LOW REGULARITY FOR A QUADRATIC SCHRÖDINGER EQUATION ON \mathbb{T}

by

Laurent Thomann

Abstract

In this paper we consider a Schrödinger equation on the circle with a quadratic nonlinearity. Thanks to an explicit computation of the first Picard iterate, we give a precision on the dynamic of the solution, whose existence was proved by C. E. Kenig, G. Ponce and L. Vega 15. We also show that the equation is well-posed in a space $\mathcal{H}^{s, p}(\mathbb{T})$ which contains the Sobolev space $H^{s}(\mathbb{T})$ when $p \geq 2$.

Résumé. - Dans cet article on s'intéresse à une équation de Schrödinger sur le cercle avec une non-linéarité quadratique. Un calcul explicite de la première itérée de Picard permet de donner une précision sur la dynamique de la solution, dont l'existence a été démontrée par C. E. Kenig, G. Ponce et L. Vega 15. On montre également que l'équation est bien posée dans un espace $\mathcal{H}^{s, p}(\mathbb{T})$ qui contient l'espace de Sobolev $H^{s}(\mathbb{T})$ lorsque $p \geq 2$.

1. Introduction

Denote by $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ the unidimensional torus. In this paper we consider the following nonlinear Schrödinger equation

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u=\kappa \bar{u}^{2}, \quad \kappa= \pm 1, \quad(t, x) \in \mathbb{R} \times \mathbb{T} \tag{1.1}\\
u(0, x)=f(x) \in X
\end{array}\right.
$$

where X is a Banach space (the space of the initial conditions).

[^0]The author was supported in part by the grant ANR-07-BLAN-0250.

This equation has been intensively studied in the case $x \in M$ where M is a Riemannian manifold and for different nonlinearities, usually of the form

$$
F(u, \bar{u})= \pm u^{p_{1}} \bar{u}^{p_{2}}, \quad \text { where } \quad p_{1}, p_{2} \in \mathbb{N} .
$$

Here we mainly discuss the results in one dimension for quadratic nonlinearities. For the other cases see [7, [15], [3], and references therein.

1.1. Previous results on the real line. -

In the case $x \in \mathbb{R}, \mathrm{~J}$. Ginibre and G. Velo [10], Y. Tsutsumi 18 , T. Cazenave and F. B. Weissler [7] showed that the Cauchy problem is well posed for $f \in$ $L^{2}(\mathbb{R})$, for every nonlinearity of the type 1.2 with $p_{1}+q_{1} \leq 5$. The proof relies on the use of Strichartz inequalities, which are of the form

$$
\begin{equation*}
\left\|\mathrm{e}^{i t \Delta} f\right\|_{L^{p}\left(\mathbb{R}, L^{q}(\mathbb{R})\right)} \leq C\|f\|_{L^{2}(\mathbb{R})}, \quad \text { with } \quad \frac{1}{p}+\frac{2}{q}=\frac{1}{2} \tag{1.2}
\end{equation*}
$$

In 15], C. E. Kenig, G. Ponce, and L. Vega show that 1.1) is well posed in $X=H^{s}(\mathbb{R})$:

- for $s>-3 / 4$ in the case $F(u, \bar{u})= \pm u^{2}$ or $F(u, \bar{u})= \pm \bar{u}^{2} ;$
- for $s>-1 / 4$ in the case $F(u, \bar{u})= \pm|u|^{2}$.

To obtain these results, the authors prove some bilinear estimates in the conormal spaces $X^{s, b}$ (see Definition 1.2 , and they also show that these estimates are optimal, and as a consequence it is impossible to perform a usual fixed point argument in these spaces, below the threshold $s=-3 / 4$ (resp. $s=-1 / 4$). Notice that the $X^{s, b}$ spaces distinguish the structure of the nonlinearity, which was not the case for the Strichartz spaces.
In [1], I. Bejenaru and T. Tao extend the well posedness results to $s \leq-1$ in the case $F(u, \bar{u})=u^{2}$, and show that the equation 1.1 is ill-posed in $H^{s}(\mathbb{R})$ when $s<-1$.
Recently, N. Kishimoto [16] extended the previous result to the case $F(u, \bar{u})=$ $\alpha u^{2}+\beta \bar{u}^{2}$.

1.2. Previous results on the torus. -

In the case $x \in \mathbb{T}$, J. Bourgain [2] established the embedding $X^{0,3 / 8} \subset L_{x, t}^{4}$, which permitted to show that the problem 1.1 is locally well posed in $L^{2}(\mathbb{T})$, for every nonlinearity (1.2) with $p_{1}+p_{2} \leq 3$.
Then, C. E. Kenig, G. Ponce, and L. Vega [15, thanks to bilinear estimates in
$X^{s, b}$ (see Theorem 1.4 below), obtained the well posedness of (1.1) in $H^{s}(\mathbb{T})$ for $s>-1 / 2$ in the case $F(u, \bar{u})= \pm u^{2}$ or $F(u, \bar{u})= \pm \bar{u}^{2}$. Again, these estimates fail if $s<-1 / 2$.

1.3. The $\mathcal{H}^{s, p}(\mathbb{T})$ and $X^{s, b}$ spaces. -

Now we introduce the $\mathcal{H}^{s, p}(\mathbb{T})$ spaces
Definition 1.1. - ($\mathcal{H}^{s, p}$ spaces $)$
For $s \in \mathbb{R}$ and $p \geq 1$, denote by $\mathcal{H}^{s, p}=\mathcal{H}^{s, p}(\mathbb{T})$ the completion of $\mathcal{C}^{\infty}(\mathbb{T})$ with respect to the norm

$$
\|f\|_{\mathcal{H}^{s, p}}=\left(\sum_{n \in \mathbb{Z}}\langle n\rangle^{p s}|\breve{f}(n)|^{p}\right)^{\frac{1}{p}}
$$

Here $\breve{f}(n)$ denotes the Fourier coefficient of f (see 2.6) .
These spaces where introduced by L. Hörmander (see [14], Section 10.1).
There are several motivations to introduce these spaces

- First notice that $\mathcal{H}^{s, 2}(\mathbb{T})=H^{s}(\mathbb{T})$, and for $p>2$ we have the (strict) inclusion $H^{s}(\mathbb{T}) \subset \mathcal{H}^{s, p}(\mathbb{T})$.
- Then, the space $\mathcal{H}^{s, p}$ scales like $H^{s(p)}$ where $s(p)=-\frac{1}{2}+s+\frac{1}{p}$. Hence, if $s(p)<-\frac{1}{2}$, the space $\mathcal{H}^{s, p}$ contains elements f such that $|\breve{f}(n)| \longrightarrow+\infty$ when $n \longrightarrow+\infty$. Therefore we can go closer to the scaling of the equation 1.1 which is $-\frac{3}{2}$.
- T. Cazenave, L. Vega and M. C. Vilela [6] where the first authors to study nonlinear Schrödinger equations in $\mathcal{H}^{s, p}$-like spaces. In fact they show that a class of NLS equations on \mathbb{R}^{N} is well-posed if the linear flow belongs to some weak L^{p} space. Moreover they prove that this condition can be ensured if the initial data f satisfies $\widehat{f} \in L^{p, \infty}\left(\mathbb{R}^{N}\right)$ for some $p \geq 1$. This latter space is a continuous version of the space $\mathcal{H}^{s, p}$.
- In 12 A. Grünrock establishes bilinear and trilinear estimates in conormal spaces $X_{p, q}^{s, b}$ (see definition below) based on L^{r}. This permits him to show that the cubic Schrödinger equation

$$
i \partial_{t} u+\Delta u= \pm|u|^{2} u, \quad(t, x) \in \mathbb{R} \times \mathbb{R}
$$

is well-posed for initial conditions in the corresponding continuous version of the space $\mathcal{H}^{s, p}$. He obtains analogous results for the DNLS equation [12] and for the $m K d V$ equation [11].

In [8], M. Christ shows that the modified cubic problem

$$
\left\{\begin{array}{l}
i \partial_{t} u+\Delta u= \pm\left(|u|^{2}-2 \mu\left(|u|^{2}\right)\right) u, \text { where } \mu\left(|v|^{2}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|v(x)|^{2} \mathrm{~d} x \\
u(0, x)=f(x) \in \mathcal{H}^{s, p}(\mathbb{T})
\end{array}\right.
$$

is well posed in $\mathcal{H}^{s, p}(\mathbb{T})$ for any $s \geq 0$ and $p \geq 1$. See $\mathbb{8}$ for precise statements.
Recently, A. Grünrock and S. Herr [13] have shown the well-posedness in $\mathcal{H}^{s, p}$ spaces of the DNLS equation on the torus, thanks to multilinear estimates.
See [8, 11, 12, 13 for other features of the spaces $\mathcal{H}^{s, p}$ and more references.

