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ABSTRACT. We propose a new approach to prove the strong asymptotic sta-
bility of a nonlinear and a non-isotropic elastodynamic system. Unlike the earlier
works. our method can be applied in the case of feedba.cks with no growth assump-
tions at the origin, and when La.Salle's invariance principle cannot be applied due
to the lack of compactness.
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1. Introduction
Consider the nonlinear damped elastodynarnic system

{

u;' - aij.j + !li( uD = 0 in n x ~.+.
Ui = 0 on r x IR+.

lIi(O) = u? and u;(O) = ut in n.
i = l.···.n

(P)

where 0. is an open set of finite measure in .::_~(/1 = 1.2.· .. ). having a
boulIdary r ut" class ("!. The st rcss 1eusor a:) is rela led tot he s 1ra ill t r-nsor
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{
U' = AU + F(U)

U(O) = Uo =: (uO, Ul)

growth at the origin allows the construction of a standard Lyapounov func-
tional, or the use of some specific integral inequalities which yield the desired
decay rates.

As a consequence, our problem is now faced with some difficulties which
require the development of a new approach in successfully solving the problem
of global existence and asymptotic behavior. This approach was introduced
by the first author in (IJ.

The paper in organized as follows. In section 2, we shall prove the global
existence, and in section 3 we shall prove the strong asymptotic stability.

2. Global existence

Before the statement of our main result in this section, let us first intro-
duce some notations. We denote by if and V the Hilbert spaces L2(n)" and
Hci(n)" endowed respectively by the norms

Thanks to (1.1)-(1.2) and to the Kcru's inequality, one can easily verify that
11 . IIv is a norm on V.

The problem (P) is well posed, in fact we have

THEORE~[ 2.l.
The problem (P) admits a unique global weak solution

for all given initial data (uO,u1) E V x H.

PItoOF.

It should be evident that problem (P) may be written abstractly as

where U = (u, ::), z = (I'. AU = (::.Au), A = [A;Ji=I.2 .....n and Aitti = 17ijJ(U).

The domain of A is D(A) = W x V where W =: (H2(n) n Hci(fl))"
endowed with the norm
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= 10 aijklekl(Z - i)~ij(U - U) dz + 10 17ijJ(U - U)(Zi - i;) dx

=t I7jj(U - U)(Z, - =;}Vj elf = O.

Now we will show that A is maximal, to do this let us take Vo = (uo, :0) E
V x H, we will prove that there exists V = (u,:) E DA) satisfying

,

:1

1
I,
I
l

j

The application F: V x H -+ V x H is defined by F(u.:) = (0. -g(:)).
We will show that A is maximal monotone operator. In fact. for all V =
[u, :), {j = (it, =) E D(A) we have

{AV - A{r, V - U}vXH = {z - z,u - il}v + (A(u - ill,: - =}H
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V + AV,= tr,

which is equivalent to prove the existence of a. solution in l-V to the following
equation

u, - 17ijJ(U) = uO +:0 EH. (2.1)

Thanks to (1.2) and the well known Lax-Milgrarn's lemma. the equation (2.1)
can be easily solved, we omit the details here.

Hence A gene rats a Co-group of isometries on V x H. Furthermore since
F is locally Lipschitz and by (HI) - (H2), we have

(F(V), V}VxH = - 10 : . g(z) ds: ~ 0,

we deduce the global existence of a weak solution to (P) by using the following
general result of Ball [3]:

THEORDI 2.2.
Let A be the infinitesimal qeneraior of a linear Co-semigrotlp CA1 on a

real Hilbert space H. and F : H -+ H satisfying

F is locally Lipschitz, (i)

(F(U), V}1I s 0 for all V E H. (ii)

Then the problem

{
(T' = AU + F(U)
V(O) = Vo

possesses a unique ueak solution U(t) on !14 for each Uo E H.



3. Strong asymp tot ic stabilization
\Ve define the energy of the solution u to the problem (P) by

A simple computation shows that

E'(t) = -10 u;g(u;) dx $ 0 by (H2);

hence the energy is non-increasing, and our main result in this section is

THEORD! 3.l.
We have

E(t) -+ 0 as t -+ +00

for every weak solution of(P).

For the proof, we need the two following lemmas

LDn!A 3.2.
H'e have

10' 10 Uj9j(U;) dx ds = oCt), t - +00.

LDIMA 3.3.
We have

10' 10 u;u;dxds = o(t), t -+ +00.

PROOF OF LDI~L\ 3.2.
From now on we denote by c various positive constants which may be

different at different steps.
By (HI), we see that 19i(x)1 $ clxl for Ixl $ 1, then we have

I

s c(1o U:9i( u:) dX) , I/ttl/H.
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Similarly by (H3) we have

. where q' = ~ is the Holder conjugate of q. Then from the Holder's inequal-
ity we obtain

+c( r f u:gi(u:)dXds)-:rt~SUPIIU(S)II(L,(oJJ".
10 10 [0,1)

Using the Holder, Sobolev and Poincare inequalities we have

1 1lIu(s)IIH s cllu(s)II(Lf(Oll" s cllullv s CE(S)l s CE(O)l '<Is 2: O.

From these estimates, it follows that

lfoui9i(U:)dxd3$cd+ct~ =o(t), t-++CXJ.

PROOf Of LE~IMA 3.3.
Let f be an arbitrarily small real number and set

\) x ~ i=" \l(i fi(f =: sup{--, Ixl 2: -I -} and M(f) =: rnax . • f),
9i(X) fll .=1

by hypotheses (Hl) - (H3), we have M(f) < +CXJ. Clearly,

fl 'I u:u: dx s ne,
llu; <vTof

On the other hand

As

1 !
" < ') u'u' dx 1

1'1 Uiuidx_J_E(O)(fl'l ,,)-; ~vTnI llu, ~vTnI
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we deduce that

10 U;tt; dx S; ne + /2E(0 )1\;/( e) (10 U:9j( u;) dx) t,

and then by the Holder inequality, we have

10'10 u;u; dx ds S; eft + cV2E(0)M(e) (10' 10 U;9j(u;) dx d.s) t Jt

S; eft + cV2Jod(e)E(0)Jt = o(t), t _ +00.

PROOF OF THEORE~I 2.1.
Assume on the contrary that 1=: lim,_+oo E(t) > 0, then we have

<i>(t) - 4>(0) = 210' fo u;u: dx ds - 210' E(3) ds -10' fo Uj9i(U;) dx ds

S; -2ft + o(t), t -+ +00

where we set 4>(t) = In Uju: dx , we used the two lemmas in the last step. It
follows that q>( t) - -00 as t -+ +00, but this is impossible because

14>(t)1 = I r ltjU; dxlS; ~ r (u;u; + Uju;) dx S; cE(t) S; cE(O).In _ In
Hence limr_+oo E(t) = o.
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