LOW REGULARITY FOR A QUADRATIC
SCHRODINGER EQUATION ON T

by

Laurent Thomann

Abstract. — In this paper we consider a Schrédinger equation on the circle
with a quadratic nonlinearity. Thanks to an explicit computation of the first
Picard iterate, we give a precision on the dynamic of the solution, whose
existence was proved by C. E. Kenig, G. Ponce and L. Vega [15]. We also
show that the equation is well-posed in a space H*F(T) which contains the
Sobolev space H*(T) when p > 2.

Résumé. — Dans cet article on s’intéresse a une équation de Schrodinger
sur le cercle avec une non-linéarité quadratique. Un calcul explicite de la
premiere itérée de Picard permet de donner une précision sur la dynamique de
la solution, dont 'existence a été démontrée par C. E. Kenig, G. Ponce et L.
Vega [15]. On montre également que I’équation est bien posée dans un espace
H*P(T) qui contient ’espace de Sobolev H*(T) lorsque p > 2.

1. Introduction

Denote by T = R/27Z the unidimensional torus. In this paper we consider
the following nonlinear Schrodinger equation
a1 0w+ Au = ku?, k==1, (t,z) € RxT,
u(0,z) = f(z) € X,
where X is a Banach space (the space of the initial conditions).
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This equation has been intensively studied in the case x € M where M is a
Riemannian manifold and for different nonlinearities, usually of the form

Fu,u) = o u”, where p1,ps € N.

Here we mainly discuss the results in one dimension for quadratic nonlineari-
ties. For the other cases see [7], [15], [3], and references therein.

1.1. Previous results on the real line. —

In the case x € R, J. Ginibre and G. Velo [10], Y. Tsutsumi [18], T. Cazenave
and F. B. Weissler [7] showed that the Cauchy problem is well posed for f €
L?(R), for every nonlinearity of the type (1.2 with p; + ¢ < 5. The proof
relies on the use of Strichartz inequalities, which are of the form
. . 1 2 1

(1.2) 1”2 fll Lo, Loy) < Cllf 2y, With » + .2
In [15], C. E. Kenig, G. Ponce, and L. Vega show that (1.1)) is well posed in
X =H*R):

— for s > —3/4 in the case F(u,u) = +u? or F(u,u) = +u? ;

— for s > —1/4 in the case F(u,u) = +|ul?.
To obtain these results, the authors prove some bilinear estimates in the conor-
mal spaces X5 (see Definition , and they also show that these estimates
are optimal, and as a consequence it is impossible to perform a usual fixed point
argument in these spaces, below the threshold s = —3/4 (resp. s = —1/4).
Notice that the X*? spaces distinguish the structure of the nonlinearity, which
was not the case for the Strichartz spaces.
In [1], I. Bejenaru and T. Tao extend the well posedness results to s < —1 in
the case F(u,u) = u?, and show that the equation (T.1)) is ill-posed in H*(R)
when s < —1.
Recently, N. Kishimoto [16] extended the previous result to the case F(u, @) =
au? + fu?.

1.2. Previous results on the torus. —

In the case z € T, J. Bourgain [2] established the embedding X%3/8 ¢ Lt
which permitted to show that the problem is locally well posed in L?(T),
for every nonlinearity with p; + p2 < 3.

Then, C. E. Kenig, G. Ponce, and L. Vega [15], thanks to bilinear estimates in



QUADRATIC NLS ON T 3

X#b (see Theorem below), obtained the well posedness of (1.1f) in H*(T)
for s > —1/2 in the case F(u,u) = d+u? or F(u,u) = +u?. Again, these
estimates fail if s < —1/2.

1.3. The H*P(T) and X*" spaces. —
Now we introduce the H*P(T) spaces
Definition 1.1. — (H*P spaces)

For s € R and p > 1, denote by H*P = H*P(T) the completion of C*°(T) with
respect to the norm

‘@\'—‘

1l = (3o 1F P ).

nEZ

Here f(n) denotes the Fourier coefficient of f (see (2.6)).

These spaces where introduced by L. Hérmander (see [14], Section 10.1).

There are several motivations to introduce these spaces

e First notice that H*?(T) = H*(T), and for p > 2 we have the (strict)
inclusion H*(T) C H*P(T).
e Then, the space H*P scales like H5®) where s(p) = —% + s+ %. Hence, if

s(p) < —%, the space H*P contains elements f such that | /(n)| — 400 when
n — +o0o. Therefore we can go closer to the scaling of the equation (|1.1))
which is —%.

e T. Cazenave, L. Vega and M. C. Vilela [6] where the first authors to study
nonlinear Schrodinger equations in H*P-like spaces. In fact they show that a
class of NLS equations on RY is well-posed if the linear flow belongs to some
weak LP space. Moreover they prove that this condition can be ensured if the
initial data f satisfies J/C\ € LP>®°(RMN) for some p > 1. This latter space is a

continuous version of the space H*P.
e In [12] A. Griinrock establishes bilinear and trilinear estimates in conormal

spaces X;jg (see definition below) based on L. This permits him to show that
the cubic Schrodinger equation

i0u + Au = +|ul?u, (t,z) € R xR,

is well-posed for initial conditions in the corresponding continuous version of
the space H*P. He obtains analogous results for the DNLS equation [12] and
for the mKdV equation [11].
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In [8], M. Christ shows that the modified cubic problem
1

i+ B = (uf? = 25l where p(ol?) = 5= [ fota)Pa.

u(0,2) = f(z) € HH(T),
is well posed in H*P(T) for any s > 0 and p > 1. See [8] for precise statements.

