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Spectral renormalization group: general
strategy

Problem and general strategy

• Want to study the spectral properties of some given Hamiltonian H acting
on a Hilbert space H
• Construct an effective Hamiltonian Heff acting in a Hilbert space with fewer
degrees of freedom, such that Heff has the same spectral properties as H
• Use a scaling transformation to map Heff to a scaled Hamiltonian H(0)

acting on some Hilbert space H0

• Iterate the procedure to obtain a family of effective Hamiltonians H(n)

acting on H0

• Estimate the “renormalized” perturbation terms W (n) appearing in H(n) and
show that W (n) vanishes in the limit n→∞
• Study the limit Hamiltonian H(∞)

• Go back to the original Hamiltonian H using isospectrality of the
renormalization map
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Physical system and model

Physical System

• Non-relativistic matter: atom, ion or molecule composed of non-relativistic
quantum charged particles (electrons and nuclei)
• Interacting with the quantized electromagnetic field, i.e. the photon field

Model: Standard model of non-relativistic QED

• Obtained by quantizing the Newton equations (for the charged particles)
minimally coupled to the Maxwell equations (for the electromagnetic field)
• Restriction: charges distribution are localized in small, compact sets.
Corresponds to introducing an ultraviolet cutoff suppressing the interaction
between the charged particles and the high-energy photons
• Goes back to the early days of Quantum Mechanics (Fermi, Pauli-Fierz).
Largely studied in theoretical physics (see e.g. books by Cohen-Tannoudji,
Dupont-Roc and Grynberg)
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Description of the atomic system (I)

Simplest physical system

• Hydrogen atom with an infinitely heavy nucleus fixed at the orign
• Spin of the electron neglected
• Units such that ~ = c = 1

Hilbert space and Hamiltonian for the electron

• Hilbert space
Hel = L2(R3)

• Hamiltonian

Hel =
p2

el

2mel
+ Vα(xel), Vα(xel) = − α

|xel|
,

where pel = −i∇xel , mel is the electron mass, and α = e2 is the fine-structure
constant (α ≈ 1/137)
• Hel is a self-adjoint operator in L2(R3) with domain

D(Hel) = D(p2
el) = H2(R3)
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Description of the atomic system (II)

Spectrum of Hel

• An infinite increasing sequence of negative, isolated eigenvalues of finite
multiplicities {Ej}j∈N
• The semi-axis [0,∞) of continuous spectrum

Bohr’s condition

• According to the physical picture, the electron jumps from an initial state of
energy Ei to a final state of lower energy Ef by emitting a photon of energy
Ei − Ef

• To capture this image mathematically, we need to take into account the
interaction between the electron and the photon field
• The ground state energy E0 is expected to remain an eigenvalue (stability of
the system)
• The excited eigenvalues Ej , j ≥ 1, associated with bound states are expected
to turn into resonances associated with metastable states of finite lifetime
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interaction between the electron and the photon field
• The ground state energy E0 is expected to remain an eigenvalue (stability of
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Description of the photon field: n-photons
space

n-photons space

• Hilbert space for 1 photon

h = L2(R3 × {1, 2})

Notations: R3 = R3 × {1, 2}, K = (k, λ) ∈ R3,

〈f , g〉 =

Z
R3

f̄ (K)g(K)dK =
X
λ=1,2

Z
R3

f̄ (k, λ)g(k, λ)dk

• Hilbert space for n photons

F (n)
s (h) = Sn ⊗n

j=1 h,

where Sn is the symmetrization operator. Hence a n-photons state is
associated to a function

Φ(n)(K1, . . . ,Kn) ∈ L2((R3)n),

such that Φ(n)(K1, . . . ,Kn) is symmetric with respect to K1, . . .Kn
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Description of the photon field: Fock space

Fock space

• Hilbert space for the photon field = symmetric Fock space over h,

Hph = Fs(h) =
+∞M
n=0

F (n)
s (h), F (0)

s = C

• Φ ∈ Hph can be written as

Φ = ( Φ
(0)| {z }
∈C

,Φ(1)(K1)| {z }
∈L2(R3)

,Φ(2)(K1,K2)| {z }
∈L2((R3)2)

, . . . )

• Scalar product ˙
Φ,Ψ

¸
Hph

=
+∞X
n=0

˙
Φ(n),Ψ(n)¸

F(n)
s (h)

• Vacuum
Ω = (1, 0, 0, . . . )
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Description of the photon field: second
quantization (I)

Second quantization of an operator

For b an operator acting on the 1-photon space h, the second quantization of
b is the operator on Hph defined by

dΓ(b)|C = 0,

dΓ(b)|F(n)
s

= b ⊗ 1⊗ · · · ⊗ 1 + 1⊗ b ⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ b

If b is self-adjoint, one verifies that dΓ(b) is essentially self-adjoint. The
closure is then denoted by the same symbol

Examples

• Number of photons operator

N = dΓ(1), D(N) =
n

Φ ∈ Hph,
X
n∈N

n2
‚‚Φ(n)

‚‚2

F(n)
s
< +∞

o
,

For all n ∈ N, NΦ(n) = nΦ(n), and the spectrum is given by

σ(N) = σpp(N) = N
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Description of the photon field: second
quantization (I)

Second quantization of an operator
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Description of the photon field: second
quantization (II)

Examples

• Energy of the free photon field

Hf = dΓ(ω),

where ω is the operator of multiplication by the relativistic dispersion relation

ω(k) = |k|

For all n ∈ N,

(Hf Φ)(n)(K1, . . . ,Kn) =
“ nX

j=1

|kj |
”

Φ(n)(K1, . . . ,Kn)

