
ROUGH VOLTERRA EQUATIONS 2: CONVOLUTIONAL
GENERALIZED INTEGRALS

AURÉLIEN DEYA AND SAMY TINDEL

Abstract. We de�ne and solve Volterra equations driven by a non-di�erentiable signal,
by means of a variant of the rough path theory allowing to handle generalized integrals
weighted by an exponential coe�cient. The results are applied to a standard rough path
x = (x1,x2) ∈ Cγ2 (Rm)×C2γ2 (Rm,m), with γ > 1/3, which includes the case of fractional
Brownian motion with Hurst index H > 1/3.

1. Introduction

This paper is part of an ambitious ongoing project which aims at o�ering a new point
of view on multidimensional stochastic calculus, via the semi-deterministic rough path
approach initiated by Lyons [24]. We tackle the issue of the non-linear Volterra system

yit = ai +

∫ t

0

σi0(t, u, yu) du+
m∑
j=1

∫ t

0

σij(t, u, yu) dx
j
u, i = 1, . . . , d, t ∈ [0, T ], (1)

where T stands for an arbitrary horizon, x : [0, T ] → Rm a multidimensional γ-Hölder
path, a ∈ Rd an initial condition and σij : [0, T ]2 × Rd → R smooth enough functions.

The (ordinary) Volterra equation providing a relevant model in many biological or
physical situations, it is not surprising that its noisy version already gave birth to a
great amount of papers. A �rst analysis when x is a Brownian motion is contained
in the pioneering works [6, 7], and then generalized to the case of a semimartingale in
[31]. If the coe�cients σij are also seen as random functions, which often happens to be
more appropriate, some anticipative stochastic calculus techniques are required in order
to solve the system, and we refer to [1, 28, 30] for the main results in this direction.
It should be mentioned at this point that the last of those references [30] is motivated
by �nancial models of capital growth rate, which goes beyond the classical physical or
biological applications of Volterra equations. Several authors also envisaged the possibility
of a singularity for the application u < t → σ(t, u, .) as t tends to u [10, 11, 37], while
examples of a so-called backward stochastic Volterra equations recently appeared in the
literature [38, 40], stimulated (here again) by new �nancial applications [39]. Besides,
one can �nd in [34, 21, 43] studies of in�nite-dimensional versions of (1), often linked
to the context of stochastic partial di�erential equations. It is �nally worth noticing
that the behaviour of the solutions to the Itô-Volterra equation is now deeply understood,
through the consideration of numerical schemes [35, 42] or the existence of large deviations
[17, 33, 27, 42] and Strassen's law [29] results.
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In this background, it seems quite natural to wonder if the interpretation and resolution
of (1) can be extended to a non-semimartingale driving process x. The existence of a
theoretical solution would for instance allow to study the in�uence of a more general
gaussian noise in the asymptotic equilibria observed in [4, 2, 3, 5]. The interest in a
generalization of the system has also been recently reinforced by the emergence, in the
�eld of nanophysics, of a model involving a Volterra system perturbed by a fractional
Brownian motion (fBm in the sequel) with Hurst index H di�erent from 1/2 [22, 23]. In
the latter references, the fractional process only intervenes through an additive noise: the
resolution of the system (1) in its general form would here open the way to a sophistication
of the model.

The particular case where x stands for a fBm with Hurst index H > 1/2 has been
thoroughly treated in [16]: the integral is therein understood in the Young sense. Notice
that in this situation, [8] provides a slighlty di�erent approach to the equation, based on
fractional calculus techniques. If one wishes to go one step further in the procedure and
consider a γ-Hölder path with γ ≤ 1/2, the rough paths methods must come into the
picture. However, the classical rough path theory introduced by Terry Lyons [25] (see
also the recent formulation in [18]) is mostly designed to handle the case of di�usion type
equations, and there have been an intensive activity during the last couple of years in
order to extend these semi-pathwise techniques to other systems, such as delay equations
[26] or PDEs [9, 20]. The current article �ts into this global project, and we shall see how
to modify the original rough path setting in order to handle systems like (1). The method
then leads to what appears to the authors as the �rst result of existence and uniqueness
of a global solution ever shown for the rough Volterra equation (1), in case γ < 1

2
.

Our result more exactly applies to the convolutional Volterra equation:

yit = ai +
m∑
j=1

∫ t

0

φ(t− u)σij(yu) dx
j
u, i = 1, . . . , d, t ∈ [0, T ], (2)

where φ : R→ R and σij : Rd → R are smooth enough applications. Notice that we have
included the drift term in the sum, by assuming that the �rst component of x coincides
with the identity function. In spite of its speci�city, the formulation (2) covers most of
the model aforementioned (it is in particular the model at stake in [22, 23]). The main
result of this paper can be stated in the following way:

Theorem 1.1. Assume that the path x : [0, T ] → Rm allows the construction of a geo-
metric 2-rough path x = (x1,x2) ∈ Cγ2 (Rm) × C2γ

2 (Rm,m) for some coe�cient γ > 1/3.
If φ ∈ C3(R;R) and σij ∈ C3,b(Rd;R) for all i = 1, . . . , d, j = 1, . . . ,m, then the system
(2), interpreted thanks to Propositions 5.5 and 6.2, admits a unique global solution y in
the space of controlled paths introduced in [19] (see De�nition 2.5). Moreover, the Itô
map associated to the system is locally Lipschitz continuous: if y (resp. ŷ) stands for the
solution of the system driven by x (resp. x̂) with initial condition a (resp. â), then

N [y − ŷ; Cγ1 (Rd)] ≤ cx,x̃
{
|a− â|+N [x− x̂; Cγ1 (Rm)] +N [x2 − x̂2; C2γ

2 (Rm,m)]
}
, (3)

where

cx,x̃ = C
(
N [x; Cγ1 (Rm)],N [x̂; Cγ1 (Rm)],N [x2; C2γ

2 (Rm,m)],N [x̂2; C2γ
2 (Rm,m)]

)
,

for some function C : (R+)∗ → R+ growing with its four arguments.
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Beyond the interpretation and resolution of the fractional Volterra system, the conti-
nuity result (3) is likely to o�er simpli�ed proofs of the classical results (large deviations,
support theorem) obtained in the (standard) Brownian case. For the sake of conciseness,
we shall let the procedure in abeyance, though (this should follow the lines of Chapter 19
in [18]).

A �rst attempt to solve the deterministic system (2) has been initiated in [16] by
resorting to the standard rough paths formalism. As evoked earlier, the method turns out
to be successful in the Young case (γ > 1/2) with the existence of a unique global solution.
Unfortunately, it incompletely answers the problem in the rough case (γ ≤ 1/2), allowing
a local resolution only. The di�culties raised by the extension of the path have been
extensively commented in [16]. They are essentially due to the dependence of the system
with respect to the past of the trajectory. To �gure out this phenomenom, remember
that the usual resolution framework in rough paths theory is a (well-chosen) space of
Hölder paths (or paths with bounded p-variations). Here, the variations of the (potential)
solution y between two times s < t are given by

yit − yis =

∫ t

s

φ(t− u)σij(yu) dx
j
u +

∫ s

0

[φ(t− u)− φ(s− u)] σij(yu) dx
j
u, (4)

and through the latter integral pops out the problem in question: the variations of y
between a time s (present) and a time t (future) are linked to the past ([0, s]) of the path.
In the Young case, the right-hand-side of (4) can be estimated by an a�ne function of
y, which allows to overcome the dependence to the past and settle a global �xed-point
argument. The reasoning does not hold true anymore when γ ≤ 1/2, the estimate giving
this time rise to a (at least) quadratic term in y.

Let us say a few words about the strategy we have adopted in this paper in order to
exhibit a global solution when γ ∈ (1/3, 1/2]:

(i) First, we will reformulate (2) (when x is di�erentiable) by writing φ as the Fourier

transform of a function φ̃ ∈ L1(R), that is to say using the representation

φ(v) =

∫
R
dξ Sv(ξ)φ̃(ξ) , Sv(ξ) ≡ e−2iπξv, v ∈ [0, T ]. (5)

Thanks to Fubini theorem, the system (2) can now be equivalently presented as: for all
i = 1, . . . , d,

yit = ai +

∫
R
dξ φ̃(ξ)ỹit(ξ) , ỹit(ξ) =

∫ t

0

St−u(ξ) dx
j
u σ

ij(yu) , t ∈ [0, T ]. (6)

Owing to the additivity property St+t′(ξ) = St(ξ)St′(ξ), it is easily seen that for any �xed
ξ ∈ R,

ỹit(ξ)− ỹis(ξ) =

∫ t

s

St−u(ξ) dx
i
u σ

ij(yu) + Ats(ξ)ỹ
i
s(ξ), (7)

with Ats(ξ) ≡ St−s(ξ) − 1, and the dependence w.r.t the past ([0, s]) is here reduced to
a dependence w.r.t the present (s) only, which makes it easier to control on successive
patching intervals I1, I2,... Therefore, the system will �rst be solved under the form (7),
before we go back to the original setting (2).

(ii) The transition from y to ỹ is however not priceless: we leave the Euclidian context
of (2) to enter the framework of functional-valued paths. For instance, the de�nition of a
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Hölder path will then be relative to a norm of functions to be precised (see (26)). Besides,
observe that the expression

ỹit(ξ) =

∫ t

0

St−u(ξ) dx
j
u σ

ij(yu) , ỹi0 = 0, (8)

is quite close to the mild formulation of an evolution equation: in order to analyze this
system, we have drown our inspiration from the method and formalism developped in [20]
for a class of rough partial di�erential equations. In particular, the interpretation of the
rough integral will involve an adaptation of the notion of 2-rough paths to the background
at stake here: the standard path (x1,x2) will be replaced (in a �rst phase at least) by a
convolutional path (X̃x, X̃ax, X̃xx), given, when x is di�erentiable, by the three formulas
(i, j = 1, . . . ,m)

X̃x,i
ts (ξ) ≡

∫ t

s

St−u(ξ) dx
i
u , X̃Ax,i

ts (ξ) ≡
∫ t

s

Atu(ξ) dx
i
u, (9)

X̃xx,ij
ts (ξ) ≡

∫ t

s

St−u(ξ) dx
i
u (xju − xis). (10)

If x is a Hölder path, those three de�nitions are a priori only formal, but once we have
admitted the existence of those integrals (see for instance Hypothesis 5 for a more precise

statement), we can resort to an extension procedure for the integral
∫ t
s
St−u(ξ) dx

j
u σ

ij(yu)
similar to the one used in the analysis of ordinary systems, and based on the intervention
of an inverse operator Λ̃ (Proposition 3.8). The extension of the three expressions in (9)
and (10) will be analyzed in the end of the paper (Section 6): for sake of conciseness, the
question will actually be reduced to a loose integration by parts argument.

(iii) In the case 1/3 < γ ≤ 1/2, the reasoning that leads us to the existence of a global
solution consists in a technical patching argument (Section 5) based on the following
observation: in spite of the simpli�cation suggested by (7), the system keeps some depen-
dence w.r.t the past through the present. Consequently, if one wants to patch together
local solutions ỹ(k) on successive time intervals Ik = [lk, lk+1], one must control the Hölder

norm of ỹ(k), but also the "initial condition" ỹ
(k)
lk
. The general principle of the reasoning

is contained in the proof of Theorem 5.10, but it actually leans on the controls obtained
in Proposition 5.7, 5.8 and 5.9. It is worth noticing that the general scheme of the proof
in question, as well as the scheme of the proof of Theorem 4.3, are refered to in [14] and
[13] for the study of rough PDE models.

Here is how our article is organized: we recall some basic de�nitions of algebraic inte-
gration at Section 2, and we adapt those notions to the convolutional context at Section
3.2. Section 4 is devoted to the simpler case of Young equations, which allows to explain
our method with less technical apparatus. Then at Section 5 we move to the rough case of
our Volterra equation, and explain all the details of the method we have chosen in order
to solve it. Finally, we apply our theory to (standard) rough paths at Section 6.

2. Algebraic integration

This section is devoted to recall the very basic elements of the algebraic integration
theory introduced in [19], in order to �x notations for the remainder of the paper.
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2.1. Increments. As explained in [19], the extension of the integral steming from the
standard di�erential system dyit = dxjt σ

ij(yt) is based on the notion of increment, together
with an elementary operator δ acting on them. The notion of increment can be introduced
in the following way: for two arbitrary real numbers `2 > `1 ≥ 0, a vector space V , and
an integer k ≥ 1, we denote by Ck(V ) the set of continuous functions g : [`1, `2]k → V
such that gt1···tk = 0 whenever ti = ti+1 for some i ≤ k− 1. Such a function will be called
a (k−1)-increment, and we will set C∗(V ) = ∪k≥1Ck(V ). The operator δ alluded to above
can be seen as an operator acting on k-increments, and is de�ned as follows on Ck(V ):

δ : Ck(V )→ Ck+1(V ) (δg)t1···tk+1
=

k+1∑
i=1

(−1)i+1gt1···t̂i···tk+1
, (11)

where t̂i means that this particular argument is omitted. Then a fundamental property
of δ, which is easily veri�ed, is that δδ = 0, where δδ is considered as an operator from
Ck(V ) to Ck+2(V ). We will denote ZCk(V ) = Ck(V ) ∩Kerδ and BCk(V ) = Ck(V ) ∩ Imδ.
Some simple examples of actions of δ, which will be the ones we will really use through-

out the paper, are obtained by letting g ∈ C1 and h ∈ C2. Then, for any t, u, s ∈ [`1, `2],
we have

(δg)ts = gt − gs, and (δh)tus = hts − htu − hus. (12)

The above-mentionned ordinary system is then of course equivalent to

y0 = a , (δyi)ts =

∫ t

s

dxju σ
ij(yu). (13)

Furthermore, it is readily checked that the complex (C∗, δ) is acyclic, i.e. ZCk+1(V ) =
BCk(V ) for any k ≥ 1. In particular, the following basic property, which we label for
further use, holds true:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1(V ). Then there exists a (non unique) f ∈ Ck(V )
such that h = δf .

