced in Definition 2.5.
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5.2. Convolutional integration of controlled paths. Taking the above considerations
into account, the interpretation of the system (52) is now reduced to the problem of
extending the integral J(dz’ z7) to the case x is y-Holder (y € (1/3,1/2]) and z €
QY (I;R%™). Observe that with a view to settling a fixed-point argument, it also matters
that the extension gives birth to an element in QY(I;R?).

In order to construct the integral in question, we will rely, as in the standard case, on
the a priori existence of a convolutional Levy area adapted to the context:

Hypothesis 5. Under Hypothesis 3, we admit that the sequence of paths defined by
t
X5 = [ Sl doif (609

converges to a path X** w.r.t the topology of C2" (R™™). In particular,
X e CO(LR™™)  and (6X*)ps = XE @ (62)ys. (63)

If x is a differentiable path, we assume that this result holds true for x* = x.

Once endowed with this second-order path, here is the natural way to integrate a
controlled path:

Proposition 5.5. We assume that both Hypotheses 3 and 5 are satisfied, and let I = [ly, 5]
a fized subinterval of [0,T]. For any path z € Q)(I; R®™) with decomposition
529 = xLk poidk 4 b (64)
we set, for any s <t el,
.ZS(ij 29) = X 94 X”’]k gk 4 Ay, (X’“”j b ek 5zx’ijk> ) (65)
Then:

(1) j(dx] 2) is well-defined as an element of Cj(I;R?) and for any £ € R,
Tis(da? 27)(€) coincides with the usual Riemann, integral f Si—u(&) dad 21 when x
is a differentiable path.

(2) For any h e ﬁl, there exists a unique path 2 € QI(I;R?) such that %, = h and
07" = J(dxd 29).

(3) For any s <t € I, J(da? z9) can be described by the formula:

Fulde? ) = tim S (X5, o+ Kinth ] in g (60
= =0
where the limit is taken over any partition ;s = {tg =t,...,t, = s} of [s,t] whose

mesh tends to 0.

Proof. (1) If x is a differentiable path, then, as in the Young case, we first write
t
Tl da? 29) / Si-u(§) del 2 = XE€) ¥ + [ Si(€)da) (527,
By injecting the decomposition (64) of (§z%),, in the latter relation, we get

t
Tuldel 20)(€) = Xi(© 2+ [ Sil)da] [xbl a2 4 251

t
_ XTI(g) 2 4 XERik(g) 2 4 / Syoo(€)dad 25,
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and so, with the notation (33),
Tos(da? 249) = Fo (da? 29) — X7 210 — Xk gk (67)

S

Let us now apply the operator 0 to the two sides of this equality: thanks to (34), (30),
(64) and (63), we successively deduce

5 (j(dxj Zﬁ,z‘j)) _ Xwd §y0 Xk gwiik | Yeegk g wiik
— X (b IRy b (e Ry ik | Gk g ik
Xmd i | Kenik 5wk
and we are therefore allowed to write, via (37),
j(dxj zﬁ’ij) =A (X” iy Xk 52”’“’“) )

Going back to (67), we recover (65). The validity of the latter formula for a Holder path «
is then a straightforward consequence of the algebraic and analytic assumptions contained
in Hypotheses 3 and 5, which also accounts for (2). As for (8), it stems from Corollary
3.9, after noticing that

07 = (Id —A0) (X7 210 Xk pmisk)
O

5.3. Localized controlled paths. At this point, we are able to interpret the system
(52) under Hypotheses 3, 4 and 5, as the following loop summarizes it:

Q] Q  — Q) )
g — y=T,H) — o(y) = (62') =T (d2’ 0" (y)).

Prop.5.4 Prop.5.5
— —

The proof of existence (and uniqueness) of a global solution to the system will stem
from successive fixed point arguments in the spaces QZ(In), for a particular sequence
I,, of intervals that covers [0,77]. Patching those local solutions together will require a
simultaneous control on both the norms of § and the initial condition A" = §, on each
interval I, = [l,,, l,11], when applying the 3-step procedure described by the above loop.

The most natural idea to do so consists in splitting up the reasoning into three successive
estimates, each of them corresponding to a particular step, and when the intermediate
space QY (1) is provided with its usual norm N.; Q)(I)], defined by (18).

Unfortunately, using the latter norm turns out not to be sufficient in order to get a
sharp enough final estimate expressed in terms of N[j; Q1(I,)] and N[§,; £4], and an
additional technical argument has to be settled here. It involves the introduction of a
specific (affine) subspace of QY(I,,), intended to isolate the terms that depend only on the
initial condition g, .

We assume in this subsection that = satisfies the three hypotheses 3, 4 and 5, and we
fix an arbitrary subinterval I = [ly, 5] of [0, T].