Recently, A. Griinrock and S. Herr [13] have shown the well-posedness in H*?
spaces of the DNLS equation on the torus, thanks to multilinear estimates.

See [8, 11}, 12}, 13] for other features of the spaces H*P and more references.

e Notice that the H*? is preserved by the linear Schrodinger flow. Write
f(.%') — Z aneinx’ then eitAf(x) _ Z ane—itheinx,
neZ nel

and for all ¢t € R, ||€itAf||Hs,p = ||f”’)—[s,p.
We now define the X spaces

Definition 1.2. — (X*" spaces)
(i) For s,b € R, denote by X** = X*¥(R x T) the completion of C*(T,S(R))
with respect to the norm

1F e = (Z/R<T+n2>2b<n>28|ﬁ(7', n)2dr)?.

nel

N|=

(ii) Let T' > 0, we define the restriction spaces X:,sib = X*([-T,T) x T) by
(1.3)

t
|1F|| g0 = inf {||¢(f) Fllxes, F € X* with ¢ € S(R) s.t. 9|11 = 1}.
T T ’
Here F stands for the space-time Fourier transform (see (2.7)).

In the following, we will mainly use the space Xf’b = X%%([-1,1] x T).

We recall the key estimates which permit to perform a fixed point argument
in the X*? spaces, and to deduce that the equation (1.1]) is well posed in H*
for s > —1.

2

Proposition 1.8. — Let s <0 and § <b < 1. Then for all F € Xf’b_l, we
have

t
i(t—t)A / /
”/0 SRR N | oo < O|F oo
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See [9] for a proof. Notice this estimate holds in the general case of a rieman-
nian manifold, indeed the proof reduces to time integrations. Notice also that
we always have the estimate

162 fll oo < CIf e
1
but we won’t use it in this paper.

The following theorem is one of the main results of [15] (see Theorem 1.9. in
[15])

Theorem 1.4. — ( Kenig-Ponce-Vega [15]) Let —3 < s < 0, then there
exists b > 3 such that for all 1+ < b < by and all v,w € X**(R x T)

(1.4) [0 xsn-1 S ([0l s [l x50

Moreover, for any s < —% and b € R, an estimate of the form (1.4) fails.

We can deduce the following

Corollary 1.5. — Let —% < s <0, then there exists by > % such that for all
3 <b<b and all v,w € X*([-1,1] x T)

(1.5 [0l ypo-1 5 o gzl o

Proof. — Let 91,12 € C5°(R) be so that 11,12 = 1 on [—1, 1] and supp 91, ¢2 C
[—2,2]. Then by (1.4]) applied to 91 (t)v and 19(t)w, we obtain

@] o1 < {9010 2] x5-1 S [[P10] x00 [2w] x50,

and the result follows, by choosing 11 and 19 which realise the infimum for
the X*°([—1,1] x T) norm. O

2. Main results of this paper

2.1. Local well posedness in the Sobolev scale. —

Our first result is a precision on the dynamic of the solution of ([1.1) when the
initial condition f is in H*°(T) with —% < 50 <0.
Let f € D/(T). Then define

up(t,x) = e f(2) = Y fln)e " e,

neL
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the free Schrodinger evolution and

t
wilt,z) = —i / A () (¢, )Y,
0

the first Picard iterate of the equation ([1.1). Then we will show that there
exists b > % so that

(2.1) ||U1||X0;b([—1,1}x1r) S Hf”%{So('JT)'

Hence, u; is more regular than f : there is a gain of |sg| derivative. We will
take profit of this phenomenon to prove that it is also the case for u — e®? f,
where v is the solution of (1.1J).

Theorem 2.1. — Let k = £1. Let —% < 59 <0 and f € H(T). Then
there exist b > % and T > 0 such that there exists a unique solution u to (|1.1)

in the space
(2.2) Yo = (em f+ XOb (=T, 7] x T)).

Moreover, given 0 < T’ < T there exist R = R(T') > 0 such that the map
fr=a(t) from { f € H(T) : ||f — fllgso < R} into the class (2.2) with T"
instead of T is Lipschitz.

This result will be obtained with a contraction argument in the space X%b
(thanks to the gain of regularity), and therefore we will only need the esti-

mate (|1.4) with s = 0.