Observe that Lemma 2.1 implies that all the elements h ∈ C2(V ) such that δh = 0 can be
written as h = δf for some (non unique) f ∈ C1(V ). Thus we get a heuristic interpretation
of δ|C2(V ): it measures how much a given 1-increment is far from being an exact increment
of a function (i.e. a �nite di�erence).

Let us now introduce a convenient notation for the product of increments:

De�nition 2.2. Let V and W two normed spaces and I a subinterval of [0, T ]. If g ∈
Ck(I;L(V,W )) and h ∈ Cl(I;W ), for some k, l ∈ N∗, we de�ne the product gh as the
(k+l−2)-increment (with values inW ) given by the formula: for all t1 ≤ t2 ≤ . . . ≤ tk+l−1,

(gh)t1...tk+l−1
≡ gt1...tkhtktk+1...tk+l−1

. (14)

Notice again that our future discussions will mainly rely on k-increments with k ≤ 2,
for which we will use some analytical assumptions. Namely, we measure the size of these
increments by Hölder norms de�ned in the following way: for f ∈ C2(V ) let

‖f‖µ ≡ sup
s,t∈[`1,`2]

‖fts‖V
|t− s|µ

, and Cµ1 (V ) = {f ∈ C2(V ); ‖f‖µ <∞} .
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In the same way, for h ∈ C3(V ), set

‖h‖γ,ρ = sup
s,u,t∈[`1,`2]

‖htus‖V
|u− s|γ|t− u|ρ

(15)

‖h‖µ ≡ inf

{∑
i

‖hi‖ρi,µ−ρi ; h =
∑
i

hi, 0 < ρi < µ

}
,

where the last in�mum is taken over all sequences {hi ∈ C3(V )} such that h =
∑

i hi and
for all choices of the numbers ρi ∈ (0, z). Then ‖·‖µ is easily seen to be a norm on C3(V ),
and we set

Cµ3 (V ) ≡ {h ∈ C3(V ); ‖h‖µ <∞} .
Eventually, let C1+

3 (V ) = ∪µ>1Cµ3 (V ), and remark that the same kind of norms can be
considered on the spaces ZC3(V ), leading to the de�nition of some spaces ZCµ3 (V ) and
ZC1+

3 (V ). In order to avoid ambiguities, we shall denote by N [f ; Cκj ] the κ-Hölder norm
on the space Cj, for j = 1, 2, 3. For ζ ∈ Cj(V ), we also set N [ζ; C0

j (V )] = sups∈[`1;`2]j‖ζs‖V .
With these notations in mind, the following proposition is a basic result which is at the

core of our approach to path-wise integration (see [19] for the original proof of the result,
based on Stokes Theorem, and [20] for a simpli�ed version):

Theorem 2.3 (The sewing map). Let µ > 1. For any h ∈ ZCµ3 ([0, 1];V ), there exists a
unique Λh ∈ Cµ2 ([0, 1];V ) such that δ(Λh) = h. Furthermore,

‖Λh‖µ ≤ cµN [h; Cµ3 (V )], (16)

with cµ = 2+2µ
∑∞

k=1 k
−µ. This gives rise to a linear continuous map Λ : ZCµ3 ([0, 1];V )→

Cµ2 ([0, 1];V ) such that δΛ = IdZCµ3 ([0,1];V ).

The following corollary gives a �rst relation between the structures we have just intro-
duced and generalized integrals, in the sense that it connects the operators δ and Λ with
Riemann sums.

Corollary 2.4 (Integration of small increments). For any 1-increment g ∈ C2(V ), such
that δg ∈ C1+

3 , set δf = (Id−Λδ)g. Then

(δf)ts = lim
|Πts|→0

n∑
i=0

gti+1 ti ,

where the limit is over any partition Πts = {t0 = t, . . . , tn = s} of [t, s] whose mesh tends
to zero. The 1-increment δf is the inde�nite integral of the 1-increment g.

Proof. For any partition Πt = {s = t0 < t1 < ... < tn = t} of [s, t], write

(δf)ts =
n∑
i=0

(δf)ti+1ti =
n∑
i=0

gti+1ti −
n∑
i=0

Λti+1ti(δg).

Observe now that for some µ > 1 such that δg ∈ Cµ3 ,∥∥∥ n∑
i=0

Λti+1ti(δg)
∥∥∥
V
≤

n∑
i=0

‖Λti+1ti(δg)‖V ≤ N [Λ(δg); Cµ2 (V )] |Πts|µ−1 |t− s| ,

and as a consequence, lim|Πts|→0

∑n
i=0 Λti+1ti(δg) = 0. �
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2.2. Dissection of a standard rough integral. Let us say a few words about the way
the tools introduced in the previous subsection interact with each other to lead to an
interpretation of the rough integral

∫ t
s
dxiu z

i
u.

In a �rst phase, those tools enable a real dissection of the ordinary version of the integral
(when x and possibly z are di�erentiable). For instance, by combining the elementary

decomposition
∫ t
s
dxiu z

i
u = (δxi)ts z

i
s +

∫ t
s
dxiu (δzi)us with the relation δ

(∫
dxi (δzi)

)
=

(δxi)(δzi), one deduces from Theorem 2.3 the expression∫ t

s

dxiu z
i
u = (δxi)ts z

i
s + Λts

(
(δxi)(δzi)

)
.

It is now readily checked that if x, z ∈ Cγ1 , with γ > 1/2 (Young case), the right-hand-side
of the latter equality still makes sense: the development is then legitimately chosen as a
de�nition for the rough integral.

When γ ≤ 1/2, a deeper analysis of the ordinary integral is required. In order to bring
the procedure to a successful result, the class of potential integrands z has to be restricted
to a particular set of pre-integrated paths, that will be met again at Section 5:

De�nition 2.5. Let I a subinterval of [0, T ] and x ∈ Cγ1 (I;Rm) with γ > 1/3. For any
l ∈ N∗, a path y ∈ C1(I;Rl) is said to be γ-controlled (by x) on I, with values in Rl, if its
increments δy can be decomposed in the following way: for all s < t ∈ I,

(δyi)ts = (δxj)tsy
x,ji
s + y],its , avec yx ∈ Cγ1 (I;Rl,m) et y] ∈ C2γ

2 (I;Rl). (17)

The set of γ-controlled paths will be denoted by Qγx(I;Rl) and provided with the seminorm

N [y;Qγx(I;Rl)] ≡ N [y; Cγ1 (I;Rl)] +N [yx; C0,γ
1 (I;Rl,m)] +N [y]; C2γ

2 (I;Rl)], (18)

Then we de�ne Qγx(I;Rk,l) (k ∈ N∗) as the set of paths y ∈ C1(I;Rk,l) such that yi = yi. ∈
Qγx(I;Rl) for all i = 1, . . . , k, and we associate to the elements of this set the quantity

N [y;Qγx(I;Rk,l)] ≡
∑k

i=1N [yi;Qγx(I;Rl)].

If x is di�erentiable and z ∈ Qγx, a quick algebraic computation shows that, by setting

x2,ij
ts ≡

∫ t
s
dxiu (δxj)us, we get

∫ t
s
dxiu z

i
u = (δxi)ts z

i
s + x2,ij

ts zx,jis + rts, with δr = (δxi) z],i +
x2,ij δzx,ji, and so∫ t

s

dxiu z
i
u = (δxi)ts z

i
s + x2,ij

ts zx,jis + Λts

(
(δxi) z],i + x2,ij δzx,ji

)
. (19)

The right-hand-side of the latter equality can now be extended to any 2-rough path
x = (δx,x2) ∈ Cγ2 × C

2γ
2 with γ > 1/3, that is to say to any γ-Hölder path x allowing the

construction of a Lévy area x2,ij
ts ≡

∫ t
s
dxiu (δxj)us (see [25] for a thorough de�nition), a

hypothesis which is for instance known to be satis�ed by a fractional Brownian motion
with Hurst index H > 1/3 (see [12] or [36]).

In fact, if one permits to restrict the class of integrands to Qγx, it is because the latter
space is large and stable enough to make possible the interpretation and resolution of the
ordinary rough system (δyi)ts =

∫ t
s
dxju σ

ij(yu) therein, for a su�ciently smooth vector
�eld σ . It is indeed not di�cult to see that if y ∈ Qγx and σ ∈ C2,b, then z ≡ σ(y) ∈ Qγx,
while (19) immediately shows that

∫
dx z ∈ Qγx.

All of those considerations will be kept in mind when analyzing the system (2).
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3. Algebraic convolutional integration

We already announced it in the introduction: in order to reduce the dependence of
equation (2) with respect to the past, we will appeal to a preliminary rewriting of the

system, based on the representation of φ as the Fourier transform of a function φ̃. The
resulting formulation will be close to the model studied in [20]: just as in the latter
reference, it suggests a natural adaptation of the standard algebraic formalism presented
in the previous section.

3.1. Transformation of the ordinary system. Assume in this subsection that x is
di�erentiable. Let us go back for a short while on the transformation sketched out in the
introduction, and which started from the assumption that φ could be written as in (5).
Note here and now that this hypothesis is actually not very restricting. Indeed, insofar
as we are working with �nite �xed horizon T , only the behaviour of φ on [0, T ] matters,
and it is possible to replace, in (2), φ with a compactly supported function φT such that
φ|[0,T ] = φT |[0,T ]. If φ is assumed to be continuous on R, then φT can be picked in L2(R),
and in this case

φT = F φ̃, with φ̃ = φ̃T = F−1φT ∈ L2(R),

where F stands for the Fourier transform. In fact, under the hypotheses of Theorem 1.1
(φ ∈ C3(R)), it is easy to show that φ̃ is integrable (see Proposition 6.6). Nevertheless,
for the time being, we record this condition in the following hypothesis:

Hypothesis 1. We assume, in this section and the two following, that the function φ
admits the representation (5), for some function φ̃ ∈ L1(R).

We are then allowed to apply Fubini Theorem and assert that the system (2) is equiv-
alent to {

yit = ai +
∫
R ỹ

i
t(ξ) φ̃(ξ) dξ

ỹit(ξ) =
∫ t

0
St−v(ξ)dx

j
v σ

ij(yv).
(20)

Besides, as we also evoked in the introduction, the increments (δỹi)ts(ξ) ≡ ỹit(ξ) − ỹis(ξ)
are governed by the equation

(δỹi(ξ))ts =

∫ t

s

St−v(ξ)dx
j
v σ

ij(yv) + Ats(ξ)

∫ s

0

St−v(ξ)dx
j
v σ

ij(yv)

=

∫ t

s

St−v(ξ)dx
j
v σ

ij(yv) + Ats(ξ)ỹ
j
s(ξ),

where we have set
Ats(ξ) ≡ St−s(ξ)− 1. (21)

Notice now that the �rst term
∫ t
s
St−v(ξ)dx

j
v σ

ij(yv) above is really similar to what one

obtains in the di�usion case, namely an integral of the form
∫ t
s
(see (13)). However, the

second term Ats(ξ)ỹs(ξ) is a little clumsy for further expansions. Hence, a straightforward
idea is to make it disappear by just setting

(δ̃ỹi)ts(ξ) ≡ (δỹi)ts(ξ)− Ats(ξ)ỹis(ξ) (22)

Then the last equation can be read as (δ̃ỹi)ts(ξ) =
∫ t
s
St−v(ξ)dx

j
v σ

ij(yv), and the system
(20) becomes {

yit = ai +
∫
R ỹ

i
t(ξ) φ̃(ξ) dξ

(δ̃ỹi)ts(ξ) =
∫ t
s
St−v(ξ)dx

j
v σ

ij(yv),
(23)
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with the initial condition ỹ0 ≡ 0. In the sequel, we shall essentially focus on the path ỹ,
by merging the two equations of the last system into a single one:

ỹ0 = 0 , (δ̃ỹi)ts(ξ) =

∫ t

s

St−v(ξ) dx
j
v

[
σij ◦ Ta,φ̃

]
(ỹv), (24)

where the operator Ta,φ is de�ned by

Ta,φ̃(ϕ) ≡ a+

∫
R
dη φ̃(η)ϕ(η). (25)

The original solution path y can then be recovered in an obvious way, so that it will
be su�cient to solve the Volterra equation under the more suitable form (24), with a
right-hand-side written as an integral from s to t against x (compare with (13)).

Actually, if we take the liberty of focusing on δ̃ rather than on the standard increment
δ, it is because the former operator also makes possible the building of an integration
theory, by means of an inversion mapping similar to Λ, and that will be denoted by Λ̃
(see Proposition 3.8). This is what we mean to elaborate on in the following subsections.

3.2. Convolutional increments. Notice that, due to the fact that St1−t2(ξ) is studied
only for t1 > t2, our integration domains will be of the form Sn = Sn([`1, `2]), where Sn
stands for the n-simplex

Sn = {(t1, . . . , tn) : `2 ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ `1}.
For any Banach space E, the notation Cn([`1, `2];E) will henceforth refer to the set of
paths h which are continuous on Sn, with values in E, and such that ht1...tk = 0 if there
exist i 6= j for which ti = tj.

