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Abstract. For algebraic number fields K with s > 0 real and 2t > 0 complex em-
beddings and ”admissible” subgroups U of the multiplicative group of integer units of
K we construct and investigate certain (s + t)-dimensional compact complex manifolds
X(K, U). We show among other things that such manifolds are non-Kähler but admit
locally conformally Kähler metrics when t = 1. In particular we disprove a conjecture of
I. Vaisman.

Etant donnés des corps de nombres K avec s > 0 plongements réels et 2t > 0 plongements
complexes et des sous groupes ”admissibles” U du groupe multiplicatif des entiers in-
versibles, nous construisons et étudions certaines variétés complexes compactes X(K, U).
Entre autres, nous montrons que ces variétés ne sont pas kähleriennes, mais admettent
des métriques localement conformément kähleriennes lorsque t = 1. En particulier, nous
donnons un contre-exemple à une conjecture de I. Vaisman.

1. Notations, construction and first properties

Consider an algebraic number field K, that is a finite extension field of the field of

rational numbers Q. Let n := (K : Q) be its degree. The field K admits precisely

n = s + 2t distinct embeddings σ1, ..., σn into C, where we suppose that σ1, ..., σs are the

real embeddings, σs+1, ..., σn are the complex ones and that σs+i = σ̄s+i+t for 1 ≤ i ≤ t. We

shall suppose throughout the paper that both s and t are strictly positive. Furthermore,

let OK denote the ring of algebraic integers of K. This is a free Z-module of rank n. In

fact our construction works also for arbitrary orders O of K, i.e. for subrings O of OK

which have rank n as Z-modules.

Set now m := s + t and consider the ”geometric representation” of K:

σ : K → Cm, σ(a) := (σ1(a), ..., σm(a)).
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It is known that the image σ(OK) of OK through σ is a lattice of rank n in Cm, cf. [1],

2.3.1., p. 95ff. We thus get a properly discontinuous action of OK on Cm by translations.

Consider furthermore the following multiplicative action of K on Cm: for a ∈ K and

z ∈ Cm set

az := (σ1(a)z1, ..., σm(a)zm).

For a ∈ OK , aσ(OK) is contained in σ(OK). Let O∗
K denote the group of units in OK and

O∗,+
K := {a ∈ O∗

K | σi(a) > 0 for all 1 ≤ i ≤ s}.

Since for s > 0 the only torsion elements of O∗
K are 1 and −1, Dirichlet’s Units Theorem

allows us to write O∗
K = G ∪ (−G), where G is a free abelian (multiplicative) group of

rank m− 1. One may choose G so that it contains O∗,+
K , automatically with finite index.

We denote by H the upper complex half-plane, H := {z ∈ C | =mz > 0}. Combining the

additive action of OK with the induced multiplicative action of O∗,+
K we get an action of

O∗,+
K nOK on Cm which is free on the invariant domain Hs ×Ct. We shall now choose a

subgroup U of rank s of O∗,+
K such that the action of U nOK on Hs×Ct becomes properly

discontinuous, thus yielding a smooth quotient which will be shown to be compact. In

order to do this we consider the logarithmic representation of units

l : O∗
K → Rm, l(u) := (ln|σ1(u)|, ..., ln|σs(u)|, 2ln|σs+1(u)|, ..., 2ln|σm(u)|),

cf. [1] 2.3.3.. Dirichlet’s Units Theorem implies that l(O∗,+
K ) is a full lattice in the subspace

L := {x ∈ Rm|
∑m

i=1 xi = 0} of Rm. Since t > 0, the projection pr : L 7→ Rs given by the

first s coordinate functions is surjective. Thus there exist subgroups U of rank s of O∗,+
K

such that pr(l(U)) is a full lattice in Rs. Such a subgroup will be called admissible for

K.

Take now U admissible for K. The quotient Hs×Ct/σ(OK) is clearly diffeomorphic to a

trivial torus bundle (R>0)
s× (S1)n and U operates properly discontinuously on it since it

induces a properly discontinuous action on the base (R>0)
s by our choice. Differentiably

the quotient of this action is a fiber bundle over (S1)s with (S1)n as fiber. We thus get

an m-dimensional compact complex affine manifold

X = X(K, U) := (Hs × Ct)/(U nOK).

This paper is devoted to the description of these complex manifolds.

Remark 1.1. For every choice of natural numbers s and t, algebraic number fields with

precisely s real and 2t complex embeddings exist.