Spectrum
σ(Hf ) = [0,∞), σpp(Hf ) = {0}
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Description of the photon field: creation
and annihilation operators (I)

Creation and annihilation operators

• For h ∈ h, the creation operator a∗(h) : Hph → Hph is defined for Φ ∈ F (n)
s

by
a∗(h)Φ =

√
n + 1Sn+1h ⊗ Φ

• The annihilation operator a(h) is defined as the adjoint of a∗(h)
• a∗(h) and a(h) are closable, their closures are denoted by the same symbols
• Other expressions for a∗(h) and a(h) are

(a(h)Φ)(n)(K1, . . . ,Kn) =
√

n + 1

Z
R3

h̄(K)Φ(n+1)(K ,K1, . . . ,Kn)dK ,

(a∗(h)Φ)(n)(K1, . . . ,Kn) =
1√
n

nX
i=1

h(Ki )Φ(n−1)(K1, . . . , K̂i , . . . ,Kn),

where K̂i means that the variable Ki is removed
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Description of the photon field: creation
and annihilation operators (II)

Canonical commutation relations

[a∗(f ), a∗(g)] = [a(f ), a(g)] = 0,

[a(f ), a∗(g)] = 〈f , g〉h

Physical notations

• We will use the following notations

a∗(f ) =

Z
R3

f (K)a∗(K)dK , a(f ) =

Z
R3

f̄ (K)a(K)dK

(where a∗(K) and a(K) can be defined as operator-valued distributions)
• Likewise, we can write, for instance

N =

Z
R3

a∗(K)a(K)dK , Hf =

Z
R3

ω(k)a∗(K)a(K)dK
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Description of the photon field: creation
and annihilation operators (II)
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Description of the photon field: field
operators

Field operators

For h ∈ h, the field operator Φ(h) is defined by

Φ(h) =
1√
2

(a∗(h) + a(h))

One verifies that Φ(h) is essentially auto-adjoint, its closure is denoted by the
same symbol
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Standard model of non-relativistic QED:
the Hamiltonian

Hilbert space for the electron and the photon field

H = Hel ⊗Hph = L2(R3;Hph)

Pauli-Fierz Hamiltonian

Hα =
1

2mel
(pel − α

1
2 A(xel))2 + Vα(xel) + Hf

where, for all x ∈ R3,

A(x) =

Z
R3

χαΛ(k)p
2|k|

ελ(k)
“
a∗(K)e−ik·x + a(K)e ik·x

”
dK

In other words, for all x ∈ R3, A(x) = (A1(x),A2(x),A3(x)) where Aj(x) is
the field operator given by

Aj(x) = Φ(hj(x)), hj(x ,K) =
χαΛ(k)p
|k|

ελ,j(k)e−ik·x
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Standard model of non-relativistic QED:
the Hamiltonian
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Standard model of non-relativistic QED:
coupling functions

Polarization vectors

The vectors ελ(k) = (ελ,1(k), ελ,2(k), ελ,3(k)), for λ ∈ {1, 2}, are polarization
vectors that can be chosen, for instance, as

ε1(k) =
(k2,−k1, 0)p

k2
1 + k2

2

, ε2(k) =
k

|k| ∧ ε1(k) =
(−k1k3,−k2k3, k

2
1 + k2

2 )p
k2

1 + k2
2

p
k2

1 + k2
2 + k2

3

(The family (k/|k|, ε1(k), ε2(k)) is an orthonormal basis of R3 for all k 6= 0)

Ultraviolet cutoff

The function χαΛ is an ultraviolet cutoff at energy scale αΛ that can be
chosen for instance as

χαΛ(k) = e
− k2

α2Λ2 ,

where Λ > 0 is arbitrary large. Thanks to χαΛ, the coupling functions hj(x)
belong to h and hence the Hamiltonian is well-defined
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Standard model of non-relativistic QED:
coupling functions
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Standard model of non-relativistic QED:
small coupling regime

Scaling transformation

• Fine-structure constant α treated as a small coupling parameter
• To treat the interaction (electron)-(transverse photons) as a perturbation,
useful to apply a certain scaling transformation (corresponds to conjugating
the Hamiltonian Hα with a unitary transformation). One then arrives at the
new Hamiltonian (still denoted by Hα)

Hα =
1

2mel
(pel − α

3
2 A(αxel))2 + V (xel) + Hf

where, for all x ∈ R3,

A(x) =

Z
R3

χΛ(k)p
2|k|

ελ(k)
“
a∗(K)e−ik·x + a(K)e ik·x

”
dK ,

and

V (xel) = − 1

|xel|
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Standard model of non-relativistic QED:
spectral problems (I)

The non-interacting Hamiltonian H0

• For α = 0, we obtain

H0 =
p2

el

2mel
+ V (xel) + Hf = Hel ⊗ 1Hph + 1Hel ⊗ Hf

• Spectrum: σ(H0) = σ(Hel) + σ(Hf )

Main problems concerning the spectrum of Hα

• The full Hamiltonian Hα is decomposed as

Hα = H0 + Wα

• Aim: behavior of the unperturbed eigenvalues Ej as the perturbation Wα is
added. One expects that
[1] The lowest eigenvalue E0 remains an eigenvalue, giving the existence of a
(stable) ground state for Hα
[2] Excited eigenvalues Ej turn into resonances associated to metastable states
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Standard model of non-relativistic QED:
spectral problems (I)

The non-interacting Hamiltonian H0

• For α = 0, we obtain

H0 =
p2

el

2mel
+ V (xel) + Hf = Hel ⊗ 1Hph + 1Hel ⊗ Hf

• Spectrum: σ(H0) = σ(Hel) + σ(Hf )