According to the (�rst) de�nition (22), δ̃ is supposed to act on functional-valued paths.
Let us anticipate here the next sections by introducing the spaces of functions that will
spontaneously arise during the study of (24) (see for instance Proposition 4.2). Those are
the L1-type spaces induced by the norm

N [g̃;Lβ(V )] = N [g̃;Lβ,φ̃(V )] ≡
∫
R
dξ |φ̃(ξ)|(1 + |ξ|β)‖g̃(ξ)‖V , (26)

where β > 0 is a �xed parameter and V a Euclidian space. Then we de�ne

C̃k,β(I;V ) ≡ Ck(I;Lβ(V )). (27)

The standard incremental operator δ acts on those spaces through the obvious formula:

If h̃ ∈ C̃k,β(I;V ), (δh̃)t1...tk+1
(ξ) ≡ δ(h̃(ξ))t1...tk+1

, ξ ∈ R. (28)

As for δ̃, it can be naturally extended to any C̃k,β(I;V ) (k ∈ N∗):

De�nition 3.1. Let I an interval of R+ and V a Euclidian space. For any β > 0,
we de�ne the sequence of operators δ̃k : C̃k,β(I;V ) → C̃k+1,β(I;V ) by the formula: if

h̃ ∈ C̃k,β(I;V ), then for all ξ ∈ R,

(δ̃kh̃)t1...tk+1
(ξ) ≡ (δkh̃)t1...tk+1

(ξ)− At1t2(ξ) h̃t2...tk+1
(ξ), (t1, . . . tk+1) ∈ Sk+1(I). (29)

In particular, if s < u < t ∈ I,

(δ̃1h̃)ts(ξ) = h̃t(ξ)− St−s(ξ) h̃s(ξ) , (δ̃2h̃)tus(ξ) = h̃ts(ξ)− h̃tu(ξ)− St−u(ξ) h̃us(ξ).

For sake of clarity, we shall use the same notation δ̃ for the operators δ̃k, k ∈ N∗.
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Remark 3.2. In the rest of the paper, we will explicitly write down the "space" variable ξ
only when there might be a confusion. Thus, we will for instance simply write δ̃h̃ = δh̃−ah̃.

The convention given by (14) for products of increments can be translated in this
context as:

Lemma 3.3. If M̃ ∈ C̃n,β(I;Rk,l) and L ∈ Cm(I;Rl), then the product M̃L, de�ned by
the relation

(M̃L)t1...tm+n−1(ξ) ≡ M̃t1...tn(ξ)Ltn...tm+n−1 ,

belongs to C̃m+n−1,β(I;Rk). Moreover, when n = 2, the following algebraic relations are
satis�ed:

δ(M̃L) = δM̃ L− M̃ δL, et δ̃(M̃L) = δ̃M̃ L− M̃ δL. (30)

Proof. The �rst part of the assertion is obvious. As for the algebraic relations when n = 2,
the �rst one is immediate, while for the second one, it su�ces to notice that

δ̃(M̃L)t1...tm+2 = δ(M̃L)t1...tm+2 − At1t2M̃t2t3Lt3...tm+2

= (δM̃)t1t2t3Lt3...tm+2 − M̃t1t2(δL)t2...tm+2 − At1t2M̃t2t3Lt3...tm+2

= [(δM̃)t1t2t3 − At1t2M̃t2t3 ]Lt3...tm+2 − (M̃ δL)t1...tm+2 .

�

With those notations and preliminary results in hand, we are in position to prove that
the starting property of standard algebraic integration (summed up in Section 2), namely

the cohomological relation δδ = 0, remains true for δ̃:

Proposition 3.4. δ̃δ̃ = 0. More precisely, for any β > 0 and any k ∈ N∗, Im δ̃|C̃k,β(I;V ) =

Ker δ̃|C̃k+1,β(I;V ).

Proof. If F̃ ∈ C̃k,β(I;V ), then using the relation δδ = 0 and the result of Lemma 3.3, we
deduce

δ̃δ̃F̃ = (δ − A) [(δ − A) F̃ ] = δδF̃ − δ(A F̃ )− AδF̃ + AA F̃

= −δA F̃ + AδF̃ − AδF̃ + AA F̃ = AA F̃ − δA F̃ .
It is then readily checked, owing to the additivity St · St′ = St+t′ , that

(δA)tus = AtuAus, (t, u, s) ∈ S3(I),

which gives δ̃δ̃F̃ = 0.

Now, if C̃ ∈ C̃k+1,β(I;V ) is such that δ̃C̃ = 0, we set B̃t1...tn ≡ C̃t1...tns, for some arbitrary
time s ∈ I. Then

[δ̃B̃]t1...tn+1 = [δC̃]t1...tn+1s + (−1)n+1C̃t1...tn+1 − At1t2C̃t2...tns
= [δ̃C̃]t1...tn+1s + (−1)n+1C̃t1...tn+1 = (−1)n+1C̃t1...tn+1 .

Therefore, by setting D̃ ≡ (−1)n+1B̃, we get δ̃D̃ = C̃.
�

Remark 3.5. A straightforward iteration of the relation δ̃δ̃ = 0 leads to the formula: for
any partition {s = t0 < t1 < . . . < tn = t} of [s, t], for any f̃ ∈ C̃1,β([s, t];V ),

(δ̃f̃)ts =
n−1∑
i=0

St−ti+1
· (δ̃f̃)ti+1ti . (31)
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This kind of decomposition will be appealed to several times in the sequel, especially in
the proofs of Lemma 3.7 and Corollary 3.9. In some way, this is the convolutional analog
of the usual telescopic sum (δf)ts =

∑n−1
i=0 (δf)ti+1ti .

The cochain complex (C̃k,β(I;V ), δ̃) will stand for the structure at the base of all the
constructions in this paper. Let us try to give an idea of the relevance of this structure in
the context of equation (24). To this end, we set, for two smooth paths f : [0, T ] → W ,
g : [0, T ]→ L(W,V ),

Jts(d̃g f)(ξ) ≡
∫ t

s

St−u(ξ) dgu fu, ξ ∈ A, (32)

and for any smooth h : [0, T ]2 → W ,

Jts(d̃g h)(ξ) ≡
∫ t

s

St−u(ξ) dgu hus. (33)

The usual Chasles relation δ
(∫

dg f
)

= 0 becomes here:

Proposition 3.6. With the notations (32) and (33), one has, if f : [0, T ] → W and
g : [0, T ]→ L(W,V ) stand for two di�erentiable paths,

δ̃
(
J (d̃g f)

)
= 0 , δ̃

(
J (d̃g δf)

)
= J (d̃g) δf. (34)

Proof. This is a matter of straightforward computations: if s < u < t,

δ̃
(
J (d̃g f)

)
tus

= Jts(d̃g f)− Jtu(d̃g f)− St−u · Jus(d̃g f),

and St−u · Jus(d̃g f) =
∫ u
s
St−v dgv fv, which easily yields δ̃

(
J (d̃g f)

)
= 0. In the same

way,

δ̃
(
J (d̃g δf)

)
=

∫ t

u

St−v dgv (δf)vs −
∫ t

u

St−v dgv (δf)vu =

(∫ t

u

St−v dgv

)
(δf)us.

�

3.3. Convolutional Hölder spaces and Λ̃ map. In order to cope with (24), the notion
of generalized Hölder path presented in the previous section has to be adapted to the
convolutional formalism we have just introduced. We �rst de�ne, for all (�xed) parameters
µ, β, γ > 0, any interval I of R+ and any Euclidian space V ,

C̃µ2,β(I;V ) ≡ {ỹ ∈ C̃2,β(I;V ) : N [ỹ; C̃µ2,β(I;V )] ≡ sup
s<t∈I

N [ỹts;Lβ(V )]

|t− s|µ
<∞},

C̃µ1,β(I;V ) ≡ {ỹ ∈ C̃1,β(I;V ) : δ̃ỹ ∈ C̃µ2,β(I;V )}. (35)

As for paths with three variables, we de�ne, as in the standard case, the intermediate

space C̃(γ,β)
3,β (I;V ) induced by the norm

N [h̃; C̃(γ,ρ)
3,β (I;V )] ≡ sup

s<u<t∈I

N [h̃tus;Lβ(V )]

|t− u|γ |u− s|ρ
,

and then set C̃µ3,β(I;V ) ≡ ⊕0≤α≤µC̃α,µ−α3,β (I;V ). We also provide the latter space with the
norm

N [h̃; C̃µ3,β(I;V )] ≡ inf

{∑
i

N [hi; C̃(ρi,µ−ρi)
3,β (I;V )]; h =

∑
i

hi, 0 < ρi < µ

}
.
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It is worth noticing that the elementary results asserting that Im δ1 ∩ Cµ2 (V ) = {0} if
µ > 1, admits a direct analog:

Lemma 3.7. Fix β > 0. If µ > 1, then Im δ̃|C̃1,β(I;V ) ∩ C̃
µ
2,β(V ) = {0}.

Proof. Let M̃ = δ̃f̃ ∈ Im δ̃|C̃1,β(I;V )∩C̃
µ
2,β(V ). According to (31), we can write, for all s < t,

M̃ts =
∑n−1

i=0 St−ti+1
· M̃ti+1ti , for any partition Πts = {s = t0 < t1 < . . . < tn = t} of [s, t].

Since |St(ξ)| = 1, this entails

N [M̃ts;Lβ(V )] ≤
n−1∑
i=0

N [M̃ti+1ti ;Lβ(V )] ≤ N [M̃ ; C̃µ2,β(V )] |t− s| |Πts|µ−1 ,

and the latter estimate tends to 0 as mesh |Πts| tends to 0. �

With all of those results in hand, it is now easy to follow the same lines as in the proof
of Theorem 2.3 in order to establish the existence of an inverse operator for δ̃ (see [20] for
a similar adaptation):

Proposition 3.8. Let µ > 1, β > 0, I an interval of R+ and V a Euclidian space. For
all h̃ ∈ Ker δ|C̃3,β(I;V ) ∩ C̃

µ
3,β(I;V ), there exists a unique path Λ̃h̃ ∈ C̃µ2,β(I;V ) such that

δ̃(Λ̃h̃) = h̃. Moreover, the following contraction property holds true:

N [Λ̃h̃; C̃µ2,β(I;V )] ≤ cµN [h̃; C̃µ3,β(I;V )], (36)

with cµ a constant that only depends on µ. This statement gives birth to a continuous
linear mapping

Λ̃ : Ker δ|C̃3,β(I;V ) ∩ C̃
µ
3,β(I;V )→ C̃µ2,β(I;V )

such that
δ̃Λ̃ = Id

Ker δ|C̃3,β(I;V )∩C̃
µ
3,β(I;V ) and Λ̃δ̃ = IdC̃µ2,β(I;V ) . (37)

We also have the following equivalent of Corollary 2.4 at our disposal:

Corollary 3.9. Let g̃ ∈ C̃2,β(I;V ) such that δ̃g̃ ∈ C̃µ3,β(I;V ), for some coe�cient µ > 1.

If δ̃f̃ ≡ (Id−Λ̃δ̃)g̃, then

(δ̃f̃)ts = lim
|Πts|→0

n∑
i=0

St−ti+1
· g̃ti+1ti in Lβ,

where the limit is over any partition Πts = {t0 = t, . . . , tn = s} of [t, s] whose mesh tends
to zero.

Proof. Here again, it su�ces to use the same arguments as in the standard case (Corollary
2.4), starting from the decomposition (31). �

4. The Young case

Remember that we �rst wish to solve the system in the form (24), which can also be
written, with the notation (32), as

ỹ0 ≡ 0, δ̃ỹi = J
(
d̃xj σij(y)

)
, yu = Ta,φ̃(ỹu) = a+

∫
R
dξ φ̃(ξ)ỹu(ξ). (38)

For the time being, the right-hand-side of the latter equality only makes sense for a
di�erentiable path x. The aim of this section is to extend the de�nition of the equation
to a γ-Hölder path x with γ > 1/2, and then solve it with the resulting interpretation.
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To this end, we will follow the same general strategy as in the standard case (Subsection
2.2), which begins with a dissection of the ordinary integral.

4.1. Heuristic considerations and interpretation of the system. Let us assume for
the moment that x and ỹ are di�erentiable (in time) and let us successively set y ≡ Ta,φ̃(ỹ),

zij ≡ σij(y), so that the integral at stake here is given by J (d̃xj zij).

Before we turn to the dissection procedure for this integral, it is important to ponder
about the regularity one can expect for z, or equivalently for y (we will suppose that σ
is smooth enough), when x and ỹ become non-di�erentiable. To answer the question,
observe the decomposition

(δyi)ts =

∫
R
dξ φ̃(ξ) (δỹ)ts(ξ) =

∫
R
dξ φ̃(ξ) (δ̃ỹi)ts(ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ) ỹ

i
s(ξ). (39)

As ỹ stands for the (potential) solution of (38) and |St(ξ)| = 1, δ̃ỹ is expected to inherit

the regularity of x, or otherwise stated |(δ̃ỹ)ts(ξ)| ≤ cx |t− s|γ (uniformly in ξ), which

would lead, as we have assumed
∫
R dξ |φ̃(ξ)| < ∞ (Hypothesis 1), to an estimate such

that: |
∫
R dξ φ̃(ξ) (δ̃ỹi)ts(ξ)| ≤ cx |t− s|γ.

To retrieve |t− s|-increments from the term
∫
R dξ φ̃(ξ)Ats(ξ) ỹ

i
s(ξ), we shall lean on the

elementary estimate

|Ats(ξ)| = |St−s(ξ)− 1| ≤ cγ |t− s|γ |ξ|γ . (40)

This is where the spaces Lβ(V ) de�ned by (26) occurs. Indeed, from (40), one has∣∣∣∣∫
R
dξ φ̃(ξ)Ats(ξ)ỹs(ξ)

∣∣∣∣ ≤ cγ |t− s|γ N [ỹs;Lγ(Rd)]. (41)

Going back to decomposition (39), we see that, by starting with a path ỹ that takes values
in Lγ(Rd), we should retrieve a path y, and then a path z, both Hölder-continuous in the
classical sense.