Since we don’t know of any source for this observation we include here an argument we

owe to Ph. Eyssidieux.

Proof. Consider the non-empty open set D of points a = (a1, ..., an) ∈ Qn such that the

polynomials P = Xn + a1X
n−1 + ... + an admit exactly s real distinct and 2t complex
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non-real roots. The open set D will contain arbitrarily large open balls since the map

(a1, ..., an) 7→ (ba1, b
2a2, ..., b

nan) leaves it invariant for any choice of rational numbers b.

Choose now a prime number p and P̃ = Xn + ã1X
n−1 + ... + ãn ∈ Z[X] an Eisenstein

polynomial with respect to p, that is p|ãi for all i but p2 - ãn. Then the set ã + p2Zn

intersects D and consists only of Eisenstein hence irreducible polynomials. �

Remark 1. 2. For s = 1, t = 1 and U = O∗,+
K , X(K, U) is an Inoue-Bombieri surface

SM ; cf. [3].

Remark 1.3. When s = 1 or t = 1 all subgroups U of rank s of O∗,+
K are admissible for

K. But this need not be the case in general as the following example shows. Take two field

extensions K ′ and K ′′ of Q with corresponding numbers of real and complex embeddings

s′ = 1, t′ = 2, s′′ = 2, t′′ = 1 and K the composite of K ′ and K ′′. Then s = 2 but O∗,+
K′ is

not admissible for K.

Lemma 1. 4. Let U be a subgroup of OK not contained in Z.Then the following are

equivalent:

• The action of U on OK admits a proper non-trivial invariant submodule of lower

rank.

• There exists some proper intermediate field extension Q ⊂ K ′ ⊂ K with U ⊂ O∗
K′.

Proof. Suppose M is a proper Z-submodule of OK which is invariant under U and with

0 < rank M = r < n. We consider the coefficient ring of M , OM := {a ∈ K|aM ⊂ M}.
We have U ⊂ OM , hence OM is not contained in Q. Let now K ′ be the field of fractions

of OM . We have to show that K ′ 6= K. Let x ∈ K ′ be a primitive element for K ′/Q
with x = a/b, a, b ∈ OM . Then the action of x on M is described by an r × r matrix

with rational coefficients in terms of a basis of M . If K ′ and K coincided, then the

characteristic polynomial of x would allow a factor of degree r over Q. This proves the

lemma in one direction. The converse is clear. �

Definition 1.5. We shall call the manifold X(K, U) of simple type if U does not satisfy

the equivalent conditions of the previous lemma.

Lemma 1. 6. Let Q ⊂ K ′ ⊂ K be a proper intermediate extension and U ⊂ O∗,+
K′ an

admissible subgroup for K. Let s′, 2t′ be the numbers of distinct real and respectively

complex embeddings of K ′. Then s = s′, t′ > 0 and U is admissible for K ′.

Proof. The restrictions to K ′ of two different real embeddings of K cannot coincide

since U ⊂ K ′ and U is admissible for K. Thus s′ ≥ s. We show now that s ≥ s′ as well.

Let k := (K : K ′). The restriction to K ′ of a real embedding of K will have to coincide

with the restrictions of exactly k− 1 complex embeddings of K. In particular since these

restrictions are real these k − 1 complex embeddings occur in complex conjugate pairs.

So k − 1 is even.
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Suppose now that there is a real embedding of K ′ which is not the restriction of any real

embedding of K. Such an embedding has then to be the restriction of exactly k complex

embeddings of K and k would then be even by the same reason as above. Thus s = s′.

By Dirichlet’s Units Theorem and since U has rank s, t′ has to be strictly positive. It

is clear now that U is admissible for K ′. �

Remark 1. 7. If X(K, U) is not of simple type with Q ⊂ K ′ ⊂ K as intermediate

extension and U ⊂ O∗,+
K′ , then there exists a holomorphic foliation of X(K, U) with a leaf

isomorphic to X(K ′, U). Just look at the foliation of Cm defined by the translates VK′ +v,

v ∈ Cm of the complex vector subspace VK′ of Cm spanned by σ(OK′). Its restriction to

Hs × Ct is invariant under the action of U n OK and thus descends to X(K, U). It is

clear that (VK′ ∩ (Hs × Ct))/U nOK′ is a leaf of this foliation which is compact since U

is admissible for K ′.