Definition 5.6. Let k € N*, f € C3(I;R¥). A path y € C](I;R¥) will be said ~-controlled
(by x) around f on I if its increments admit the following decomposition: for all s <t € I,

Oy )is — fiy = x07 4= 4y with y* € CY(I;R™F) and o € € (I;RF).  (68)



ROUGH VOLTERRA EQUATIONS 23

The set of such paths will be denoted by Azjf(];Rk), and to any y € A;f(];]Rk), we
associate the quantity

My; AL ((I;RY)]
= Ny" UL RY™)] + Ny € (I RY™)] + Ny's €7 (I RY™)] + Ny: € (I R")].
As with the controlled paths, we then define, for any f € Ci(I;RM), A;Y’f(I;Rk’l) as

the set of paths y € C](I;R*!) such that, for any j =1,...,1, y’ € Agvf(I;Rk), and we
assoctate to those elements the quantily

l

Mly; AL (LR =Y Ny?3 AL (1 RY).

Jj=1

Obviously, A7 ,(I) = Q)(I) and more generally: for any f € Cy(I;R¥), A] ,(I) C
Q7 (I). The crucial point in our localization around f is precisely that this latter increment
does not (directly) intervene in the computation of M(y; A} ,(I;R")].

Let us now see how the sets AZ, f(I ) pop out naturally when one integrates a convolu-
tional controlled path with respect to &.

Proposition 5.7. We assume that both Hypotheses 3 and 4 are satisfied. Let y €
Q1(I;R¥) such that §y, = h € Ly and 6§ = X1 §%10 + g and set y = T,5(y). Then

y € AL (IR, with fis = [, d€ 3(€) Aw(€)S,-1,(€R(E). Moreover
Mly; AL (LRY)] < e {N TG QUIRY + 1] N El]} . (69)
Proof. From (60), we can write, for all s < ¢ € I,
(6Y")es
= X L)+ XA+ [ s HO ) + [ dedOAOE)

= X (L ) + X g / 0 () (€) + / 0 3(€) Aun(E) (55)ar (€) + Fi.
R R

Now set y2) = Ly 2,y = Xt g0+ [, d6 9() {5 (€) + Au(€)57), (€) . Cleanly,
Nly;C < e, {N[Q””;C?] + N[5 C5] +N[?J;5?]} < e, N5 Q7

and [(6y)es| < | fis + [t — s" N[XZ N[5 CY) + [t — 5| N[y ).
As [ fis] < [t = s|NTh; L1], we get Ny;CJ] < [I]'7 N[h; L] + coNT3; QF, and (69) is
thus proved.

O

The following result is the analog of [19, Proposition 4] in the context of localized
controlled paths:
Proposition 5.8. Let y € A} (I;R?) with y;, = h and oy’ — f* = x"I y*7 + Y, and
consider a mapping o € C**(R4GR™). Then o(y) € A} Doy RE™) and the following
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estimate holds true:

Mo (y); AZ,Do(h)f(I)]
< oo {14+ Mly; AL (D + 1177 My A (DN C ()] + |I|17N[f;C§(I)]% : )
70

Moreover, if yV,y? e A;’f([;Rd’m) are such that ?lz(1 yll then

No(yM) = o(y®); QU(1)]
< oo Ny =y QU1+ My™D; AL (D] + M[y® AL (D]
+ TN CH DA+ Ny el (D] + Ny®s el (D)) ). (T1)

Proof. This is a matter of standard differential calculus, which mostly appeals to the
same arguments as in the proofs of |19, Proposition 4| and |32, Lemma 3.1|. For sake of
conciseness, we refer the reader to the latter articles for further details. 0

Let us again point out the fact that A s is asubset of Q7. This means in particular that

for any element 2z € A7 ;(I; R*™), the integral J (dz? 27 can be defined using Proposition
5.5. For those particular paths, we have the following control at our disposal:

Proposition 5.9. Assume that both Hypotheses 3 and 5 are satisfied. If z € A;f(f; RE™),

then the seminorm of the path z € Q(I;R?) defined by %, = h € £y and 07" = J(da? 2")
can be estimated by

Nz QUL RY)]
< oo N[z CYLRY™) + |27 | + |1 M2y AL J(LR™)] + [T Nf5CH (1 RY™)] )
(72)

Proof. According to Proposition 5.5, the decomposition of Z as a convolutional controlled
path is given by §5¢ = X©J %4 z’“ with 2* = z and 2% = 25! + 752 where

Zﬁ,l,z = Xxx,]k Zz,zgk and Zﬁ2z — A(Xx,] (Zb,z] 4 fl_]) 4 Xx:r,]k 5Zx,1]k)'
. i o 1,k ik bij _ pij 1,k x5k 1,k Jijk b,ij
Since (02%); = + Xig Zs ” T2 = s T Xz T X (62"9%) gy + 2457

NG CUID] = N zC1(D)] < e {1 NI CHD] + |25 | + 111 M= A7, (D]}

As for the residual term, we first have, by writing 225" = X7%9% »* ”k + XFodk (§zmik)
NPT < e {|28 |+ Y Mz AL ,(I)]}, while, due to the contractlon property (16),