Those considerations (that will be precised through Proposition 4.2) will help us in the

dissection procedure of the integral J (d̃xj zij). Indeed, we will not hesitate anymore to
let the standard increment δz come (back) into the picture, and we will thus start, just
as in the di�usion case, with the decomposition (x is still assumed to be di�erentiable)

Jts(d̃xj zij) = J (d̃x̃j) zijs + Jts(d̃x̃j δzij), (42)

where Jts(d̃xj) ≡ Jts(d̃xj 1) =
∫ t
s
St−u dx

j
u. When x becomes rough (that is to say γ-

Hölder with 0 < γ < 1), the integral
∫ t
s
St−u dx

j
u can still be understood as a Young

integral ([41]). In the spirit of the rough paths methodology and by anticipating the
computations of Proposition 4.1 and Theorem 4.3 below, we will make the following more
precise hypothesis:

Hypothesis 2. Let x ∈ Cγ1 ([0, T ];Rm), with γ > 1/2. We admit the existence of a
sequence xε of di�erentiable paths that satis�es

N [xε − x; Cγ1 ([0, T ];Rm)]
ε→0−→ 0,

and such that the associated sequence of paths

X̃xε,i
ts (ξ) ≡

∫ t

s

St−u(ξ) dx
ε,i
u
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converges to X̃x,i
ts (ξ) ≡

∫ t
s
St−u(ξ) dx

i
u (understood as a Young integral) w.r.t the topology

of the space C̃γ2,γ([0, T ];Rm). In particular,

X̃x ∈ Cγ2,γ([0, T ];Rm) and δ̃X̃x = 0.

If x is di�erentiable, we assume that this result holds true for xε ≡ x.

Proposition 4.1. Let x : [0, T ]→ Rm a path that satis�es Hypothesis 2, I a subinterval
of [0, T ]. For any z ∈ Cγ1 (I;Rd,m) and ξ ∈ R, set

J (d̃xj zij)(ξ) ≡ X̃x,j(ξ) zij + Λ̃(X̃x,j δzij)(ξ) = (Id−Λ̃δ̃)(X̃x,j zij)(ξ). (43)

Then

(1) J (d̃xj zij) is well-de�ned as an element of C̃γ2,γ(I;Rd), and it coincides with the

usual Riemann integral
∫ t
s
St−v(ξ) dxv zv when x is di�erentiable.

(2) The following estimate holds true (remember that we have set N [z; C0
1(I;Rd,m)] ≡

sups∈I |zs|):

N [J (d̃x z); C̃γ2,γ(I;Rd)] ≤ cx
{
N [z; C0

1(I;Rd,m)] + |I|γ N [z; Cγ1 (I;Rd,m)]
}
. (44)

(3) For all s < t ∈ I,

Jts(d̃xj zij) = lim
|Πts|→0

n−1∑
k=0

St−tk+1
· X̃x,j

tk+1,tk
zijtk in Lγ, (45)

where the limit is taken over any partition Πts = {t0 = t, . . . , tn = s} of [s, t] whose
mesh tends to 0.

Proof. To show that the increment de�ned by (43) coincides with the Riemann integral∫ t
s
St−u(ξ) dx

j
u z

ij
u in case x is di�erentiable, let us go back to the decomposition (42), that

can also be written as

Jts(d̃xj δzij) = Jts(d̃xj zij)− X̃x,j
ts zijs .

By applying δ̃ to the two sides of the relation, and then using (34) and (30), we get

δ̃
(
J (d̃xj zij)

)
= −δ̃X̃x,j zij + X̃x,jδzij = X̃x,j δzij,

and so, via (37),

J (d̃xj δzij) = Λ̃
(
X̃x,j δzij

)
,

which enables to recover (43). The fact that formula (43) is well-de�ned in C̃γ2,γ is a
straightforward consequence of Hypothesis 2. Indeed, owing to the latter hypothesis, we
know that X̃x δz ∈ C2γ

3,γ(I;Rd) ∩ Ker δ|C2,γ(I;Rd), and we are thus in position to apply Λ̃.
The estimate (44) is then due to the contraction property (36). As for the expression
(45), it stems from Corollary 3.9.

�

In order to give sense to the system (38) through the de�nition (43), we will rely on
the following proposition, which actually summarizes the above considerations:
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Proposition 4.2. Let I = [l1, l2] a subinterval of [0, T ] and σ ∈ C2,b(Rd;Rd,m). For any
ỹ ∈ C̃γ1,γ(I;Rd), we set y ≡ Ta,φ̃(ỹ) and de�ne

N [ỹ; C̃0,γ
1,γ (I;Rd)] ≡ N [ỹ; C̃0

1,γ(I;Rd)] +N [ỹ; C̃γ1,γ(I;Rd)],

with N [ỹ; C̃0
1,γ(I;Rd)] ≡ sups∈I N [ỹs;Lγ(Rd)]. Then σ(y) ∈ Cγ1 (I;Rd,m) and

N [σ(y); Cγ1 (I;Rd,m)] ≤ cσN [ỹ; C̃0,γ
1,γ (I;Rd)]. (46)

Moreover, if ỹ(1), ỹ(2) ∈ C̃γ1,γ(I;Rd) are such that ỹ
(1)
l1

= ỹ
(2)
l1
, then

N [σ(y(1))− σ(y(2)); C0
1(I;Rd,m)] ≤ cσ |I|γ N [ỹ(1) − ỹ(2); C̃0,γ

1,γ (I;Rd)], (47)

N [σ(y(1))− σ(y(2)); Cγ1 (I;Rd,m)] ≤ cσ

{
1 +N [ỹ(2); C̃0,γ

1,γ (I;Rd)]
}
N [ỹ(1) − ỹ(2); C̃0,γ

1,γ (I;Rd)].

(48)

Proof. By using (40), we get

|δ(σ(y))ts| ≤ ‖Dσ‖∞
∫
R
dξ |φ̃(ξ)| |(δỹ)ts(ξ)|

≤ ‖Dσ‖∞
{∫

R
dξ |φ̃(ξ)||(δ̃ỹ)ts(ξ)|+

∫
R
dξ |φ̃(ξ)| |Ats(ξ)| |ỹs(ξ)|

}
≤ cγ‖Dσ‖∞ |t− s|γ

{
N [ỹ; C̃γ1,γ] +N [ỹ; C̃0

1,γ]
}
,

which corresponds to (46). The inequality (47) can be obtained in the same way, after
noticing that, for any s ∈ I,∣∣σ(y(1)

s )− σ(y(2)
s )
∣∣ ≤ ‖Dσ‖∞ ∫

R
dξ |φ̃(ξ)|

∣∣δ(ỹ(1) − ỹ(2))s`1(ξ)
∣∣ .

As for (48), this is a consequence of the classical estimate∣∣δ(σ(y(1))− σ(y(2)))ts
∣∣ ≤ ‖Dσ‖∞ ∣∣δ(y(1) − y(2))ts

∣∣+ ‖D2σ‖∞
∣∣δ(y(2))ts

∣∣(∣∣∣y(1)
t − y

(2)
t

∣∣∣+
∣∣y(1)
s − y(2)

s

∣∣) .
�

4.2. Solving the equation. Proposition 4.1, together with Proposition 4.2, provides a
reasonable interpretation of (38). We can now state the main result of this section:

Theorem 4.3. Let x a path that satis�es Hypothesis 2. If σ ∈ C2,b(Rd;Rd,m), then the
equation (38), interpreted with Propositions 4.1 and 4.2, admits a unique solution in the
space C̃γ1,γ([0, T ];Rd) de�ned by (35).

Proof. Consider a constant ε > 0, l ∈ N, and assume that we have already constructed

a solution ỹ(l) ∈ C̃γ1,γ([0, lε]). If l = 0, then ỹ(0) = ỹ
(0)
0 = 0. The proof will consist in

showing that one can extend ỹ(l) into a solution ỹ(l+1) ∈ C̃γ1,γ([0, (l + 1)ε]), by means of a
�xed-point argument.

Step 1: Existence of invariant balls. Let ỹ ∈ C̃γ1,γ([0, (l + 1)ε]) such that ỹ|[0,lε] = ỹ(l), and

denote by z̃ = Γ(ỹ) the element of C̃1,γ([0, (l + 1)ε]) characterized by z̃|[0,lε] = ỹ(l) and for

all s, t ∈ [0, (l + 1)ε], (δ̃z̃)ts = Jts
(
d̃x σ(y)

)
, where, as in Proposition 4.2, y ≡ Ta,φ̃(ỹ)

(remember the notation (25)).
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First, the estimate (44) provides

N [z̃; C̃γ1,γ([lε, (l + 1)ε])] ≤ cx
{
N [σ(y); C0

1([0, (l + 1)ε])] + εγ N [σ(y); Cγ1 ([0, (l + 1)ε])]
}
,

which, together with (46), gives

N [z̃; C̃γ1,γ([lε, (l + 1)ε])] ≤ c1
x,σ

{
1 + εγN [ỹ; C̃0,γ

1,γ ([0, (l + 1)ε])]
}
.

If 0 ≤ s ≤ lε ≤ t ≤ (l + 1)ε, we use (31) to deduce

N [(δ̃z̃)ts;Lγ] ≤ N [(δ̃z̃)t,lε;Lγ] +N [(δ̃z̃)lε,s;Lγ]

≤ 2 max
(
N [z̃; C̃γ1,γ([lε, (l + 1)ε]),N [ỹ(l); C̃γ1,γ([0, lε])]

)
|t− s|γ . (49)

Besides, for any s ∈ [0, (l + 1)ε], z̃s = (δ̃z̃)s0, and so

N [z̃; C̃0
1,γ([0, (l + 1)ε])] ≤ N [z̃; C̃0,γ

1,γ ([0, (l + 1)ε])]T γ. (50)

We are thus led to set

ε ≡
(
4c1
x,σ(1 + T γ)

)−1/γ

Nl+1 ≡ max
(

2(1 + T γ)N [ỹ(l); C̃γ1,γ([0, lε])], 4c1
x,σ(1 + T γ)

)
.

Indeed, for such values, it is readily checked from (49) and (50) that if N [ỹ; C̃0,γ
1,γ ([0, (l +

1)ε])] ≤ Nl+1, then N [z̃; C̃γ1,γ([0, (l + 1)ε])] ≤ Nl+1

1+T γ
and N [z̃; C̃0

1,γ([0, (l + 1)ε])] ≤ Nl+1

1+T γ
T γ,

hence N [z̃; C̃0,γ
1,γ ([0, (l + 1)ε])] ≤ Nl+1. In other words, the ball

B
Nl+1

ỹ(l),(l+1)ε
= {ỹ ∈ C̃0,γ

1,γ ([0, (l + 1)ε]) : ỹ|[0,lε] = ỹ(l), N [ỹ; C̃0,γ
1,γ ([0, (l + 1)ε])] ≤ Nl+1}

is invariant by Γ.

The independence of ε with respect to ỹ(l) will allow us to repeat the procedure (with
the same ε) and thus to get a sequence of radii (Nk)k≥1 such that the sets BNk

ỹ(k),kε
are

invariant by Γ. Of course, the de�nition of the latter application has to be adapted to
each of those sets.

Step 2: Contraction property. We are now going to look for a splitting of [lε, (l+ 1)ε] into
subintervals [lε, lε+ η], [lε+ η, lε+ 2η], . . . of the same length η (that could depend on ε
and l), on which Γ is a contraction mapping.

Let ỹa, ỹb ∈ C̃γ1,γ([0, lε+η]) such that ỹa|[0,lε] = ỹb|[0,lε] = ỹ(l), N [ỹa; C̃0,γ
1,γ ([0, lε+η])] ≤ Nl+1,

N [ỹb; C̃0,γ
1,γ ([0, lε+ η])] ≤ Nl+1, and set z̃a ≡ Γ(ỹa), z̃b ≡ Γ(ỹb), where Γ is de�ned just as

in Step 1, but restricted to C̃γ1,γ([0, lε+ η]). By using (44) again, we deduce

N [z̃a − z̃b; C̃γ1,γ([lε, lε+ η]) ≤ cγ,x
{
N [σ(ya)− σ(yb); C0

1([lε, lε+ η])]

+ ηγN [σ(ya)− σ(yb); Cγ1 ([lε, lε+ η])]
}
,

and then, according to (47) and (48),

N [z̃a − z̃b; C̃γ1,γ([lε, lε+ η])] ≤ c2
x,σ {1 +Nl+1} ηγN [ỹa − ỹb; C̃0,γ

1,γ ([lε, lε+ η])].

Since the paths ỹa − ỹb, z̃a − z̃b vanish on [0, lε], the latter estimate implies

N [z̃a − z̃b; C̃γ1,γ([0, lε+ η])] ≤ c2
x,σ {1 +Nl+1} ηγN [ỹa − ỹb; C̃γ1,γ([0, lε+ η])].
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Besides, (z̃a − z̃b)s = δ̃(z̃a − z̃b)s,lε, so that N [z̃a − z̃b; C̃0
1,γ([0, lε + η])] ≤ N [z̃a −

z̃b; C̃0,γ
1,γ ([0, lε+ η])]ηγ. Therefore,

N [z̃a− z̃b; C̃0,γ
1,γ ([0, lε+ η])] ≤ c2

x,σ {1 +Nl+1} (1 + T γ)ηγN [ỹa− ỹb; C̃0,γ
1,γ ([0, lε+ η])]. (51)

Fix η ≡ inf
(
ε, (2c2

x,σ {1 +Nl+1} (1 + T γ))−1/γ
)
so as to make Γ a strict contraction of the

set

{ỹ ∈ C̃0,γ
1,γ ([0, lε+ η]) : ỹ|[0,lε] = ỹ(l), N [ỹ; C̃0,γ

1,γ ([0, lε+ η])] ≤ Nl+1}.