Main problems concerning the spectrum of Hα

• The full Hamiltonian Hα is decomposed as

Hα = H0 + Wα

• Aim: behavior of the unperturbed eigenvalues Ej as the perturbation Wα is
added. One expects that
[1] The lowest eigenvalue E0 remains an eigenvalue, giving the existence of a
(stable) ground state for Hα
[2] Excited eigenvalues Ej turn into resonances associated to metastable states
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Standard model of non-relativistic QED:
spectral problems (II)

Results

• Problem [1] can be solved in various ways [Bach-Frohlich-Sigal CMP’99],
[Griesemer-Lieb-Loss Inventiones’01], [Bach-Frohlich-Pizzo CMP’07]. In fact
one can show that for arbitrary α,

Eα = inf σ(Hα),

is an eigenvalue of Hα [Griesemer-Lieb-Loss’01]
• Up to now, Problem [2] (existence of resonances) is only solved using the
Bach-Fröhlich-Sigal spectral renormalization group [Bach-Fröhlich-Sigal
Adv.Math.’98], [Sigal JSP’09]

In these talks

• We describe the BFS spectral renormalization group, applying it to obtain
the existence of a ground state (Problem [1])
• We explain the modifications used to prove the existence of resonances
(Problem [2])
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• Up to now, Problem [2] (existence of resonances) is only solved using the
Bach-Fröhlich-Sigal spectral renormalization group [Bach-Fröhlich-Sigal
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• We describe the BFS spectral renormalization group, applying it to obtain
the existence of a ground state (Problem [1])
• We explain the modifications used to prove the existence of resonances
(Problem [2])
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Spectral renormalization group
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General strategy

General strategy

• Construct an effective Hamiltonian Heff acting in a Hilbert space with fewer
degrees of freedom, such that Heff has the same spectral properties as Hα
• Use a scaling transformation to map Heff to a scaled Hamiltonian H(0)

acting on some Hilbert space H0

• Iterate the procedure to obtain a family of effective Hamiltonians H(n)

acting on H0

• Estimate the “renormalized” perturbation terms W (n) appearing in H(n) and
show that W (n) vanishes in the limit n→∞
• Study the (unperturbed) limit Hamiltonian H(∞)

• Go back to the original Hamiltonian Hα using isospectrality of the
renormalization map
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The Feshbach-Schur map (I)

Abstract setting

• H complex, separable Hilbert space
• H, H0 closed operators on H such that H = H0 + W , D(H) = D(H0)
• Assumptions:

a) (“Projections”) χ, χ̄ bounded operators on H such that

[χ, χ̄] = 0 = [χ,H0] = [χ̄,H0], χ2 + χ̄2 = 1

(Typically, χ, χ̄ are spectral projections of H0)
b) (Invertibility assumptions) Let

Hχ̄ = H0 + χ̄W χ̄

The operators H0,Hχ̄ : D(H0) ∩ Ranχ̄→ Ranχ̄ are bijections with bounded
inverses. Moreover, the operator

χ̄H−1
χ̄ χ̄Wχ : D(H0)→ H

is bounded
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The Feshbach-Schur map (II)

Main properties

• Under the previous hypotheses, H is invertible with bounded inverse iff the
Feshbach-Schur operator Fχ(H,H0) : D(H0) ∩ Ranχ→ Ranχ defined by

Fχ(H,H0) = H0 + χWχ− χW χ̄H−1
χ̄ χ̄Wχ

is invertible with bounded inverse. In this case,

H−1 = QχFχ(H,H0)−1Q#
χ + χ̄H−1

χ̄ χ̄,

Fχ(H,H0)−1 = χH−1χ+ χ̄H−1
0 χ̄,

where
Qχ : χ− χ̄H−1

χ̄ χ̄Wχ, Q#
χ = χ− χW χ̄H−1

χ̄ χ̄

• The maps

χ : Ker H → Ker Fχ(H,H0), Qχ : Ker Fχ(H,H0)→ Ker H

are linear isomorphisms and inverse to each other
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The Feshbach-Schur map (III)

Consequences

• Under the previous hypotheses,

λ ∈ σ(H) ⇐⇒ 0 ∈ σ(H − λ)

⇐⇒ 0 ∈ σ
`
Fχ(H − λ,H0 − λ)

´
• Likewise,

λ ∈ σpp(H) ⇐⇒ 0 ∈ σpp(H − λ)

⇐⇒ 0 ∈ σpp

`
Fχ(H − λ,H0 − λ)

´
,

and if ψ is an eigenstate of Fχ(H − λ,H0 − λ) associated to the eigenvalue 0,
then Qχψ is an eigenstate of H associated to the eigenvalue λ
• The Feshbach-Schur operator Fχ(H − λ,H0 − λ) is viewed as an effective
Hamiltonian acting in the Hilbert space Ranχ.
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Application to non-relativistic QED (I)

The “projections”

• Recall H0 = Hel + Hf , Hα = H0 + Wα. Choose χ = Πel ⊗ χHf≤ρ, where Πel

is the projection onto the (non-degenerate) ground state of Hel, and χ·≤ρ is a
“smoothed out” characteristic function of the interval [0, ρ]
• Let

χ̄ = Π⊥el ⊗ 1 + Πel ⊗
q
1− χ2

Hf≤ρ.