Remark 1.8. Not all manifolds X are of simple type. Keeping the notations of Remark

1.3 take for instance K ′, K ′′ with s′ = s′′ = t′ = t′′ = 1 but non isomorphic and K their

composite. Then s = 1, t = 4 and this time O∗,+
K′ is admissible for K. Note however that

for any choice of K there are infinitely many X(K, U) of simple type, since the number

of intermediate extensions of K is finite.

2. Invariants and metrics

We investigate here some properties of the varieties X(K, U), where K is a number field

as before and U is admissible for K.

We start with some preparations for the computation of the first Betti numbers of

X(K, U).

Remark 2. 1. Let a ∈ O∗
K and consider its action on HomZ(OK , C) by (af)(x) :=

f(a−1x) for f ∈ HomZ(OK , C) and x ∈ OK. Then the restrictions to OK of the em-

beddings σ1, ..., σn of K give a basis of HomZ(OK , C) of eigenvectors for this action with

associated eigenvalues σ1(a
−1), ..., σn(a−1).

Lemma 2. 2. Let θ =
∑n

i=1 aiσi, ai ∈ C be a 1-form which is Q-valued on OK. Then

either all coefficients ai are non-zero or they all vanish.

Proof. It is easy to see that there exists a primitive element α for K/Q in OK . Then

θ(αk) ∈ Q for 0 ≤ k ≤ n−1. Let αi := σi(α) be the roots of the characteristic polynomial

of α.

The rationality condition for θ can be written as a linear system of equations for the

coefficients ai:
n∑

i=1

aiα
k
i = bk, 0 ≤ k ≤ n− 1,
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for some rational numbers b0, ..., bn−1. Let A be the coefficient matrix (αk
i )1≤i≤n, 0≤k≤n−1

of this system. By the choice of α we have det A 6= 0.

We suppose now that θ 6= 0, so not all bi-s vanish, and that one of the ai-s is zero, say

an = 0. This means that the determinant of the matrix obtained from A by replacing

the last column with the free vector b = (b0, ..., bn−1) shall vanish. Hence expanding this

determinant after its last column gives us the following linear dependency relation over

Q among the coefficients of the polynomial Π1≤i≤n−1(X − αi):

bn−1 + bn−2s1 + ... + b0sn−1 = 0.

Here we denoted by si the i-th elementary symmetric function in a1, ..., an−1.

Now we express inductively the elementary symmetric functions in a1, ..., an−1 in terms

of those in a1, ..., an and the powers of αn:

s1(a1, ..., an−1) = s1(a1, ..., an)− αn,

s2(a1, ..., an−1) = s2(a1, ..., an)− αns1(a1, ..., an−1) =

= s2(a1, ..., an)− αns1(a1, ..., an) + α2
n, ...

This leads to a non-trivial relation over Q among 1, αn, ..., α
n−1
n which contradicts the

choice of α. �

Proposition 2.3. For all X = X(K, U) the first Betti number is b1 = s. When X is of

simple type one also has b2 =
(

s
2

)
.

Proof. The cohomology groups of X with coefficients in Q are isomorphic to those of

its fundamental group. We thus have to compute H1(U n OK ; Q) and H2(U n OK ; Q).

The Lyndon-Hochschild-Serre spectral sequence associated to the short exact sequence

0 → OK → U nOK → U → 0

gives

Epq
2 = Hp(U ; Hq(OK ; Q)) =⇒ Hp+q(U nOK ; Q)

and an exact sequence of low degree terms:

0 → H1(U ; QOK ) → H1(U nOK ; Q) → H1(OK ; Q)U → H2(U ; QOK ) → H2(U nOK ; Q);

cf. [4], 6.8. Here Q is seen as a trivial U nOK-module. Then H1(OK ; Q) ∼= Hom(OK ; Q)

is a non-trivial U -module via:

(uf)(x) := f(u−1x), for all u ∈ U, f ∈ Hom(OK , Q), x ∈ OK ;

cf. [4] 6.8.1. Thus H1(OK ; Q)U := {f ∈ Hom(OK , Q) | uf = f, for all u ∈ U} and this

last space is trivial by Remark 2.1. Thus H1(U nOK ; Q) ∼= H1(U ; QOK ) ∼= H1(U ; Q) ∼=
H1(Zs; Q) ∼= Qs.
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Moreover, the map H2(U ; QOK ) → H2(U nOK ; Q) is injective. We only need to prove

that it is surjective as well when X is of simple type. To see this it is enough to check

that in this case the terms E0,2
2 and E1,1

2 of the spectral sequence vanish.

