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ABSTRACT. We propose a new approach to prove the strong asymptotic sta-
bility of a nonlinear and a non-isotropic elastodynamic system. Unlike the earlier
works. our method can be applied in the case of feedbacks with no growth assump-
tions at the origin. and when LaSalle’s invariance principle cannot be applied due
to the lack of compactness.
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1. Introduction
Consider the nonlinear damped elastodynamic system

W =, +i(u) =0 in Qxz.

ui=0 on [ xRy, (P)
ui(0) =u) and ul(0)=u! in Q.
t=1.---.n

where O is an open set of finite measure in =" (n = 1.2.--). having a
boundary [ of class (%, The stross tensor o, is related to the strain tensor







growth at the origin allows the construction of a standard Lyapounov func-

tional, or the use of some specific integral inequalities which yield the desired
decay rates.

As a consequence, our problem is now faced with some difficulties which
require the development of a new approach in successfully solving the problem

of global existence and asymptotic behavior. This approach was introduced
by the first author in [1].

The paper in organized as follows. In section 2, we shall prove the global
existence, and in section 3 we shall prove the strong asymptotic stability.

2. Global existence

Before the statement of our main result in this section, let us first intro-
duce some notations. We denote by H and V the Hilbert spaces L?(Q)" and
Hj(Q)" endowed respectively by the norms

ol = [ owidz and ol = [ o, (v)e(v) da.

Thanks to (1.1)-(1.2) and to the Korn's inequality, one can easily verify that
I -]lv is a norm on V.

The problem (P) is well posed, in fact we have
THEOREM 2.1.
The problem (P) admits a unique global weak solution
u € C(Ry;V)NCY(Ry; H)
for all given initial data (u°,u') € V x H.
PROOF.

[t should be evident that problem (P) may be written abstractly as

U'=AU + F(U)
U(0) = Up =: (u% ut)

where I = (u,z), = = «’, AU = (. Au), A = [Ailiz1.2..n and Aiu; = 0 (u).
The domain of A is D(A) = W x V where W =: (H*(Q) N H(Q)"
endowed with the norm

lellz = /ﬂ (Av;Av; + 0i(v)ei;(v)) de.




The application F : V x H — V x H is defined by F(u.z) = (0,—g(2)).
We will show that A is maximal monotone operator. In fact, for all U =
(u.z), U =(a,2) € D(A) we have

(AU = AU, U = U)yyy = (z — Z,u — @)y + (A(u — @), — 3)n

th

= /ﬂ ikEr(z — 2)g;i(u —u)dz + /;z oij(u—u)(z — &) dz

= /ra,.,(u — )(z = Z)v; dT = 0.
Now we will show that A is maximal, to do this let us take U° = (u°,z°) €
V x H, we will prove that there exists U = (u, z) € DA) satisfying
U+ AU =U°,

which is equivalent to prove the existence of a solution in W to the following
equation

u;—a.-m(u)=u°+:°€H. (21)
Thanks to (1.2) and the well known Lax-Milgram's lemma., the equation (2.1)
can be easily solved, we omit the details here.

Hence A generats a Cyp-group of isometries on V x H. Furthermore since
F'is locally Lipschitz and by (H1) — (H2), we have

(F(U),U)vxn = —/n: -g(z)dz <0,
we deduce the global existence of a weak solution to ( P) by using the following

general result of Ball (3]:

THEOREM 2.2.

Let A be the infinitesimal generator of a linear Co-semigroup €** on a
real Hilbert space H, and F : H — H satisfying

F is locally Lipschit:, (¥)

(F(U),U)u <0 forall UEe€H. (22)
Then the problem
U' =AU+ F(U)
U(O) = Uo

possesses a unique weak solution U(t) on R, for each Uy € H.
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3. Strong asymptotic stabilization

We define the energy of the solution u to the problem (P) by

1
T 2Ja

A simple computation shows that

E(t)

(uiuf + 0,52;,) da.

E(t) = - [ ug(u)dz <0 by(H2);

hence the energy is non-increasing, and our main result in this section is

THEOREM 3.1.
We have

E(t) >0 as t— +oo
for every weak solution of (P).
For the proof, we need the two following lemmas

LEMMA 3.2.
We have

/‘/ u,gi(ul) dzds = o(t), t— +oo.
0 JQ

LEMMA 3.3.
We have

t
//ufufd:zds:o(t), t — +oo.
o Ja

PROOF OF LEMMA 3.2.

From now on we denote by ¢ various positive constants which may be
different at different steps.

By (H1), we see that |g;(z)| < clz| for |z| < 1, then we have

oo wai@lds <e [ (ugu))Hul dz
lu;l<1 lu/I<1

<o [, watutrdz) Rl




Similarly by (H3) we have

7
/MM‘ igi(w;)| dz <C(/n “29-‘(111)41') Nullzegann

where ¢’ = —-7— is the Holder conjugate of q. Then from the Hdlder's inequal-

ity we obtam

// u;g(u! dxds<c// ulg;(u )drds \/t-sup||u e

1
¢ Vol v .‘l'. )
+c</(; Auggn(u.»)d:rds) t s(;xtll) lu(s)ll(zecayn-

Using the Holder, Sobolev and Poincaré inequalities we have

lu(s)ller < ellu(s)llzoayn < cllully < cE(s)? < cE(0)F ¥s > 0.

From these estimates, it follows that
/ / u;gi(u d.rds<ct*+ctv =o(t), t— +oo.

PROOF OF LEMMA 3.3.
Let ¢ be an arbitrarily small real number and set

M.()— sup{ — ( o lel 2 ﬁ}

by hypotheses (H1) — (H3), we have M(€) < +o0o. Clearly,

/l":k\/—ﬁ

and  M(e) =: &@} M, (e),

ulul dz < ne.

On the other hand
i dz = i (ul) d
/lu:lz /']—T'n’ / lur]2 /""9.(
< Al(e)/n uigi(ul) dz.

o s REQ)([ | uudz)}
/Iu.lz\/’ﬁ /lu.lz\/’ﬁ

n

As
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we deduce that

/‘;ufuf e /2E(0)M(6)(/0 ufg.-(uﬁ)dx)f

and then by the Holder inequality, we have

[} fy itz ds < cet+ o PEOME ([ [ utgutat)de ds) v

< cet + ¢\/2M() E(0)VE = ot), ¢t — +oo.

PROOF OF THEOREM 2.1.
Assume on the contrary that [ =: lim,_, ., E(t) > 0, then we have

6(t) — 9(0) = 2/0'/nu;u: drds—‘._'.’/: E(s)ds —/o'/nu,»g,-(u:)dxds

< =2t +o(t), t— 400

where we set §(t) = [, u;u; dz, we used the two lemmas in the last step. [t
follows that ¢(t) — —oo as t — +o0, but this is impossible because

6(t)] = |/Q seensl | %/ﬂ(u;u: + wiw;) dz < cE(t) < cE(0).

Hence lim,_ ., E(t) = 0.
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