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Abstract. In this paper, we will compute the Onsager-Machlup func-
tional of an inhomogeneous uniformly elliptic di�usion process. This
functional is very similar to the corresponding functional for homoge-
neous di�usions; indeed, the only di�erence come from the in�nitesimal
variation of the volume. For the Ricci �ow, for instance, the functional
is close to the L0 distance used by Lott in [6]. We will also use the
Onsager-Machlup functional to study small ball probability for weighted
sup-norm of some inhomogeneous di�usion.

1. Introduction

Let M be a n-dimensional Riemannian manifold, and Lt be an inhomo-
geneous uniformly elliptic second order operator over M , without constant
term. It is always possible to endow M with a time-dependent family of
metrics g(t) such that

(1.1) Lt =
1

2
∆t + Z(t),

where ∆t is a Laplace Beltrami operator for the metric g(t) and Z(t, .) is
a time-dependent vector �eld on M . Let Xt(x0) be a Lt-di�usion process
on M , starting at the point x0. An example of such a di�usion is the g(t)-
Brownian motion, introduced in [2], where the family of metrics (g(t))t∈[0,T ]

comes from the Ricci �ow on M .
Let d(t, x, y) be the Riemannian distance on M according to the metric

g(t). Consider a smooth curve ϕ : [0, T ] →M , such that ϕ(0) = x0. We are
now interested in the asymptotic equivalent as ε goes to zero of the following
probability

Px0 [∀t ∈ [0, T ] d(t,Xt, ϕ(t)) ≤ ε].

This asymptotic will be expressed as the product of two terms. The �rst
one is a decreasing function of ε that does not depend on the curve nor
geometries (except the dimension), while the second term depends on the
geometries along the curve ϕ. This second term is expressed as a Lagrangian.
So maximizing this term reduces to �nding the most probable path of the
di�usion. This term is usually called the Onsager-Machlup functional of the
di�usion Xt.

To compute the O.M. functional, we will use both the technics introduced
by Takahashi and Watanabe in [7], and the non-singular drift introduced by
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Hara. Using this drift, Hara and Takahashi made in [4] a substantial simpli-
�cation of the latter proof (of O.M. functional) of Takahashi and Watanabe.

We propose here to introduce a time-dependent parallel transport along
a curve, according to a family of metrics. It will allow us to compute the
Onsager-Machlup functional in the time-inhomogeneous case.

Let divg(t) and Rg(t) be respectively the divergence operator and the scalar
curvature with respect to the metric g(t). Let H be a time-dependent func-
tion on the tangent bundle de�ned for v ∈ TxM as:

H(t, x, v) =
1

2
‖Z(t, x)− v‖2g(t) +

1

2
divg(t)(Z)(t, x)−

1

12
Rg(t)(x)

+
1

4
traceg(t)(ġ(t)).

The main result of this paper is the following:

Theorem 1.1. Let Xt(x0) be a Lt di�usion process starting at point x0,
where Lt =

1
2∆t + Z(t, .). Then we have the following asymptotic:

Px0 [∀t ∈ [0, T ], d(t,Xt, ϕ(t)) ≤ ε]

∼ε↓0 C exp{−λ1T
ε2

} exp{−
∫ T

0
H(t, ϕ(t), ϕ̇(t)) dt}.

Here C and λ1 are explicit constants.

A similar result was obtained by [7],[4], and [1] in the homogeneous case.
Our contribution comes from the time-inhomogeneity of the di�usion.

The paper is organized as follows: �rst, we will de�ne in section 2 a parallel
transport along a curve according to a family of metrics (g(t)t). This parallel
transport will enable us to obtain a Fermi coordinates in a neighborhood of
a smooth curve ϕ. We will also give a (local) development of a tensor that
will be used in the following.

Then, we will introduce some useful tools in section 3. They are not new,
and clearly exposed by Capitaine in [1]. So we will keep the same notation
as in [1] in this paper. In [1], the author has investigated the case of di�erent
norms, in the homogeneous case. In the literature, non smooth functions ϕ
are also considered, but this will not be discussed here. In the second part
of section 3, we will establish the proof of Theorem 1.1. Finally, section 4 is
devoted to some applications. First, we will describe the most probable path
of an inhomogeneous di�usion. Then, we will obtain a small ball estimate
(for the weighted sup-norm) for inhomogeneous di�usions.

2. Parallel transport along a curve, and Fermi coordinate

Let ϕ : [0, T ] −→M be a smooth curve. Suppose that the manifold M is
endowed with a family of metrics g(t)t∈[0,T ] which is C1 in time and C2 in
space . This family of metrics induces a time dependent family of Levi-Civita
connexions, denoted by ∇t.
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Suppose that A is a bilinear form on a given vector space E. Let v, w be
in E. Suppose that there exists a scalar product 〈., .〉g(t) on E. Then de�ne

A#g(t)(v) ∈ E as the element of E such that 〈A#g(t)v, w〉g(t) = A(v, w).
Let v be a vector on Tϕ(0)M and de�ne τtv as the solution of the following

ODE : ∇t
ϕ̇(t)(τtv) = −1

2
ġ(t)#g(t)(τtv)

τ0v = v.