- Notice that the $\mathcal{H}^{s, p}$ is preserved by the linear Schrödinger flow. Write

$$
f(x)=\sum_{n \in \mathbb{Z}} \alpha_{n} \mathrm{e}^{i n x}, \text { then } \mathrm{e}^{i t \Delta} f(x)=\sum_{n \in \mathbb{Z}} \alpha_{n} \mathrm{e}^{-i n^{2} t} \mathrm{e}^{i n x}
$$

and for all $t \in \mathbb{R},\left\|e^{i t \Delta} f\right\|_{\mathcal{H}^{s, p}}=\|f\|_{\mathcal{H}^{s, p}}$.
We now define the $X^{s, b}$ spaces
Definition 1.2. - ($X^{s, b}$ spaces $)$
(i) For $s, b \in \mathbb{R}$, denote by $X^{s, b}=X^{s, b}(\mathbb{R} \times \mathbb{T})$ the completion of $\mathcal{C}^{\infty}(\mathbb{T}, \mathcal{S}(\mathbb{R}))$ with respect to the norm

$$
\|F\|_{X^{s, b}}=\left(\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}}\left\langle\tau+n^{2}\right\rangle^{2 b}\langle n\rangle^{2 s}|\widetilde{F}(\tau, n)|^{2} \mathrm{~d} \tau\right)^{\frac{1}{2}}
$$

(ii) Let $T>0$, we define the restriction spaces $X_{T}^{s, b}=X^{s, b}([-T, T] \times \mathbb{T})$ by

$$
\begin{equation*}
\|F\|_{X_{T}^{s, b}}=\inf \left\{\left\|\psi\left(\frac{t}{T}\right) F\right\|_{X^{s, b}}, F \in X^{s, b} \text { with } \psi \in \mathcal{S}(\mathbb{R}) \text { s.t. }\left.\psi\right|_{[-1,1]}=1\right\} \tag{1.3}
\end{equation*}
$$

Here \widetilde{F} stands for the space-time Fourier transform (see 2.7)).
In the following, we will mainly use the space $X_{1}^{s, b}=X^{s, b}([-1,1] \times \mathbb{T})$.
We recall the key estimates which permit to perform a fixed point argument in the $X^{s, b}$ spaces, and to deduce that the equation (1.1) is well posed in H^{s} for $s>-\frac{1}{2}$.
Proposition 1.3. - Let $s \leq 0$ and $\frac{1}{2}<b \leq 1$. Then for all $F \in X_{1}^{s, b-1}$, we have

$$
\left\|\int_{0}^{t} e^{i\left(t-t^{\prime}\right) \Delta} F\left(t^{\prime}, \cdot\right) d t^{\prime}\right\|_{X_{1}^{s, b}} \leq C\|F\|_{X_{1}^{s, b-1}} .
$$

See [9] for a proof. Notice this estimate holds in the general case of a riemannian manifold, indeed the proof reduces to time integrations. Notice also that we always have the estimate

$$
\left\|e^{i t \Delta} f\right\|_{X_{1}^{s, b}} \leq C\|f\|_{H^{s}},
$$

but we won't use it in this paper.
The following theorem is one of the main results of [15] (see Theorem 1.9. in [15])

Theorem 1.4. - (Kenig-Ponce-Vega [15]) Let $-\frac{1}{2}<s \leq 0$, then there exists $b_{0}>\frac{1}{2}$ such that for all $\frac{1}{2}<b \leq b_{0}$ and all $v, w \in X^{s, b}(\mathbb{R} \times \mathbb{T})$

$$
\begin{equation*}
\|\bar{v} \bar{w}\|_{X^{s, b-1}} \lesssim\|v\|_{X^{s, b}}\|w\|_{X^{s, b}} \tag{1.4}
\end{equation*}
$$

Moreover, for any $s<-\frac{1}{2}$ and $b \in \mathbb{R}$, an estimate of the form (1.4) fails.
We can deduce the following
Corollary 1.5. - Let $-\frac{1}{2}<s \leq 0$, then there exists $b_{0}>\frac{1}{2}$ such that for all $\frac{1}{2}<b \leq b_{0}$ and all $v, w \in X^{s, b}([-1,1] \times \mathbb{T})$

$$
\begin{equation*}
\|\bar{v} \bar{w}\|_{X_{1}^{s, b-1}} \lesssim\|v\|_{X_{1}^{s, b}}\|w\|_{X_{1}^{s, b}} \tag{1.5}
\end{equation*}
$$

Proof. - Let $\psi_{1}, \psi_{2} \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ be so that $\psi_{1}, \psi_{2}=1$ on $[-1,1]$ and $\operatorname{supp} \psi_{1}, \psi_{2} \subset$ $[-2,2]$. Then by 1.4 applied to $\psi_{1}(t) v$ and $\psi_{2}(t) w$, we obtain

$$
\|\bar{v} \bar{w}\|_{X_{1}^{s, b-1}} \leq\left\|\psi_{1}(t) \bar{v} \psi_{2}(t) \bar{w}\right\|_{X^{s, b-1}} \lesssim\left\|\psi_{1} v\right\|_{X^{s, b}}\left\|\psi_{2} w\right\|_{X^{s, b}}
$$

and the result follows, by choosing ψ_{1} and ψ_{2} which realise the infimum for the $X^{s, b}([-1,1] \times \mathbb{T})$ norm.

2. Main results of this paper

2.1. Local well posedness in the Sobolev scale. -

Our first result is a precision on the dynamic of the solution of (1.1) when the initial condition f is in $H^{s_{0}}(\mathbb{T})$ with $-\frac{1}{2}<s_{0} \leq 0$.
Let $f \in \mathcal{D}^{\prime}(\mathbb{T})$. Then define

$$
u_{0}(t, x)=\mathrm{e}^{i t \Delta} f(x)=\sum_{n \in \mathbb{Z}} \breve{f}(n) \mathrm{e}^{-i n^{2} t} \mathrm{e}^{i n x}
$$

the free Schrödinger evolution and

$$
u_{1}(t, x)=-i \int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta}\left({\overline{u_{0}}}^{2}\right)\left(t^{\prime}, x\right) \mathrm{d} t^{\prime}
$$

the first Picard iterate of the equation (1.1). Then we will show that there exists $b>\frac{1}{2}$ so that

$$
\begin{equation*}
\left\|u_{1}\right\|_{X^{0, b}([-1,1] \times \mathbb{T})} \lesssim\|f\|_{H^{s_{0}}(\mathbb{T})}^{2} \tag{2.1}
\end{equation*}
$$

Hence, u_{1} is more regular than f : there is a gain of $\left|s_{0}\right|$ derivative. We will take profit of this phenomenon to prove that it is also the case for $u-\mathrm{e}^{i t \Delta} f$, where u is the solution of 1.1 .

Theorem 2.1. - Let $\kappa= \pm 1$. Let $-\frac{1}{2}<s_{0} \leq 0$ and $f \in H^{s_{0}}(\mathbb{T})$. Then there exist $b>\frac{1}{2}$ and $T>0$ such that there exists a unique solution u to 1.1) in the space

$$
\begin{equation*}
Y_{T}^{0, b}=\left(e^{i t \Delta} f+X^{0, b}([-T, T] \times \mathbb{T})\right) \tag{2.2}
\end{equation*}
$$

Moreover, given $0<T^{\prime}<T$ there exist $R=R\left(T^{\prime}\right)>0$ such that the map $\tilde{f} \mapsto \tilde{u}(t)$ from $\left\{\tilde{f} \in H^{s_{0}}(\mathbb{T}):\|\tilde{f}-f\|_{H^{s_{0}}}<R\right\}$ into the class (2.2) with T^{\prime} instead of T is Lipschitz.

This result will be obtained with a contraction argument in the space $X^{0, b}$ (thanks to the gain of regularity), and therefore we will only need the estimate (1.4) with $s=0$.

2.2. Local well posedness in the $\mathcal{H}^{s, p}$ scale. -

We can use the gain of regularity of the first Picard iterate to solve the Cauchy problem (1.1) for data $f \in \mathcal{H}^{s, p}(\mathbb{T})$, and this will improve slightly the result of [15], as we have the inclusion $H^{s_{0}}(\mathbb{T}) \subset \mathcal{H}^{s_{0}, p}(\mathbb{T})$ for $p>0$.
The following condition on the real numbers s_{0} and p will be needed for our result

$$
\begin{equation*}
\frac{3}{p}+s_{0}>\frac{5}{6} \tag{2.3}
\end{equation*}
$$

Theorem 2.2. - Let $\kappa= \pm 1$. Let $s_{0}>-\frac{1}{2}$ and let $p>2$ be so that the condition 2.3) is satisfied. Let $f \in \mathcal{H}^{s_{0}, p}(\mathbb{T})$. Then for all $s_{1}<-1+\frac{2}{p}$ there exist $b>\frac{1}{2}, s_{1}<s<-1+\frac{2}{p}$, and $T>0$ such that there exists a unique
solution u to (1.1) in the space

$$
\begin{equation*}
Y_{T}^{s, b}=\left(e^{i t \Delta} f+X^{s, b}([-T, T] \times \mathbb{T})\right) . \tag{2.4}
\end{equation*}
$$

Moreover, given $0<T^{\prime}<T$ there exist $R=R\left(T^{\prime}\right)>0$ such that the map $\tilde{f} \mapsto \tilde{u}(t)$ from $\left\{\tilde{f} \in \mathcal{H}^{s_{0}, p}(\mathbb{T}):\|\tilde{f}-f\|_{\mathcal{H}^{s_{0}, p}}<R\right\}$ into the class (2.4) with T^{\prime} instead of T is Lipschitz.

To prove Theorem 2.2 we will use the estimate (1.4) in its full strength.
From the previous result, we can immediately deduce
Corollary 2.3. - Let $\alpha<\frac{1}{18}$ and let $f \in \mathcal{D}^{\prime}(\mathbb{T})$ be such that $|\breve{f}(n)| \lesssim\langle n\rangle^{\alpha}$. Then there exist $s>-\frac{1}{9}, b>\frac{1}{2}$ and $T>0$ such that there exists a unique solution to (1.1) in the space

$$
Y_{T}^{s, b}=\left(e^{i t \Delta} f+X^{s, b}([-T, T] \times \mathbb{T})\right)
$$

For instance : Let $0<\varepsilon<1$ be small and $\alpha=\frac{1}{18}-\varepsilon$. Define $f \in \mathcal{D}^{\prime}(\mathbb{T})$ by $\breve{f}(n)=\langle n\rangle^{\alpha}$. Then $f \in H^{s}(\mathbb{T})$ for $s<-\frac{1}{2}-\frac{1}{18}+\varepsilon<-\frac{1}{2}$, but $f \in \mathcal{H}^{s_{0}, p}(\mathbb{T})$ for some (s_{0}, p) which satisfies the assumptions of Theorem 2.2

Remark 2.4. - The result of Theorem 2.2 is interesting when s_{0} is close to $-\frac{1}{2}$, and p as big as possible, under the assumption (2.3).
Let $0<\varepsilon<1$ be small and set $s_{0}=-\frac{1}{2}+\varepsilon$. Then $p>2$ satisfies (2.3) iff

$$
\frac{4}{9}-\frac{1}{3} \varepsilon<\frac{1}{p}<\frac{1}{2} .
$$

Hence, the parameter s in Theorem 2.2 can be chosen close to $-\frac{1}{9}$. In other words there is a gain of $\sim \frac{1}{2}-\frac{1}{9}=\frac{7}{18}$ derivative.