2.2. Local well posedness in the H*? scale. —

We can use the gain of regularity of the first Picard iterate to solve the Cauchy
problem (1.1)) for data f € H®P(T), and this will improve slightly the result
of [15], as we have the inclusion H*°(T) C H*P(T) for p > 0.

The following condition on the real numbers sg and p will be needed for our
result

3 5
2.3 2 > 2.
(2.3) p +s0> ¢

Theorem 2.2. — Let k = +1. Let s > —% and let p > 2 be so that the

condition (2.3) is satisfied. Let f € H*P(T). Then for all s; < —1 —f—% there
exist b > %, s1 < s < —1+ %, and T > 0 such that there exists a unique
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solution u to (L.1)) in the space
(2.4) vob = (e"m f+ X([=T, 7] x T)).

Moreover, given 0 < T' < T there exist R = R(T") > 0 such that the map
f=a(t) from { f e HOP(T) : ||f — fllnsor < R} into the class (2.4) with

T’ instead of T is Lipschitz.

To prove Theorem we will use the estimate (1.4]) in its full strength.
From the previous result, we can immediately deduce

Corollary 2.3. — Let a < 5 and let f € D'(T) be such that 1F(n)| < (n)e.

Then there exist s > —%, b > % and T > 0 such that there exists a unique
solution to (1.1) in the space

vl = (2 4 X ([-T,T) < T)).

For instance : Let 0 < & < 1 be small and o = 75 — &. Define f € D'(T) by
f(n) = (n)®. Then f € H5(T) for s < —1— L +e< -3 but feHOPT)
for some (sg,p) which satisfies the assumptions of Theorem

Remark 2.4. — The result of Theorem is interesting when sq is close to

—%, and p as big as possible, under the assumption (2.3]).

Let 0 < e < 1 be small and set sg = —% + e. Then p > 2 satisfies ([2.3)) iff

4 1 <1<1
———e< - < -
9 3 p 2

Hence, the parameter s in Theorem can be chosen close to —%. In other

words there is a gain of ~ % — % = % derivative.

2.3. Notations and plan of the paper. —

For F' € S(R) we define the time-Fourier transform by

Fr) = / TR (1)dt,
R
which has the following properties

(25)  F(r)=F(—r) and Feit(r) = F(r —§) for all 6 € R.
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Each F € C*°(T,S(R)) admits the Fourier expansion

L ) 1
26) F(t,x) =S F(t,n)e", where F(r,n)=—
(2.6) F(t,z) 7;2 (t,n)e™, where F(7,n) = o~ »

is the periodic Fourier coefficient of F.
Finally, we denote by

(2.7) JTﬂ(T,n):2i / / et D) p(¢, 2)deder,
T™JRJS -7

the space-time Fourier transform.

Notations. — In this paper ¢, C' denote constants the value of which may
change from line to line. These constants will always be universal, or depend-
ing only on fized quantities. We use the notationsa ~ b, a < b if %b <a<Ob,
a < Cb respectively.

In Section [3| we make explicit computations to estimate the first Picard itera-
tion in X*® spaces.

Then, in Section [4] we establish a bilinear estimate in X*? spaces.

In Section [5} we follow an idea of N. Burq and N. Tzvetkov [4} 5] and look for
a solution of of the form u = € f + v. The existence and uniqueness
of v is then proved with a fixed point argument, using the estimates of the
previous sections.

Acknowledgements. — The author would like to thank N. Burq and N.
Tzvetkov for useful discussions on the subject.

3. The first Picard iteration

Lemma 3.1. — Let ¢ € S(R). Then

1
/R el S o

uniformly in A € R.
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Proof. — As ¢ is in the Schwartz class |p|(7) < (7)73.
Then notice that (r)(7 + A) 2 (A), therefore

(A) (A) 1
[ A telmar s [ A s,
hence the result. =

92

Let f € D'(T), denote by o, = f(n). Then define
(3.1) up(t, ) = A f() = D ane e,
nez

the free Schrédinger evolution and

t

(3.2) uy (t, ) = —i / A (g2 (¢, x)dt,
0

which is the first Picard iterate of the equation (|1.1J).

Proposition 3.2. — Let —% < 89 <0 andp > 2. Then there exists by > %
such that for all 5 < b < by, all f € H**P(T) and all s < —1 + 2/p we have

(3.3) lutll s —1,1%m) S N 13s0n(r)-
Moreover, in the case p = 2, the estimate (3.3)) holds for s = 0.

Remark 3.3. — The result of Proposition [3.2] shows that the first Picard
iterate is more regular than the initial condition, when sq is close to —% and
p < 4. In this case, we can take s > sg.

1

The result we stated is not optimal when sq is far from —3.

Proof. — Let b > % to be chosen later. Denote by 8 = 2(1 —b) < 1 and
oc=—-s>0.
Let ¢ € Cg°(R) s.t. ¢9 =1 on [—1,1], and ¢ € C°(R) s.t. 1hoy) = ¢p. Then
by Definition [I.2) and Proposition [I.3] we have

lutllxso—r,yxm) < l%0(t) urllxso@mxr)
(3.4) S ) 0% | xso-1mxm) -

Now by the expression (3.1)), we have (with the change of variables p = —n—m)
w(t)(u—OQ) _ w(t) Z o ei(n2+m2)te—i(n+m)1’

(n,m)€Z?