N2 C D] < e {117 MIzs AL (D] + 117 NS G}
Finally, as 6z' = X@J 3240 4 344,
NTECHD] < e ANz CHD] + |21 | + (1] Mz AL (D] + [T NI C(D]

which achieves the proof of (72). O
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5.4. Solving the equation. We are now in position to solve the system:

Theorem 5.10. Assume that the three hypotheses 3, 4 and 5 are satisfied. If o €
C3P(RE; RE™), then the system (52), interpreted with Proposition 5.5, admits a unique
solution 7 in Q;’([O,T];Rd). Moreover, there exists a function C : (RT)? — R growing
with each of its three arguments, such that

NTg; Q2([0, T);RY)] < CNX™; C] N XA Cy 0 N X C)). (73)

Proof. As we announced it in the introduction, the proof will consist in successive fixed-
point arguments on a sequence of intervals (1,,), that covers [0, 7]. We shall more precisely
consider the sequence given by:

. 1
IV =[N, with ) =0ande, =) =100, — I = N

where N is a positive integer that will be determined in the course of the proof.

(74)

On each of those intervals, the procedure will (as usual) be divided into two steps: we
first establish the existence of invariant subsets for the mapping I" associated to the system,
and then show that the restriction of I' to some of those subsets is a strict contraction.

The results of Subsection 5.3 show that in order to control the image Z = I'(7) of a
path j € Q)(IY), it is important to have an estimate of the norm of § in QX(IN), but
also of the norm of the initial condition h,, = yiv. This general observation will be at the
core of our reasoning.

Step 1: Invariance of balls. Let us temporarily fix the parameter N in (74), and
introduce two additional parameters aq, s > 0, the value of which will also be determined
during the proof. We consider the sets

Bl ={ge QUIY): Gy = hu, Gy = o(ha), N3 OL(IY)] < (N +n)°2},

where h, € L, is such that ./\/'[ﬁn;/jﬂ < (N 4+ n)*. As in the proof of Theorem 4.3, if
j € B z=T(j) stands for the path in Q)(IN) defined by the two conditions: Zy = hy,
and for all s,t € IV, (02)ss = Jis(da? 0 (y)), where y = T, 5(9)-

With those notations, we are going to prove that a; and s can be picked in such a

way that, on the one hand, the sets B" are invariant by I', and, on the other hand, the
following property holds true:

(H)  If§ € B, then NGy, ;L] < (N +n+ 1),

The latter condition will allow us to patch successive fixed points together at Step 3.

Let y € Bhn 7 = ['(g). In order to apply the results of Subsection 5.3, denote, for all

n

s<tell,

w=Tg@) o= [ dEHOAOS, 1 (O(e) gt = Dolu) S (79

Estimate (72) first gives

<e {N[U(y); CYUIN] + Lo )iy | + e} Mlo(y); AL g (1)) + &, Ng™; c;(ij)]} . (76)
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According to Propositions 5.8 and 5.7, we know that
()i = 8p0 (g ) Y™ = 0p0 (yuy) (Lg G™) = Ly 00" (yiy) o™ (),

so that |o(y)]x| < ¢, Besides, we obviously have

Ng™; Co (1)) < |1 Dolloe N1f™ Co (1)) < o Nhi; La].
Going back to (76), we deduce

N5 QUIN) < o {1+ 27 Mlo(); AL g (V)] + €7 Nl £1]}
The association of estimates (70) and (69) then entails

Nz QUIN < ek A1+l Nhy; £4]
+€ZN[y; QLU + en NTG; QUM N i L1] + €577 Nha; L4]}.

Tn order to establish the invariance of B, or in other words to prove that N[%; Q7 ( ,iv)] <

(N 4+ n)* (for N large enough), a first series of conditions naturally arises from (77):

—(1=7) <a
200 — v <

Qo — 7 < Qg (78)
ar +as —1 < ag
200 — 2+ v < ao,

and it is easily seen that this system reduces to

{0‘2 =7 (79)

ap <1 —v94+ as.

If ay,9 > 0 are assumed to satisfy those two conditions, then we can pick N large
enough so that the expected stability property is checked. Indeed, from (77), we get
N[z Q1(IN)] < 6ch 5 (N +n)*, where ag stands for the largest left-hand side of system
(78). As a3 < g, we can pick N such that for any n > 0, (N +n)*2~* > 6¢. | and so
Nz QI < (N +n).
It now remains to analyze condition (H). To this end, write
gli]y 1 Sgn le + (5?/ )lN N = S hl +XZN lNU (;L ) g;:il\3 IN

n+1°'n n+1'n

x,07

which leads to
(G| < nl+Coo e NTG; QUIN)] < (N41)* 445 (N41) 77+ (N+n)*727. (80)

. . Co,om” T +m>2727 Cao,om” Y +m>2727
Then observe the asymptotic equivalent =" a—o— ~mooo = a1 —

adding to (79) the (compatible) condition
ap >1—7, (81)
there exists an integer N large enough such that, for any n € N*,
(N+n)" 4+ coo(N+n)"7+(N+n)?7" <(N+n+1)"
We pick N in this way to retrieve, from (80), property (H).