The map τtv is called a parallel transport of v along the curve ϕ according
to the family of metrics g(t).

Proposition 2.1. The parallel transport τt is an isometry between the tan-
gent space (Tϕ(0)M, g(0)) and the tangent space (Tϕ(t)M, g(t)). In particular,
if (e1, e2, ..., en) is an orthonormal basis of Tϕ(0)M for the metric g(0), then
(τte1, τte2, ..., τten) is an orthonormal basis of Tϕ(t)M for the metric g(t).

Proof. Let v, w be in Tϕ(0)M , we have:

d

dt
〈τtv, τtw〉g(t) = ∇tg(t)(τtv, τtw) + 〈∇tτtv, τtw〉g(t) + 〈τtv,∇tτtw〉g(t)

+ ġ(t)(τtv, τtw)

= −1

2
〈ġ(t)#g(t)(τtv), τtw〉g(t) −

1

2
〈τtv, ġ(t)#g(t)(τtw)〉g(t)

+ ġ(t)(τtv, τtw)

= 0.

�

We are now able to write the Fermi coordinates in a neighborhood of a
curve. Let ϕ : [0, T ] −→ M be a smooth curve and let τ be the parallel
transport above ϕ in the sense of proposition 2.1, where we have �xed a
g(0)-orthonormal basis (e1, ..., en) of Tϕ(0)M . Consider the map

Ψ : [0, T ]× Rn −→ [0, T ]×M

(t, v1, ..., vn) 7−→ (t, exp
g(t)
ϕ(t)(τt

n∑
1

viei)),

where exp
g(t)
x means the exponential map for the metric g(t). The map Ψ

is clearly a di�eomorphism on some neighborhood U of [0, T ] × 0. De�ne
now V = Ψ(U). Remark that, for each �xed t, the map Ψ(t, .) is the normal
coordinates for the metric g(t) in a neighborhood of the point ϕ(t).

Let Xt(x0) be an Lt-di�usion starting at the point x0, where Lt is a time-
dependent operator as in (1.1). Using these Fermi coordinates, the time-
dependent norm of Theorem 1.1 can be translated in terms of Euclidean
norm, while the generator will be the pull back operator of Lt by Ψ. By
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assumption, the generator of (t,Xt) is ∂t+
1
2∆t+Z(t, .). We will now compute

the generator of Ψ−1(t,Xt), or more precisely its local development:

(2.1) Ψ∗(∂t +
1

2
∆t + Z(t, .)) =

∂̃

∂t
+

1

2
∆̃t + Z̃(t, .).

The second term in the right hand side is computed in [2] as :

∆̃t = gij(Ψ(t, .))
∂

∂xi

∂

∂xj
− gkl(Ψ(t, .))Γi

kl(Ψ(t, .))
∂

∂xi
,

where (xt1, ..., x
t
n), gij(Ψ(t, .)), gij(Ψ(t, .)), and Γi

kl(Ψ(t, .)) are respectively
the normal coordinates at the point ϕ(t) for the metric g(t) with respect
to the vector basis (τte1, ..., τte1), the coe�cient of metric g(t) in this basis,
its inverse, and the Christo�el symbols of the Levi-Civita connexion of the
metric g(t) in this basis.

Clearly we have

Z̃(t, .) =

n∑
i=1

Zi(t, .)
∂

∂xi

where Zi(t, .) = 〈Z(Ψ(t, .)), ∂
∂xt

i
|Ψ(t,.)〉g(t).

Recall that V is a neighborhood of {(t, ϕ(t)), t ∈ [0, T ]} and V = Ψ(U).
For a point (t, x) ∈ V such that Ψ induces a di�eomorphism in (t, x), we will
write Ψ−1(t, x) = (t, xt1, ..., x

t
n) ∈ [0, T ]× Rn.

To study (2.1), we have to compute ∂̃
∂t
|(t,x) =

∑n
i=1 ai(t, x)

∂
∂xi

+a0(t, x)
∂
∂t .

For any 1 ≤ i ≤ n, we easily see that ai(t0, x) = ∂
∂t |t0

(xti)|Ψ(t0,x). For any

�xed x ∈M , we have the equality:

∂

∂t
(expg(t)(ϕ(t),

n∑
i=1

τteix
t
i)) = 0,

where for any v ∈ TxM , expg(t)(x, v) is the exponential map for the metric
g(t) at the point x. The next technical result will be useful to compute the
term ai(t, x) =

∂
∂t
(xti)|Ψ(t,x).

Lemma 2.2. Let v ∈ TxM . Then

∂

∂t |t0
expg(t)(x, v) = O(‖v‖2g(t0)).