Consider first E0,2
2 = H0(U ; H2(OK ; Q)) = H2(OK ; Q)U ∼= Alt2(OK ; Q)U . This is the

space of alternating 2-forms on OK which are fixed by U . Let γ =
∑

1≤i<j≤n aijσi ∧ σj ∈
Alt2(OK ; Q)U with aij ∈ C. The fact that γ is invariant under the action of some u ∈ U

means that σi(u)σj(u) = 1 whenever aij 6= 0; cf. Remark 2.1. From this we get aij = 0

for all 1 ≤ i < j ≤ s since U is admissible for K. The relation σi(u)σj(u) = 1 for

all u ∈ U and the fact that X is of simple type imply moreover that aij = 0 whenever

1 ≤ i ≤ s and that for each i > s there exists at most one j = j(i) > i with aij 6= 0.

(Otherwise we would get two equal embeddings σj = σj′ .) Thus γ =
∑

s<i<n aij(i)σi∧σj(i).

Let α ∈ OK be a primitive element for K. Then γ(αk, 1) ∈ Q for all k ∈ Z, that is∑
s<i<n aij(i)(σi(α

k) − σj(i)(α
k)) ∈ Q for all k ∈ Z. But then we get a rational 1-form∑

s<i<n aij(i)(σi − σj(i)) which by Lemma 2.2 has to vanish.

We now check that E1,1
2 = H1(U ; H1(OK ; Q)) is trivial. Since U is free abelian we reduce

ourselves by the Lyndon-Hochschild-Serre spectral sequence for 0 → Z → Zs → Zs−1 → 0

to the computation of H1(Z; H1(OK ; Q)) where Z here is the subgroup generated by

some u ∈ U . Now H1(Z; H1(OK ; Q)) ∼= H1(OK ; Q)Z ∼= H1(OK ; Q)/ < uf − f | f ∈
H1(OK ; Q) >; cf. [4] 6.1.4. But the action of u − id is invertible by Remark 2.1 hence

H1(Z; H1(OK ; Q)) vanishes. �

Lemma 2.4. Every holomorphic function on Hs × Ct/σ(OK) is constant.

Proof. Take any element v ∈ Hs. We shall first prove the following

Claim. The image of {v} × Ct in (v + Rs)× Ct/σ(OK) is dense in this space.

We shall just check that 0×Ct has a dense image in Rs×Ct/σ(OK). For this it is enough

to prove that the image of OK through σ′ = (σ1, ...σs) : OK → Rs is dense in Rs.

Consider the connected component V of 0 of the topological closure of σ′(OK) in Rs

and the Z-submodule M := σ′−1(V ) of OK . If V 6= Rs we would have rank M < n. Take

now α ∈ OK a primitive element for K. On OK we have a multiplicative action of α. The

submodule αOK of OK has finite index so the induced linear action of α on Rs will leave

V invariant. Thus M also remains invariant under the action of α. But this would imply

that the characteristic polynomial of α admits a factor of degree rank M over Q, which

is absurd.

Take now a holomorphic function f on Hs×Ct/σ(OK) and v ∈ Hs. Since f is bounded

on (v+Rs)×Ct/σ(OK) ' (S1)n its lift f̃ to Hs×Ct will be bounded on each (v+Rs)×Ct

hence constant on {v}×Ct. By our Claim it follows now that f̃ is constant on (v+Rs)×Ct.

But then f̃ must be constant on Hs × Ct by the identity principle. �
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Proposition 2. 5. The following vector bundles on X = X(K, U) are flat and admit no

non-trivial global holomorphic sections:

Ω1
X , ΘX , K⊗k

X , for all k 6= 0.

Moreover dim H1(X,OX) ≥ s. In particular κ(X) = −∞ and X is non-Kähler.

Proof. Let z1, ..., zm be the standard complex coordinate functions on Hs×Ct. A section

ω of K⊗k
X lifted to Hs ×Ct will have the form ω̃ = f(dz1 ∧ ...∧ dzm)⊗k. Since this section

descends to Hs × Ct/σ(OK) it follows from Lemma 2.4 that f is constant on Hs × Ct.

Moreover if f 6= 0, the invariance of ω̃ with respect to U gives (Πm
i=1σi(u))k = 1 for all

u ∈ U . Multiplying this by (Πm
i=1σ̄i(u))k = 1 and using the fact that (Πn

i=1σi(u))k = 1 we

get (Πs
i=1σi(u))k = 1 which contradicts the admissibility of U .