= ¢(t) Z (Z(Xinm ei(n2+(”+P)2)t)eip:c‘

pEZ nEZ
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Hence we we deduce the Fourier coefficients of () (ug?) :

v

(3.5) cplt) ==Y @ a—py oI = (1) (w62 (p).

nez
From the properties (2.5)) of the time-Fourier transform, we deduce
(3.6) G(1) =) Gnt—ay O(7 —n® = (n+p)°),
nez
and by Definition we have

L [ S S R e U TR

PEL

with 8 = 2(1 — b). Now, by Lemma (see below for the statement and
proof) we have

(M1 S D lanPlacn—pPll(T = 0 = (n+p)?),
nez

uniformly in (7,p) € R x Z. With the change of variables m = —n — p and

7' =71 —n? —m?, we deduce

15 BY [ lanPlaay il -~ (n-+p)dr

n€EZ pel

n—l—m ~
= UX [ s laaPlan Pl = m)dr

neEZ meZ

B0 = ¥ e e lan 0

ez (T4 (n+m)2+n?+

Apply Lemma with A = (n +m)? + n? + m2. Denote by ¢ = —s > 0.
Then from (3.7) we deduce

Y it ()2 e m?)

e From here we assume that o > 0.

For m € Z, denote by

N |ovn|
=2 (n + my2 (n)?’

ne”L
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thanks to the inequality (n? +m?2) > (n){m), from (3.8) we deduce
|aum|? |an|
< R bt S
an 12X (M ) - S
meZ nez

Now by Holder, for p > 2

(3.10)

Iam! R oy 2 o) ar
> s < (3 g )7 (o)™ = Wl (32 08) ™
mEZL keZ mEZL

with
1 2
(3.11) —=1-=.
q1 p

To estimate the last term in (3.10]), we observe that

. |Ozk|2 1
=y * g )
then by Young’s inequality, for all p;,r1 > 1 so that
1 1 1
(3.12) — =,
q1 p1 1
and so that for 20r; > 1, we have
o) < o P\ 7 1 \w
(3.13) (Z ’Ym) ~ <Z (k)Pp1 ) (Z <]'>207"1) ’
zZ keZ jez

me

We take p; = p/2. This choice together with the conditions (3.11)), (3.12) and

2011 > 1 yields

- 1 _ 2
o> — _Z
2ry p’

and thus by (3.9)), (3.10) and (3.13]) we obtain

LS 520

Now we choose b > % such that ﬁ = —2sq, i.e. b=2(1—f) =1+ sp, and thus
% < b <1, as we assumed that —3 < so < 0.

Together with , this concludes the proof of the first statement of Propo-
sition

e Now we deal with the case p =2 and o = 0.
By (3.8) we only have to bound the term

|0‘n’2|am|2
J = ——r-
(n,,n;ezz <n2 + m2>5
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Thanks to the inequality (n? +m?2) > (n){m), we get
%o
s< Yy loblomlt gy,

ez (MPm)?

which was the claim. ]

Lemma 3.4. — Let ¢p(7) be defined by (3.6). Then there exists C > 0, which
only depends on 1, so that

(3.14) &M < CY lanflacap Pl = n® = (n+p)?),

neL
for all (1,p) € R x Z.

Proof. — Denote by
Vi(r,m,p) = (7 —n? = (n+p)?),

then
|C/1\7(7—)’2 = Z Qp O—n—p Om C—m—p ¢1 (7-7 nap) 1/)2(7_’ map)v
(n,m)€eZ?
and with the change of variables m = n + k we obtain
(3.15) |ep(T ZZan A—n—p Ontk O—p—k—p ¢1(T n,p) '(/)2(7' n+k,p).
n€Z ke

As ¢ € S(R), for all N € N, [¢)| < (7)~V. In the remaining of the proof, the
constant N may change from line to line. By the inequality (A+ B) < (A)(B),
we have

(3.16) [t1(7, 0, p)da (T, 1 + Ky p)|

1 (7,0, p)|7 [$a(r,n+ k,p)|2
(r—n2—(n+p)2) (r — (n+ k)2 — (n+ k +p)2)N
_ [91(r,n,p) |2 [ (7, + k. p)|
~ 2k (2n+k+p)V

e If k=0o0r k= —2n—p, in the sum (3.15), we immediately get the bound
314).

e Denote by
IP(T) = Z Z Qp O—p—p Ontk O—p—k—p P (7‘, n,p) w2(7'7 n+ kap)'

neZ ke,

<

~

I
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where Zy = Z\{0, —2n — p}.
If £ # 0 and k # —2n — p, observe that