Step 2: Contraction property. Let g, g® Bh” 0 = (), 23 = r(5?), and
set yM) = ¥ (g, y? = T.s (7). Here again, the expected property will stem from

: thus, by
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the estimates of subsection 5.3. It is first worth noticing that if 3™, y® € AJ (1), then
y M —y@ e A7 (1) and NyW —y@; A7 ((1)] = Ny —yP; QU(I)]. Therefore, according
o (72),
N[EW =22 Qu(1)]

< c{No(y™) = o) M) + o )iy — oyl + 3 No(y®) = o) QUM }
Of course, o(yV)2y = o(y?)? and

No(y™) = o(y®): U] < g No(y'™W) — o(y®); QU]
which, together with estimates (71) and (69), easily gives

N = 2@ QUL < oo Inen NI = §@5 Q1LY
with
Jn —n7 + n77+2a2 + n2a17(27'y) + nalfl + na1+a271’

In order to ensure that limy_,. Jy = 0, we are this time led to the system

200 —y <0
200 — 24+ v <0 (82)
Oé1—1<0

ap+ay—1<0,

which, intersected with both conditions (79) and (81), provides the final assumption

0<ag <

l—v<a <1—=794+as.
Once such coefficients fixed, we can choose N large enough so that both the contraction
property and the property (H) are satisfied on the invariant balls B» n > 0.

Step 3: Patching the solutions. The construction of the expected global solution g €
Q7([0,T7) is now reduced to a patching argument.

First, we define the sequence (5™, ™), according to the following iterative proce-
dure: (9, §©=) € Q1(IY) is the fixed point of I' in By and for any n > 1, (5™, (™) €

~(n—1)
~ Yy
QY (IN) is the fixed point of ' in B,™ . The latter construction is made possible by the
two previous steps. Then we define, for any ¢ € |0, T]

Nr
G=> g ) Zyt 15 (t
n=0

where Np stands for the smallest integer such that Zn:To [IN| > T.

If0Y, <s<Iy <...<ly <t<lIy,, one can appeal to the decomposition

k-1
(09)es = Sepy - (09) v + (@)tl{j + Z St (5y)lfv+llfv (83)
i=k

together with the relation 6X* =0, to deduce
(05" )es = X5 520 + Gy (84)
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1 ~4.2,
with g1 = g + 957",

> 71> b ’“’( )w,l] ~(k— 1 ’ = :Bl] ~(p_1)’1'7ij
ygs ' X}jfg [yzN ( ng] Z Xﬁﬁ [ lN Y )

p—1
p=k+1
k' —1
~4,2 _ (k=18 ~(p) i
Ys = t—1y le +yth E St A yl;brll]]f'

From those expressions, and owing to the regularlty of each §*)*

(7,9") defines an element of Q;([O, T)).
Let us finally go back to (83), which can also be written as

, it is easily seen that

k-1

(67 )es = Sy - Tvs(da? 0 (y)) + Tun (da? 0 (y)) + > Sy, - Ty (d2? 07 (y)).
=k

By invoking the relation & <j(ci:vj z”)) =0, we get
Tax (da? a9(y)) = Ty (da? 0¥ (y)) + Sy - Ty (d? 0¥ (y)),

hence

53)eo = Sy + Tl 09 () + Ty (09 09 ()) + 58,y T (9 07().
=k
The iteration of this simplification procedure leads to (6§%), = Jis(dz? 0% (y)) for all
s,t €1[0,T7.

The uniqueness of the solution is easy to establish with the estimates of Step 2, just as
in the diffusion case (see for instance the proof of [15, Theorem 2.6]). As for the control
result (73), it is a consequence of decomposition (84), having in mind the local controls

induced by the balls B, O

Once endowed with the control result (73), the continuity of the It6 map associated to
(38) can be proved along the same lines as in the case of ordinary systems. The reader
is (here again) refered to the proof of |15, Theorem 2.6| for a detailed analysis of the
method. For the statement of this result, we call ’initial’ condition of (52) the constant
a that appears in the system. This actually corresponds to the initial condition of the
original equation (2).