Proof. Let xi(t, s) be the i-th coordinate of the geodesic expg(t)(x, s.v) in the
normal coordinates system centered at ϕ(t0) with respect to the metric g(t0).
In the following, we will shorten the notation an write ẋ(t, s) for ∂

∂sx(t, s).
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The usual equation of geodesics shows that:

∂

∂t |t0
xi(t, s) = −

∑
jk

∂

∂t |t0

[ ∫ s

0
du

∫ u

0
dl Γi

jk(t, x(t, l))ẋj(t, l)ẋk(t, l)
]

=
∑
jk

−
∫ s

0
du

∫ u

0
dl

(
∂

∂t |t0
Γi
jk(t, x(t0, l))ẋj(t0, l)ẋk(t0, l)

+ 〈dΓi
jk(t0, .),

∂

∂t |t0
x(t, l)〉ẋj(t0, l)ẋk(t0, l)

+ 2Γi
jk(t0, x(t0, l))

∂

∂t |t0
(ẋj(t, l))ẋk(t0, l)

)
.

Note that we have ‖ ẋ(t0, s) ‖2g(t0)=‖ v ‖2g(t0) and Γi
jk(t0, x) = O(‖ x ‖g(t0)).

In a neighborhood V of {(t, ϕ(t)), t ∈ [0, T ]}, the quantities | ∂
∂tΓ

i
jk(t, .) | and

‖ dΓi
jk(t, .) ‖ are bounded by some constant C, hence we get the equality:

∂

∂t |t0
x(t, s) :=

∂

∂t |t0
(x1(t, s), ..., xn(t, s))

= O(‖v‖2g(t0)) +
∫ s

0
dl O(‖v‖2g(t0))

∂

∂t |t0
x(t, l)

+

∫ s

0
du

∫ u

0
dl O(‖v‖2g(t0))

∂

∂t |t0
x(t, l).

By Gronwall's lemma we deduce that :

‖ ∂

∂t |t0
x(t, 1) ‖= O(‖v‖2g(t0)).

�
Lemma 2.3. Let (x1(t), ..., xn(t)) be the coordinates of

expg(t0)(ϕ(t),

n∑
i=1

τteix
t
i)

in the normal coordinates system at the point ϕ(t0) for the metric g(t0) with
reference basis (τt0ei)i=1,...,n and ∂i = ∂

∂
x
t0
i

be the associated vector �eld.

Then we have:

∂

∂t |t0
xi(t) =

∂

∂t |t0
xti −

1

2

∂

∂t |t0
(g(t))ϕ(t0)(∂i,

n∑
j=1

xt0j ∂j) + 〈 ∂
∂t |t0

ϕ(t), ∂i〉g(t0)

+O(‖ xt0 ‖2).

Proof. As in the previous proof, we write the geodesic

expg(t0)(ϕ(t), s.
n∑

i=1

τteix
t
i)
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in normal coordinate. It satis�es the system :

ẍi(t, s) = −
∑
jk

Γi
jk(t0, x(t, s))ẋj(t, s)ẋk(t, s),

ẋi(t, 0) = 〈
n∑

l=1

τtelx
t
l , ∂i|ϕ(t)

〉g(t0),

xi(t, 0) = ϕ(t)i.

Moreover, we have :

(2.2)

∂

∂t |t0
xi(t, s) = −

∫ s

0
du

∫ u

0
dl
∑
jk

∂

∂t |t0

[
Γi
jk(t0, x(t, l))ẋj(t, l)ẋk(t, l)

]
+ s

∂

∂t |t0
ẋi(t, 0) +

∂

∂t |t0
xi(t, 0).

Similarly to the latter proof, the equality (2.2) can be rewritten in a
matrix. Then using again Gronwall's lemma, we see that ∂

∂t |t0xi(t, s) is

bounded for any s ∈ [0, 1]. So the integral term of (2.2) is an O(‖xt0‖2g(t0)).
Hence, we deduce that

∂

∂t |t0
xi(t, 1) = O(‖xt0‖2g(t0)) +

∂

∂t |t0
〈

n∑
l=1

τtelx
t
l , ∂i|ϕ(t)

〉g(t0)

+ 〈 ∂
∂t |t0

ϕ(t), ∂i|ϕ(t0)
〉g(to).

Remark that for t = t0, we have ∂i|ϕ(t0)
= τt0ei. So, we obtain the equality:

∂

∂t |t0
xi(t, 1) = O(‖xt0‖2g(t0)) +

∂

∂t |t0
xtlδ

l
i

+
n∑

l=1

xt0l
∂

∂t |t0
〈τtel, ∂i|ϕ(t)

〉g(t0) + 〈 ∂
∂t |t0

ϕ(t), ∂i|ϕ(t0)
〉g(to).

By construction of the parallel transport τ , we have :

∂

∂t |t0
〈τtel, ∂i|ϕ(t)

〉g(t0) = 〈∇t0τtel, ∂i|ϕ(t0)
〉g(t0) + 〈τt0el,∇t0∂i〉g(t0)

= −1

2
ġ(t0)(τt0el, ∂i|ϕ(t0)

)

= −1

2
ġ(t0)(∂l|ϕ(t0)

, ∂i|ϕ(t0)
).

The last term of the right hand side has vanished because ∂i comes from
normal coordinates for the metric g(t0). Putting all pieces together leads to
the result.