(2k 2n+k+p))? = (k) (2n + k + p),

thus by
Gatrnp) i+ k) 5 AR It bl
and
—~ 1
b S X el (% el ool 2 k’p)'Q)
= %|an||@—n p’|¢1 T,n,p)| (Z ‘%Haﬂ pu;ﬁ(;_i;;” )

after the change of variables j = k + n in the second sum.
Now by Cauchy-Schwarz

Z|O‘J||O‘ﬂ pH%Z)l(TJp)P < d(Tvp)%(Z< : N 1 N)é’

= (n+j+p)¥

where
d(r,p) = Y lajPla—j—p[*[¢n (7, j, )],
JEL
and as (n —)(n+1+p) 2 (2n+p),

1 1 1
gZ:(n—DN(n—{—l—i—pyV ~ 2n—|—p % n—l (n+1+pN
1
(2n 4+ p)N’
by Cauchy-Schwarz. Thus

1 — 1
L(r) £ dr,p)2 Y |anlla—npl[tr(r,n,p)|2
nel

S dr (S lonPlacncs Pl n)])* (3 o)
nez

NneZ
< d(r,p),

which completes the proof. O

1
(2n + p)N
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4. The bilinear estimate
This section is devoted to the proof of the following result

Proposition 4.1. — Let —% < s9 <0 andp > 2. Then for all

1 1
(41) —6—80—5<S§0,

there exists by > % such that for all % < b < ba, all f € HP(T) and all
ve XPP'(R xT)

t
(4.2) I/0 GG B, )t || oo rapxry S N F 10w [0l o (117 xT) 5
where uy(t) = ¢4 f.

Proposition shows that, under condition (4.1)), the term

t
/ it A T Yt
0

has the regularity of v, even if f is less regular. For instance, with p = 2 and
s = 0, we obtain

t

I a9t g S 1o ol g
0
1

whenever sg > —% 5

We now state a few technical results.

We will need the following lemma which is proved in [15].

Lemma 4.2. — Ifv > %, then we have

(4.3) sup
yeR

and

4.4 sup < 00.
Y s P By ey

Proof. — e Let y € R. Up to a shift in n, we can assume that y € [0, 1[. Then
(n —y) > 3(n), hence the estimate (4.3)).

e Denote by 1 = r1(y, 2) and ro = ra(y, z) the complex roots of the polynomial
2+ X (X —y). Then

z+nn—y)=(n—r)(n—ry).
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There are at most 10 indexes n such that |n —r1| < 2 or [n —ro| < 2. The
remaining n's satisfy

<(n —7r1)(n— 7“2)> > %(n —r1){n—ra).

Hence by the Cauchy-Schwarz inequality

1 1
D e O )

N|—=
=

(X )

nez
which yields the result by (4.3). O
Corollary 4.3. — If v1,7v2 > %, then
1
4.5 < o0,
9 O N RS LESTL T
and
1
(4.6) sup

< 00,
(makmyezixe 2 (T — (4 B+ (n+m)2 +m2)7e
where 72 = {(m, k) € Z2, s.t. m # k}.

Proof. — e We first prove the estimate (4.5). For all 7,n, k we have
—T+ k2
2
The estimate then follows from (4.4) with v = v > %, y = —k and z =

(-7 + Kk?)/2.

e We now turn to the proof of (4.6)). If m # k are integers, then |m — k| > 1
and thus

(—T+(n+k)?+n*) ={—1+k +2n(n+k)) > +n(n+k)).

— k%4 2m?

_ 2 2 2] _ T
|T—(n+ k)" + (n+m)* +m”| 2/m — k| =) +n

Vv

|C + nl,
with C = (7 — k% + 2m?)/(2(m — k)). Therefore
(1= (n+k)* + (n+m)> +m?) > (n+C),
and the estimate follows from an application of . O

Lemma 4.4. — If v > %, then

> G S e
nez (n?4+y3H)7 ~ (y)y2 1
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Proof. — We can assume that y > 0. We compare the sum with an integral,
and with the change of variables x = yt we obtain

Z# < Zl</+°°d:c
(n2+y%)r ~ (n2+y2)7 "~ Jo o (22 +y?)

nez neN

+o0
< 1 / dt < 1
Yoyt )y (1) Y ()l
which was the claim. O

Proof of Proposition — Let f € H*P(T) and write
f(x) = Z ane™?.

nez
Denote by ug(t) = €2 f the free Schrodinger evolution of f. Then
(4.7) uo(t,z) = eimf(x) = Z ane*m%eim.
nez

Let v € Xf’b(R x T), and let 19 € C§°(R) be so that ¢p9 = 1 on [—1,1] and
supp ¥o C [—2,2]. Moreover, we choose 1y such that