Corollary 5.11. Assume that the three hypotheses 3, 4 and 5 are satisfied for two distinct
paths Y and @, and let 0 6 C3O(RERE™). If 4V (resp. §%)) denotes the solution of
the system (52) dmven by W) (resp. 2?)) in the sense of Proposition 5.5, with “initial’
condition aV) (resp. a'?)), then

NGO — §©: anMWMScwmm{w”—a%

_l_N[Xac(l) . Xx@);é;] _’_NI:XAJ,‘(l) . XAac(Q) 1+7} +N[Xx<1 =z Xﬂc@)x<2);c~227]}y (85)

with

Y

1) 22 AV A2 oW1 Gp(2)(2)
Cz(1)7x(2)EC<X‘r ,XI ’XA{L‘ ,XAx ’Xx T ’Xx T )
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where C' is a function that grows with its arguments.
Let us conclude with a transposition of this result into the original setting of (2):

Corollary 5.12. Under Hypotheses 3, 4 and 5, and assuming that o € C>P(R%; RE™),
the system (2), interpreted with Propositions 5.5 and 5.7, admits a unique solution y in
Q1([0, T); RY). Moreover, the continuity result (85) remains true fory, w.r.t the (classical)
Hdolder norm N.;C]] in the left-hand-side.

Proof. As in the Young case, it suffices to set, for any t € [0,7T], ys =T, ;5(9:), where 7 is
the path given by Theorem 5.10. U

6. APPLICATION TO ROUGH PATHS

The aim now consists in proving that the hypotheses we have raised all through the
previous two sections can actually be checked for a large class of Holder paths x. If we
put those different hypotheses gHypotheses 2, 3, 4 and 5) together, we have to show the

existence of three paths (X%, X4% X**) that would extend the three definitions (valid
when z is differentiable)

X5 = [ Seedn, . XEEQ = [ Acue)do 80
%O = [ Seu©de,oxd, 7

above a y-Holder z, with v > 1/3 (remember that x! = dx).

6.1. An integration by parts argument. We propose here to extend (86)-(87) via
elementary integrations by parts, following the general scheme:

[ Sest@dn = [ Ses@dina— ) =xt~ [ S @xbudu (69

Let us first evoke the Young case (y > 1/2), for which only X* comes into the picture:
Proposition 6.1. Let v € C] ([0, T);R™), with v > 1/2. If [, d¢|¢(&)|(1 + |¢[**7) < oo,

then any sequence of differentiable paths x* such that

Naf = ;01 ([0, T, R™)] =2 0,
satisfies Hypothesis 2.
Proof. For any differentiable path Z, one has, thanks to (88),

X < Kb +Iel [ Kbl du < eNmCle—sP {4l (69

Since [, d& |(6)[(1+|€]") < 00, it is then easily seen that (X*7).¢ is a Cauchy sequence
in Cy_ (R™). O

The extension of the two paths X4% et X**  which is needed in order to apply the
results of Section 5, that is to say when v € (1/3,1/2], will stem from the same kind of
argument. It suffices to notice that, if x is a differentiable path,

X6 = [ (S du (90)
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and if we denote by x? the standard Lévy area of z (x2, = f dx, ® (0x)ys), which is at
the core of the rough paths methods, one has

~ ¢ d b d
€)= [ SO 0 du=xd + [ Lse©)de o

With the same argument as in the previous proof, those transformations lead to the
assertion:

Proposition 6.2. Let x a path allowing the construction of a 2-rough path x = (x',x?) e
CJ(R™) x C37 (R™™), for some coefficient v > 1/3. If [o dE1o(E)|(L+[E]?) < oo, then any
sequence x° of differentiable paths such that
Nt — 2;¢([0,T); R™)] + N x52 — x%.¢3([0, T]; R™™)] =3 0 (92)
satisfies the three hypotheses 3, 4 and 5.
We are thus in position to provide a more explicit formulation of Corollary 5.12:

Theorem 6.3. Let x : [0, 7] — R™ a ~-Hélder path (v > 1/3) allowing the construction
of a geometric 2-rough path x = (x*,x2) € CJ(R™) x CJY(R™™). Assume that ¢ can
be represented as (5) on [0,T), for some function ¢ such that the integrability condition
[ d€16(E)](1 + |€]?) < oo is satisfied. Then, if o € C*P(R%GRE™), the system (2), inter-
preted with Propositions 5.5 and 6.2, admits a unique solution in the space Q)([0,T]; R?)
of controlled paths. Moreover, the continuity statement (3) holds true.

Remark 6.4. In retrospect, with the help of the continuity result (3), we can provide
another (equivalent) interpretation of the rough system (2). Remember first that when
x is a differentiable path, the interpretation given in Section 4 or in Section 5 coincides
with the ordinary Volterra equation, understood in the Riemann-Lebesgue sense: this is
the content of points (1) in Proposition 4.1 and Proposition 5.5, and one of the main
principles of our approach. Consequently, due to (3), our understanding of the rough
Volterra equation can also be summed up as follows: for any sequence x° of differentiable
paths that converges to x in the sense of (92), the sequence y° of ordinary solutions to (2)
associated to x° converges to a path y with respect to the v-Holder topology.