Hence [χ, χ̄] = 0 = [χ,H0] = [χ̄,H0] and χ2 + χ̄2 = 1

The invertibility assumptions

• By definition of χ̄, for λ ≤ E0 + ρ/2, H0 − λ : D(H0)∩Ran(χ̄)→ Ran(χ̄) is
invertible with bounded inverse
• Using the Neumann series decomposition

(Hα − λ)−1
χ̄ = (H0 − λ)−1

X
n≥0

“
−χ̄Wαχ̄(H0 − λ)−1

”n

,

we see that (Hα − λ)χ̄ is invertible with bounded inverse for α� ρ and
λ ≤ E0 + ρ/2. Likewise, χ̄(Hα − λ)−1

χ̄ χ̄Wαχ is bounded
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Application to non-relativistic QED (I)

The “projections”

• Recall H0 = Hel + Hf , Hα = H0 + Wα. Choose χ = Πel ⊗ χHf≤ρ, where Πel

is the projection onto the (non-degenerate) ground state of Hel, and χ·≤ρ is a
“smoothed out” characteristic function of the interval [0, ρ]
• Let

χ̄ = Π⊥el ⊗ 1 + Πel ⊗
q
1− χ2

Hf≤ρ.

Hence [χ, χ̄] = 0 = [χ,H0] = [χ̄,H0] and χ2 + χ̄2 = 1

The invertibility assumptions

• By definition of χ̄, for λ ≤ E0 + ρ/2, H0 − λ : D(H0)∩Ran(χ̄)→ Ran(χ̄) is
invertible with bounded inverse
• Using the Neumann series decomposition

(Hα − λ)−1
χ̄ = (H0 − λ)−1

X
n≥0

“
−χ̄Wαχ̄(H0 − λ)−1

”n

,

we see that (Hα − λ)χ̄ is invertible with bounded inverse for α� ρ and
λ ≤ E0 + ρ/2. Likewise, χ̄(Hα − λ)−1

χ̄ χ̄Wαχ is bounded
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Application to non-relativistic QED (II)

Feshbach-Schur operator

With the previous notations, the operator

Fχ(Hα − λ,H0 − λ) = H0 − λ+ χWαχ− χWαχ̄(Hα − λ)−1
χ̄ χ̄Wαχ

= E0 − λ+ Hf + χWαχ− χWαχ̄(Hα − λ)−1
χ̄ χ̄Wαχ

acting on Ranχ ≡ Ran1Hf≤ρ is isospectral to Hα in the sense that

λ ∈ σ#(Hα) ⇐⇒ 0 ∈ σ#

`
Fχ(Hα − λ,H0 − λ)

´
,

where σ# stands for σ or σpp

Effective Hamiltonian

The effective Hamiltonian acting on Ran1Hf≤ρ is thus

Heff(λ) = Fχ(Hα − λ,H0 − λ)
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Application to non-relativistic QED (II)

Feshbach-Schur operator

With the previous notations, the operator

Fχ(Hα − λ,H0 − λ) = H0 − λ+ χWαχ− χWαχ̄(Hα − λ)−1
χ̄ χ̄Wαχ

= E0 − λ+ Hf + χWαχ− χWαχ̄(Hα − λ)−1
χ̄ χ̄Wαχ

acting on Ranχ ≡ Ran1Hf≤ρ is isospectral to Hα in the sense that

λ ∈ σ#(Hα) ⇐⇒ 0 ∈ σ#

`
Fχ(Hα − λ,H0 − λ)

´
,

where σ# stands for σ or σpp

Effective Hamiltonian

The effective Hamiltonian acting on Ran1Hf≤ρ is thus

Heff(λ) = Fχ(Hα − λ,H0 − λ)
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Expression of the interaction Hamiltonian
(I)

Interaction Hamiltonian

Recall that

Hα =
1

2mel
(pel − α

3
2 A(αxel))2 + V (xel) + Hf = H0 + Wα,

with

Wα =
1

2mel

`
− 2α

3
2 pel · A(αxel) + α3A(αxel)

2´,
and

A(x) =

Z
R3

χΛ(k)p
2|k|

ελ(k)
“
a∗(K)e−ik·x + a(K)e ik·x

”
dK
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Expression of the interaction Hamiltonian
(II)

Interaction Hamiltonian

The interaction Hamiltonian Wα can be written under the form

Wα = W1 + W2,

with

W1 =

Z
R3

`
G1,0(K)⊗ a∗(K) + G0,1(K)⊗ a(K)

´
dK ,

W2 =

Z
R3×R3

`
G2,0(K ,K ′)⊗ a∗(K)a∗(K ′) + G0,2(K ,K ′)⊗ a(K)a(K ′)

G1,1(K ,K ′)⊗ a∗(K)a(K ′)
´
dKdK ′

where Gi,j(K), Gi,j(K ,K
′) are operators acting on Hel
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Generalized Wick normal form (I)

Normal form

• Use the previous Neumann series decomposition

Heff(λ) = E0 − λ+ Hf

+ χWαχ− χWαχ̄(H0 − λ)−1
X
n≥0

“
−χ̄Wαχ̄(H0 − λ)−1

”n

χ̄Wαχ,

• Use the CCR

[a(K), a(K ′)] = 0 = [a∗(K), a∗(K ′)], [a(K), a∗(K ′)] = δ(K − K ′),

and the “pull-through” formula a(K)f (Hf ) = f (Hf + |k|)a(K), to rewrite
Heff(λ) under the (generalized) Wick ordered form

Heff(λ) = w0,0(λ,Hf ) +
X

m+n≥1

χHf≤ρ

Z
Bm+n
ρ

` mY
j=1

a∗(Kj)
´

wm,n(λ,Hf ; K1, . . . ,Km+n)
` m+nY

j=m+1

a(Kj)
´
χHf≤ρdK1 . . .dKm+n
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Generalized Wick normal form (II)