(4.8) Hvllif,b = [[%o(®) vl %
Then we consider the following Fourier expansion
(4.9) do(t) vt z) = 3 ba(t)en™.
nez
Thus by Definition and (4.8) we have
(4.10) 0] 00 = [l0(t) vl 50 = Z/<T +n2) 2 (n)? by (1) [2dr.
! nez R
Now, use the expressions (4.7) and (4.9)) to compute
Yo(t)upv(t,x) = Z a; by, (t)e " ili R
(J:k)ez?
_ Z (Z Ay bk(t)e—z't(n—s—k)Q)e—inz7

n€Z kezZ
therefore
(4.11) So() Tt w) = 3 enlt)ei™,
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with

ealt) = D T g (D) R,
kEZ

Now from the properties (2.5)) of the time-Fourier transform, we deduce

—

G = 3 A e T () = 3 A (e (<)
keZ - keZ
= Zm 6;(—7' + (n 4+ k)?).
kezZ
Now write
Cn(7) =
Z (kys(—r +a(_;jk)2 = (Y (=7 + (n+ k)% + k)b (=7 + (n + k)?),

keZ

and by the Cauchy-Schwarz inequality we obtain

(4.12) G < (3 4a() (3 Bra()

JEZ kez
where
la_pn_j|?
413 A'n = B . . 9
19 ) = G ok T
and
(4.14) Bin(7) = (B)* (=7 + (n 4+ k)? + 22| (=7 + (n + k)?).

Now by Proposition for % <b<1landseR

t
I gt g S ol oot < () @0l oo
0

where the second inequality is a consequence of Definition
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Then by (4.11]) and (4.12)) we obtain

@@l = 3 [ (r+nt20 )6 (nPar

nez
= Z/ T+n2 (1- b)<ZZAJ’ )(ICZZBk’n<T))dT
je €
_ k% % / ( M)Bkm(ﬂdr

Now, thanks to the change of variables 7/ = —7 + (n + k)? and - we

deduce

t,___
||7/10(*)U0 |51 <

in(—=T + (n+ k)?
<ZZ/<J€Z T+n+k: +n22(1b (' + (ot BY)ar’

kEZ n€eZ

25An '+ ( n+k:
—Z/( ](k 7 ) (' )2 o (')
= (n3)ez? 7'+(n—|- 2+ n?)
2A
< sup <n> ( T+ n;—k? ) Z/ 28T—|—k722b|b|( )
(k,T)EZXR (n,j)EZQ <_T+(n+k) +n kEZ

2 ()** Ajn (=7 + (n + K)?)

- HUHXs,b sup [ (_T+(n+k)2+n2>2(1—b) ’
1 (k,T)EZXR (n,j)€Z2

by (4.10).

It remains to estimate the term

()2 Ajn(—7 + (n + k)%) ]

I(k,7):= sup (=1 (14 )2+ n2y20 |

(k,T)EZXR [ (n.j)€z2

uniformly in (k,7) € Z x R.
By the definition (4.13) of A;, and the change of indexes m = —n — j, we
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_y (n)*]a—ns
‘ <j>28<_7-+ (’I’L—|—k‘)2 _|_n2>2(17b)<7-_ (7’L+k’)2 + (n+])2 _|_j2>2b

_ (n)2*|am|?
, (N +m)2(=7 + (n+ k)2 +n2)2070(r — (n+ k)% +m? + (n +m)?)*
= > ILum(k,7).
(n,m)€z?
Denote by
Ry = Ri(1,n, k) = —7 + (n + k)*> + n?,
Ry = Ry(t,n, k,m) =7 — (n+ k)2 +m? + (n+m)%
Denote by 0 = —s > 0 and 0¢9 = —sg > 0. Write b = % + . Then introduce
B1=2(1-b)=1-2e<1 and [o=2b=1+42¢>1.
Therefore, I,, ,,, can be rewritten

(n+m)*  lam|”
(n)?? (R1)" (Ry)P2

e Observe that 1 < (3. Thus by (4.16] m forallm#kand 0<0<1

n+m 1 1
D Inm(k,7) < lam* ) n)20  (Rp)P1 (Ry)P

neZ nel

(4.16) Inm(k,T) =

<n+m>" ! ! S
(4.17) < \am\Qitelg[ ()2 (Ry)(1-0)5i <RQ>(10)BJZ<R1>951 (Ro)0P1-

nez

For p,q > 1 such that 1/p + 1/q = 1 we have the Holder inequality
1 1 1 5 1 3
TECTRND S MRS UYL N o )
B 08 03 06
2 7 =\ 2 () | 2 Ty

Now choose p, ¢ such that 06p = % +¢eand 0g =1+ 2¢, ie.
3 142

—, ¢g=3, andthus 6= i
2 3(1 — 2¢)

(Notice that 0 < 6 < 1 if ¢ > 0 is small enough). With these choices, by
Corollary all the sums in (4.18) are uniformly bounded with respect to

p:
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(m, k,7) € Z? x R. Therefore, for m # k we have

20
< 9 (n+m) 1 1
o EZI"””(“) S lonl*sop | oo (=)
Now we bound the sup,,c7 in (4.19). Notice that we have the inequalities
N SR B 1 _ 1
(R1) (R2) — (R1+ Ro) N <n2 +m? + (n+ m)2) ~ <m>2°

and (n +m) < (n)(m). Hence

(n +m)? 1 1 < 1
4200 o | e (g0 S o
Then thanks to (4.20)), for m # k, (4.19) becomes