Using the invariance of B
Nl+1

ỹ(l),(l+1)ε
, it is easily seen that the latter set is invariant by Γ too

(see Lemma 4.4 below). Consequently, there exists a unique �xed-point in this set, that
we denote by ỹ(l),η. Insofar as η does not depend on ỹ(l), the reasoning remains true on
the (invariant) set

{ỹ ∈ C̃0,γ
1,γ ([0, lε+ 2η]) : ỹ|[0,lε+η] = ỹ(l),η, N [ỹ; C̃0,γ

1,γ ([0, lε+ 2η])] ≤ Nl+1}.

Thus, ỹ(l),η can be extended into a solution ỹ(l),2η de�ned on [0, lε + 2η] and by iterating
the procedure until the interval [lε, (l + 1)ε] is covered, we get the expected extension
ỹ(l+1).

The uniqueness of the solution can be easily shown with the arguments of Step 2 (replace
z̃a, z̃b with ỹa, ỹb in (51)). The details are left to the reader.

�

Lemma 4.4. With the notations of the previous proof, the set

{ỹ ∈ C̃0,γ
1,γ ([0, lε+ η]) : ỹ|[0,lε] = ỹ(l), N [ỹ; C̃0,γ

1,γ ([0, lε+ η])] ≤ Nl+1}

is invariant by Γ.

Proof. Consider an element ỹ in the set in question and denote z̃ ≡ Γ(ỹ). Then de�ne

ŷt =

{
ỹt if t ≤ lε+ η

St−(lε+η) · ỹlε+η if t ∈ [lε+ η, (l + 1)ε].

The path ŷ is clearly continuous and accordingly belongs to C̃1,γ([0, (l + 1)ε]). Moreover,

if s, t ∈ [lε + η, (l + 1)ε], (δ̃ỹ)ts = 0, while if s ≤ lε + η ≤ t, (δ̃ŷ)ts = St−(lε+η) · (δ̃ỹ)lε+η,s,

so that N [ŷ; C̃γ1,γ([0, (l + 1)ε])] ≤ N [ỹ; C̃γ1,γ([0, lε + η])]. Since N [ŷ; C̃0
1,γ([0, (l + 1)ε])] ≤

N [ỹ; C̃0
1,γ([0, lε + η])], we deduce N [ŷ; C̃0,γ

1,γ ([0, (l + 1)ε])] ≤ N [ỹ; C̃0,γ
1,γ ([0, lε + η])] ≤ Nl+1,

which means that ŷ ∈ BNl+1

ỹl,(l+1)ε
. According to Step 1 of the previous proof, B

Nl+1

ỹl,(l+1)ε
is

invariant by Γ, and so, if ẑ ≡ Γ(ŷ), then N [ẑ; C̃0,γ
1,γ ([0, (l+ 1)ε])] ≤ Nl+1. It is now obvious

that z̃ = ẑ|[0,lε+η], which �nally leads to N [z̃; C̃0,γ
1,γ ([0, lε + η])] ≤ N [ẑ; C̃0,γ

1,γ ([0, (l + 1)ε])] ≤
Nl+1.

�

To conclude with this section, let us go back to the original setting of the equation:

Corollary 4.5. Under Hypothesis 2, and assuming that σ ∈ C2,b(Rd;Rd,m), the system
(2), interpreted with Proposition 4.1, admits a unique solution y in Cγ1 ([0, T ];Rd).

Proof. If ỹ stands for the solution of (38) given by Theorem 4.3, it su�ces to set, for any
t ∈ [0, T ], yt ≡ Ta,φ̃(ỹt). The details are left to the reader. �
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5. The rough case

Our aim still consists in studying the system (38), but we will suppose in this section
that the Hölder coe�cient γ of x belongs to (1/3, 1/2]. De�nition (43) does not make
sense anymore, and some developments at order 2 are required. To this end, we will resort
to the same strategy as in the di�usion case (see Subsection 2.2), divided into two steps:

(1) Identifying the algebraic structure of the potential solution ỹ, which will lead to
the introduction of a space Q̃ of controlled paths.

(2) Extending the integral of the system above x ∈ Cγ1 when ỹ ∈ Q̃.

5.1. Convolutional controlled paths. Let us start with some heuristic considerations.
As in the Young case, the system will be analyzed in the form (remember the notation
(32))

ỹ0 ≡ 0, δ̃ỹi = J
(
d̃xj σij(y)

)
, yu = Ta,φ̃(ỹu) := a+

∫
R
dξ φ̃(ξ)ỹu(ξ). (52)

Assume for the moment that x is a di�erentiable path. Equation (52) admits in this case
a unique solution ỹ, whose (convolutional) increments can be expanded into

(δ̃ỹi)ts(ξ) =

∫ t

s

St−u(ξ) dx
j
u σ

ij(yu) = X̃x,j
ts (ξ)σij(ys) + r̃its(ξ), (53)

with

X̃x,j
ts (ξ) =

∫ t

s

St−u(ξ) dx
j
u , r̃its(ξ) =

∫ t

s

St−u(ξ) dx
j
u (δσij(y))us. (54)

This elementary decomposition lets already emerge the structure likely to replace Qγx
(De�nition 2.5) in the convolutional setting. Let us go a little bit deeper into the analysis
of (53): if x and y are γ-Hölder (γ ∈ (1/3, 1/2]), it is natural to expect that, on the one
side, X̃x belongs to a space such that C̃γ2,β([0, T ];Rm), for some coe�cient β > 0, and on

the other side, r̃ ∈ C̃2γ
2,β([0, T ];Rd). For some technical reasons that will pop out in the

proof of Theorem 5.10, we shall actually be prompted to take β = 1 in order to exhibit a
global solution for (52).

Notations: For sake of clarity, we henceforth use the shortcut

C̃γk (I;V ) ≡ C̃γk,1(I;V ), k ∈ {1, 2, 3}. (55)

As in the previous section, let us label the appropriate regularity assumptions relative
to the path X̃x:

Hypothesis 3. Let x ∈ Cγ1 ([0, T ];Rm), with γ ∈ (1/3, 1/2]. We assume that there exists
a sequence xε of di�erentiable paths that satis�es

N [xε − x; Cγ1 ([0, T ];Rm)]
ε→0−→ 0,

and such that the sequence of paths de�ned by

X̃xε,i
ts (ξ) ≡

∫ t

s

St−u(ξ) dx
ε,i
u

converges to X̃x,i
ts (ξ) ≡

∫ t
s
St−u(ξ) dx

i
v (understood as a Young integral) w.r.t the topology

of C̃γ2 ([0, T ];Rm). In particular,

X̃x ∈ C̃γ2 ([0, T ];Rm) and δ̃X̃x = 0.

If x is a di�erentiable path, we assume that this result holds true for xε ≡ x.
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With the decomposition (53) in mind, the most natural and consistent framework to
study the system (52) is the following:

De�nition 5.1. Assume that Hypothesis 3 is satis�ed. For any interval I of [0, T ], we call
convolutional controlled path (by X̃x) on I, with values in Rd, any element ỹ in C̃γ1 (I;Rd)
whose convolutional increments can be written as

(δ̃ỹi)ts = X̃x,j
ts ỹx,ijs + ỹ],its , with ỹx ∈ Cγ1 (I;Rd,m) and ỹ] ∈ C̃2γ

2 (I;Rd), (56)

The set of convolutional controlled paths on I will be denoted by Q̃γx(I;Rd) and we provide
the latter space with the seminorm

N [ỹ; Q̃γx(I;Rd)]

≡ N [ỹ; C̃γ1 (I;Rd)] +N [ỹx; C0
1(I;Rd,m)] +N [ỹx; Cγ1 (I;Rd,m)] +N [ỹ]; C̃2κ

2 (I;Rd]. (57)

Remark 5.2. It may be worth noticing that in spite of its notation, the path ỹx de�ned
through (56) takes values in a Euclidian space, and not in a functional space.

In order to give sense to the system (52) when ỹ ∈ Q̃γx(I;Rk), it is now important to
identify the algebraic structure of the integrand σ(yu), where yu ≡ Ta,φ̃(ỹu). To begin

with, observe that if δ̃ỹ admits the decomposition (56), then the increments of y can be
written as:

(δyi)ts =

∫
R
dξ φ̃(ξ)(δỹi)ts(ξ)

=

∫
R
dξ φ̃(ξ)(δ̃ỹi)ts(ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ)

=

∫
R
dξ φ̃(ξ)X̃x,j

ts (ξ)ỹx,ijs +

∫
R
dξ φ̃(ξ)ỹ],its (ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ)

= Xx,j
ts ỹ

x,ij
s +

∫
R
dξ φ̃(ξ)ỹ],its (ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ), (58)

where Xx,j
ts ≡

∫
R dξ φ̃(ξ)X̃x,j

ts (ξ) is well-de�ned as an element of Cγ2 ([0, T ];Rm), thanks to
Hypothesis 3. Let us analyze (58) as far as Hölder-continuity is concerned. For the last
term of the composition, remember the obvious estimate |Ats(ξ)| ≤ c |ξ| |t− s|, which
entails here ∣∣∣∣∫

R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ)

∣∣∣∣ ≤ |t− s| N [ỹs;L1],

and consequently suggests that the path at stake is quite smooth. Besides, the regularity
assumption on ỹ],i immediately gives∣∣∣∣∫

R
dξ φ̃(ξ)ỹ],its (ξ)

∣∣∣∣ ≤ |t− s|2γ N [ỹ; Q̃γx].

With those two controls in hand, it would be tempting to envisage an algebraic structure
such that

{y : (δyi)ts = Xx,j
ts y

x,ij
s + y],its , with y

x ∈ Cγ1 (Rm,l) and y] ∈ C2γ
2 (Rk)}.

It is indeed possible to show that the latter set is invariant when composing the path with
a smooth enough mapping, which would ensure the transition between y and σ(y).
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Nevertheless, a little bit more subtle analysis of (58) leads to more convenient algebraic
handlings. It actually su�ces to observe that the path X̃x can be decomposed as

X̃x
ts(ξ) =

∫ t

s

St−u(ξ) dxu = (δx)ts +

∫ t

s

Atu(ξ) dxu.

When x ∈ Cγ1 (Rm), the latter transformation is at this point purely formal. Let us record
it through the following theoretical hypothesis, that will examined into details at Section
6:

Hypothesis 4. Under Hypothesis 3, we admit that the sequence of paths de�ned by

X̃Axε,i
ts (ξ) ≡

∫ t

s

Atu(ξ) dx
ε,i
u ,

converges w.r.t to the topology of the space C̃1+γ
2,0 (Rm) (we recall that this space has been

de�ned at Subsection 3.3). In particular,

X̃Ax ∈ C̃1+γ
2,0 (Rm) and X̃x

ts(ξ) = x1
ts + X̃Ax

ts (ξ), (59)

where we have denoted, according to [25], x1 ≡ δx.
If x is a di�erentiable path, we assume that this result holds true for xε ≡ x.

Remark 5.3. The regularity assumption contained in (59) is of course suggested by the
estimate |Ats(ξ)| ≤ c|ξ| |t− s|, having also in mind the fact that we are working with the
underlying functional space L1 (Notation (55)).

Going back to (58), the increments of y can now be expanded into

(δyi)ts = x1,j
ts (Lφ̃ ỹ

x,ij
s ) +

[
XAx,j
ts ỹx,ijs +

∫
R
dξ φ̃(ξ)ỹ],its (ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ)

]
, (60)

where we have set

Lφ̃ ≡
∫
R
dξ φ̃(ξ) and XAx

ts ≡
∫
R
dξ φ̃(ξ)X̃Ax

ts (ξ). (61)

Therefore, owing to the regularity assumption (59), we recover here the same structure
of controlled paths as in the analysis of standard systems (see De�nition 2.5), and we
have established the following transition:

Proposition 5.4. Under Hypotheses 3 and 4, if ỹ ∈ Q̃γx(I;Rd) admits the decomposition

δ̃ỹi = X̃x,j ỹx,ij + ỹ],i, then the path y ≡ Ta,φ̃(ỹ) belongs to Qγx(I;Rd) and admits the

decomposition δyi = x1,j yx,ij + y],i, with

yx,ijt = Lφ̃ ỹ
x,ij
t , y],its = XAx,j

ts ỹx,is +

∫
R
dξ φ̃(ξ)ỹ],its (ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ). (62)

The expected structure for the integrand σ(y) immediately arises from this result.
Indeed, we have already recalled the invariance property: if y ∈ Qγx(I;Rd) and σ ∈
C2,b(Rd;Rd,m), then z ≡ σ(y) ∈ Qγx(I;Rd,m), where the space Qγx(I;Rd,m) has also been
introduced in De�nition 2.5.



ROUGH VOLTERRA EQUATIONS 21

5.2. Convolutional integration of controlled paths. Taking the above considerations
into account, the interpretation of the system (52) is now reduced to the problem of

extending the integral J (d̃xj zij) to the case x is γ-Hölder (γ ∈ (1/3, 1/2]) and z ∈
Qγx(I;Rd,m). Observe that with a view to settling a �xed-point argument, it also matters
that the extension gives birth to an element in Q̃γx(I;Rd).

In order to construct the integral in question, we will rely, as in the standard case, on
the a priori existence of a convolutional Levy area adapted to the context:

Hypothesis 5. Under Hypothesis 3, we admit that the sequence of paths de�ned by

X̃xεxε,ij
ts (ξ) ≡

∫ t

s

St−u(ξ) dx
ε,i
u (δxε,j)us

converges to a path X̃xx w.r.t the topology of C̃2γ
2 (Rm,m). In particular,

X̃xx ∈ C̃2γ
2 (I;Rm,m) and (δ̃X̃xx)tus = X̃x

tu ⊗ (δx)us. (63)

If x is a di�erentiable path, we assume that this result holds true for xε ≡ x.