2.3. Notations and plan of the paper. -

For $F \in \mathcal{S}(\mathbb{R})$ we define the time-Fourier transform by

$$
\widehat{F}(\tau)=\int_{\mathbb{R}} \mathrm{e}^{-i \tau t} F(t) \mathrm{d} t,
$$

which has the following properties

$$
\begin{equation*}
\widehat{\bar{F}}(\tau)=\overline{\widehat{F}}(-\tau) \text { and } \widehat{F^{i \theta \cdot}}(\tau)=\widehat{F}(\tau-\theta) \text { for all } \theta \in \mathbb{R} . \tag{2.5}
\end{equation*}
$$

Each $F \in \mathcal{C}^{\infty}(\mathbb{T}, \mathcal{S}(\mathbb{R}))$ admits the Fourier expansion

$$
\begin{equation*}
F(t, x)=\sum_{n \in \mathbb{Z}} \breve{F}(t, n) \mathrm{e}^{i n x}, \text { where } \breve{F}(\tau, n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-i n x} F(t, x) \mathrm{d} x \text {, } \tag{2.6}
\end{equation*}
$$

is the periodic Fourier coefficient of F.
Finally, we denote by

$$
\begin{equation*}
\widetilde{F}(\tau, n)=\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{-\pi}^{\pi} \mathrm{e}^{-i(\tau t+n x)} F(t, x) \mathrm{d} t \mathrm{~d} x \tag{2.7}
\end{equation*}
$$

the space-time Fourier transform.

Notations. - In this paper c, C denote constants the value of which may change from line to line. These constants will always be universal, or depending only on fixed quantities. We use the notations $a \sim b, a \lesssim b$ if $\frac{1}{C} b \leq a \leq C b$, $a \leq C b$ respectively.

In Section 3 we make explicit computations to estimate the first Picard iteration in $X^{s, b}$ spaces.
Then, in Section 4 we establish a bilinear estimate in $X^{s, b}$ spaces.
In Section5, we follow an idea of N. Burq and N. Tzvetkov [4, 5] and look for a solution of (1.1) of the form $u=\mathrm{e}^{i t \Delta} f+v$. The existence and uniqueness of v is then proved with a fixed point argument, using the estimates of the previous sections.

Acknowledgements. - The author would like to thank N. Burq and N. Tzvetkov for useful discussions on the subject.

3. The first Picard iteration

Lemma 3.1. - Let $\varphi \in \mathcal{S}(\mathbb{R})$. Then

$$
\int_{\mathbb{R}} \frac{1}{\langle\tau+A\rangle}|\varphi|(\tau) d \tau \lesssim \frac{1}{\langle A\rangle},
$$

uniformly in $A \in \mathbb{R}$.

Proof. - As φ is in the Schwartz class $|\varphi|(\tau) \lesssim\langle\tau\rangle^{-3}$.
Then notice that $\langle\tau\rangle\langle\tau+A\rangle \gtrsim\langle A\rangle$, therefore

$$
\int_{\mathbb{R}} \frac{\langle A\rangle}{\langle\tau+A\rangle}|\varphi|(\tau) \mathrm{d} \tau \lesssim \int_{\mathbb{R}} \frac{\langle A\rangle}{\langle\tau\rangle\langle\tau+A\rangle} \frac{1}{\langle\tau\rangle^{2}} \mathrm{~d} \tau \lesssim 1
$$

hence the result.
Let $f \in \mathcal{D}^{\prime}(\mathbb{T})$, denote by $\alpha_{n}=\breve{f}(n)$. Then define

$$
\begin{equation*}
u_{0}(t, x)=\mathrm{e}^{i t \Delta} f(x)=\sum_{n \in \mathbb{Z}} \alpha_{n} \mathrm{e}^{-i n^{2} t} \mathrm{e}^{i n x} \tag{3.1}
\end{equation*}
$$

the free Schrödinger evolution and

$$
\begin{equation*}
u_{1}(t, x)=-i \int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta}\left({\overline{u_{0}}}^{2}\right)\left(t^{\prime}, x\right) \mathrm{d} t^{\prime} \tag{3.2}
\end{equation*}
$$

which is the first Picard iterate of the equation (1.1).
Proposition 3.2. - Let $-\frac{1}{2}<s_{0} \leq 0$ and $p \geq 2$. Then there exists $b_{1}>\frac{1}{2}$ such that for all $\frac{1}{2}<b<b_{1}$, all $f \in \mathcal{H}^{s_{0}, p}(\mathbb{T})$ and all $s<-1+2 / p$ we have

$$
\begin{equation*}
\left\|u_{1}\right\|_{X^{s, b}([-1,1] \times \mathbb{T})} \lesssim\|f\|_{\mathcal{H}^{s_{0}, p}(\mathbb{T})}^{2} \tag{3.3}
\end{equation*}
$$

Moreover, in the case $p=2$, the estimate (3.3) holds for $s=0$.
Remark 3.3. - The result of Proposition 3.2 shows that the first Picard iterate is more regular than the initial condition, when s_{0} is close to $-\frac{1}{2}$ and $p<4$. In this case, we can take $s>s_{0}$.
The result we stated is not optimal when s_{0} is far from $-\frac{1}{2}$.
Proof. - Let $b>\frac{1}{2}$ to be chosen later. Denote by $\beta=2(1-b)<1$ and $\sigma=-s \geq 0$.
Let $\psi_{0} \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ s.t. $\psi_{0}=1$ on $[-1,1]$, and $\psi \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ s.t. $\psi_{0} \psi=\psi_{0}$. Then by Definition 1.2 and Proposition 1.3 we have

$$
\begin{align*}
\left\|u_{1}\right\|_{X^{s, b}([-1,1] \times \mathbb{T})} & \leq\left\|\psi_{0}(t) u_{1}\right\|_{X^{s, b}(\mathbb{R} \times \mathbb{T})} \\
& \lesssim\left\|\psi(t){\overline{u_{0}}}^{2}\right\|_{X^{s, b-1}(\mathbb{R} \times \mathbb{T})} . \tag{3.4}
\end{align*}
$$

Now by the expression (3.1), we have (with the change of variables $p=-n-m$)

$$
\begin{aligned}
\psi(t)\left({\overline{u_{0}}}^{2}\right) & =\psi(t) \sum_{(n, m) \in \mathbb{Z}^{2}} \overline{\alpha_{n}} \overline{\alpha_{m}} \mathrm{e}^{i\left(n^{2}+m^{2}\right) t} \mathrm{e}^{-i(n+m) x} \\
& =\psi(t) \sum_{p \in \mathbb{Z}}\left(\sum_{n \in \mathbb{Z}} \overline{\alpha_{n}} \overline{\alpha_{-n-p}} \mathrm{e}^{i\left(n^{2}+(n+p)^{2}\right) t}\right) \mathrm{e}^{i p x}
\end{aligned}
$$

Hence we we deduce the Fourier coefficients of $\psi(t)\left({\overline{u_{0}}}^{2}\right)$:

$$
\begin{equation*}
c_{p}(t):=\sum_{n \in \mathbb{Z}} \overline{\alpha_{n}} \overline{\alpha_{-n-p}} \mathrm{e}^{i\left(n^{2}+(n+p)^{2}\right) t}=\psi(t)\left({\overline{u_{0}}}^{2}\right)(p) \tag{3.5}
\end{equation*}
$$

From the properties (2.5) of the time-Fourier transform, we deduce

$$
\begin{equation*}
\widehat{c_{p}}(\tau)=\sum_{n \in \mathbb{Z}} \overline{\alpha_{n}} \overline{\alpha_{-n-p}} \widehat{\psi}\left(\tau-n^{2}-(n+p)^{2}\right) \tag{3.6}
\end{equation*}
$$

and by Definition 1.2 , we have

$$
I:=\left\|\psi(t)\left({\overline{u_{0}}}^{2}\right)\right\|_{X^{s, b-1}(\mathbb{R} \times \mathbb{T})}^{2}=\sum_{p \in \mathbb{Z}} \int_{\mathbb{R}}\left\langle\tau+p^{2}\right\rangle^{-\beta}\langle p\rangle^{2 s}\left|\widehat{c_{p}}(\tau)\right|^{2} \mathrm{~d} \tau
$$

with $\beta=2(1-b)$. Now, by Lemma 3.4 (see below for the statement and proof) we have

$$
\left|\widehat{c_{p}}(\tau)\right|^{2} \lesssim \sum_{n \in \mathbb{Z}}\left|\alpha_{n}\right|^{2}\left|\alpha_{-n-p}\right|^{2}|\widehat{\psi}|\left(\tau-n^{2}-(n+p)^{2}\right)
$$

uniformly in $(\tau, p) \in \mathbb{R} \times \mathbb{Z}$. With the change of variables $m=-n-p$ and $\tau^{\prime}=\tau-n^{2}-m^{2}$, we deduce

$$
\begin{align*}
I & \lesssim \sum_{n \in \mathbb{Z}} \sum_{p \in \mathbb{Z}} \int_{\mathbb{R}} \frac{\langle p\rangle^{2 s}}{\left\langle\tau+p^{2}\right\rangle^{\beta}}\left|\alpha_{n}\right|^{2}\left|\alpha_{-n-p}\right|^{2}|\widehat{\psi}|\left(\tau-n^{2}-(n+p)^{2}\right) \mathrm{d} \tau \\
& =\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} \int_{\mathbb{R}} \frac{\langle n+m\rangle^{2 s}}{\left\langle\tau+(n+m)^{2}\right\rangle^{\beta}}\left|\alpha_{n}\right|^{2}\left|\alpha_{m}\right|^{2}|\widehat{\psi}|\left(\tau-n^{2}-m^{2}\right) \mathrm{d} \tau \\
& =\sum_{(n, m) \in \mathbb{Z}^{2}} \int_{\mathbb{R}} \frac{\langle n+m\rangle^{2 s}}{\left\langle\tau+(n+m)^{2}+n^{2}+m^{2}\right\rangle^{\beta}}\left|\alpha_{n}\right|^{2}\left|\alpha_{m}\right|^{2}|\widehat{\psi}|(\tau) \mathrm{d} \tau \tag{3.7}
\end{align*}
$$

Apply Lemma 3.1 with $A=(n+m)^{2}+n^{2}+m^{2}$. Denote by $\sigma=-s \geq 0$. Then from (3.7) we deduce

$$
\begin{equation*}
I \lesssim \sum_{(n, m) \in \mathbb{Z}^{2}} \frac{\left|\alpha_{n}\right|^{2}\left|\alpha_{m}\right|^{2}}{\langle n+m\rangle^{2 \sigma}\left\langle n^{2}+m^{2}\right\rangle^{\beta}} \tag{3.8}
\end{equation*}
$$

- From here we assume that $\sigma>0$.