In the case of Ω1
X the automorphy factors are σi(u), i = 1, ...,m and it is clear that none

of them equals 1. An analogous argument works for ΘX using the vector fields ∂/∂zi.

The flatness of these bundles is evident.

The statement on dim H1(OX) follows now from Proposition 2.3 and the exact sequence

of sheaves on X:

0 → C → O → dO → 0.

�

Remark 2. 6. The above proof also shows that the embeddings of U by σ1, ..., σm are

determined by the complex structure of X(K, U) through the automorphy factors of Ω1
X .

In particular when X is of simple type its complex structure determines both K and U .

Corollary 2.7. The group of holomorphic automorphisms of X is discrete. It is infinite

when t > 1 since the elements of O∗
K/U induce automorphisms of X(K, U).

It is known that the Inoue-Bombieri surfaces SM admit locally conformally Kähler

metrics. This means that there is a representation ρ : π1(SM) → R>0 and a closed

strongly positive (1, 1)-form ω on the universal cover of SM such that g∗ω = ρ(g)ω for

all g ∈ π1(SM); cf. [2]. We now investigate the existence of locally conformally Kähler

metrics more generally on the manifolds X(K, U).

Example. When t = 1 all manifolds X(K, U) admit locally conformally Kähler metrics.

Consider indeed the following potential

F : Hs × C → R, F (z) :=
1

Πs
j=1(i(zj − z̄j))

+ |zm|2.

Then ω := i∂∂̄F gives the desired Kähler metric on Hs × C.

Remark 2. 8. The manifolds X(K, U) with s = 2 and t = 1 give counterexamples

to a conjecture of I. Vaisman, according to which a compact locally conformally Kähler

manifold admitting even Betti numbers with odd index and non-zero Betti numbers with

even index should already be Kähler; (see [2], p. 8).
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Proof. We have the following Betti numbers for X(K, U): b0 = b6 = 1, b1 = b5 = 2,

b2 = b4 = 1 and b3 = 0. In fact, here X(K, U) is of simple type and therefore we can

apply Proposition 2.3 to get b1 and b2. For b3 note that the Euler characteristic equals

c3(X(K, U)) = 0, since Θ is flat. �

Proposition 2. 9. When s = 1 and t > 1 there exists no locally conformally Kähler

metric on X(K, U).

Proof. Let s = 1, ω =
∑

1≤i, j≤m gijdzi ∧ dz̄j a closed strictly positive (1, 1)-form on

H×Ct and ρ : U nOK → R>0 a representation such that g∗ω = ρ(g)ω for all g ∈ U nOK .

We shall show that t = 1.

It is clear that ρ factorizes through a representation of U which we denote again by ρ.

Since ω descends to (H × Ct)/σ(OK) ' R>0 × (S1)n, we may assume by averaging over

(S1)n that the coefficients gij are constant in the directions of σ(OK). In particular they

are constant on the subspaces {v} × Ct for each v ∈ H. Since dω = 0, this implies that

for i, j > 1 the coefficients gij are constant on the whole of H×Ct. By the compatibility

of ω with ρ we thus get

ρ(u) = |σ2(u)|2 = |σ3(u)|2... = |σm(u)|2, ∀u ∈ U.

Consider now a non-trivial element u of U and its characteristic polynomial Xn −
a1X

n−1 + ...+a2tX−1. This polynomial must be irreducible, otherwise there would exist

some i > 1 such that σ1(u) = σi(u) ∀u ∈ U . But this would imply σ1(u) = 1 which is

impossible.

We have

σ1(u) =
1

ρ(u)t
,

a1 =
1

ρ(u)t
+

m∑
j=2

(σj(u) + σ̄j(u)),

a2t =
m∑

j=1

1

σj(u)
= ρ(u)t +

∑m
j=2(σj(u) + σ̄j(u))

ρ(u)
= ρ(u)t +

a1

ρ(u)
− 1

ρ(u)t+1
.

Thus ρ(u) satisfies the following equation:

ρ(u)n − a2tρ(u)t+1 + a1ρ(u)t − 1 = 0.

Since Q[σ1(u)] ⊂ Q[ρ(u)] these field extensions must be equal, hence ρ(u) is a non-torsion

unit in OK having the same property as u, namely that its images through the complex

embeddings of K have the same absolute value: ρ(u)−1/t = σ1(u)1/t2 . But the same

argument as before yields a new non-torsion unit ρ(u)−1/t which for t > 1 satisfies the

equation Xn − 1 = 0. This is a contradiction! �
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