�
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Proposition 2.4. We have

∂

∂t |t0
xti =

1

2

∂

∂t |t0
(g(t))ϕ(t0)(∂i,

n∑
j=1

xt0j ∂j)−〈 ∂
∂t |t0

ϕ(t), ∂i〉g(t0)+O(‖ xt0 ‖2g(t0)).

Proof. Recall that:

∂

∂t
(expg(t)(ϕ(t),

n∑
i=1

τteix
t
i)) = 0.

The expected equation follows from the previous two lemmas. �
We can now conclude that the Taylor series of the generator is:

∂̃

∂t
+ L̃t := Ψ∗(∂t +

1

2
∆t + Z(t, .))|(t,x)

=
∂̃

∂t
+

1

2

n∑
i,j=1

gij(t, x)
∂

∂xi

∂

∂xj
+

n∑
i=1

b̃i(t, x)
∂

∂xi

=
∂

∂t
+

n∑
i,j=1

(1
2
ġ(t)

( ∂

∂xti
,
∂

∂xtj

)
xj − ϕ̇(t)i

) ∂

∂xi

− 1

2

n∑
k,l,i=1

gkl(t, x)Γi
kl(t, x)

∂

∂xi
+

1

2

n∑
i,j=1

gij(t, x)
∂

∂xi

∂

∂xj

+

n∑
i=1

Zi(t, x)
∂

∂xi
+O(‖x‖2),

where gij(t, x) corresponds to the inverse of the metric g(t) in the normal co-
ordinates (xt1, ..., x

t
n) evaluated at the point Ψ(t, x), Γk

ij(t, x) are the Christof-

fel symbols in these coordinates at the point Ψ(t, x), ϕ̇i(t) and Zi(t, x) are
the coordinates of the corresponding vector in these normal coordinates.

Remark 2.5. We have no time-dependence term such as O(‖.‖g(t)) because
all metrics are equivalent on U .

3. Proof of the main result

3.1. A useful tool : Besselizing drift. Let X(t) be a Lt-di�usion, and

T̃ = inf{t ∈ [0, T ], s.t. (t,X(t)) /∈ V }. Let us de�ne X̃(t) a Rn-valued

process such that (t ∧ T̃ , X̃(t)) = Ψ−1(t ∧ T̃ , X(t ∧ T̃ )). Then for any small
enough ε, we have :

Px0 [ sup
t∈[0,T ]

d(t,X(t), ϕ(t)) ≤ ε] = P0[ sup
t∈[0,T ]

‖X̃(t)‖ ≤ ε].

It is obvious that (t, X̃(t)) is a ∂̃
∂t + L̃t di�usion. So there exists a Rn-

valued Brownian motion B̃, such that X̃(t) is a solution of the following Itô
stochastic di�erential equation :
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dX̃i(t) =

n∑
j=1

√
gij(t, X̃(t)) dB̃j

t + b̃i(t, X̃(t)) dt,

X̃(0) = 0.

Here
√
gij(t, x) is the square root of the inverse metric g(t) in the coordinates

(xt1, ..., x
t
n) at the point Ψ(t, x) and the drift term is de�ned by:

b̃i(t, x) = −ϕ̇i(t)− 1

2

∑
kl

gkl(t, x)Γi
kl(t, x)

+
1

2
ġ(t)|ϕ(t)

( ∂

∂xti
,

n∑
j=1

xj
∂

∂xtj

)
+ Zi(t, x) +O(‖x‖2).

The Onsager Machlup functional for the sup-norm was studied by Taka-
hashi and Watanabe. They introduced a drift, which is singular at the origin.
The smooth Besselizing drift we will use here has been found by Hara. Let us
describe shortly the Hara Besselizing drift. Since the coordinates are normal,
we use Gauss' Lemma to �nd that for any i ∈ [1..n]:

m∑
j=1

gij(t, x)xj = xi, and
m∑
j=1

√
gij(t, x)xj = xi.

The Hara drift γ is then de�ned by:

γi(t, x) =
1

2

n∑
j=1

∂gij

∂xj
(t, x).

It satis�es the following equation :

n∑
i=1

(1− gii(t, x)) = 2
n∑
j

γj(t, x)xj .

Let us denote σ̃ij(t, .) =
√
gij(t, x). We remind the reader that the process

X̃(t) satis�es the equation :

(3.1)

{
dX̃(t) = σ̃(t, X̃(t)) dB̃t + b̃(t, X̃(t)) dt

X̃(0) = 0.

De�ne the Rn-valued process Y (t) as the solution of the following Itô
equation:

(3.2)

{
dY (t) = σ̃(t, Y (t)) dB̃t + γ(t, Y (t)) dt

Y (0) = 0.

By de�nition of the vector �eld γ, we get by Itô's formula:
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d ‖ Y (t) ‖2 = 2

n∑
k=1

Y k(t)dB̃k
t + ndt.

By Lévy's Theorem, we see that B(t) =
∑n

k=1

∫ t
0

Y k(s)
‖Y (s)‖dB̃

k
s is a one di-

mensional Brownian motion in the �ltration generated by B̃ and

d ‖ Y (t) ‖2 = 2 ‖ Y (t) ‖ dBt + ndt.