For $m \in \mathbb{Z}$, denote by

$$
\gamma_{m}=\sum_{n \in \mathbb{Z}} \frac{\left|\alpha_{n}\right|^{2}}{\langle n+m\rangle^{2 \sigma}\langle n\rangle^{\beta}},
$$

thanks to the inequality $\left\langle n^{2}+m^{2}\right\rangle \geq\langle n\rangle\langle m\rangle$, from (3.8) we deduce

$$
\begin{equation*}
I \lesssim \sum_{m \in \mathbb{Z}}\left(\frac{\left|\alpha_{m}\right|^{2}}{\langle m\rangle^{\beta}}\left(\sum_{n \in \mathbb{Z}} \frac{\left|\alpha_{n}\right|^{2}}{\langle n+m\rangle^{2 \sigma}\langle n\rangle^{\beta}}\right)\right)=\sum_{m \in \mathbb{Z}} \gamma_{m} \frac{\left|\alpha_{m}\right|^{2}}{\langle m\rangle^{\beta}} . \tag{3.9}
\end{equation*}
$$

Now by Hölder, for $p \geq 2$

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}} \gamma_{m} \frac{\left|\alpha_{m}\right|^{2}}{\langle m\rangle^{\beta}} \lesssim\left(\sum_{k \in \mathbb{Z}} \frac{\left|\alpha_{k}\right|^{p}}{\langle k\rangle^{\beta p / 2}}\right)^{\frac{2}{p}}\left(\sum_{m \in \mathbb{Z}} \gamma_{m}^{q_{1}}\right)^{\frac{1}{q_{1}}}=\|f\|_{\mathcal{H}^{-\beta / 2, p}}^{2}\left(\sum_{m \in \mathbb{Z}} \gamma_{m}^{q_{1}}\right)^{\frac{1}{q_{1}}} \tag{3.10}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{1}{q_{1}}=1-\frac{2}{p} \tag{3.11}
\end{equation*}
$$

To estimate the last term in (3.10), we observe that

$$
\gamma_{m}=\left(\frac{\left|\alpha_{k}\right|^{2}}{\langle k\rangle^{\beta}} * \frac{1}{\langle j\rangle^{2 \sigma}}\right)(m)
$$

then by Young's inequality, for all $p_{1}, r_{1} \geq 1$ so that

$$
\begin{equation*}
\frac{1}{q_{1}}=\frac{1}{p_{1}}+\frac{1}{r_{1}}-1, \tag{3.12}
\end{equation*}
$$

and so that for $2 \sigma r_{1}>1$, we have

$$
\begin{equation*}
\left(\sum_{m \in \mathbb{Z}} \gamma_{m}^{q_{1}}\right)^{\frac{1}{q_{1}}} \lesssim\left(\sum_{k \in \mathbb{Z}} \frac{\left|\alpha_{k}\right|^{2 p_{1}}}{\langle k\rangle^{\beta p_{1}}}\right)^{\frac{1}{p_{1}}}\left(\sum_{j \in \mathbb{Z}} \frac{1}{\langle j\rangle^{2 \sigma r_{1}}}\right)^{\frac{1}{r_{1}}} . \tag{3.13}
\end{equation*}
$$

We take $p_{1}=p / 2$. This choice together with the conditions (3.11), (3.12) and $2 \sigma r_{1}>1$ yields

$$
\sigma>\frac{1}{2 r_{1}}=1-\frac{2}{p}
$$

and thus by (3.9), (3.10) and (3.13) we obtain

$$
I \lesssim\|f\|_{\mathcal{H}^{-\beta / 2, p}}^{4}
$$

Now we choose $b>\frac{1}{2}$ such that $\beta=-2 s_{0}$, i.e. $b=2(1-\beta)=1+s_{0}$, and thus $\frac{1}{2}<b \leq 1$, as we assumed that $-\frac{1}{2}<s_{0} \leq 0$.
Together with (3.4), this concludes the proof of the first statement of Proposition 3.2 .

- Now we deal with the case $p=2$ and $\sigma=0$.

By (3.8) we only have to bound the term

$$
J:=\sum_{(n, m) \in \mathbb{Z}^{2}} \frac{\left|\alpha_{n}\right|^{2}\left|\alpha_{m}\right|^{2}}{\left\langle n^{2}+m^{2}\right\rangle^{\beta}} .
$$

Thanks to the inequality $\left\langle n^{2}+m^{2}\right\rangle \geq\langle n\rangle\langle m\rangle$, we get

$$
J \leq \sum_{(n, m) \in \mathbb{Z}^{2}} \frac{\left|\alpha_{n}\right|^{2}\left|\alpha_{m}\right|^{2}}{\langle n\rangle^{\beta}\langle m\rangle^{\beta}}=\|f\|_{H^{s_{0}}}^{4}
$$

which was the claim.
Lemma 3.4. - Let $\widehat{c_{p}}(\tau)$ be defined by (3.6). Then there exists $C>0$, which only depends on ψ, so that

$$
\begin{equation*}
\left|\widehat{c_{p}}(\tau)\right|^{2} \leq C \sum_{n \in \mathbb{Z}}\left|\alpha_{n}\right|^{2}\left|\alpha_{-n-p}\right|^{2}|\widehat{\psi}|\left(\tau-n^{2}-(n+p)^{2}\right) \tag{3.14}
\end{equation*}
$$

for all $(\tau, p) \in \mathbb{R} \times \mathbb{Z}$.
Proof. - Denote by

$$
\widehat{\psi_{1}}(\tau, n, p)=\widehat{\psi}\left(\tau-n^{2}-(n+p)^{2}\right)
$$

then

$$
\left|\widehat{c_{p}}(\tau)\right|^{2}=\sum_{(n, m) \in \mathbb{Z}^{2}} \overline{\alpha_{n}} \overline{\alpha_{-n-p}} \alpha_{m} \alpha_{-m-p} \widehat{\psi_{1}}(\tau, n, p) \widehat{\psi_{2}}(\tau, m, p)
$$

and with the change of variables $m=n+k$ we obtain

$$
\begin{equation*}
\left|\widehat{c_{p}}(\tau)\right|^{2}=\sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \overline{\alpha_{n}} \overline{\alpha_{-n-p}} \alpha_{n+k} \alpha_{-n-k-p} \widehat{\psi_{1}}(\tau, n, p) \widehat{\psi_{2}}(\tau, n+k, p) \tag{3.15}
\end{equation*}
$$

As $\widehat{\psi} \in \mathcal{S}(\mathbb{R})$, for all $N \in \mathbb{N},|\widehat{\psi}| \lesssim\langle\tau\rangle^{-N}$. In the remaining of the proof, the constant N may change from line to line. By the inequality $\langle A+B\rangle \lesssim\langle A\rangle\langle B\rangle$, we have

$$
\begin{align*}
&\left|\widehat{\psi_{1}}(\tau, n, p) \widehat{\psi_{2}}(\tau, n+k, p)\right| \lesssim \tag{3.16}\\
& \lesssim \frac{\left|\widehat{\psi_{1}}(\tau, n, p)\right|^{\frac{1}{2}}\left|\widehat{\psi_{2}}(\tau, n+k, p)\right|^{\frac{1}{2}}}{\left\langle\tau-n^{2}-(n+p)^{2}\right\rangle^{N}\left\langle\tau-(n+k)^{2}-(n+k+p)^{2}\right\rangle^{N}} \\
& \lesssim \frac{\left|\widehat{\psi_{1}}(\tau, n, p)\right|^{\frac{1}{2}}\left|\widehat{\psi_{1}}(\tau, n+k, p)\right|^{\frac{1}{2}}}{\langle 2 k(2 n+k+p)\rangle^{N}}
\end{align*}
$$

- If $k=0$ or $k=-2 n-p$, in the sum 3.15, we immediately get the bound (3.14).
- Denote by

$$
I_{p}(\tau)=\sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}_{p}^{*}} \overline{\alpha_{n}} \overline{\alpha_{-n-p}} \alpha_{n+k} \alpha_{-n-k-p} \widehat{\psi_{1}}(\tau, n, p) \widehat{\psi_{2}}(\tau, n+k, p)
$$

where $\mathbb{Z}_{p}^{*}=\mathbb{Z} \backslash\{0,-2 n-p\}$.
If $k \neq 0$ and $k \neq-2 n-p$, observe that

$$
\langle 2 k(2 n+k+p)\rangle^{2} \gtrsim\langle k\rangle\langle 2 n+k+p\rangle,
$$

thus by (3.16)

$$
\left|\widehat{\psi_{1}}(\tau, n, p) \widehat{\psi_{1}}(\tau, n+k, p)\right| \lesssim \frac{\left|\widehat{\psi_{1}}(\tau, n, p)\right|^{\frac{1}{2}}\left|\widehat{\psi_{1}}(\tau, n+k, p)\right|^{\frac{1}{2}}}{\langle k\rangle^{N}\langle 2 n+k+p\rangle^{N}}
$$

and

$$
\begin{aligned}
I_{p}(\tau) & \lesssim \sum_{n \in \mathbb{Z}}\left|\alpha_{n}\left\|\alpha_{-n-p}\right\| \widehat{\psi_{1}}(\tau, n, p)\right|^{\frac{1}{2}}\left(\sum_{k \in \mathbb{Z}} \frac{\left|\alpha_{n+k}\left\|\alpha_{-n-k-p}\right\| \widehat{\psi_{1}}(\tau, n+k, p)\right|^{\frac{1}{2}}}{\langle k\rangle^{N}\langle 2 n+k+p\rangle^{N}}\right) \\
& =\sum_{n \in \mathbb{Z}}\left|\alpha_{n}\left\|\alpha_{-n-p}\right\| \widehat{\psi_{1}}(\tau, n, p)\right|^{\frac{1}{2}}\left(\sum_{j \in \mathbb{Z}} \frac{\left|\alpha_{j}\left\|\alpha_{-j-p}\right\| \widehat{\psi_{1}}(\tau, j, p)\right|^{\frac{1}{2}}}{\langle n-j\rangle^{N}\langle n+j+p\rangle^{N}}\right)
\end{aligned}
$$