Remark 6.5. With the interpretation exhibited in Remark 6.4, it is easily seen that the
solution y given by Theorem 6.3 does not depend on the particular representative ¢ in
(5), provided the integrability condition is satisfied. Assume indeed that ¢, ¢* are such

that [, d¢ |¢'(€)|(1+[¢]*) < oo and ¢HOT] Oz = Do), where ¢1(t) = [ d€ S,(€) ¢'(6)-

If x is a differentiable path, the path y* (resp. y?) associated to e (resp. gzﬁz) through
Theorem 6.3 is known to be solution of the ordinary equation

t t
vi=a'+ [ o= wati) de =+ [ ot~ uolul) de.,
0 0
hence, by uniqueness, y! = y2. The result in the general rough case can then be deduced
by passing to the limit.

Keeping Remark 6.5 in mind, Theorem 1.1 is now obtained via the following elementary
result:

Proposition 6.6. If ¢ € C3(R;R), then there exists a function ¢r satisfying

/R 4 |G (£)](1 + €) < oo
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and such that ¢ admits the representation (5) on [0, T].

Proof. As we announced it in Subsection 3.1, it suffices to extend the restriction ¢ 1
into a compactly supported function ¢ € C3(R;R). Then

br = For, with ¢r(€) = (F6r)(€) = ¢ / PG (1) dt.

R

Since ¢ € L%(R), one has

[acii@ia+ier < 2 /|£ delirte) ve [ RO

€1 [3

A

< o{Idrlle +IF 7 @)z | < oo
U

6.2. The (fractional) Brownian motion case. Owing to the results of [18| or [36], we
know that the existence of a geometric 2-rough path holds true for a fractional Brownian
motion with Hurst index H > 1/3. This means that Theorem 1.1 can be applied in this
situation, giving birth to the first result of existence and uniqueness of a global solution
for (2) when 1/3 < H < 1/2. In the standard Brownian case (H = 1/2), this solution
can be shown to (almost surely) coincide with the Stratonovich one (see for instance [18,
Section 17.2] for a similar statement).

The It6 interpretation of (2) in presence of a standard Brownian motion © = B can
also be recovered from the considerations of Section 5, by defining the convolutional 2-
rough path (X7, XAB XBB) as Tto integrals, ie X2'(¢) = fst Si_u(€)dBi, X{iPi(¢) =
JFA (&) dBL, XEPH(€) = [1S,-u(€)dBL (§B7),,. Let us sketch out the two steps of
this identification, which essentially follows the lines of [14, Section 6.2].

First of all, remember that the Ito-Volterra equation
t
Vi =d +/ o(t —u)o(Y,)dB) , te€][0,T], (93)
0

is known to have a unique solution under the assumptions of our study, namely ¢, o (at
least) differentiable (see for instance [6]). Then, assuming that ¢ € L*(R), one can see
with the help of the stochastic Fubbini theorem that (93) is equivalent to

(V6 = [ Se@aBiet W) L Yimd+ [dedonio. o

s

The latter formulation allows to make the link with the formalism of Section 5:

Lemma 6.7. Assume that o € CVP(R%: RY™) and that ¢ satisfies Jg dé 16(6)|(14]¢]) < oo.
Then, with the notations of Section 5, the Ito solution Y of (94) almost surely belongs to
Q%([0, T]; RY) for any 0 <y < 1/2.

Proof. The decomposition of Y as an element of Q}([0, T]; R?) is naturally given by

(V) = XPIoU(Y,) + Y, with VEi(€) = / S1-(€) dBE (507 (V)) .

S
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In order to see that o(Y) (resp. Y*) almost surely belongs to CJ([0,T]; R%™) (resp.
C([0,T); R%)), one can rely on a (d-)adapted version of the classical Garsia-Rodemich-
Rumsey lemma, which reduces the problem to (easy) moments estimates. The reader is
refered to [20, Lemma 3.8| for the statement of such a result in a convolutional context.
Some additional details about this standard reasoning can also be found in [14, Proposition

6.8]. 0
Once Y has been identified as an element of QE([O,T];Rd), Proposition 5.5 provides
us with a pathwise definition of the integral J (JBj o' (Y)) based on the Ito6 2-rough

paths (X7, XAB XBB) The second step towards the expected identification can now be
expressed as follows:

Proposition 6.8. Assume that o € C**(R%:RY™) and that ¢ satisfies Jg dé 1B(€)](1 +
I€]) < co. Then, for any & € R, the integral J (JBj a“(Y)) (&) constructed in Proposition

5.5 almost surely coincides with the Ito integral f; Si—u(§) dB! 6 (Y,). Consequently, the
solution given by Theorem 5.10 is (a.s.) equal to the Ité solution of (93) and the following

continuity property holds: if Y (resp. Y ) stands for the solution of (98) with initial
condition a (resp. a), one has

NIY =Y;Cl(RY)] < Cpla—al, (95)
for some (a.s.) finite random variable Cg.