It proves that ‖ Y (t) ‖ is a n-dimensional Bessel process.

Let us de�ne Ŷt := (t, Y (t)). The next step consists in �nding a well-suited
probability measure such that, under this measure, the process Y (t) has the

same distribution as the process X̃(t). Let us de�ne:

Nt =

∫ t

0
〈σ̃−1(Ŷt)(b̃(Ŷt)− γ(Ŷt)), dB̃t〉,

Mt = exp(Nt −
1

2
〈N〉t)

Q =MT .P.
Girsanov's Theorem ensures that (Y,Q) is a solution of (3.1). The uniqueness
in law of such a solution then implies that:

(3.3)

P0[ sup
t∈[0,T ]

‖X̃(t)‖ ≤ ε] = Q[ sup
t∈[0,T ]

‖Y (t)‖ ≤ ε]

= EP[MT ; sup
t∈[0,T ]

‖Y (t)‖ ≤ ε]

= EP[MT | sup
t∈[0,T ]

‖Y (t)‖ ≤ ε]P[ sup
t∈[0,T ]

‖Y (t)‖ ≤ ε].

The term P[supt∈[0,T ] ‖Y (t)‖ ≤ ε] is easily controlled by a stopping time
argument. So �nding the Onsager Machlup functional reduces to the study
of the behavior of a conditioned exponential martingale, as in the paper [7].
We will study the behavior of:

(3.4)

EP

[
exp

( n∑
i,j=1

∫ T

0

√
gij(Ŷt)δ

j(Ŷt)dB̃
i
t

− 1

2

n∑
i,j=1

∫ T

0
gij(Ŷt)δ

i(Ŷt)δ
j(Ŷt)dt

)∣∣∣∣∣ sup
t∈[0,T ]

‖Y (t)‖ ≤ ε

]
.

Where δi(t, x) = b̃i(t, x)− γi(t, x).

Remark 3.1. From Lemma 1 in [1] it is su�cient to control the exponential
moments one by one in the following sense.

Let us recall brie�y this lemma :
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Lemma 3.2 ([5],[1]). Let I1, ..., In be n random variables, {Aε}0<ε a family
of events, and a1, ..., an some real numbers. If, for every real number c and
every 1 ≤ i ≤ n, we have

lim sup
ε→0

E[exp(cIi) | Aε] ≤ exp(cai),

then,

lim
ε→0

E(exp(
n∑

i=1

Ii) | Aε) = exp(
n∑

i=1

ai).

Note that, in the case studied here, all the metrics g(t) are equivalent.
Recall Cartan's Theorem dealing with Taylor series of metric and curvature
in normal coordinates. We have :

gij(t, x) = δji −
1

3

∑
kl

Riklj(t, 0)xkxl +O(‖x‖3),

where Riklj(t, 0) are the components of the Riemannian curvature tensor, for
the metric g(t) in normal coordinates centered at the point ϕ(t). We thus
deduce the following equalities :

gij(t, x) = δji +O(‖x‖2),

γi(t, x) = −1

6

n∑
j=1

Rij(t, 0)xj +O(‖x‖2),

where Rij(t, 0) are the component of the Ricci curvature tensor for the metric
g(t) in normal coordinates, at the point ϕ(t). By de�nition of the Christo�el
symbol, we have,

(3.5)

Γk
ij(t, x) =

1

2
(
∂

∂xi

gjk(t, x) +
∂

∂xj

gik(t, x)−
∂

∂xk

gij(t, x))

= −1

3

n∑
l=1

(Rjlik(t, 0) +Riljk(t, 0))xl +O(‖x‖2).

So we obtain,

−1

2

n∑
i,j=1

gij(t, x)Γk
ij(t, x) = −1

3

n∑
l=1

Rlk(t, 0)xl +O(‖x‖2),

and thus,

(3.6)

δi(t, x) = −ϕ̇i(t) +

n∑
j=1

(1
2
ġij(t, 0)−

1

6
Rij(t, 0)

)
xj + Zi(t, x) +O(‖x‖2),

= −ϕ̇i(t) + Zi(t, 0) +

n∑
j=1

(1
2
ġij(t, 0)−

1

6
Rij(t, 0) +

∂

∂xj
Zi(t, 0)

)
xj

+O(‖x‖2),
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where ġij(t, 0) = ġ(t)
(

∂
∂xt

i
|ϕ(t), ∂

∂xt
j
|ϕ(t)

)
.

3.2. Proof of the theorem 1.1. According to Lemma 3.2 we will sepa-
rately estimate the terms of (3.4). The easiest one is the drift term. Namely,
we have :

(3.7)

lim sup
ε→0

E[exp{− c
2

∫ T

0
gij(Ŷt)δ

i(Ŷt)δ
j(Ŷt)dt} | sup

t∈[0,T ]
‖Y (t)‖ ≤ ε]

≤ lim
ε→0

exp[− c
2

∫ T

0
δji (−ϕ̇

i(t) + Zi(t, 0))2 +O(ε) dt]

≤ exp(− c
2

∫ T

0
δji (−ϕ̇

i(t) + Zi(t, 0))2 dt),

where we have used in the second inequality the fact that O(ε) is uniform in
t according to the uniform equivalence of the family of metrics {g(t)}t∈[0,T ].
So, it remains to control the �rst term in (3.4). To this aim, we will use the
following Theorem established in [4].