after the change of variables $j=k+n$ in the second sum.
Now by Cauchy-Schwarz

$$
\sum_{j \in \mathbb{Z}} \frac{\left|\alpha_{j}\left\|\alpha_{-j-p}\right\| \widehat{\psi_{1}}(\tau, j, p)\right|^{\frac{1}{2}}}{\langle n-j\rangle^{N}\langle n+j+p\rangle^{N}} \lesssim d(\tau, p)^{\frac{1}{2}}\left(\sum_{l \in \mathbb{Z}} \frac{1}{\langle n-l\rangle^{N}} \frac{1}{\langle n+l+p\rangle^{N}}\right)^{\frac{1}{2}}
$$

where

$$
d(\tau, p)=\sum_{j \in \mathbb{Z}}\left|\alpha_{j}\right|^{2}\left|\alpha_{-j-p}\right|^{2}\left|\widehat{\psi_{1}}(\tau, j, p)\right|
$$

and as $\langle n-l\rangle\langle n+l+p\rangle \gtrsim\langle 2 n+p\rangle$,

$$
\begin{aligned}
\sum_{l \in \mathbb{Z}} \frac{1}{\langle n-l\rangle^{N}} \frac{1}{\langle n+l+p\rangle^{N}} & \lesssim \frac{1}{\langle 2 n+p\rangle^{N}} \sum_{l \in \mathbb{Z}} \frac{1}{\langle n-l\rangle^{N}} \frac{1}{\langle n+l+p\rangle^{N}} \\
& \lesssim \frac{1}{\langle 2 n+p\rangle^{N}},
\end{aligned}
$$

by Cauchy-Schwarz. Thus

$$
\begin{aligned}
I_{p}(\tau) & \lesssim d(\tau, p)^{\frac{1}{2}} \sum_{n \in \mathbb{Z}}\left|\alpha_{n}\left\|\alpha_{-n-p}\right\| \widehat{\psi_{1}}(\tau, n, p)\right|^{\frac{1}{2}} \frac{1}{\langle 2 n+p\rangle^{N}} \\
& \lesssim d(\tau, p)^{\frac{1}{2}}\left(\sum_{n \in \mathbb{Z}}\left|\alpha_{n}\right|^{2}\left|\alpha_{-n-p}\right|^{2}\left|\widehat{\psi_{1}}(\tau, n, p)\right|\right)^{\frac{1}{2}}\left(\sum_{n \in \mathbb{Z}} \frac{1}{\langle 2 n+p\rangle^{N}}\right)^{\frac{1}{2}} \\
& \lesssim d(\tau, p)
\end{aligned}
$$

which completes the proof.

4. The bilinear estimate

This section is devoted to the proof of the following result
Proposition 4.1. - Let $-\frac{1}{2}<s_{0} \leq 0$ and $p \geq 2$. Then for all

$$
\begin{equation*}
-\frac{1}{6}-s_{0}-\frac{1}{p}<s \leq 0 \tag{4.1}
\end{equation*}
$$

there exists $b_{2}>\frac{1}{2}$ such that for all $\frac{1}{2}<b<b_{2}$, all $f \in \mathcal{H}^{s_{0}, p}(\mathbb{T})$ and all $v \in X_{1}^{s, b}(\mathbb{R} \times \mathbb{T})$

$$
\begin{equation*}
\left\|\int_{0}^{t} e^{i\left(t-t^{\prime}\right) \Delta} \overline{u_{0}} \bar{v}\left(t^{\prime}, \cdot\right) d t^{\prime}\right\|_{X^{s, b}([-1,1] \times \mathbb{T})} \lesssim\|f\|_{\mathcal{H}^{s_{0}, p}}\|v\|_{X^{s, b}([-1,1] \times \mathbb{T})} \tag{4.2}
\end{equation*}
$$

where $u_{0}(t)=e^{i t \Delta} f$.
Proposition 4.1 shows that, under condition 4.1), the term

$$
\int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta} \overline{u_{0}} \bar{v}\left(t^{\prime}, \cdot\right) \mathrm{d} t^{\prime}
$$

has the regularity of v, even if f is less regular. For instance, with $p=2$ and $s=0$, we obtain

$$
\left\|\int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta} \overline{u_{0}} \bar{v}\left(t^{\prime}, \cdot\right) \mathrm{d} t^{\prime}\right\|_{X_{1}^{0, b}} \lesssim\|f\|_{H^{s_{0}}}\|v\|_{X_{1}^{0, b}}
$$

whenever $s_{0}>-\frac{1}{2}-\frac{1}{6}$.
We now state a few technical results.
We will need the following lemma which is proved in $\mathbf{1 5}$.
Lemma 4.2. - If $\gamma>\frac{1}{2}$, then we have

$$
\begin{equation*}
\sup _{y \in \mathbb{R}} \sum_{n \in \mathbb{Z}} \frac{1}{\langle n-y\rangle^{2 \gamma}}<\infty \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{(y, z) \in \mathbb{R}^{2}} \sum_{n \in \mathbb{Z}} \frac{1}{\langle z+n(n-y)\rangle^{\gamma}}<\infty \tag{4.4}
\end{equation*}
$$

Proof. - Let $y \in \mathbb{R}$. Up to a shift in n, we can assume that $y \in[0,1[$. Then $\langle n-y\rangle \geq \frac{1}{2}\langle n\rangle$, hence the estimate 4.3).

- Denote by $r_{1}=r_{1}(y, z)$ and $r_{2}=r_{2}(y, z)$ the complex roots of the polynomial $z+X(X-y)$. Then

$$
z+n(n-y)=\left(n-r_{1}\right)\left(n-r_{2}\right)
$$

There are at most 10 indexes n such that $\left|n-r_{1}\right| \leq 2$ or $\left|n-r_{2}\right| \leq 2$. The remaining n^{\prime} s satisfy

$$
\left\langle\left(n-r_{1}\right)\left(n-r_{2}\right)\right\rangle \geq \frac{1}{2}\left\langle n-r_{1}\right\rangle\left\langle n-r_{2}\right\rangle .
$$

Hence by the Cauchy-Schwarz inequality

$$
\sum_{n \in \mathbb{Z}} \frac{1}{\langle z+n(n-y)\rangle^{\gamma}} \lesssim\left(\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle n-r_{1}\right\rangle^{2 \gamma}}\right)^{\frac{1}{2}}\left(\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle n-r_{2}\right\rangle^{2 \gamma}}\right)^{\frac{1}{2}}
$$

which yields the result by (4.3).
Corollary 4.3. - If $\gamma_{1}, \gamma_{2}>\frac{1}{2}$, then

$$
\begin{equation*}
\sup _{(k, \tau) \in \mathbb{Z} \times \mathbb{R}} \sum_{n \in \mathbb{Z}} \frac{1}{\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{\gamma_{1}}}<\infty \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{(m, k, \tau) \in \mathbb{Z}_{*}^{2} \times \mathbb{R}} \sum_{n \in \mathbb{Z}} \frac{1}{\left\langle\tau-(n+k)^{2}+(n+m)^{2}+m^{2}\right\rangle^{2 \gamma_{2}}}<\infty \tag{4.6}
\end{equation*}
$$

where $\mathbb{Z}_{*}^{2}=\left\{(m, k) \in \mathbb{Z}^{2}\right.$, s.t. $\left.m \neq k\right\}$.
Proof. - - We first prove the estimate (4.5). For all τ, n, k we have

$$
\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle=\left\langle-\tau+k^{2}+2 n(n+k)\right\rangle \gtrsim\left\langle\frac{-\tau+k^{2}}{2}+n(n+k)\right\rangle
$$

The estimate then follows from (4.4) with $\gamma=\gamma_{1}>\frac{1}{2}, y=-k$ and $z=$ $\left(-\tau+k^{2}\right) / 2$.

- We now turn to the proof of 4.6 . If $m \neq k$ are integers, then $|m-k| \geq 1$ and thus

$$
\begin{aligned}
\left|\tau-(n+k)^{2}+(n+m)^{2}+m^{2}\right| & =2|m-k|\left|\frac{\tau-k^{2}+2 m^{2}}{2(m-k)}+n\right| \\
& \geq|C+n|
\end{aligned}
$$

with $C=\left(\tau-k^{2}+2 m^{2}\right) /(2(m-k))$. Therefore

$$
\left\langle\tau-(n+k)^{2}+(n+m)^{2}+m^{2}\right\rangle \geq\langle n+C\rangle
$$

and the estimate follows from an application of 4.3).
Lemma 4.4. - If $\gamma>\frac{1}{2}$, then

$$
\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle n^{2}+y^{2}\right\rangle^{\gamma}} \lesssim \frac{1}{\langle y\rangle^{2 \gamma-1}}
$$

Proof. - We can assume that $y>0$. We compare the sum with an integral, and with the change of variables $x=y t$ we obtain

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle n^{2}+y^{2}\right\rangle^{\gamma}} & \lesssim \sum_{n \in \mathbb{N}} \frac{1}{\left\langle n^{2}+y^{2}\right\rangle^{\gamma}} \lesssim \int_{0}^{+\infty} \frac{\mathrm{d} x}{\left\langle x^{2}+y^{2}\right\rangle^{\gamma}} \\
& \lesssim \frac{1}{\langle y\rangle^{2 \gamma-1}} \int_{0}^{+\infty} \frac{\mathrm{d} t}{\left(t^{2}+1\right)^{\gamma}} \lesssim \frac{1}{\langle y\rangle^{2 \gamma-1}}
\end{aligned}
$$

which was the claim.
Proof of Proposition 4.1. - Let $f \in \mathcal{H}^{s_{0}, p}(\mathbb{T})$ and write

$$
f(x)=\sum_{n \in \mathbb{Z}} a_{n} \mathrm{e}^{i n x}
$$

Denote by $u_{0}(t)=\mathrm{e}^{i t \Delta} f$ the free Schrödinger evolution of f. Then

$$
\begin{equation*}
u_{0}(t, x)=\mathrm{e}^{i t \Delta} f(x)=\sum_{n \in \mathbb{Z}} a_{n} \mathrm{e}^{-i n^{2} t} \mathrm{e}^{i n x} \tag{4.7}
\end{equation*}
$$