Proof. Similarly to (60), one can decompose the It6 integral as
t
/ Si-u(§) B, 0¥ (V) = Xi 7 (€)0 (Vo) + X7 (€) Ly dho (Vo) o™ (Vo) + Ry (€),
where Ly = [, d€ ¢(¢) and R (&) = [ Si—,(€) dBI M with
le;?s = [(5Jij <Y>)us - (5Yk)usakrgij(yt€>]

+ [ dgde) {XBHMY) + VO + Au@THO } - i (1))
R
From this expression, one can apply the (ﬁ—)G—R—R lemma we have already evoked in the
proof of Lemma 6.7 and assert that R € C4 ([0, T]; R?) a.s., for some coefficient, p > 1 (this
actually follows the lines of [14, Proposition 6.11]). Consequently, by setting (02%);, =

Tis (JBj JU(Y)>, one gets 6(Y — Z) € Imé N CY([0, T]; R?) with fi > 1, which, according
to Lemma 3.7, leads to 0Y = 0Z, so that the two integrals indeed coincide.

The identification of the solutions now follows from the uniqueness property contained in
Theorem 5.10, while (95) is deduced from Corollary 5.12. O

Remark 6.9. The above integrability assumption [ d¢ 16(6)|(1+]€]) < oo (possibly trans-
lated into ¢ € C?*(R;R) as in Proposition 6.6) is here weaker than the hypothesis of The-
orem 6.3, namely [, d§ |6(€)[(1 + |€]?) < co. This is due to the relative crudeness of the
integration by parts argument used in Subsection 6.1, which entails a loss of "spatial"
regularity through the derivative -£5, (&) = ¢£5,(£). The more direct definition of the
convolutional Brownian rough paths as Itd integrals allows to avoid this issue.
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Remark 6.10. Of course, the interest of our study in the Brownian case does not lie in
the exhibition of a solution for (93), which has been known for a long time. On the other
hand, the continuity property of the flow, which appears as a typical consequence of the
rough paths strategy, is new to our knowledge. Similarly to |13, 15|, it is likely to offer new
perspectives as far as the discretization of stochastic Volterra systems is concerned (to be
compared with [35]). For sake of conciseness, we prefer to leave this task in abeyance,
though.

Acknowledgements

We are very grateful to an anonymous referee whose comments and suggestions have
led to significant improvements of the paper, both in the content and in the presentation
of the results.

REFERENCES

[1] E. Alos and D. Nualart. Anticipating stochastic Volterra equations. Stochastic Process. Appl.,
72(1):73-95, 1997.

[2] J. A. D. Appleby. Exponential asymptotic stability of nonlinear It6-Volterra equations with damped
stochastic perturbations. Funct. Differ. Equ., 12(1-2):7-34, 2005.

[3] John A. D. Appleby, Siobhan Devin, and David W. Reynolds. Almost sure convergence of solutions
of linear stochastic Volterra equations to nonequilibria limits. J. Integral Equations Appl., 19(4):405—
437, 2007.

[4] John A. D. Appleby and Alan Freeman. Exponential asymptotic stability of linear Ito-Volterra
equations with damped stochastic perturbations. Electron. J. Probab., 8:no. 22, 22 pp. (electronic),
2003.

[5] John A. D. Appleby and David W. Reynolds. Decay rates of solutions of linear stochastic Volterra
equations. Electron. J. Probab., 13:no. 30, 922-943, 2008.

[6] M. A. Berger and V. J. Mizel. Volterra equations with It6 integrals. I. J. Integral Equations, 2(3):187—
245, 1980.

[7] M. A. Berger and V. J. Mizel. Volterra equations with It6 integrals. II. J. Integral Equations, 2(4):319—
337, 1980.

[8] M. Besalu and C. Rovira. Stochastic Volterra equations driven by fractional Brownian motion with
Hurst parameter H > 1/2, 2010.

[9] M. Caruana and P. Friz. Partial differential equations driven by rough paths. J. Differential Equa-
tions, 247(1):140-173, 2009.

[10] W. G. Cochran, J. Lee, and J. Potthoff. Stochastic Volterra equations with singular kernels. Sto-
chastic Process. Appl., 56(2):337-349, 1995.

[11] L. Coutin and L. Decreusefond. Stochastic Volterra equations with singular kernels. In Stochastic
analysis and mathematical physics, volume 50 of Progr. Probab., pages 39-50. Birkh&user Boston,
Boston, MA, 2001.

[12] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions.
Probab. Theory Related Fields, 122(1):108-140, 2002.

[13] A. Deya. Numerical schemes for the rough heat equation, 2010.

[14] A. Deya, M. Gubinelli, and S. Tindel. Non-linear rough heat equations. To appear in Probab. Theory
Related Fields, 2011.

[15] A. Deya, A. Neuenkirch, and S. Tindel. A Milstein-type scheme without Levy area terms for SDEs
driven by fractional Brownian motion. To appear in Ann. Inst. H. Poincaré, 2011.