Let us denote by ∗d the Stratonovich di�erential.

Theorem 3.3 ([4]). Let α be a one form on [0, T ] × Rn, which does not
depend on dt and Y (t) be a di�usion process in Rn whose radial part is a
Bessel process, and such that for any 1 ≤ i, j ≤ n,

〈
∫ .

0
Y idY j − Y jdY i, ‖Y ‖.〉 = 0.

Then the following estimate holds for the stochastic line integral
∫
∗d(t,Yt)

α

(in the sense of Stratonovich integration of a one form along a process):

E[exp(
∫
∗d(t,Yt)

α) | sup
t∈[0,T ]

‖Y (t)‖ ≤ ε] = exp(O(ε)).

The proof of this Theorem is based on the stochastic Stokes theorem
which is deduced from Stokes' theorem by using Stratonovich integrals and
the Kunita-Watanabe theorem for orthogonal martingales.

To use the above Theorem we �rst have to write the �rst term of (3.4)
in terms of Stratonovich integral of a one form along a Bessel radial part
process. Using the de�nition of y, (see (3.2)):

dB̃i
t =

n∑
j=1

σ̃−1
ij (Ŷt) dY

j
t −

n∑
j=1

σ̃−1
ij (Ŷt)γ

j(Ŷt) dt,
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so

(3.8)

n∑
i,j=1

∫ T

0

√
gij(Ŷt)δ

j(Ŷt)dB̃
i
t

=

n∑
i,j=1

∫ T

0
gij(Ŷt)δ

j(Ŷt)dY
i
t −

∫ T

0
gij(Ŷt)δ

j(Ŷt)γ
i(Ŷt) dt

=

n∑
i,j=1

∫ T

0
gij(Ŷt)δ

j(Ŷt) ∗ dY i
t

− 1

2

n∑
i,j=1

∫ T

0
〈d(gij(Ŷt)δj(Ŷt)), dY i

t 〉 −
∫ T

0
gij(Ŷt)δ

j(Ŷt)γ
i(Ŷt) dt.

Proposition 3.4. Denote by Aε the event {supt∈[0,T ] ‖Y (t)‖ ≤ ε}. Then,
the following equalities hold for any 1 ≤ i, j ≤ n and c ∈ R:

i) E[exp(c
∫ T
0

∑n
i,j=1 gij(Ŷt)δ

j(Ŷt) ∗ dY i
t ) | Aε] = exp(O(ε)).

ii)

lim sup
ε→0

E[exp(− c
2

∫ T

0
〈d(gij(Ŷt)δj(Ŷt)), dY i

t 〉) | Aε]

≤ exp(− c
2

∫ T

0
δji {

1

2
ġij(t, 0)−

1

6
Rij(t, 0) +

∂

∂xj
Zi(t, 0)} dt).

iii) lim supε→0 E[exp(−c
∫ T
0 gij(Ŷt)δ

j(Ŷt)γ
i(Ŷt) dt) | Aε] = 1.

Proof. i) Let α = c
∑n

i,j=1 gij(t, x)δ
j(t, x)dxi be de�ned in the neighbor-

hood U ⊂ [0, T ]× Rn, and extend it to the whole space. The expected
asymptotic expansion is straightforward corollary of Theorem 3.3.

ii) Using Itô's formula, the de�nition of Y leads to, for any 1 ≤ i ≤ n:

lim sup
ε→0

E[exp(− c
2

∫ T

0
〈d(gij(Ŷt)δj(Ŷt)), dY i

t 〉) | Aε]

= lim sup
ε→0

E[exp(− c
2

∫ T

0

n∑
l=1

∂

∂xl
(gij(t, ·)δj(t, ·))(Yt)dY l

t dY
i
t ) | Aε]

= lim sup
ε→0

E[exp(− c
2

∫ T

0

n∑
l=1

∂

∂xl
(gij(t, .)δ

j(t, .))(Yt)gil(Ŷt) dt) | Aε]

≤ exp(− c
2

∫ T

0
(
1

2
ġii(t, 0)−

1

6
Rii(t, 0) +

∂

∂xi
Zi(t, 0)) dt).

For the latter inequality, we have used the Taylor expansion computed
in the last section.
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iii) We have :

(3.9)

lim sup
ε→0

E[exp(−c
∫ T

0
gij(t, Y (t)δj(Ŷt)γ

i(t, Y (t)) dt) | Aε]

= lim sup
ε→0

E[exp(−c
∫ T

0
O(‖Y (t)‖) dt) | Aε] = 1.

�

We are now ready to prove Theorem 1.1

Proof. Theorem 1.1
Using Lemma 3.2,formula (3.3), (3.4), (3.7) and Proposition 3.4, we obtain :

(3.10)

lim
ε→0

EP[MT | sup
t∈[0,T ]

‖Y (t)‖ ≤ ε]

= exp
( ∫ T

0
{−1

2
‖Z(t, ϕ(t))− ϕ̇(t)‖2g(t) −

1

4
(Trg(t)(ġ(t)))ϕ(t)

+
1

12
R(t, ϕ(t))− 1

2
divg(t) Z(t, ϕ(t))}dt

)
= exp

(
−
∫ T

0
H(t, ϕ(t), ϕ̇(t)) dt

)
.