Once endowed with this second-order path, here is the natural way to integrate a
controlled path:

Proposition 5.5. We assume that both Hypotheses 3 and 5 are satis�ed, and let I = [l1, l2]
a �xed subinterval of [0, T ]. For any path z ∈ Qγx(I;Rd,m) with decomposition

δzij = x1,k zx,ijk + z],ij, (64)

we set, for any s < t ∈ I,

Jts(d̃xj zij) ≡ X̃x,j
ts zijs + X̃xx,jk

ts zx,ijks + Λ̃ts

(
X̃x,j z],ij + X̃xx,jk δzx,ijk

)
. (65)

Then:

(1) J (d̃xj zij) is well-de�ned as an element of C̃γ2 (I;Rd) and for any ξ ∈ R,
Jts(d̃xj zij)(ξ) coincides with the usual Riemann integral

∫ t
s
St−u(ξ) dx

j
u z

ij
u when x

is a di�erentiable path.
(2) For any h̃ ∈ L1, there exists a unique path z̃ ∈ Q̃γx(I;Rd) such that z̃l1 = h̃ and

δ̃z̃i = J (d̃xj zij).

(3) For any s < t ∈ I, Jts(d̃xj zij) can be described by the formula:

Jts(d̃xj zij) = lim
|Πts|→0

n∑
l=0

[
X̃x,j
tl+1,tl

zijtl + X̃xx,jk
tl+1,tl

zx,ijktl

]
in L1, (66)

where the limit is taken over any partition Πts = {t0 = t, . . . , tn = s} of [s, t] whose
mesh tends to 0.

Proof. (1) If x is a di�erentiable path, then, as in the Young case, we �rst write

Jts(d̃xj zij)(ξ) =

∫ t

s

St−v(ξ) dx
j
v z

ij
v = X̃x,j

ts (ξ) zijs +

∫ t

s

St−v(ξ) dx
j
v (δzij)vs.

By injecting the decomposition (64) of (δzij)vs in the latter relation, we get

Jts(d̃xj zij)(ξ) = X̃x,j
ts (ξ) zijs +

∫ t

s

St−v(ξ) dx
j
v

[
x1,k
vs z

x,ijk
s + z],ijvs

]
= X̃x,j

ts (ξ) zijs + X̃xx,jk
ts (ξ) zx,ijks +

∫ t

s

St−v(ξ)dx
j
v z

],ij
vs ,
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and so, with the notation (33),

Jts(d̃xj z],ij) = Jts(d̃xj zij)− X̃x,j
ts zijs − X̃

xx,jk
ts zx,ijks . (67)

Let us now apply the operator δ̃ to the two sides of this equality: thanks to (34), (30),
(64) and (63), we successively deduce

δ̃
(
J (d̃xj z],ij)

)
= X̃x,j δzij − δ̃X̃xx,jk zx,ijk + X̃xx,jk δzx,ijk

= X̃x,j (x1,k zx,ijk) + X̃x,j z],ij − (X̃x,j x1,k) zx,ijk + X̃xx,jk δzx,ijk

= X̃x,j z],ij + X̃xx,jk δzx,ijk,

and we are therefore allowed to write, via (37),

J (d̃xj z],ij) = Λ̃
(
X̃x,j z],ij + X̃xx,jk δzx,ijk

)
.

Going back to (67), we recover (65). The validity of the latter formula for a Hölder path x
is then a straightforward consequence of the algebraic and analytic assumptions contained
in Hypotheses 3 and 5, which also accounts for (2). As for (3), it stems from Corollary
3.9, after noticing that

δ̃z̃i = (Id−Λ̃δ̃)(X̃x,j zij + X̃xx,jk zx,ijk).

�

5.3. Localized controlled paths. At this point, we are able to interpret the system
(52) under Hypotheses 3, 4 and 5, as the following loop summarizes it:

Q̃γx
Prop. 5.4−→ Qγx −→ Qγx

Prop. 5.5−→ Q̃γx
ỹi 7−→ y = Ta,φ̃(ỹ) 7−→ σij(y) 7−→ (δ̃z̃i) = J (d̃xj σij(y)).

The proof of existence (and uniqueness) of a global solution to the system will stem
from successive �xed point arguments in the spaces Q̃γx(In), for a particular sequence
In of intervals that covers [0, T ]. Patching those local solutions together will require a

simultaneous control on both the norms of ỹ and the initial condition h̃n = ỹln on each
interval In = [ln, ln+1], when applying the 3-step procedure described by the above loop.

The most natural idea to do so consists in splitting up the reasoning into three successive
estimates, each of them corresponding to a particular step, and when the intermediate
space Qγx(I) is provided with its usual norm N [.;Qγx(I)], de�ned by (18).

Unfortunately, using the latter norm turns out not to be su�cient in order to get a
sharp enough �nal estimate expressed in terms of N [ỹ; Q̃γx(In)] and N [ỹln ;L1], and an
additional technical argument has to be settled here. It involves the introduction of a
speci�c (a�ne) subspace of Qγx(In), intended to isolate the terms that depend only on the
initial condition ỹln .

We assume in this subsection that x satis�es the three hypotheses 3, 4 and 5, and we
�x an arbitrary subinterval I = [l1, l2] of [0, T ].

De�nition 5.6. Let k ∈ N∗, f ∈ C1
2(I;Rk). A path y ∈ Cγ1 (I;Rk) will be said γ-controlled

(by x) around f on I if its increments admit the following decomposition: for all s < t ∈ I,

(δyi)ts − f its = x1,j
ts y

x,ij
s + y[,its with yx ∈ Cγ1 (I;Rm,k) and y[ ∈ C2γ

2 (I;Rk). (68)
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The set of such paths will be denoted by Aγx,f (I;Rk), and to any y ∈ Aγx,f (I;Rk), we
associate the quantity

M[y;Aγx,f (I;Rk)]

≡ N [yx; C0
1(I;Rk,m)] +N [yx; Cγ1 (I;Rk,m)] +N [y[; C2γ

2 (I;Rk,m)] +N [y; Cγ1 (I;Rk)].

As with the controlled paths, we then de�ne, for any f ∈ C1
2(I;Rk,l), Aγx,f (I;Rk,l) as

the set of paths y ∈ Cγ1 (I;Rk,l) such that, for any j = 1, . . . , l, y.j ∈ Aγx,f (I;Rk), and we
associate to those elements the quantity

M[y;Aγx,f (I;Rk,l)] ≡
l∑

j=1

N [y.j;Aγx,f (I;Rk)].

Obviously, Aγx,0(I) = Qγx(I) and more generally: for any f ∈ C1
2(I;Rk), Aγx,f (I) ⊂

Qγx(I). The crucial point in our localization around f is precisely that this latter increment
does not (directly) intervene in the computation ofM[y;Aγx,f (I;Rk)].

Let us now see how the sets Aγx,f (I) pop out naturally when one integrates a convolu-
tional controlled path with respect to ξ.

Proposition 5.7. We assume that both Hypotheses 3 and 4 are satis�ed. Let ỹ ∈
Q̃γx(I;Rk) such that ỹl1 = h̃ ∈ L1 and δ̃ỹ = X̃x,j ỹx,ij + ỹ],i, and set y ≡ Ta,φ̃(ỹ). Then

y ∈ Aγx,f (I;Rk), with fts ≡
∫
R dξ φ̃(ξ)Ats(ξ)Ss−l1(ξ)h̃(ξ). Moreover,

M[y;Aγx,f (I;Rd)] ≤ cx

{
N [ỹ; Q̃γx(I;Rd)] + |I|1−γ N [h̃;L1]

}
. (69)

Proof. From (60), we can write, for all s < t ∈ I,

(δyi)ts

= x1,j
ts (Lφ̃ ỹ

x,ij
s ) + X̃Ax,j

ts ỹx,ijs +

∫
R
dξ φ̃(ξ) ỹ],its (ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)ỹ

i
s(ξ)

= x1,j
ts (Lφ̃ ỹ

x,ij
s ) + X̃Ax,j

ts ỹx,ijs +

∫
R
dξ φ̃(ξ) ỹ],its (ξ) +

∫
R
dξ φ̃(ξ)Ats(ξ)(δ̃ỹ

i)sl1(ξ) + f its.

Now set yx,ijs ≡ Lφ̃ ỹ
x,ij
s , y[,its ≡ X̃Ax,j

ts ỹx,ijs +
∫
R dξ φ̃(ξ)

{
ỹ],its (ξ) + Ats(ξ)(δ̃ỹ

i)sl1(ξ)
}
. Clearly,

N [y[; C2γ
2 ] ≤ cx

{
N [ỹx; C0

1 ] +N [ỹ]; C̃2γ
2 ] +N [ỹ; C̃γ1 ]

}
≤ cxN [ỹ; Q̃γx],

and |(δy)ts| ≤ |fts|+ |t− s|γ N [Xx; Cγ2 ]N [ỹx; C0
1 ] + |t− s|2γ N [y[; C2γ

2 ].

As |fts| ≤ |t− s| N [h̃;L1], we get N [y; Cγ1 ] ≤ |I|1−γ N [h̃;L1] + cxN [ỹ; Q̃γx], and (69) is
thus proved.

�

The following result is the analog of [19, Proposition 4] in the context of localized
controlled paths:

Proposition 5.8. Let y ∈ Aγx,f (I;Rd) with yl1 = h and δyi − f i = x1,j yx,ij + y[,i, and

consider a mapping σ ∈ C3,b(Rd;Rd,m). Then σ(y) ∈ Aγx,Dσ(h)f (I;Rd,m) and the following
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estimate holds true:

M[σ(y);Aγx,Dσ(h)f (I)]

≤ cx,σ
{

1 +M[y;Aγx,f (I)]2 + |I|1−γM[y;Aγx,f (I)]N [f ; C1
2(I)] + |I|1−γ N [f ; C1

2(I)]
}
.

(70)

Moreover, if y(1), y(2) ∈ Aγx,f (I;Rd,m) are such that y
(1)
l1

= y
(2)
l1
, then

N [σ(y(1))− σ(y(2));Qγx(I)]

≤ cx,σN [y(1) − y(2);Qγx(I)]
{

1 +M[y(1);Aγx,f (I)]2 +M[y(2);Aγx,f (I)]2

+ |I|1−γ N [f ; C1
2(I)](1 +N [y(1); Cγ1 (I)] +N [y(2); Cγ1 (I)])

}
. (71)

Proof. This is a matter of standard di�erential calculus, which mostly appeals to the
same arguments as in the proofs of [19, Proposition 4] and [32, Lemma 3.1]. For sake of
conciseness, we refer the reader to the latter articles for further details. �

Let us again point out the fact that Aγx,f is a subset ofQγx. This means in particular that

for any element z ∈ Aγx,f (I;Rd,m), the integral J (d̃xj zij) can be de�ned using Proposition
5.5. For those particular paths, we have the following control at our disposal:

Proposition 5.9. Assume that both Hypotheses 3 and 5 are satis�ed. If z ∈ Aγx,f (I;Rd,m),

then the seminorm of the path z̃ ∈ Q̃γ(I;Rd) de�ned by z̃l1 = h̃ ∈ L1 and δ̃z̃
i = J (d̃xj zij)

can be estimated by

N [z̃; Q̃γx(I;Rd)]

≤ cx
{
N [z; C0

1(I;Rd,m)] +
∣∣zxl1∣∣+ |I|γM[z;Aγx,f (I;Rd,m)] + |I|1−γ N [f ; C1

2(I;Rd,m)]
}
.

(72)

Proof. According to Proposition 5.5, the decomposition of z̃ as a convolutional controlled
path is given by δ̃z̃i = X̃x,j z̃x,ij + z̃],i, with z̃x = z and z̃] = z̃],1 + z̃],2, where

z̃],1,i ≡ X̃xx,jk zx,ijk and z̃],2,i ≡ Λ̃(X̃x,j (z[,ij + f ij) + X̃xx,jk δzx,ijk).

Since (δzij)ts = f ijts + x1,k
ts zx,ijks + z[,ijts = f ijts + x1,k

ts zx,ijkl1
+ x1,k

ts (δzx,ijk)sl1 + z[,ijts ,

N [ζ z̃; Cγ1 (I)] = N [z; Cγ1 (I)] ≤ cx
{
|I|1−γ N [f ; C1

2(I)] +
∣∣zxl1∣∣+ |I|γM[z;Aγf,h(I)]

}
.

As for the residual term, we �rst have, by writing z̃],1,its = X̃xx,jk
ts zx,ijkl1

+ X̃xx,jk
ts (δzx,ijk)sl1 ,

N [z̃],1; C̃2γ
2 ] ≤ cx

{
|zxl1 |+ |I|

γM[z;Aγx,f (I)]
}
, while, due to the contraction property (16),

N [z̃],2; C̃2γ
2 (I)] ≤ cx

{
|I|γM[z;Aγx,f (I)] + |I|1−γ N [f ; C1

2(I)]
}
.

Finally, as δ̃z̃i = X̃x,j z̃x,ij + z̃],i,

N [z̃; C̃γ1 (I)] ≤ cx
{
N [z; C0

1(I)] +
∣∣zxl1∣∣+ |I|γM[z;Aγx,f (I)] + |I|1−γ N [f ; C1

2(I)]
}
,

which achieves the proof of (72). �
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5.4. Solving the equation. We are now in position to solve the system:

Theorem 5.10. Assume that the three hypotheses 3, 4 and 5 are satis�ed. If σ ∈
C3,b(Rd;Rd,m), then the system (52), interpreted with Proposition 5.5, admits a unique
solution ỹ in Q̃γx([0, T ];Rd). Moreover, there exists a function C : (R+)3 → R+ growing
with each of its three arguments, such that

N [ỹ; Q̃γx([0, T ];Rd)] ≤ C(N [Xx; C̃γ2 ],N [X̃Ax; C̃1+γ
2,0 ],N [X̃xx; C̃2γ

2 ]). (73)

Proof. As we announced it in the introduction, the proof will consist in successive �xed-
point arguments on a sequence of intervals (In)n that covers [0, T ]. We shall more precisely
consider the sequence given by:

INn = [lNn , l
N
n+1] with lN0 = 0 and εn = εNn = lNn+1 − lNn =

1

N + n
, (74)

where N is a positive integer that will be determined in the course of the proof.