Let $v \in X_{1}^{s, b}(\mathbb{R} \times \mathbb{T})$, and let $\psi_{0} \in \mathcal{C}_{0}^{\infty}(\mathbb{R})$ be so that $\psi_{0}=1$ on $[-1,1]$ and $\operatorname{supp} \psi_{0} \subset[-2,2]$. Moreover, we choose ψ_{0} such that

$$
\begin{equation*}
\|v\|_{X_{1}^{s, b}}^{2}=\left\|\psi_{0}(t) v\right\|_{X^{s, b}}^{2} \tag{4.8}
\end{equation*}
$$

Then we consider the following Fourier expansion

$$
\begin{equation*}
\psi_{0}(t) v(t, x)=\sum_{n \in \mathbb{Z}} b_{n}(t) \mathrm{e}^{i n x} \tag{4.9}
\end{equation*}
$$

Thus by Definition 1.2 and 4.8 we have

$$
\begin{equation*}
\|v\|_{X_{1}^{s, b}}^{2}=\left\|\psi_{0}(t) v\right\|_{X^{s, b}}^{2}=\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}}\left\langle\tau+n^{2}\right\rangle^{2 b}\langle n\rangle^{2 s}\left|\widehat{b}_{n}(\tau)\right|^{2} \mathrm{~d} \tau \tag{4.10}
\end{equation*}
$$

Now, use the expressions (4.7) and 4.9 to compute

$$
\begin{aligned}
\psi_{0}(t) u_{0} v(t, x) & =\sum_{(j, k) \in \mathbb{Z}^{2}} a_{j} b_{k}(t) \mathrm{e}^{-i t j^{2}} \mathrm{e}^{i(j+k) x} \\
& =\sum_{n \in \mathbb{Z}}\left(\sum_{k \in \mathbb{Z}} a_{-n-k} b_{k}(t) \mathrm{e}^{-i t(n+k)^{2}}\right) \mathrm{e}^{-i n x}
\end{aligned}
$$

therefore

$$
\begin{equation*}
\psi_{0}(t) \overline{u_{0}} \bar{v}(t, x)=\sum_{n \in \mathbb{Z}} c_{n}(t) \mathrm{e}^{i n x} \tag{4.11}
\end{equation*}
$$

with

$$
c_{n}(t)=\sum_{k \in \mathbb{Z}} \overline{a_{-n-k}} \overline{b_{k}}(t) \mathrm{e}^{i t(n+k)^{2}}
$$

Now from the properties (2.5) of the time-Fourier transform, we deduce

$$
\begin{aligned}
\widehat{c_{n}}(\tau) & =\sum_{k \in \mathbb{Z}} \overline{a_{-n-k}} \overline{b_{k}(t) \widehat{\mathrm{e}^{-i t(n+k)^{2}}}(\tau)=\sum_{k \in \mathbb{Z}} \overline{a_{-n-k}} \overline{b_{k}(t) \widehat{\left.\mathrm{e}^{-i t(n}+k\right)^{2}}}(-\tau)} \\
& =\sum_{k \in \mathbb{Z}} \overline{a_{-n-k}} \overline{\widehat{b_{k}}}\left(-\tau+(n+k)^{2}\right)
\end{aligned}
$$

Now write

$$
\begin{aligned}
& \widehat{c_{n}}(\tau)= \\
& \sum_{k \in \mathbb{Z}} \frac{\overline{a_{-n-k}}}{\langle k\rangle^{s}\left\langle-\tau+(n+k)^{2}+k^{2}\right\rangle^{b}}\langle k\rangle^{s}\left\langle-\tau+(n+k)^{2}+k^{2}\right\rangle^{b} \widehat{\widehat{b_{k}}}\left(-\tau+(n+k)^{2}\right),
\end{aligned}
$$

and by the Cauchy-Schwarz inequality we obtain

$$
\begin{equation*}
\left|\widehat{c_{n}}(\tau)\right|^{2} \leq\left(\sum_{j \in \mathbb{Z}} A_{j, n}(\tau)\right)\left(\sum_{k \in \mathbb{Z}} B_{k, n}(\tau)\right) \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{j, n}(\tau)=\frac{\left|a_{-n-j}\right|^{2}}{\langle j\rangle^{2 s}\left\langle-\tau+(n+j)^{2}+j^{2}\right\rangle^{2 b}} \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k, n}(\tau)=\langle k\rangle^{2 s}\left\langle-\tau+(n+k)^{2}+k^{2}\right\rangle^{2 b}\left|\widehat{b_{k}}\right|^{2}\left(-\tau+(n+k)^{2}\right) \tag{4.14}
\end{equation*}
$$

Now by Proposition 1.3 , for $\frac{1}{2}<b<1$ and $s \in \mathbb{R}$

$$
\left\|\int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta} \overline{u_{0}} \bar{v}\left(t^{\prime}, \cdot\right) \mathrm{d} t^{\prime}\right\|_{X_{1}^{s, b}} \lesssim\left\|\overline{u_{0} v}\right\|_{X_{1}^{s, b-1}} \leq\left\|\psi_{0}(t) \overline{u_{0}} \bar{v}\right\|_{X^{s, b-1}}
$$

where the second inequality is a consequence of Definition 1.2 .

Then by 4.11 and 4.12 we obtain

$$
\begin{aligned}
\left\|\psi_{0}(t) \overline{u_{0}} \bar{v}\right\|_{X^{s, b-1}}^{2} & =\sum_{n \in \mathbb{Z}} \int_{\mathbb{R}}\left\langle\tau+n^{2}\right\rangle^{2(b-1)}\langle n\rangle^{2 s}\left|\widehat{c_{n}}(\tau)\right|^{2} \mathrm{~d} \tau \\
& \leq \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}} \frac{\langle n\rangle^{2 s}}{\left\langle\tau+n^{2}\right\rangle^{2(1-b)}}\left(\sum_{j \in \mathbb{Z}} A_{j, n}(\tau)\right)\left(\sum_{k \in \mathbb{Z}} B_{k, n}(\tau)\right) \mathrm{d} \tau \\
& =\sum_{k \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}}\left(\sum_{j \in \mathbb{Z}} \frac{\langle n\rangle^{2 s} A_{j, n}(\tau)}{\left\langle\tau+n^{2}\right\rangle^{2(1-b)}}\right) B_{k, n}(\tau) \mathrm{d} \tau
\end{aligned}
$$

Now, thanks to the change of variables $\tau^{\prime}=-\tau+(n+k)^{2}$ and 4.14 we deduce

$$
\begin{aligned}
& \left\|\psi_{0}\left(\frac{t}{T}\right) \overline{u_{0}} \bar{v}\right\|_{X^{s, b-1}}^{2} \leq \\
\leq & \sum_{k \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \int_{\mathbb{R}}\left(\sum_{j \in \mathbb{Z}} \frac{\langle n\rangle^{2 s} A_{j, n}\left(-\tau^{\prime}+(n+k)^{2}\right)}{\left\langle-\tau^{\prime}+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}}\right) B_{k, n}\left(-\tau^{\prime}+(n+k)^{2}\right) \mathrm{d} \tau^{\prime} \\
= & \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}}\left(\sum_{(n, j) \in \mathbb{Z}^{2}} \frac{\langle n\rangle^{2 s} A_{j, n}\left(-\tau^{\prime}+(n+k)^{2}\right)}{\left\langle-\tau^{\prime}+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}}\right)\langle k\rangle^{2 s}\left\langle\tau^{\prime}+k^{2}\right\rangle^{2 b}\left|\widehat{b_{k}}\right|^{2}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime} \\
\leq & \sup _{(k, \tau) \in \mathbb{Z} \times \mathbb{R}}\left[\sum_{(n, j) \in \mathbb{Z}^{2}} \frac{\langle n\rangle^{2 s} A_{j, n}\left(-\tau+(n+k)^{2}\right)}{\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}}\right] \sum_{k \in \mathbb{Z}} \int_{\mathbb{R}}\langle k\rangle^{2 s}\left\langle\tau^{\prime}+k^{2}\right\rangle^{2 b}\left|\widehat{b_{k}}\right|^{2}\left(\tau^{\prime}\right) \mathrm{d} \tau^{\prime} \\
= & \|v\|_{X_{1}^{s, b}}^{2} \sup _{(k, \tau) \in \mathbb{Z} \times \mathbb{R}}\left[\sum_{(n, j) \in \mathbb{Z}^{2}} \frac{\langle n\rangle^{2 s} A_{j, n}\left(-\tau+(n+k)^{2}\right)}{\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}}\right]
\end{aligned}
$$

by 4.10).
It remains to estimate the term

$$
I(k, \tau):=\sup _{(k, \tau) \in \mathbb{Z} \times \mathbb{R}}\left[\sum_{(n, j) \in \mathbb{Z}^{2}} \frac{\langle n\rangle^{2 s} A_{j, n}\left(-\tau+(n+k)^{2}\right)}{\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}}\right]
$$

uniformly in $(k, \tau) \in \mathbb{Z} \times \mathbb{R}$.
By the definition 4.13) of $A_{j, n}$ and the change of indexes $m=-n-j$, we
have

$$
\begin{align*}
& I(k, \tau)= \tag{4.15}\\
& =\sum_{(n, j) \in \mathbb{Z}^{2}} \frac{\langle n\rangle^{2 s}\left|a_{-n-j}\right|^{2}}{\langle j\rangle^{2 s}\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}\left\langle\tau-(n+k)^{2}+(n+j)^{2}+j^{2}\right\rangle^{2 b}} \\
& =\sum_{(n, m) \in \mathbb{Z}^{2}} \frac{\langle n\rangle^{2 s}\left|a_{m}\right|^{2}}{\langle n+m\rangle^{2 s}\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{2(1-b)}\left\langle\tau-(n+k)^{2}+m^{2}+(n+m)^{2}\right\rangle^{2 b}} \\
& :=\sum_{(n, m) \in \mathbb{Z}^{2}} I_{n, m}(k, \tau) .
\end{align*}
$$