Since the second term of (3.3) is given by the scaling property of the Brow-
nian motion, we see that

P0[ sup
t∈[0,T ]

‖Y (t)‖ ≤ ε] = P0[τ
n
1 (B) >

T

ε2
],

where τn1 (B) is the �rst hitting time of the ball of radius 1 by the n-
dimensional Brownian motion. Thus, using arguments of stopping time,
Dirichlet problem and spectral Theorem, we get the following :

P0[ sup
t∈[0,T ]

‖Y (t)‖ ≤ ε] ∼ε→0 C exp(−λ1
T

ε2
),

where λ1 is the �rst eigenvalue of the Laplace operator (−1
2∆Rn) in the unit

ball in Rn with Dirichlet's boundary conditions, and C is an explicit constant
that only depends on the dimension, (see lemme 8.1 [5]). �

4. Applications

4.1. The most probable path. In this section, we will deduce from Theo-
rem 1.1 the equation of the �most likely�curve. Namely, we will �nd a second
order di�erential equation for the critical curve of the Onsager Machlup func-

tional E[ϕ] =
∫ T
0 H(t, ϕ(t), ϕ̇(t)) dt. This will be done below, in proposition

4.1.
Let ϕ and ψ be two smooth curves in M such that ϕ(0) = ψ(0) and

ϕ(T ) = ψ(T ). Using the notation of Theorem 1.1, it implies that, for any
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given initial x0, we have :

lim
ε→0

Px0 [supt∈[0,T ] d(t,X(t), ϕ(t)) ≤ ε]

Px0 [supt∈[0,T ] d(t,X(t), ψ(t)) ≤ ε]

=

exp

(
−
∫ T
0 H(t, ϕ(t), ϕ̇(t)) dt

)
exp

(
−
∫ T
0 H(t, ψ(t), ψ̇(t)) dt

) .
Our goal consists in computing the critical curve of the functional :

E[ϕ] =

∫ T

0
H(t, ϕ(t), ϕ̇(t)) dt,

when both the initial and ending points are �xed. In the next result, we
determine the equation of this curve in the case of g(t)-Brownian motion
(see [2]). The general case could be deduced by the same computation.

Proposition 4.1. Let Xt be a Lt :=
1
2∆t di�usion, where ∆t is the Laplace

operator with respect to a family of metrics g(t) coming from the Ricci �ow
∂tg(t) = αRicg(t), (as in [2]). Then the critical curve ϕ for the functional E
satis�es the following second order di�erential equation:

∇t
∂tϕ̇(t) + αRic#g(t)(ϕ̇(t)) +

1− 3α

12
∇tRt(ϕ(t)) = 0.

Proof. Let ϕ be a critical curve for E and let exp be the exponential map
according to some �xed metric. Then for all vector �elds V over ϕ such that
V (0) = V (1) = 0, we have:

∂

∂s |s=0

E[t 7→ expϕ(t)(sV (t))] = 0.

Let us recall that the generator of (t,Xt) is given by ∂t +
1
2∆t + Z(t, ·). So

when Lt =
1
2∆t, we have Z(t, .) = 0, and hence

H(t, x, v) =
1

2
‖v‖2g(t) −

1− 3α

12
Rg(t)(x).

Let us now denote the variation of the curve ϕ by ϕV (t, s) := expϕ(t)(sV (t)),

and ϕ̇V (t, s) :=
∂
∂t
ϕV (t, s). The preceding equation of E becomes:

0 =
∂

∂s |s=0

∫ T

0

1

2
‖ϕ̇V (t, s)‖2g(t) −

1− 3α

12
Rg(t)(ϕV (t, s))dt

=

∫ T

0
〈ϕ̇V (t, 0),∇t

∂sϕ̇V (t, 0)〉g(t)

− 1− 3α

12
〈∇tRg(t)(ϕV (t, 0)),

∂

∂s |s=0

ϕV (t, s)〉g(t) dt

=

∫ T

0
〈ϕ̇(t),∇t

∂sϕ̇V (t, s)〉g(t) −
1− 3α

12
〈∇tRg(t)(ϕ(t)), V (t)〉g(t) dt.
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Since ∂t and ∂s commute, and since the connection ∇t is torsion free,
we have ∇t

∂s
ϕ̇V (t, s) = ∇t

∂t
∂
∂s
ϕV (t, s). So, for any vector �eld V such that

V (0) = V (T ) = 0, the critical curve satis�es:

(4.1)

∫ T

0
〈ϕ̇(t),∇t

∂tV (t)〉g(t) −
1− 3α

12
〈∇tRg(t)(ϕ(t)), V (t)〉g(t) dt = 0.