On each of those intervals, the procedure will (as usual) be divided into two steps: we
�rst establish the existence of invariant subsets for the mapping Γ associated to the system,
and then show that the restriction of Γ to some of those subsets is a strict contraction.

The results of Subsection 5.3 show that in order to control the image z̃ ≡ Γ(ỹ) of a
path ỹ ∈ Q̃γx(INn ), it is important to have an estimate of the norm of ỹ in Q̃γx(INn ), but

also of the norm of the initial condition h̃n ≡ ỹlNn . This general observation will be at the
core of our reasoning.

Step 1: Invariance of balls. Let us temporarily �x the parameter N in (74), and
introduce two additional parameters α1, α2 > 0, the value of which will also be determined
during the proof. We consider the sets

Bh̃n
n ≡ {ỹ ∈ Q̃γx(INn ) : ỹlNn = h̃n, ỹ

x
lNn

= σ(hn), N [ỹ; Q̃γx(INn )] ≤ (N + n)α2},

where h̃n ∈ L1 is such that N [h̃n;L1] ≤ (N + n)α1 . As in the proof of Theorem 4.3, if

ỹ ∈ Bh̃n
n , z̃ ≡ Γ(ỹ) stands for the path in Q̃γx(INn ) de�ned by the two conditions: z̃lNn = h̃n

and for all s, t ∈ INn , (δ̃z̃)ts = Jts(d̃xj σij(y)), where y ≡ Ta,φ̃(ỹ).

With those notations, we are going to prove that α1 and α2 can be picked in such a

way that, on the one hand, the sets Bh̃n
n are invariant by Γ, and, on the other hand, the

following property holds true:

(H) If ỹ ∈ Bh̃n
n , then N [ỹlNn+1

;L1] ≤ (N + n+ 1)α1 .

The latter condition will allow us to patch successive �xed points together at Step 3.

Let ỹ ∈ Bh̃n
n , z̃ ≡ Γ(ỹ). In order to apply the results of Subsection 5.3, denote, for all

s < t ∈ INn ,

yt ≡ Ta,φ̃(ỹt) , f
n
ts ≡

∫
R
dξ φ̃(ξ)Ats(ξ)Ss−lNn (ξ)h̃n(ξ) , gnts ≡ Dσ(ylNn ) fnts. (75)

Estimate (72) �rst gives

N [z̃; Q̃γx(INn )]

≤ cx

{
N [σ(y); C0

1(INn )] + |σ(y)xlNn |+ εγnM[σ(y);Aγx,gn(INn )] + ε1−γ
n N [gn; C1

2(INn )]
}
. (76)
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According to Propositions 5.8 and 5.7, we know that

σ(y)x,ijk
lNn

= ∂pσ
ij(ylNn ) yx,pk

lNn
= ∂pσ

ij(ylNn ) (Lφ̃ ỹ
x,pk
lNn

) = Lφ̃ ∂pσ
ij(ylNn )σpk(h̃n),

so that |σ(y)xlNn | ≤ cσ. Besides, we obviously have

N [gn; C1
2(INn )] ≤ ‖Dσ‖∞N [fn; C1

2(INn )] ≤ cσN [h̃n;L1].

Going back to (76), we deduce

N [z̃; Q̃γx(INn )] ≤ cx,σ

{
1 + εγnM[σ(y);Aγx,gn(INn )] + ε1−γ

n N [h̃n;L1]
}
.

The association of estimates (70) and (69) then entails

N [z̃; Q̃γx(INn )] ≤ c1
x,σ

{
1 + ε1−γ

n N [h̃n;L1]

+ εγnN [ỹ; Q̃γx(INn )]2 + εnN [ỹ; Q̃γx(INn )]N [h̃n;L1] + ε2−γ
n N [h̃n;L1]2

}
. (77)

In order to establish the invariance of Bh̃n
n , or in other words to prove that N [z̃; Q̃γx(INn )] ≤

(N + n)α2 (for N large enough), a �rst series of conditions naturally arises from (77):
α1 − (1− γ) < α2

2α2 − γ < α2

α1 + α2 − 1 < α2

2α1 − 2 + γ < α2,

(78)

and it is easily seen that this system reduces to{
α2 < γ

α1 < 1− γ + α2.
(79)

If α1, α2 > 0 are assumed to satisfy those two conditions, then we can pick N large
enough so that the expected stability property is checked. Indeed, from (77), we get
N [z̃; Q̃γx(INn )] ≤ 6c1

x,σ (N + n)α3 , where α3 stands for the largest left-hand side of system
(78). As α3 < α2, we can pick N such that for any n ≥ 0, (N + n)α2−α3 ≥ 6c1

x,σ, and so

N [z̃; Q̃γx(INn )] ≤ (N + n)α2 .

It now remains to analyze condition (H). To this end, write

ỹilNn+1
= Sεn ỹ

i
lNn

+ (δ̃ỹi)lNn+1l
N
n

= Sεn h̃
i
n + X̃x,j

lNn+1l
N
n
σij(h̃n) + ỹ],i

lNn+1l
N
n
,

which leads to

|ỹlNn+1
| ≤ |h̃n|+cx,σ εγn+ε2γ

n N [ỹ; Q̃γx(INn )] ≤ (N+n)α1 +cx,σ (N+n)−γ+(N+n)α2−2γ. (80)

Then observe the asymptotic equivalent cx,σm−γ+mα2−2γ

(m+1)α1−mα1 ∼m→∞ cx,σm−γ+mα2−2γ

α1mα1−1 : thus, by

adding to (79) the (compatible) condition

α1 > 1− γ, (81)

there exists an integer N large enough such that, for any n ∈ N∗,
(N + n)α1 + cx,σ (N + n)−γ + (N + n)α2−γ ≤ (N + n+ 1)α1 .

We pick N in this way to retrieve, from (80), property (H).

Step 2: Contraction property. Let ỹ(1), ỹ(2) ∈ Bh̃n
n , z̃(1) ≡ Γ(ỹ(1)), z̃(2) ≡ Γ(ỹ(2)), and

set y(1) ≡ Ta,φ̃(ỹ(1)), y(2) ≡ Ta,φ̃(ỹ(2)). Here again, the expected property will stem from
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the estimates of subsection 5.3. It is �rst worth noticing that if y(1), y(2) ∈ Aγx,f (I), then

y(1)−y(2) ∈ Aγx,0(I) andN [y(1)−y(2);Aγx,0(I)] = N [y(1)−y(2);Qγx(I)]. Therefore, according
to (72),

N [z̃(1) − z̃(2); Q̃γx(INn )]

≤ c
{
N [σ(y(1))− σ(y(2)); C0

1(INn )] + |σ(y(1))xlNn − σ(y(2))xlNn |+ εγnN [σ(y(1))− σ(y(2));Qγx(INn )]
}
.

Of course, σ(y(1))xlNn = σ(y(2))xlNn and

N [σ(y(1))− σ(y(2)); C0
1(INn )] ≤ εγnN [σ(y(1))− σ(y(2));Qγx(INn )],

which, together with estimates (71) and (69), easily gives

N [z̃(1) − z̃(2); Q̃γx(INn )] ≤ cx,σ JN+nN [ỹ(1) − ỹ(2); Q̃γx(INn )],

with

Jn = n−γ + n−γ+2α2 + n2α1−(2−γ) + nα1−1 + nα1+α2−1,

In order to ensure that limN→∞ JN = 0, we are this time led to the system
2α2 − γ < 0

2α1 − 2 + γ < 0

α1 − 1 < 0

α1 + α2 − 1 < 0,

(82)

which, intersected with both conditions (79) and (81), provides the �nal assumption{
0 < α2 <

γ
2

1− γ < α1 < 1− γ + α2.

Once such coe�cients �xed, we can choose N large enough so that both the contraction

property and the property (H) are satis�ed on the invariant balls Bh̃n
n , n ≥ 0.

Step 3: Patching the solutions. The construction of the expected global solution ỹ ∈
Q̃γx([0, T ]) is now reduced to a patching argument.

First, we de�ne the sequence (ỹ(n), ỹ(n),x)n≥0 according to the following iterative proce-

dure: (ỹ(0), ỹ(0),x) ∈ Q̃γx(IN0 ) is the �xed point of Γ in B0
0 and for any n ≥ 1, (ỹ(n), ỹ(n),x) ∈

Q̃γx(INn ) is the �xed point of Γ in B
ỹ
(n−1)

lNn
n . The latter construction is made possible by the

two previous steps. Then we de�ne, for any t ∈ [0, T ],

ỹt ≡
NT∑
n=0

ỹ
(n)
t 1INn (t) , ỹxt ≡

NT∑
n=0

ỹ
(n),x
t 1INn (t),

where NT stands for the smallest integer such that
∑NT

n=0 |INn | ≥ T .

If lNk−1 < s ≤ lNk < . . . < lNk′ ≤ t < lNk′+1, one can appeal to the decomposition

(δ̃ỹ)ts = St−lNk · (δ̃ỹ)lNk s + (δ̃ỹ)tlN
k′

+
k′−1∑
i=k

St−lNi+1
· (δ̃ỹ)lNi+1l

N
i
, (83)

together with the relation δ̃X̃x = 0, to deduce

(δ̃ỹi)ts = X̃x,j
ts ỹx,ijs + ỹ],its , (84)
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with ỹ],its = ỹ],1,its + ỹ],2,its ,

ỹ],1,its ≡ X̃x,j

tlNk

[
ỹ

(k),x,ij

lNk
− ỹ(k−1),x,ij

s

]
+

k′∑
p=k+1

X̃x,j
tlNp

[
ỹ

(p),x,ij

lNp
− ỹ(p−1),x,ij

lNp−1

]
,

ỹ],2ts ≡ St−lNk · ỹ
(k−1),],i

lNk s
+ ỹ

(k′),],i

tlN
k′

+
k′−1∑
p=k

St−lNp+1
· ỹ(p),],i

lnp+1l
N
p
.

From those expressions, and owing to the regularity of each ỹ(k),x, it is easily seen that
(ỹ, ỹx) de�nes an element of Q̃γx([0, T ]).

Let us �nally go back to (83), which can also be written as

(δ̃ỹi)ts = St−lNk · JlNk s(d̃x
j σij(y)) + JtlN

k′
(d̃xj σij(y)) +

k′−1∑
p=k

St−lNp+1
· JlNp+1l

N
p

(d̃xj σij(y)).

By invoking the relation δ̃
(
J (d̃xj zij)

)
= 0, we get

JtlN
k′−1

(d̃xj σij(y)) = JtlN
k′

(d̃xj σij(y)) + St−lN
k′
· JlN

k′ l
N
k′−1

(d̃xj σij(y)),

hence

(δ̃ỹi)ts = St−lNk · JlNk s(d̃x
j σij(y)) + JtlN

k′−1
(d̃xj σij(y)) +

k′−2∑
p=k

St−lNp+1
· JlNp+1l

N
p

(d̃xj σij(y)).

The iteration of this simpli�cation procedure leads to (δ̃ỹi)ts = Jts(d̃xj σij(y)) for all
s, t ∈ [0, T ].

The uniqueness of the solution is easy to establish with the estimates of Step 2, just as
in the di�usion case (see for instance the proof of [15, Theorem 2.6]). As for the control
result (73), it is a consequence of decomposition (84), having in mind the local controls

induced by the balls Bh̃n
n . �

Once endowed with the control result (73), the continuity of the Itô map associated to
(38) can be proved along the same lines as in the case of ordinary systems. The reader
is (here again) refered to the proof of [15, Theorem 2.6] for a detailed analysis of the
method. For the statement of this result, we call 'initial' condition of (52) the constant
a that appears in the system. This actually corresponds to the initial condition of the
original equation (2).

Corollary 5.11. Assume that the three hypotheses 3, 4 and 5 are satis�ed for two distinct
paths x(1) and x(2), and let σ ∈ C3,b(Rd;Rd,m). If ỹ(1) (resp. ỹ(2)) denotes the solution of
the system (52) driven by x(1) (resp. x(2)) in the sense of Proposition 5.5, with 'initial'
condition a(1) (resp. a(2)), then

N [ỹ(1) − ỹ(2); C̃γ1 ([0, T ];Rm)] ≤ cx(1),x(2)

{ ∣∣a(1) − a(2)
∣∣

+N [X̃x(1) − X̃x(2) ; C̃γ2 ] +N [X̃Ax(1) − X̃Ax(2) ; C̃1+γ
2,0 ] +N [X̃x(1)x(1) − X̃x(2)x(2) ; C̃2γ

2 ]

}
, (85)

with
cx(1),x(2) ≡ C

(
X̃x(1) , X̃x(2) , X̃Ax(1) , X̃Ax(2) , X̃x(1)x(1) , X̃x(2)x(2)

)
,
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where C is a function that grows with its arguments.

Let us conclude with a transposition of this result into the original setting of (2):

Corollary 5.12. Under Hypotheses 3, 4 and 5, and assuming that σ ∈ C3,b(Rd;Rd,m),
the system (2), interpreted with Propositions 5.5 and 5.7, admits a unique solution y in
Qγx([0, T ];Rd). Moreover, the continuity result (85) remains true for y, w.r.t the (classical)
Hölder norm N [.; Cγ1 ] in the left-hand-side.