I k ) < ’am’2 . ‘am‘2

nzezz n,m( TS <m>2(1—9)ﬁ1—20 - <m>§(1745)7207

and by summing up, we obtain

’am’2 - ’am’2 1
(421) Z In,m(kaT) S Z W - Z <m>200 <m>77’

(n,m)€Z2 m#k meZ

with
4
(4.22) n= 5(1 —4e) — 200 — 20.
Now apply Holder to (4.21)) : For all p > 2 and 1/g =1 —2/p so that ¢gn > 1,

we can write
Z Invm(k’T) S (Z <Lif>no’opp)p<z O;qn)q'

(n,m)€Z2m#k meZ JEZ
By (4.22)), the condition gn > 1 is equivalent to
4 1 2
—(1—4e)—200—20=n>—-=1——,
5 ) . p
or
1 1 8
4.23 < = - - — —c.
(4.23) 0 <G00 + p 3¢

Assume that (4.1]) is satisfied. Then for 0 < € < &; (for 1 small enough), the
condition (4.23)) is also satisfied and we have

Z In,m(kaT) S Hf”%{So,p-
(n,m)€Z? m#k

e We now consider the case m = k.
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By (@.15)), we have to bound, uniformly in (k,7) € Z x R, the term

(n+ k)2 1
%Inkkm') [ 27% n)27 (=1 + (n+ k)2 + n2)P1 (1 + k2)B

By the inequality (a + b) < (a)(b) and Lemma we obtain (recall that
ﬁl =1- 26)

n+k>2" 1
ZInk(k 7)<l Z 2 21 2
, ) o B1
= = (n) (k2 + (n+ k)2 +n2)h
(n+k) 20
‘CL ‘ % 20 k2+n2>1 2e

IN

S laxf? Z n)2o k2+n2>1 o—2¢
nGZ

ol > 7
~ nEN 20 k2+n2>1 o—2¢’

Now we compare this sums with an integral : Thanks to the change of variables
z = |k|y we obtain, as o < 3

Zjnk(k 7_) < ‘ak‘Q/JFOO dx
) ) ~ 0 <{Z}>2U<k2+$2>1_0_28

neL
P A dy
N~k fy y20(1 4 y2)lo 2
|ag.|?
5 <k?>1 de ~ ||f||H30p ’
whenever 1 — 4¢ > 209 = —2s¢, i.e. for 0 < e < e9.

Finally, set by = % + &, with & = min (€1, £2). This concludes the proof. O

5. Proof of the main theorem

We now have all the ingredients to prove Theorem (observe that Theo-
rem is a particular case of the latter).

Proof of Theorem[2.3 — To take profit of the gain of regularity of the first
Picard iterate ( Proposition [3.2)) we write u = ¢®* f +v and where v lives in a
smaller space than u. This idea was used by N. Burq and N. Tzvetkov [4), 5]
in the context of supercritical wave equations.



22 LAURENT THOMANN

We plug this expression in the integral equation
¢
u=e"f — i/{/ it )A(HQ)(L", x)dt’,
0
then we will show that the map K defined by

t t
K@) = —in /0 =2 (72) (¢ 2)dt’ — 2in /0 AT

t
Cin / =8 (G2) (¢ 2\,
0
is a contraction.
Let p > 2 and sg > —% satisfy the condition (2.3), i.e.
3 5

—+s0 > -,
p 76

then there exists s > —% so that
1 1 2
e —sg——<s<-—147Z,
6 p p
and we can use the estimates (1.4), (3.3) and (4.2) to obtain : There exist
b> % and C > 1 such that
(5.1) 1K (@)l x50 < C(If I3m0r + o 0]l g + Hvllif,b)a
and

(52) K (v1) = K(va)llxse < C(If o + [lor + valloe) llvr = vall oo

e The case of small initial data. We assume that ||f||#s0r» = g < 1. Then
we show that K is a contraction on the ball of radius Cp in X*?, for p small

enough. For ||v1||xss,||v2] xsb41 < Cu, we deduce from and that
[E@)llyee < (0% + pllvll oo + [0]100) < 3C0%,

and

1 (v1) = K (v2)l] 50 < C (ot Jor vzl o) o1 = 2]l xor < 3C2pllvr —vall o0,

and the result follows if we choose i so that 3C%u < 1.
The argument to show the uniqueness of the solution in the whole space is
similar to the argument given in [15], we do not give more details here.

e The general case. Let u be a solution of (|1.1)), then for all A > 0, u) defined
by uy(t, ) = MNu(A%t, Ar) in also a solution of the equation, but on a torus of
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period 27/A. It is easy to check that the estimates (1.4), (3.3) and (4.2)) still
hold uniformly w.r.t A > 0, if we replace R/(27Z) with R/(%Z) (see Molinet

[17] for more details). Now as

1
£l = a0, lon ~ X045,

which tends to 0, we can apply the result of the previous case, and find a
unique solution u € X*°([-\2,A%] x T), for A small enough.

e The argument showing the regularity of the flow map is exactly the same as
in [15], hence we omit the proof here. O

Remark 5.1. — We may compute the following Picard iterates of u. There-
fore we could look for a solution to of the form v = ug+u1+-- - +up, +v,
where the u;’s are known explicitly and where the unknown v in more regular
than u,. A fixed point argument on v would improve a bit the range .
However we do not pursue this strategy as we do not think this will give an
optimal result.