Normal form

Heff(λ) = w0,0(λ,Hf ) +
X

m+n≥1

χHf≤ρ

Z
Bm+n
ρ

` mY
j=1

a∗(Kj)
´

wm,n(λ,Hf ; K1, . . . ,Km+n)
` m+nY

j=m+1

a(Kj)
´
χHf≤ρdK1 . . .dKm+n,

where Bρ = {K = (k, λ) ∈ R3, |k| ≤ ρ}, and

wm,n(λ, ·) : [0, ρ]× Bm+n
ρ → C

For instance,
w0,0(λ,Hf ) = E0 − λ+ Hf + α3(· · · )
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Generalized Wick normal form (III)

Example

Consider the term coming from χWαχ̄(H0 − λ)−1χ̄Wχ given by

χ(H0)

Z
R3×R3

G0,1(K1)a(K1)χ̄(H0)(H0 − λ)−1χ̄(H0)

G1,0(K2)a∗(K2)dK1dK2χ(H0)

=χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)a(K1)a∗(K2)dK1dK2χ(H0)

=χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)
`
δ(K1 − K2) + a∗(K2)a(K1)

´
dK1dK2χ(H0)
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Generalized Wick normal form (III)

Example

Consider the term coming from χWαχ̄(H0 − λ)−1χ̄Wχ given by

χ(H0)

Z
R3×R3

G0,1(K1)a(K1)χ̄(H0)(H0 − λ)−1χ̄(H0)

G1,0(K2)a∗(K2)dK1dK2χ(H0)

=χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)a(K1)a∗(K2)dK1dK2χ(H0)

=χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)
`
δ(K1 − K2) + a∗(K2)a(K1)

´
dK1dK2χ(H0)
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Generalized Wick normal form (III)

Example

Consider the term coming from χWαχ̄(H0 − λ)−1χ̄Wχ given by

χ(H0)

Z
R3×R3

G0,1(K1)a(K1)χ̄(H0)(H0 − λ)−1χ̄(H0)

G1,0(K2)a∗(K2)dK1dK2χ(H0)

=χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)a(K1)a∗(K2)dK1dK2χ(H0)

=χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)
`
δ(K1 − K2) + a∗(K2)a(K1)

´
dK1dK2χ(H0)
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Generalized Wick normal form (IV)

Example

χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)
`
δ(K1 − K2) + a∗(K2)a(K1)

´
dK1dK2χ(H0)

=χ(H0)

Z
R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K1)dK1χ(H0)

+χ(H0)

Z
R3×R3

G0,1(K1)a∗(K2)χ̄(H0 + |k1|+ |k2|)(H0 + |k1|+ |k2| − λ)−1

χ̄(H0 + |k1|+ |k2|)G1,0(K2)a(K1)dK1dK2χ(H0)
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Generalized Wick normal form (IV)

Example

χ(H0)

Z
R3×R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K2)
`
δ(K1 − K2) + a∗(K2)a(K1)

´
dK1dK2χ(H0)

=χ(H0)

Z
R3

G0,1(K1)χ̄(H0 + |k1|)(H0 + |k1| − λ)−1χ̄(H0 + |k1|)

G1,0(K1)dK1χ(H0)

+χ(H0)

Z
R3×R3

G0,1(K1)a∗(K2)χ̄(H0 + |k1|+ |k2|)(H0 + |k1|+ |k2| − λ)−1

χ̄(H0 + |k1|+ |k2|)G1,0(K2)a(K1)dK1dK2χ(H0)
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Scaling transformation (I)

Scaling transformation

• Effective Hamiltonian Heff(λ) acts on the Hilbert space Ran1Hf≤ρ at
energy scale ρ. To obtain an Hamiltonian at energy scale 1 we use the unitary
scaling transformation

Uρ : Ran1Hf≤ρ → Ran1Hf≤1 =: H0,

(UρΦ)(n)(K1, . . . ,Kn) = ρ
3n
2 Φ(n)((ρk1, λ1), . . . , (ρkn, λn))

• Note that the free photon field Hamiltonian is scaled as

UρHf U
∗
ρ = ρHf

• Define the new Hamiltonian H̃eff(λ) acting on H0 by

H̃eff(λ) =
1

ρ

`
UρHeff(λ)U∗ρ + E0 − λ

´



Spectral
RG and

resonances

Jérémy
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Scaling transformation (II)

Scaling transformation

• In generalized Wick ordered form,

H̃eff(λ) = w̃0,0(λ,Hf ) +
X

m+n≥1

χHf≤1

Z
Bm+n

1

` mY
j=1

a∗(Kj)
´

w̃m,n(λ,Hf ; K1, . . . ,Km+n)
` m+nY

j=m+1

a(Kj)
´
χHf≤1dK1 . . .dKm+n,

where w̃0,0(λ,Hf ) = Hf + α3(· · · ) and for m + n ≥ 1,

w̃m,n(λ, ·) : [0, 1]× Bm+n
1 → C

w̃m,n(λ,Hf ; K1, . . . ,Kn) = ρ
3
2

(m+n)−1wm,n(λ, ρHf ; ρK1, . . . , ρKn)

Remark: Infrared singularity

Consider a (coupling) function of the form f (K) = χΛ(k)/|k|
1
2
−µ. Then

ρ−1Uρa(f )U∗ρ = ρµa
` χρ−1Λ

| · | 12−µ
´
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Scaling transformation of the spectral
parameter

Scaling transformation of the spectral parameter

• Effective Hamiltonian H̃eff(λ) acting on H0 is defined for λ ≤ E0 + ρ/2. To
obtain a family of operators defined on [−1/2, 1/2], we consider the map