Moreover, a straightforward computation shows that,

∂t〈ϕ̇(t), V (t)〉g(t) = 〈∇t
∂tϕ̇(t), V (t)〉g(t) + 〈ϕ̇(t),∇t

∂tV (t)〉g(t)

+ ġ(t)

(
ϕ̇(t), V (t)

)
.

The �nal condition of the vector �eld V (0) = V (T ) = 0, gives:∫ T

0
∂t

(
〈ϕ̇(t), V (t)〉g(t)

)
dt = 0.

Hence, for any vector �eld V such that V (0) = V (T ) = 0, the preceding
equation (4.1) becomes∫ T

0

(
〈∇t

∂tϕ̇(t), V (t)〉g(t) + 〈αRic#g(t)(ϕ̇(t)), V (t)〉

+
1− 3α

12
〈∇tRg(t)(ϕ(t)), V (t)〉g(t)

)
dt = 0.

Thus we conclude that ϕ is a critical value of E if and only if it satis�es:

∇t
∂tϕ̇(t) + αRic#g(t)(ϕ̇(t)) +

1− 3α

12
∇tRg(t)(ϕ(t)) = 0.

�

Remark 4.2. The choice α = 1
3 for the speed of the backward Ricci �ow

produces a simpli�cation in the above expressions and makes the functional
E positive for all time, for any �xed metric g(0) (when the backward Ricci
�ow exists).

Remark 4.3. The more general case of g(t)-BM can be easily deduced by
the same proof. Let Xt be a Lt :=

1
2∆t di�usion, where ∆t is the Laplace

operator with respect to a family of metric g(t), then the E-critical curve ϕ
satis�es:

∇t
∂tϕ̇(t) + ġ(t)#g(t)(ϕ̇(t)) +

1

12
∇tRg(t)(ϕ(t))−

1

4
∇t(Trg(t) ġ(t))(ϕ(t)) = 0.

We can also use this formula for the Brownian motion induced by the mean
curvature �ow as in [3], and compute the most probable path for this inho-
mogeneous di�usion. This result can be used to compute the most probable
path for the degenerated di�usion Z(t) (see Remark 2.9 of [3]).
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4.2. Small ball properties of inhomogeneous di�usion for weighted

sup norm. Let Xt(x) be a Lt =
1
2∆t + Z(t) di�usion. Let f ∈ C1([0, T ])

be a positive function on [0, T ]. In this paragraph, we wish to estimate the
following probability

Px0 [∀t ∈ [0, T ] d(t,Xt, ϕ(t)) ≤ εf(t)],

when ε is positive and close to 0. We deduce the following small ball estimate:

Proposition 4.4. There exists an explicit positive constant C > 0 such that:

Px0 [∀t ∈ [0, T ] d(t,Xt, ϕ(t)) ≤ εf(t)] ∼ε↓0

C exp{−
λ1
∫ T
0

1
f2(s)

ds

ε2
} exp{−

∫ T

0
H̃(t, ϕ(t), ϕ̇(t)) dt}

where

H̃(t, x, v) = ‖Z(t, x)− v‖2g(t)+
1

2
divg(t)(Z)(t, x)−

1

12
Rg(t)(x)

+
1

4
f−2(t) traceg(t)(ġ(t))−

1

2
n(f ′(t)f−3(t)).

Proof. Let g̃(t) = 1
f2(t)

g(t), and let d̃(t, ., .) be the associated distance. Then

the probability we wish to estimate is

Px0 [∀t ∈ [0, T ] d̃(t,Xt, ϕ(t)) ≤ ε].

Now after a change of time we will turn the Lt di�usion X into a L̃t di�usion,
in order to apply Theorem 1.1. Let us de�ne

δ(t) =

(∫ .

0

1

f2(s)
ds

)−1

(t),

and let X̃(t) := Xδ(t). Then X̃ is a L̃t di�usion, where

L̃t :=
1

2
∆g̃(δ(t)) + f2(δ(t))Z(δ(t), .).

We deduce that:

Px0 [∀t ∈ [0, T ] d(t,Xt, ϕ(t)) ≤ εf(t)]

= Px0 [∀t ∈ [0, T ] d̃(t,Xt, ϕ(t)) ≤ ε]

= Px0 [∀t ∈ [0, δ−1(T )] d̃(δ(t), X̃t, ϕ(δ(t))) ≤ ε]

∼ε↓0 C exp{−λ1δ
−1(T )

ε2
} exp{−

∫ δ−1(T )

0
H(δ(t), ϕ(δ(t)), δ̇(t)ϕ̇(δ(t)) dt}.

In the last line, we have used Theorem 1.1, and the Lagrangian H related
to the di�usion X̃. After a change of variables we get the result. �
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Corollary 4.5.

ε2 log{Px0 [∀t ∈ [0, T ] d(t,Xt, ϕ(t)) ≤ εf(t)]} →ε→0 −λ1
∫ T

0

1

f2(s)
ds.
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