[16] A. Deya and S. Tindel. Rough Volterra equations. I. The algebraic integration setting. Stoch. Dyn.,
9(3):437-477, 2009.

[17] Boualem Djehiche and M’hamed Eddahbi. Large deviations for a stochastic Volterra-type equation
in the Besov-Orlicz space. Stochastic Process. Appl., 81(1):39-72, 1999.



34 AURELIEN DEYA AND SAMY TINDEL

[18] P. Friz and N. Victoir. Multidimensional dimensional processes seen as rough paths. Cambridge
University Press, 2010.

[19] M. Gubinelli. Controlling rough paths. J. Funct. Anal., 216(1):86-140, 2004.

[20] Massimiliano Gubinelli and Samy Tindel. Rough evolution equations. Ann. Probab., 38(1):1-75,
2010.

[21] David N. Keck and Mark A. McKibben. Abstract semilinear stochastic Ito-Volterra integrodifferen-
tial equations. J. Appl. Math. Stoch. Anal., pages Art. ID 45253, 22, 2006.

[22] S. C. Kou. Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl.
Stat., 2(2):501-535, 2008.

[23] S. C. Kou. A selective view of stochastic inference and modeling problems in nanoscale biophysics.
Sci. China Ser. A, 52(6):1181-1211, 2009.

[24] T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215-310,
1998.

[25] T. Lyons and Z. Qian. System control and rough paths. Oxford Mathematical Monographs. Oxford
University Press, Oxford, 2002. Oxford Science Publications.

[26] A. Neuenkirch, I. Nourdin, and S. Tindel. Delay equations driven by rough paths. Electron. J.
Probab., 13:no0. 67, 2031-2068, 2008.

[27] David Nualart and Carles Rovira. Large deviations for stochastic Volterra equations. Bernoulli,
6(2):339-355, 2000.

[28] B. Qksendal and T. S. Zhang. The stochastic Volterra equation. In Barcelona Seminar on Stochastic
Analysis (St. Feliu de Guizols, 1991), volume 32 of Progr. Probab., pages 168-202. Birkhauser, Basel,
1993.

[29] M. Ait Ouahra and M. Mellouk. Strassen’s law of the iterated logarithm for stochastic Volterra
equations and applications. Stochastics, 77(2):191-203, 2005.

[30] E. Pardoux and P. Protter. Stochastic Volterra equations with anticipating coefficients. Ann. Probab.,
18(4):1635-1655, 1990.

[31] P. Protter. Volterra equations driven by semimartingales. Ann. Probab., 13(2):519-530, 1985.

[32] L. Quer-Sardanyons and S. Tindel. The 1-d stochastic wave equation driven by a fractional Brownian
sheet. Stochastic Process. Appl., 117(10):1448-1472, 2007.

[33] Carles Rovira and Marta Sanz-Solé. Large deviations for stochastic Volterra equations in the plane.
Potential Anal., 12(4):359-383, 2000.

[34] Constantin Tudor. On Volterra stochastic equations. Boll. Un. Mat. Ital. A (6), 5(3):335-344, 1986.

[35] Constantin Tudor and Maria Tudor. Approximation schemes for Ito-Volterra stochastic equations.
Bol. Soc. Mat. Mezicana (3), 1(1):73-85, 1995.

[36] J. Unterberger. Stochastic calculus for fractional Brownian motion with Hurst exponent H > 1: a
rough path method by analytic extension. Ann. Probab., 37(2):565-614, 20009.

[37] Z. Wang. Existence and uniqueness of solutions to stochastic Volterra equations with singular kernels
and non-Lipschitz coefficients. Statist. Probab. Lett., 78(9):1062-1071, 2008.

[38] Jiongmin Yong. Backward stochastic Volterra integral equations and some related problems. Sto-
chastic Process. Appl., 116(5):779-795, 2006.

[39] Jiongmin Yong. Continuous-time dynamic risk measures by backward stochastic Volterra integral
equations. Appl. Anal., 86(11):1429-1442, 2007.

[40] Jiongmin Yong. Well-posedness and regularity of backward stochastic Volterra integral equations.
Probab. Theory Related Fields, 142(1-2):21-77, 2008.

[41] L. C. Young. An inequality of the Holder type, connected with Stieltjes integration. Acta Math.,
67(1):251-282, 1936.

[42] Xicheng Zhang. Euler schemes and large deviations for stochastic Volterra equations with singular
kernels. J. Differential Equations, 244(9):2226-2250, 2008.

[43] Xicheng Zhang. Stochastic Volterra equations in Banach spaces and stochastic partial differential
equation. J. Funct. Anal., 258(4):1361-1425, 2010.

Aurélien Deya and Samy Tindel: Institut Elie Cartan Nancy, Nancy-Université, B.P. 239, 54506
Vandceuvre-lés-Nancy Cedex, France. Email: deya@iecn.u-nancy.fr, tindel@iecn.u-nancy.fr