Z(0) :
h
E0 −

ρ

2
,E0 +

ρ

2

i
→
h
− 1

2
,

1

2

i
λ 7→ 1

ρ
(λ− E0)

• For λ ∈ [−1/2, 1/2], define the new Hamiltonian H(0)(λ) acting on H0 by

H(0)(λ) = H̃eff(Z−1
(0) (λ))

Isospectrality

Using isospectrality of the Feshbach-Schur map, we obtain

λ ∈ σ
`
H(0)(λ)

´
∩
h
− 1

2
,

1

2

i
⇐⇒ Z−1

(0) (λ) ∈ σ(Hα) ∩
h
E0 −

ρ

2
,E0 +

ρ

2

i
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Banach space of operators (I)

The function space W#
0,0 (relevant and marginal parts)

• Let
W#

0,0 = C1([0, 1]; C), ‖w0,0‖ = |w0,0(0)|+ ‖w ′0,0‖∞

• Can be decomposed into W#
0,0 = C⊕ T , T = {w0,0 ∈ W#

0,0,w0,0(0) = 0}

The function space W#
m,n, m + n ≥ 1 (irrelevant part)

• Let W#
m,n be the set of functions wm,n : [0, 1]× Bm+n

1 → C such that
∗ For all ω ∈ [0, 1], (K1, . . .Km+n) 7→ wm,n(ω,K1, . . . ,Km+n) is bounded and

symmetric w.r.t. (K1, . . . ,Km) and (Km+1, . . . ,Kn)
∗ For all (K1, . . . ,Km+n) ∈ Bm+n

1 , ω 7→ wm,n(ω,K1, . . . ,Km+n) belongs to
C1([0, 1]; C)
• W#

m,n is equipped with the norm (where µ > 0 is related to the infrared
singularity of the model)

‖wm,n‖ = ‖wm,n‖µ + ‖∂ωwm,n‖µ,

‖wm,n‖µ = sup
[0,1]×Bm+n

1

˛̨
wm,n(ω,K1, . . . ,Km+n)

˛̨ m+nY
j=1

|kj |
1
2
−µ
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Banach space of operators (II)

The Banach space W#

Let
W# =

M
m+n≥0

W#
m,n, ‖w‖ =

X
m+n≥0

ξ−(m+n)‖wm,n‖,

with the notation w = (w0,0,w1,0,w0,1, . . . ) ∈ W# and where 0 < ξ < 1 is a
suitably chosen parameter

Operators associated to elements of W#

• To w ∈ W# we associate a bounded operator on H0 by letting

H(w) = w0,0(Hf ) +
X

m+n≥1

χHf≤1

Z
Bm+n

1

` mY
j=1

a∗(Kj)
´

wm,n(λ,Hf ; K1, . . . ,Km+n)
` m+nY

j=m+1

a(Kj)
´
χHf≤1dK1 . . .dKm+n

• For all µ ≥ 0 and 0 < ξ < 1, the map H : w → H(w) is injective and
continuous with ‖H(w)‖ ≤ ‖w‖



Spectral
RG and

resonances

Jérémy
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Banach space of operators (II)

The Banach space W#

Let
W# =

M
m+n≥0

W#
m,n, ‖w‖ =

X
m+n≥0

ξ−(m+n)‖wm,n‖,

with the notation w = (w0,0,w1,0,w0,1, . . . ) ∈ W# and where 0 < ξ < 1 is a
suitably chosen parameter

Operators associated to elements of W#

• To w ∈ W# we associate a bounded operator on H0 by letting

H(w) = w0,0(Hf ) +
X

m+n≥1

χHf≤1

Z
Bm+n

1

` mY
j=1

a∗(Kj)
´

wm,n(λ,Hf ; K1, . . . ,Km+n)
` m+nY

j=m+1

a(Kj)
´
χHf≤1dK1 . . .dKm+n

• For all µ ≥ 0 and 0 < ξ < 1, the map H : w → H(w) is injective and
continuous with ‖H(w)‖ ≤ ‖w‖
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Banach space of operators (III)

Dependence on the spectral parameter

Let

W = C1
“h
− 1

2
,

1

2

i
;W#

”
, ‖w(·)‖ = sup

λ∈[− 1
2
, 1

2
]

‖w(λ)‖W#

The Banach space H(W)

The Banach space in which the renormalization map will be defined is

H(W) =
n

H(w(·)) ∈ C1
“h
− 1

2
,

1

2

i
; H(W#)

”o
,

equipped with the norm‚‚H(w(·))
‚‚ = sup

λ∈[− 1
2
, 1

2
]

‚‚H(w(λ))
‚‚
B(H0)



Spectral
RG and

resonances

Jérémy
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2
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1

2

i
;W#

”
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2
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2
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The Banach space H(W)
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2

i
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Banach space of operators (IV)

A polydisc in W
Let

D(β, ε) =
n

w(·) =
`
E(·),T (·), (wm,n(·))m+n≥1

´
∈ W,

sup
λ∈[− 1

2
, 1

2
]

|E(λ)| ≤ ε,

sup
λ∈[− 1

2
, 1

2
]

sup
ω∈[0,1]

˛̨
∂ωT (λ, ω)− 1

˛̨
≤ β,

sup
λ∈[− 1

2
, 1

2
]

‚‚(wm,n(λ))m+n≥1

‚‚
W# ≤ ε

o

The initial Hamiltonian

Let β, ε > 0. Let α
1
2 � ρ ≤ ξ < 1. Then H(0)(·) ∈ H(W), and, with

H(0)(·) = H(w (0)(·)),
w(0)(·) ∈ D(β, ε)