Proof. As in the Young case, it su�ces to set, for any t ∈ [0, T ], yt ≡ Ta,φ̃(ỹt), where ỹ is
the path given by Theorem 5.10. �

6. Application to rough paths

The aim now consists in proving that the hypotheses we have raised all through the
previous two sections can actually be checked for a large class of Hölder paths x. If we
put those di�erent hypotheses (Hypotheses 2, 3, 4 and 5) together, we have to show the
existence of three paths (X̃x, X̃Ax, X̃xx) that would extend the three de�nitions (valid
when x is di�erentiable)

X̃x
ts(ξ) =

∫ t

s

St−u(ξ) dxu , X̃Ax
ts (ξ) =

∫ t

s

At−u(ξ) dxu, (86)

X̃xx
ts (ξ) =

∫ t

s

St−u(ξ) dxu ⊗ x1
us, (87)

above a γ-Hölder x, with γ > 1/3 (remember that x1 ≡ δx).

6.1. An integration by parts argument. We propose here to extend (86)-(87) via
elementary integrations by parts, following the general scheme:∫ t

s

St−u(ξ) dxu =

∫ t

s

St−u(ξ) d(xu − xs) = x1
ts −

∫ t

s

d

du
(St−u(ξ))x

1
us du. (88)

Let us �rst evoke the Young case (γ > 1/2), for which only X̃x comes into the picture:

Proposition 6.1. Let x ∈ Cγ1 ([0, T ];Rm), with γ > 1/2. If
∫
R dξ |φ̃(ξ)|(1 + |ξ|1+γ) <∞,

then any sequence of di�erentiable paths xε such that

N [xε − x; Cγ1 ([0, T ];Rm)]
ε→0−→ 0,

satis�es Hypothesis 2.

Proof. For any di�erentiable path x̃, one has, thanks to (88),

|X̃ x̃
ts(ξ)| ≤ |x̃1

ts|+ |ξ|
∫ t

s

|x̃1
us| du ≤ cN [x̃; Cγ1 ] |t− s|γ {1 + |ξ|} . (89)

Since
∫
R dξ |φ̃(ξ)|(1+|ξ|1+γ) <∞, it is then easily seen that (X̃xε)ε>0 is a Cauchy sequence

in Cγ2,γ(Rm). �

The extension of the two paths X̃Ax et X̃xx, which is needed in order to apply the
results of Section 5, that is to say when γ ∈ (1/3, 1/2], will stem from the same kind of
argument. It su�ces to notice that, if x is a di�erentiable path,

X̃Ax
ts (ξ) =

∫ t

s

d

du
(St−u(ξ))x

1
us du, (90)
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and if we denote by x2 the standard Lévy area of x (x2
ts ≡

∫ t
s
dxv ⊗ (δx)vs), which is at

the core of the rough paths methods, one has

X̃xx
ts (ξ) =

∫ t

s

St−u(ξ)
d

du
(x2

us) du = x2
ts +

∫ t

s

d

du
(St−u(ξ))x

2
us du. (91)

With the same argument as in the previous proof, those transformations lead to the
assertion:

Proposition 6.2. Let x a path allowing the construction of a 2-rough path x = (x1,x2) ∈
Cγ2 (Rm)×C2γ

2 (Rm,m), for some coe�cient γ > 1/3. If
∫
R dξ |φ̃(ξ)|(1+ |ξ|2) <∞, then any

sequence xε of di�erentiable paths such that

N [xε − x; Cγ1 ([0, T ];Rm)] +N [xε,2 − x2; C2γ
2 ([0, T ];Rm,m)]

ε→0−→ 0 (92)

satis�es the three hypotheses 3, 4 and 5.

We are thus in position to provide a more explicit formulation of Corollary 5.12:

Theorem 6.3. Let x : [0, T ]→ Rm a γ-Hölder path (γ > 1/3) allowing the construction
of a geometric 2-rough path x = (x1,x2) ∈ Cγ2 (Rm) × C2γ

2 (Rm,m). Assume that φ can

be represented as (5) on [0, T ], for some function φ̃ such that the integrability condition∫
R dξ |φ̃(ξ)|(1 + |ξ|2) <∞ is satis�ed. Then, if σ ∈ C3,b(Rd;Rd,m), the system (2), inter-

preted with Propositions 5.5 and 6.2, admits a unique solution in the space Qγx([0, T ];Rd)
of controlled paths. Moreover, the continuity statement (3) holds true.

Remark 6.4. In retrospect, with the help of the continuity result (3), we can provide
another (equivalent) interpretation of the rough system (2). Remember �rst that when
x is a di�erentiable path, the interpretation given in Section 4 or in Section 5 coincides
with the ordinary Volterra equation, understood in the Riemann-Lebesgue sense: this is
the content of points (1) in Proposition 4.1 and Proposition 5.5, and one of the main
principles of our approach. Consequently, due to (3), our understanding of the rough
Volterra equation can also be summed up as follows: for any sequence xε of di�erentiable
paths that converges to x in the sense of (92), the sequence yε of ordinary solutions to (2)
associated to xε converges to a path y with respect to the γ-Hölder topology.

Remark 6.5. With the interpretation exhibited in Remark 6.4, it is easily seen that the
solution y given by Theorem 6.3 does not depend on the particular representative φ̃ in
(5), provided the integrability condition is satis�ed. Assume indeed that φ̃1, φ̃2 are such

that
∫
R dξ |φ̃

i(ξ)|(1 + |ξ|2) <∞ and φ1
|[0,T ] = φ2

[0,T ] = φ[0,T ], where φ
i(t) ≡

∫
R dξ St(ξ) φ̃

i(ξ).

If x is a di�erentiable path, the path y1 (resp. y2) associated to φ̃1 (resp. φ̃2) through
Theorem 6.3 is known to be solution of the ordinary equation

yit = ai +

∫ t

0

φi(t− u)σ(yiu) dxu = ai +

∫ t

0

φ(t− u)σ(yiu) dxu,

hence, by uniqueness, y1 = y2. The result in the general rough case can then be deduced
by passing to the limit.

Keeping Remark 6.5 in mind, Theorem 1.1 is now obtained via the following elementary
result:

Proposition 6.6. If φ ∈ C3(R;R), then there exists a function φ̃T satisfying∫
R
dξ |φ̃T (ξ)|(1 + |ξ|2) <∞
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and such that φ admits the representation (5) on [0, T ].

Proof. As we announced it in Subsection 3.1, it su�ces to extend the restriction φ|[0,T ]

into a compactly supported function φT ∈ C3(R;R). Then

φT = F φ̃T , with φ̃T (ξ) ≡ (F−1φT )(ξ) = c

∫
R
e2iπtξφT (t) dt.

Since φ̃T ∈ L2(R), one has∫
R
dξ |φ̃T (ξ)|(1 + |ξ|2) ≤ 2

∫
|ξ|≤1

dξ |φ̃T (ξ)|+ c

∫
|ξ|≥1

|F−1(φ′′′T )(ξ)|
|ξ|

≤ c
{
‖φ̃T‖L2 + ‖F−1(φ′′′T )‖L2

}
<∞.

�

6.2. The (fractional) Brownian motion case. Owing to the results of [18] or [36], we
know that the existence of a geometric 2-rough path holds true for a fractional Brownian
motion with Hurst index H > 1/3. This means that Theorem 1.1 can be applied in this
situation, giving birth to the �rst result of existence and uniqueness of a global solution
for (2) when 1/3 < H < 1/2. In the standard Brownian case (H = 1/2), this solution
can be shown to (almost surely) coincide with the Stratonovich one (see for instance [18,
Section 17.2] for a similar statement).

The Itô interpretation of (2) in presence of a standard Brownian motion x = B can
also be recovered from the considerations of Section 5, by de�ning the convolutional 2-
rough path (X̃B, X̃AB, X̃BB) as Itô integrals, ie X̃B,i

ts (ξ) ≡
∫ t
s
St−u(ξ) dB

i
u, X̃

AB,i
ts (ξ) ≡∫ t

s
At−u(ξ) dB

i
u, X̃

BB,ij
ts (ξ) ≡

∫ t
s
St−u(ξ) dB

i
u (δBj)us. Let us sketch out the two steps of

this identi�cation, which essentially follows the lines of [14, Section 6.2].

First of all, remember that the Itô-Volterra equation

Y i
t = ai +

∫ t

0

φ(t− u)σij(Yu) dB
j
u , t ∈ [0, T ], (93)

is known to have a unique solution under the assumptions of our study, namely φ, σ (at

least) di�erentiable (see for instance [6]). Then, assuming that φ̃ ∈ L1(R), one can see
with the help of the stochastic Fubbini theorem that (93) is equivalent to

(δ̃Ỹ i)ts(ξ) =

∫ t

s

St−u(ξ) dB
j
u σ

ij(Yu) , Y i
u = ai +

∫
R
dξ φ̃(ξ)Ỹ i

u(ξ). (94)

The latter formulation allows to make the link with the formalism of Section 5:

Lemma 6.7. Assume that σ ∈ C1,b(Rd;Rd,m) and that φ̃ satis�es
∫
R dξ |φ̃(ξ)|(1+|ξ|) <∞.

Then, with the notations of Section 5, the Itô solution Ỹ of (94) almost surely belongs to
Q̃γB([0, T ];Rd) for any 0 < γ < 1/2.

Proof. The decomposition of Ỹ as an element of Q̃γB([0, T ];Rd) is naturally given by

(δ̃Ỹ i)ts = X̃B,j
ts σij(Ys) + Ỹ ],i

ts , with Ỹ ],i
ts (ξ) ≡

∫ t

s

St−u(ξ) dB
j
u (δσij(Y ))us.
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In order to see that σ(Y ) (resp. Ỹ ]) almost surely belongs to Cγ1 ([0, T ];Rd,m) (resp.

C̃2γ
2 ([0, T ];Rd)), one can rely on a (δ̃-)adapted version of the classical Garsia-Rodemich-
Rumsey lemma, which reduces the problem to (easy) moments estimates. The reader is
refered to [20, Lemma 3.8] for the statement of such a result in a convolutional context.
Some additional details about this standard reasoning can also be found in [14, Proposition
6.8]. �

Once Ỹ has been identi�ed as an element of Q̃γB([0, T ];Rd), Proposition 5.5 provides

us with a pathwise de�nition of the integral J
(
d̃Bj σij(Y )

)
based on the Itô 2-rough

paths (X̃B, X̃AB, X̃BB). The second step towards the expected identi�cation can now be
expressed as follows:

Proposition 6.8. Assume that σ ∈ C3,b(Rd;Rd,m) and that φ̃ satis�es
∫
R dξ |φ̃(ξ)|(1 +

|ξ|) <∞. Then, for any ξ ∈ R, the integral J
(
d̃Bj σij(Y )

)
(ξ) constructed in Proposition

5.5 almost surely coincides with the Itô integral
∫ t
s
St−u(ξ) dB

j
u σ

ij(Yu). Consequently, the
solution given by Theorem 5.10 is (a.s.) equal to the Itô solution of (93) and the following

continuity property holds: if Y (resp. Ŷ ) stands for the solution of (93) with initial
condition a (resp. â), one has

N [Y − Ŷ ; Cγ1 (Rd)] ≤ CB |a− â| , (95)

for some (a.s.) �nite random variable CB.

Proof. Similarly to (60), one can decompose the Itô integral as∫ t

s

St−u(ξ) dB
j
u σ

ij(Yu) = X̃B,j
ts (ξ)σij(Ys) + X̃BB,jl

ts (ξ)Lφ̃ ∂kσ
ij(Ys)σ

kl(Ys) + R̃i
ts(ξ),

where Lφ̃ ≡
∫
R dξ φ̃(ξ) and R̃i

ts(ξ) ≡
∫ t
s
St−v(ξ) dB

j
vM

ij
vs with

M ij
vs ≡

[
(δσij(Y ))us − (δY k)us∂kσ

ij(Ys)
]

+

∫
R
dξ φ̃(ξ)

{
X̃AB,l(ξ)σkl(Ys) + Ỹ ],k

us (ξ) + Aus(ξ)Ỹ
k
s (ξ)

}
· ∂kσij(Ys).

From this expression, one can apply the (δ̃-)G-R-R lemma we have already evoked in the
proof of Lemma 6.7 and assert that R̃ ∈ C̃µ2 ([0, T ];Rd) a.s., for some coe�cient µ > 1 (this

actually follows the lines of [14, Proposition 6.11]). Consequently, by setting (δ̃Z̃i)ts ≡
Jts
(
d̃Bj σij(Y )

)
, one gets δ̃(Ỹ − Z̃) ∈ Im δ̃ ∩ C̃µ̃2 ([0, T ];Rd) with µ̃ > 1, which, according

to Lemma 3.7, leads to δ̃Ỹ = δ̃Z̃, so that the two integrals indeed coincide.

The identi�cation of the solutions now follows from the uniqueness property contained in
Theorem 5.10, while (95) is deduced from Corollary 5.12. �

Remark 6.9. The above integrability assumption
∫
R dξ |φ̃(ξ)|(1+ |ξ|) <∞ (possibly trans-

lated into φ ∈ C2(R;R) as in Proposition 6.6) is here weaker than the hypothesis of The-

orem 6.3, namely
∫
R dξ |φ̃(ξ)|(1 + |ξ|2) < ∞. This is due to the relative crudeness of the

integration by parts argument used in Subsection 6.1, which entails a loss of "spatial"
regularity through the derivative d

du
Su(ξ) = c ξ Su(ξ). The more direct de�nition of the

convolutional Brownian rough paths as Itô integrals allows to avoid this issue.
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Remark 6.10. Of course, the interest of our study in the Brownian case does not lie in
the exhibition of a solution for (93), which has been known for a long time. On the other
hand, the continuity property of the �ow, which appears as a typical consequence of the
rough paths strategy, is new to our knowledge. Similarly to [13, 15], it is likely to o�er new
perspectives as far as the discretization of stochastic Volterra systems is concerned (to be
compared with [35]). For sake of conciseness, we prefer to leave this task in abeyance,
though.
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