Remark 5.2. — The conclusion of Theorem may be improved using es-
timates in X;jg space, i.e. X*P spaces based on LP in the space frequency
variable and L? in the variable 7. See [13] for such a strategy for the DNLS
equation.

References

[1] I. Bejenaru, and T. Tao. Sharp well-posedness and ill-posedness results for a
quadratic non-linear Schrédinger equation. J. Funct. Anal. Vol. 233 (2006), 228-
259.

[2] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets
and applications to nonlinear evolution equations. I. Schrodinger equations. Geom.
Funct. Anal., 3(2):107-156, 1993.

[3] N. Burq, P. Gérard and N. Tzvetkov. Eigenfunction estimates and the Nonlinear
Schrodinger equations on surfaces. Invent. Math., 159, no. 1, 187-223 126, 2005.

[4] N. Burq and N. Tzvetkov. Random data Cauchy theory for supercritical wave
equations I: local existence theory. Invent. Math. 173, No. 3, 449-475 (2008)

[5] N. Burq and N. Tzvetkov. Random data Cauchy theory for supercritical wave
equations II: A global existence result. Invent. Math. 173, No. 3, 477-496 (2008)

[6] T. Cazenave, L. Vega and M.C Vilela. A note on the nonlinear Schrédinger equa-
tion in weak L? spaces. Commun. Contemp. Math. 3(1) : 153-162, 2001.

[7] T. Cazenave and F. B. Weissler. The Cauchy problem for the critical nonlinear
Schrodinger equation in H*. Nonlinear Anal. 14, no. 10, 807-836, 1990.



24 LAURENT THOMANN

[8] M. Christ. Power series of a nonlinear Schrédinger equation. Mathematical aspects
of nonlinear dispersive equations, 131-155, Ann. of Math. Stud., 163, Princeton
Univ. Press, Princeton, NJ, 2007.

[9] J. Ginibre. Le probléme de Cauchy pour des EDP semi-linéaires périodiques
en variables d’espace (d’aprés Bourgain). Séminaire Bourbaki, Vol. 1994/95.
Astérisque No. 237 (1996), Exp. No. 796, 4, 163-187.

[10] J. Ginibre and G. Velo. The global Cauchy problem for the nonlinear Schrédinger
equation. Ann. I.H.P. Anal. non lin., 2:309-327, 1985.

[11] A. Griinrock. An improved local well-posedness result for the modified KdV
equation. Int. Math. Res. Not. 2004, no. 61, 3287-3308.

[12] A. Griinrock. Bi- and trilinear Schrédinger estimates in one space dimension
with applications to cubic NLS and DNLS. Int. Math. Res. Not. 2005, no. 41,
2525-2558.

[13] A. Griinrock and S. Herr. Low regularity local well-posedness of the derivative
nonlinear Schrodinger equation with periodic initial data. SIAM J. Math. Anal.
39 (2008), no. 6, 1890-1920.

[14] L. Hormander. The analysis of linear partial differential operators. II. Differen-
tial operators with constant coefficients. Grundlehren der Mathematischen Wis-
senschaften, 257. Springer-Verlag, Berlin, 1983.

[15] C. E. Kenig, G. Ponce, and L. Vega. Quadratic forms for the 1-D semilinear
Schrodinger equation. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3323-3353.
[16] N. Kishimoto. Low-regularity bilinear estimates for a quadratic nonlinear

Schrodinger equation. Preprint.

[17] L. Molinet. Global well-posedness in the energy space for the Benjamin-Ono
equation on the circle. Math. Ann., (2007), 337: 353-383.

[18] Y. Tsutsumi. L?-solutions for nonlinear Schrédinger equations ond nonlinear
groups, Funk. Fkva. 30 (1987), 115-125.

[19] N. Tzvetkov. Invariant measures for the defocusing NLS. Ann. Inst. Fourier, 58
(2008) 2543-2604.

LAURENT THOMANN, Université de Nantes, Laboratoire de Mathématiques
J. Leray, UMR CNRS 6629, 2, rue de la Houssiniere, F-44322 Nantes
Cedex 03, France. ¢ E-mail : laurent.thomann@univ-nantes.fr
Url : http://www.math.sciences.univ-nantes.fr/~thomann/



	1. Introduction
	2. Main results of this paper
	3. The first Picard iteration
	4. The bilinear estimate
	5. Proof of the main theorem
	References