Spectral
RG and

resonances

Jérémy
Faupin

The model

Spectral
renormaliza-
tion
group

Decimation
of the
degrees of
freedom

Generalized
Wick
normal
form

Scaling
transfor-
mation

Scaling
transfor-
mation of
the
spectral
parameter

Banach
space of
Hamiltoni-
ans

The renor-
malization
map

Resonances
and lifetime
of
metastable
states

Banach space of operators (IV)

A polydisc in W
Let

D(β, ε) =
n

w(·) =
`
E(·),T (·), (wm,n(·))m+n≥1

´
∈ W,

sup
λ∈[− 1

2
, 1

2
]

|E(λ)| ≤ ε,

sup
λ∈[− 1

2
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2
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2
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The initial Hamiltonian
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Renormalization map (I)

The renormalization map

• The renormalization map Rρ : H(W)→ H(W) is defined by

Rρ
`
H(w(λ))

´
=

1

ρ
UρFχHf≤ρ

“
H
`
w(Z−1(λ))

´
− Z−1(λ),

E(Z−1(λ)) + T (Z−1(λ))− Z−1(λ)
”
U∗ρ + λ

• Decimation of the degrees of freedom. One verifies that for suitably chosen
ρ’s, the Feshbach-Schur operator above is well-defined (use the C1 property
“with respect to Hf ”)
• Uρ is a scaling transformation
• Z is a scaling transformation of the spectral parameter (use the C1 property
with respect to λ)

Z :
n
λ ∈

h
− 1

2
,

1

2

i
, |λ− E(λ)| ≤ ρ

2

o
3 λ→ 1

ρ
(λ− E(λ)) ∈

h
− 1

2
,

1

2

i
• Using Neumann series decomposition and generalized Wick ordered form,
Rρ
`
H(w(·))

´
is written as an element of H(W)
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´
is written as an element of H(W)
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Renormalization map (I)
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´
=

1

ρ
UρFχHf≤ρ

“
H
`
w(Z−1(λ))

´
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”
U∗ρ + λ

• Decimation of the degrees of freedom. One verifies that for suitably chosen
ρ’s, the Feshbach-Schur operator above is well-defined (use the C1 property
“with respect to Hf ”)
• Uρ is a scaling transformation
• Z is a scaling transformation of the spectral parameter (use the C1 property
with respect to λ)
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Renormalization map (II)

Perturbation decreases with application of Rρ
Let α� ρ < 1, µ > 0, ξ = ρ1/2. For all 0 < β, ε ≤ ρ,

Rρ : H
`
D(β, ε)

´
→ H

`
D(β +

ε

2
,
ε

2
)
´

Iteration

• Let
H(l)(·) = Rl

ρ

`
H(0)(·)

´
= H

`
E(l)(·),T(l)(·), (w (l)

m,n(·))m+n≥1

´
• Let Z(l) be the scaling transformation of the spectral parameter appearing in
the l th application of Rρ
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Renormalization map (II)

Perturbation decreases with application of Rρ
Let α� ρ < 1, µ > 0, ξ = ρ1/2. For all 0 < β, ε ≤ ρ,

Rρ : H
`
D(β, ε)

´
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`
D(β +

ε

2
,
ε

2
)
´

Iteration

• Let
H(l)(·) = Rl

ρ

`
H(0)(·)

´
= H

`
E(l)(·),T(l)(·), (w (l)

m,n(·))m+n≥1

´
• Let Z(l) be the scaling transformation of the spectral parameter appearing in
the l th application of Rρ
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Existence of a ground state

Existence of a ground state

The sequence Z−1
(0) ◦ Z−1

(1) ◦ · · · ◦ Z−1
(l) (0) converges as l →∞. The limit

E(∞) = lim
l→∞

Z−1
(0) ◦ Z−1

(1) ◦ · · · ◦ Z−1
(l) (0)

is an eigenvalue of Hα and

σ(Hα) ∩
h
E0 −

ρ

2
,E0 +

ρ

2

i
⊂ E(∞) + [0, 1].

In particular Hα has a ground state associated to the eigenvalue E(∞)

Algorithm to compute E(∞)

• The method provides an algorithm to compute E(∞) up to any order in α
• One can show [Halser-Herbst JFA’12] that E(∞) is an analytic function of α
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Part III

Resonances and lifetime

of metastable states
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Complex dilatations

Unitary scaling transformation of electron position and photon momenta

Recall H = L2(R3;Hph). For θ ∈ R, let Uθ be the unitary dilatations operator
that implements the transformations

xel 7→ eθxel, k 7→ e−θk

More precisely, for Φ ∈ H,

(UθΦ)(n)(xel,K1, . . . ,Kn) = e−
3
2

(n−1)θΦ(n)(eθxel, (e
−θk1, λ1), . . . , (e−θkn, λn))

The dilated Hamiltonian

• For θ ∈ R, let Hα(θ) = UθHαU−1
θ , which gives

Hα(θ) = Hel(θ) + e−θHf + Wα(θ), Hel(θ) = e−2θ p2
el

2mel
+ V (eθxel)

• Using assumptions on the coupling function, we can define Hα(θ) by the
same expression, for θ ∈ D(0, θ0) ⊂ C, θ0 sufficiently small. The family
θ 7→ Hα(θ) is then analytic of type (A) in the sense of Kato
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Existence of resonances

Existence of resonances ([Bach-Fröhlich-Sigal Adv.Math.’98], [F.
AHP’08], [Sigal JSP’09])

Let Ej < 0 be a simple eigenvalue of Hel. There exists αc > 0 such that for all
0 < α ≤ αc , there exists a non-degenerate eigenvalue Ej,α of Hα(θ) such that
Ej,α does not depend on θ (for θ suitably chosen) and