Denote by

$$
\begin{gathered}
R_{1}=R_{1}(\tau, n, k)=-\tau+(n+k)^{2}+n^{2} \\
R_{2}=R_{2}(\tau, n, k, m)=\tau-(n+k)^{2}+m^{2}+(n+m)^{2}
\end{gathered}
$$

Denote by $\sigma=-s>0$ and $\sigma_{0}=-s_{0} \geq 0$. Write $b=\frac{1}{2}+\varepsilon$. Then introduce

$$
\beta_{1}=2(1-b)=1-2 \varepsilon<1 \quad \text { and } \quad \beta_{2}=2 b=1+2 \varepsilon>1
$$

Therefore, $I_{n, m}$ can be rewritten

$$
\begin{equation*}
I_{n, m}(k, \tau)=\frac{\langle n+m\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{\left|a_{m}\right|^{2}}{\left\langle R_{1}\right\rangle^{\beta_{1}}\left\langle R_{2}\right\rangle^{\beta_{2}}} . \tag{4.16}
\end{equation*}
$$

- Observe that $\beta_{1} \leq \beta_{2}$. Thus by (4.16), for all $m \neq k$ and $0 \leq \theta \leq 1$

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} I_{n, m}(k, \tau) & \leq\left|a_{m}\right|^{2} \sum_{n \in \mathbb{Z}} \frac{\langle n+m\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{1}{\left\langle R_{1}\right\rangle^{\beta_{1}}} \frac{1}{\left\langle R_{2}\right\rangle^{\beta_{1}}} \\
(4.17) & \leq\left|a_{m}\right|^{2} \sup _{n \in \mathbb{Z}}\left[\frac{\langle n+m\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{1}{\left\langle R_{1}\right\rangle^{(1-\theta) \beta_{1}}} \frac{1}{\left\langle R_{2}\right\rangle^{(1-\theta) \beta_{1}}}\right] \sum_{n \in \mathbb{Z}} \frac{1}{\left\langle R_{1}\right\rangle^{\theta \beta_{1}}} \frac{1}{\left\langle R_{2}\right\rangle^{\theta \beta_{1}}}
\end{aligned}
$$

For $p, q \geq 1$ such that $1 / p+1 / q=1$ we have the Hölder inequality

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle R_{1}\right\rangle^{\theta \beta_{1}}} \frac{1}{\left\langle R_{2}\right\rangle^{\theta \beta_{1}}} \leq\left(\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle R_{1}\right\rangle^{\theta \beta_{1} p}}\right)^{\frac{1}{p}}\left(\sum_{n \in \mathbb{Z}} \frac{1}{\left\langle R_{2}\right\rangle^{\theta \beta_{1} q}}\right)^{\frac{1}{q}} \tag{4.18}
\end{equation*}
$$

Now choose p, q such that $\theta \beta p=\frac{1}{2}+\varepsilon$ and $\theta \beta q=1+2 \varepsilon$, i.e.

$$
p=\frac{3}{2}, \quad q=3, \quad \text { and thus } \quad \theta=\frac{1+2 \varepsilon}{3(1-2 \varepsilon)}
$$

(Notice that $0 \leq \theta \leq 1$ if $\varepsilon>0$ is small enough). With these choices, by Corollary 4.3, all the sums in (4.18) are uniformly bounded with respect to
$(m, k, \tau) \in \mathbb{Z}_{*}^{2} \times \mathbb{R}$. Therefore, for $m \neq k$ we have

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} I_{n, m}(k, \tau) \lesssim\left|a_{m}\right|^{2} \sup _{n \in \mathbb{Z}}\left[\frac{\langle n+m\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{1}{\left\langle R_{1}\right\rangle^{(1-\theta) \beta_{1}}} \frac{1}{\left\langle R_{2}\right\rangle^{(1-\theta) \beta_{1}}}\right] \tag{4.19}
\end{equation*}
$$

Now we bound the $\sup _{n \in \mathbb{Z}}$ in 4.19 . Notice that we have the inequalities

$$
\frac{1}{\left\langle R_{1}\right\rangle} \frac{1}{\left\langle R_{2}\right\rangle} \leq \frac{1}{\left\langle R_{1}+R_{2}\right\rangle}=\frac{1}{\left\langle n^{2}+m^{2}+(n+m)^{2}\right\rangle} \lesssim \frac{1}{\langle m\rangle^{2}}
$$

and $\langle n+m\rangle \lesssim\langle n\rangle\langle m\rangle$. Hence

$$
\begin{equation*}
\sup _{n \in \mathbb{Z}}\left[\frac{\langle n+m\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{1}{\left\langle R_{1}\right\rangle^{(1-\theta) \beta_{1}}} \frac{1}{\left\langle R_{2}\right\rangle^{(1-\theta) \beta_{1}}}\right] \lesssim \frac{1}{\langle m\rangle^{2(1-\theta) \beta_{1}-2 \sigma}} \tag{4.20}
\end{equation*}
$$

Then thanks to 4.20 , for $m \neq k, 4.19$ becomes

$$
\sum_{n \in \mathbb{Z}} I_{n, m}(k, \tau) \lesssim \frac{\left|a_{m}\right|^{2}}{\langle m\rangle^{2(1-\theta) \beta_{1}-2 \sigma}}=\frac{\left|a_{m}\right|^{2}}{\langle m\rangle^{\frac{4}{3}(1-4 \varepsilon)-2 \sigma}},
$$

and by summing up, we obtain

$$
\begin{equation*}
\sum_{(n, m) \in \mathbb{Z}^{2}, m \neq k} I_{n, m}(k, \tau) \lesssim \sum_{m \in \mathbb{Z}} \frac{\left|a_{m}\right|^{2}}{\langle m\rangle^{\frac{4}{3}(1-4 \varepsilon)-2 \sigma}}=\sum_{m \in \mathbb{Z}} \frac{\left|a_{m}\right|^{2}}{\langle m\rangle^{2 \sigma_{0}}} \frac{1}{\langle m\rangle^{\eta}}, \tag{4.21}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta=\frac{4}{3}(1-4 \varepsilon)-2 \sigma_{0}-2 \sigma \tag{4.22}
\end{equation*}
$$

Now apply Hölder to 4.21 : For all $p \geq 2$ and $1 / q=1-2 / p$ so that $q \eta>1$, we can write

$$
\sum_{(n, m) \in \mathbb{Z}^{2}, m \neq k} I_{n, m}(k, \tau) \lesssim\left(\sum_{m \in \mathbb{Z}} \frac{\left|a_{m}\right|^{p}}{\langle m\rangle^{\sigma_{0} p}}\right)^{\frac{2}{p}}\left(\sum_{j \in \mathbb{Z}} \frac{1}{\langle j\rangle^{q \eta}}\right)^{\frac{1}{q}}
$$

By 4.22, the condition $q \eta>1$ is equivalent to

$$
\frac{4}{3}(1-4 \varepsilon)-2 \sigma_{0}-2 \sigma=\eta>\frac{1}{q}=1-\frac{2}{p}
$$

or

$$
\begin{equation*}
\sigma<\frac{1}{6}-\sigma_{0}+\frac{1}{p}-\frac{8}{3} \varepsilon \tag{4.23}
\end{equation*}
$$

Assume that (4.1) is satisfied. Then for $0<\varepsilon \leq \varepsilon_{1}$ (for ε_{1} small enough), the condition 4.23) is also satisfied and we have

$$
\sum_{(n, m) \in \mathbb{Z}^{2}, m \neq k} I_{n, m}(k, \tau) \lesssim\|f\|_{H^{s_{0}, p}}^{2}
$$

- We now consider the case $m=k$.

By (4.15), we have to bound, uniformly in $(k, \tau) \in \mathbb{Z} \times \mathbb{R}$, the term

$$
\sum_{n \in \mathbb{Z}} I_{n, k}(k, \tau)=\left|a_{k}\right|^{2} \sum_{n \in \mathbb{Z}} \frac{\langle n+k\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{1}{\left\langle-\tau+(n+k)^{2}+n^{2}\right\rangle^{\beta_{1}}\left\langle\tau+k^{2}\right\rangle^{\beta_{2}}} .
$$

By the inequality $\langle a+b\rangle \leq\langle a\rangle\langle b\rangle$ and Lemma 4.4 we obtain (recall that $\beta_{1}=1-2 \varepsilon$)

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} I_{n, k}(k, \tau) & \leq\left|a_{k}\right|^{2} \sum_{n \in \mathbb{Z}} \frac{\langle n+k\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}} \frac{1}{\left\langle k^{2}+(n+k)^{2}+n^{2}\right\rangle^{\beta_{1}}} \\
& \leq\left|a_{k}\right|^{2} \sum_{n \in \mathbb{Z}} \frac{\langle n+k\rangle^{2 \sigma}}{\langle n\rangle^{2 \sigma}\left\langle k^{2}+n^{2}\right\rangle^{1-2 \varepsilon}} \\
& \lesssim\left|a_{k}\right|^{2} \sum_{n \in \mathbb{Z}} \frac{1}{\langle n\rangle^{2 \sigma}\left\langle k^{2}+n^{2}\right\rangle^{1-\sigma-2 \varepsilon}} \\
& \lesssim\left|a_{k}\right|^{2} \sum_{n \in \mathbb{N}} \frac{1}{\langle n\rangle^{2 \sigma}\left\langle k^{2}+n^{2}\right\rangle^{1-\sigma-2 \varepsilon}} .
\end{aligned}
$$

Now we compare this sums with an integral : Thanks to the change of variables $x=|k| y$ we obtain, as $\sigma<\frac{1}{2}$

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}} I_{n, k}(k, \tau) & \lesssim\left|a_{k}\right|^{2} \int_{0}^{+\infty} \frac{\mathrm{d} x}{\langle x\rangle^{2 \sigma}\left\langle k^{2}+x^{2}\right\rangle^{1-\sigma-2 \varepsilon}} \\
& \lesssim \frac{\left|a_{k}\right|^{2}}{\langle k\rangle^{1-4 \varepsilon}} \int_{0}^{+\infty} \frac{\mathrm{d} y}{y^{2 \sigma}\left\langle 1+y^{2}\right\rangle^{1-\sigma-2 \varepsilon}} \\
& \lesssim \frac{\left|a_{k}\right|^{2}}{\langle k\rangle^{1-4 \varepsilon}} \lesssim\|f\|_{H^{s_{0}, p}}^{2}
\end{aligned}
$$

whenever $1-4 \varepsilon \geq 2 \sigma_{0}=-2 s_{0}$, i.e. for $0<\varepsilon \leq \varepsilon_{2}$.
Finally, set $b_{2}=\frac{1}{2}+\varepsilon$, with $\varepsilon=\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$. This concludes the proof.