Ej,α →
α→0

Ej

The eigenvalue Ej,α of Hα(θ) is called a resonance of Hα

Perturbative expansion in α

Expansion in α can be computed up to any order; first terms:

Ej,α = Ej + α3c0 +O(α4),

where Im c0 < 0 (given by Fermi’s Golden Rule)
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Faupin

The model

Spectral
renormaliza-
tion
group

Resonances
and lifetime
of
metastable
states

Existence
of
resonances

Lifetime of
metastable
states
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Ej

The eigenvalue Ej,α of Hα(θ) is called a resonance of Hα

Perturbative expansion in α

Expansion in α can be computed up to any order; first terms:

Ej,α = Ej + α3c0 +O(α4),

where Im c0 < 0 (given by Fermi’s Golden Rule)
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Lifetime of metastable states

Estimation of the lifetime of metastable states ([Hasler-Herbst-Huber
AHP’08], [Abou Salem-F-Fröhlich-Sigal Adv.Appl.Math.’09])

• Let ϕj be a normalized eigenstate of Hel associated to Ej

• Then ϕj ⊗ Ω (with Ω the Fock vacuum) is a normalized eigenstate of H0

associated to Ej

• There exists αc > 0 such that for all 0 < α ≤ αc and t ≥ 0,D
ϕj ⊗ Ω, e−itHαϕj ⊗ Ω

E
= e−itEj,α +O(α)

• Consequence: for t � α−3,˛̨̨D
ϕj ⊗ Ω, e−itHαϕj ⊗ Ω

E˛̨̨
= etIm c0 +O(α)
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Faupin

The model

Spectral
renormaliza-
tion
group

Resonances
and lifetime
of
metastable
states

Existence
of
resonances

Lifetime of
metastable
states

Infrared cutoff

Introduction of an infrared cutoff

Define the infrared cutoff Hamiltonian

Hα,σ(θ) = H0(θ) + Wα,σ(θ)

where the interaction between the electron and the photons of energies ≤ σ
has been suppressed in the interaction Hamiltonian Wα(θ). For θ = 0, this
corresponds to replacing the electromagnetic vector potential A(x) by

Aσ(x) =

Z
R3

1|k|≥σ
χΛ(k)p

2|k|
ελ(k)

“
a∗(K)e−ik·x + a(K)e ik·x

”
dK

Spectrum of the infrared cutoff Hamiltonian

• There exists a complex eigenvalue E>σ
j,α of Hα,σ(θ) arising from Ej , but E>σ

j,α

depends on θ
• When restricted to the Fock space of photons of energies ≥ σ, there is a
gap of order O(σ) around E>σ

j,α in the spectrum of Hα,σ(θ)
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Hunziker’s method (I)

Relation between propagator and resolvent, Combes’ formula

• Let Ψj = ϕj ⊗ Ω. Let f ∈ C∞0 (R) be supported into a neighborhood of
order O(σ) of Ej , f = 1 near Ej

• Stone’s formulaD
Ψj , e

−itHα f (Hα)Ψj

E
= lim
ε↘0

1

2iπ

Z
R

e−itz f (z)
D

Ψj ,
h
(Hα − z − iε)−1 − (Hα − z + iε)−1

i
Ψj

E
dz

• Combes’ formula (first for θ ∈ R, then for θ ∈ C using analyticity)D
Ψj , e

−itHα f (Hα)Ψj

E
=

1

2iπ

Z
R

e−itz f (z)
h “

Ψj(θ), (Hα(θ̄)− z)−1Ψj(θ̄)
E

−
D

Ψj(θ̄), (Hα(θ)− z)−1Ψj(θ)
E i

dz
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dz
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=
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Hunziker’s method (II)

Infrared cutoff Hamiltonian

Approximate the resolvent of Hα(θ) by the resolvent of Hα,σ(θ)D
Ψj , e

−itHα f (Hα)Ψj

E
=

1

2iπ

Z
R

e−itz f (z)
h “

Ψj(θ), (Hα,σ(θ̄)− z)−1Ψj(θ̄)
E

−
D

Ψj(θ̄), (Hα,σ(θ)− z)−1Ψj(θ)
E i

dz + Rem(α, σ)
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Hunziker’s method (III)

Deformation of the path of integration

• Using the gap property for Hα,σ(θ), deform the path of integration (with
α3 � γ ≤ Cσ and f̃ a suitable almost analytic extension of f )Z

R
e−itz f (z)[. . . ]dz =

Z
Γ(γ)

e−itz f̃ (z)[. . . ]dz +

Z
Cρ

e−itz f̃ (z)[. . . ]dz

+

ZZ
D(γ)\Dρ

e−itz(∂z̄ f̃ )(z)[. . . ]dRe(z)dIm(z)

!

jj!1 j+1

")D(

C#

D#

"

f=1

supp(f)

$(")

% % %

% j,

• Use Cauchy’s formula and estimates of the resolvent of Hα,σ(θ)
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Continuation of the resolvent

Pole of an analytic continuation of the resolvent? ([Abou
Salem-F-Fröhlich-Sigal Adv.Appl.Math.’09])

There exists αc > 0 and a dense domain D such that for all 0 < α ≤ αc and
Ψ ∈ D, the map

z 7→ FΨ(z) = 〈Ψ, (Hα − z)−1Ψ〉

has an analytic continuation from C+ to a domain Wj,α related to Ej,α, such
that

FΨ(z) =
p(Ψ)

Ej,α − z
+ r(z ,Ψ), |r(z ,Ψ)| ≤ C(Ψ)

|Ej,α − z |β ,

with β < 1, and where p(·), C(·) are bounded quadratic forms
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Thank you!
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