5. Proof of the main theorem

We now have all the ingredients to prove Theorem 2.2 (observe that Theorem 2.1 is a particular case of the latter).

Proof of Theorem 2.2. - To take profit of the gain of regularity of the first Picard iterate (Proposition 3.2) we write $u=\mathrm{e}^{i t \Delta} f+v$ and where v lives in a smaller space than u. This idea was used by N. Burq and N. Tzvetkov [4, 5] in the context of supercritical wave equations.

We plug this expression in the integral equation

$$
u=\mathrm{e}^{i t \Delta} f-i \kappa \int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta}\left(\bar{u}^{2}\right)\left(t^{\prime}, x\right) \mathrm{d} t^{\prime}
$$

then we will show that the map K defined by

$$
\begin{aligned}
K(v)= & -i \kappa \int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta}\left(\bar{u}_{0}^{2}\right)\left(t^{\prime}, x\right) \mathrm{d} t^{\prime}-2 i \kappa \int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta} \overline{u_{0}} \bar{v}\left(t^{\prime}, \cdot\right) \mathrm{d} t^{\prime} \\
& -i \kappa \int_{0}^{t} \mathrm{e}^{i\left(t-t^{\prime}\right) \Delta}\left(\bar{v}^{2}\right)\left(t^{\prime}, x\right) \mathrm{d} t^{\prime},
\end{aligned}
$$

is a contraction.
Let $p \geq 2$ and $s_{0}>-\frac{1}{2}$ satisfy the condition (2.3), i.e.

$$
\frac{3}{p}+s_{0}>\frac{5}{6},
$$

then there exists $s>-\frac{1}{2}$ so that

$$
-\frac{1}{6}-s_{0}-\frac{1}{p}<s<-1+\frac{2}{p},
$$

and we can use the estimates (1.4, (3.3) and 4.2) to obtain: There exist $b>\frac{1}{2}$ and $C \geq 1$ such that

$$
\begin{equation*}
\|K(v)\|_{X_{1}^{s, b}} \leq C\left(\|f\|_{\mathcal{H}^{s_{0}, p}}^{2}+\|f\|_{\mathcal{H}^{s_{0}, p}}\|v\|_{X_{1}^{s, b}}+\|v\|_{X_{1}^{s, b}}^{2}\right), \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|K\left(v_{1}\right)-K\left(v_{2}\right)\right\|_{X_{1}^{s, b}} \leq C\left(\|f\|_{\mathcal{H}^{s}, p}+\left\|v_{1}+v_{2}\right\|_{X_{1}^{s, b}}\right)\left\|v_{1}-v_{2}\right\|_{X_{1}^{s, b}} \tag{5.2}
\end{equation*}
$$

- The case of small initial data. We assume that $\|f\|_{\mathcal{H}^{s_{0}, p}}=\mu \ll 1$. Then we show that K is a contraction on the ball of radius $C \mu$ in $X^{s, b}$, for μ small enough. For $\left\|v_{1}\right\|_{X^{s, b}},\left\|v_{2}\right\|_{X^{s, b}+1} \leq C \mu$, we deduce from (5.1) and (5.2) that

$$
\|K(v)\|_{X_{1}^{s, b}} \leq C\left(\mu^{2}+\mu\|v\|_{X_{1}^{s, b}}+\|v\|_{X_{1}^{s, b}}^{2}\right) \leq 3 C^{2} \mu^{2},
$$

and

$$
\left\|K\left(v_{1}\right)-K\left(v_{2}\right)\right\|_{X_{1}^{s, b}} \leq C\left(\mu+\left\|v_{1}+v_{2}\right\|_{X_{1}^{s, b}}\right)\left\|v_{1}-v_{2}\right\|_{X^{s, b}} \leq 3 C^{2} \mu\left\|v_{1}-v_{2}\right\|_{X_{1}^{s, b}},
$$ and the result follows if we choose μ so that $3 C^{2} \mu<1$.

The argument to show the uniqueness of the solution in the whole space is similar to the argument given in [15, we do not give more details here.

- The general case. Let u be a solution of (1.1), then for all $\lambda>0, u_{\lambda}$ defined by $u_{\lambda}(t, x)=\lambda^{2} u\left(\lambda^{2} t, \lambda x\right)$ in also a solution of the equation, but on a torus of
period $2 \pi / \lambda$. It is easy to check that the estimates (1.4), (3.3) and (4.2) still hold uniformly w.r.t $\lambda>0$, if we replace $\mathbb{R} /(2 \pi \mathbb{Z})$ with $\mathbb{R} /\left(\frac{2 \pi}{\lambda} \mathbb{Z}\right)$ (see Molinet [17] for more details). Now as

$$
\left\|f_{\lambda}\right\|_{\mathcal{H}^{s_{0}, p}}=\left\|u_{\lambda}(0, \cdot)\right\|_{\mathcal{H}^{s_{0}, p}} \sim \lambda^{1+s_{0}+\frac{1}{p}}
$$

which tends to 0 , we can apply the result of the previous case, and find a unique solution $u \in X^{s, b}\left(\left[-\lambda^{2}, \lambda^{2}\right] \times \mathbb{T}\right)$, for λ small enough.

- The argument showing the regularity of the flow map is exactly the same as in [15], hence we omit the proof here.

Remark 5.1. - We may compute the following Picard iterates of u. Therefore we could look for a solution to (1.1) of the form $u=u_{0}+u_{1}+\cdots+u_{n}+v$, where the u_{j} 's are known explicitly and where the unknown v in more regular than u_{n}. A fixed point argument on v would improve a bit the range 2.3 . However we do not pursue this strategy as we do not think this will give an optimal result.

Remark 5.2. - The conclusion of Theorem 2.2 may be improved using estimates in $X_{p, q}^{s, b}$ space, i.e. $X^{s, b}$ spaces based on L^{p} in the space frequency variable and L^{q} in the variable τ. See [13] for such a strategy for the DNLS equation.

References

[1] I. Bejenaru, and T. Tao. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation. J. Funct. Anal. Vol. 233 (2006), 228259.
[2] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal., 3(2):107-156, 1993.
[3] N. Burq, P. Gérard and N. Tzvetkov. Eigenfunction estimates and the Nonlinear Schrödinger equations on surfaces. Invent. Math., 159, no. 1, 187-223 126, 2005.
[4] N. Burq and N. Tzvetkov. Random data Cauchy theory for supercritical wave equations I: local existence theory. Invent. Math. 173, No. 3, 449-475 (2008)
[5] N. Burq and N. Tzvetkov. Random data Cauchy theory for supercritical wave equations II: A global existence result. Invent. Math. 173, No. 3, 477-496 (2008)
[6] T. Cazenave, L. Vega and M.C Vilela. A note on the nonlinear Schrödinger equation in weak L^{p} spaces. Commun. Contemp. Math. 3(1) : 153-162, 2001.
[7] T. Cazenave and F. B. Weissler. The Cauchy problem for the critical nonlinear Schrödinger equation in H^{s}. Nonlinear Anal. 14, no. 10, 807-836, 1990.
[8] M. Christ. Power series of a nonlinear Schrödinger equation. Mathematical aspects of nonlinear dispersive equations, 131-155, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.
[9] J. Ginibre. Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain). Séminaire Bourbaki, Vol. 1994/95. Astérisque No. 237 (1996), Exp. No. 796, 4, 163-187.
[10] J. Ginibre and G. Velo. The global Cauchy problem for the nonlinear Schrödinger equation. Ann. I.H.P. Anal. non lin., 2:309-327, 1985.
[11] A. Grünrock. An improved local well-posedness result for the modified KdV equation. Int. Math. Res. Not. 2004, no. 61, 3287-3308.
[12] A. Grünrock. Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS. Int. Math. Res. Not. 2005, no. 41, 2525-2558.
[13] A. Grünrock and S. Herr. Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data. SIAM J. Math. Anal. 39 (2008), no. 6, 1890-1920.
[14] L. Hörmander. The analysis of linear partial differential operators. II. Differential operators with constant coefficients. Grundlehren der Mathematischen Wissenschaften, 257. Springer-Verlag, Berlin, 1983.
[15] C. E. Kenig, G. Ponce, and L. Vega. Quadratic forms for the 1-D semilinear Schrödinger equation. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3323-3353.
[16] N. Kishimoto. Low-regularity bilinear estimates for a quadratic nonlinear Schrödinger equation. Preprint.
[17] L. Molinet. Global well-posedness in the energy space for the Benjamin-Ono equation on the circle. Math. Ann., (2007), 337: 353-383.
[18] Y. Tsutsumi. L^{2}-solutions for nonlinear Schrödinger equations ond nonlinear groups, Funk. Ekva. 30 (1987), 115-125.
[19] N. Tzvetkov. Invariant measures for the defocusing NLS. Ann. Inst. Fourier, 58 (2008) 2543-2604.

[^1]
[^0]: 2000 Mathematics Subject Classification. - 35A07; 35B35; 35B45; 35Q55.
 Key words and phrases. - Non linear Schrödinger equation, rough initial conditions.

[^1]: Laurent Thomann, Université de Nantes, Laboratoire de Mathématiques J. Leray, UMR CNRS 6629, 2, rue de la Houssinière, F-44322 Nantes Cedex 03, France. - E-mail: laurent.thomann@univ-nantes.fr Url: http://www.math.sciences.univ-nantes.fr/~thomann/

