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Abstract: The author of the present paper considered in [16] a model describing a vibrating strucure of an
interfacial slip and consists of three coupled hyperbolic equations in one-dimensional bounded interval, 10
where the dissipation is generated by either a frictional damping or an in�nite memory, and it is acting only
on one component. Some strong, polynomial, exponential and non exponential stability results were proved
in [16] depending on the values of the parameters and the regularity of the initial data. The objective of the
present paper is to compelete the study of [16] by considering this model in the whole line R and under only
one control given by a frictional damping or an in�nite memory. When the system is controled via its second 15
or third component (rotation angle displacement or dynamic of the slip), we show that this control alone is
su�cient to stabilize our systemandget di�erent polynomial stability estimates in the L2-normof the solution
and its higher order derivatives with respect to the space variable. The decay rate depends on the regularity
of the initial data, the nature of the control and the parameters in the system. However, when the system is
controled via its �rst component (transversal displacement), we found a new stability condition depending 20
on the parameters in the system. This condition de�nes a limit between the stability and instability of the
system in the sense that, when this condition is stais�ed, the system is polynomially stable. Otherwise, when
this condition is not satis�ed, we prove that the solution does not converge to zero at all. The proofs are based
on the energy method and Fourier analysis combined with judicious choices of weight functions.

Keywords: Timoshenko beam with interfacial slip, Frictional damping, In�nite memory, Asymptotic behav- 25
ior, Energy method, Fourier analysis
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1 Introduction
The structures known as the laminated Timoshenko beams in one-dimensional domains are composed of two
layered identical beams of uniform thikness and attached together on top of each other subject to transversal 30
and rotational vibrations, and taking account the longitudinal dislacement; see, for example, [28] for more
details.
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Amodel of laminated Timoshenko beams of length L and with interfacial slip based on the Timoshenko
theory is mathematically formulated by the system (see [22, 23])

ρ Wtt + G (ψ −Wx)x = 0,
Iρ (3S − ψ)tt − G (ψ −Wx) − D (3S − ψ)xx = 0,
3Iρ Stt + 3G (ψ −Wx) + 4γS + 4βSt − 3DSxx = 0,

(1.1)

where the subscripts x and t denote the derivative with respect to space and time variables x and t, respec-
tively, x ∈]0, L[ and t > 0, combininig with some initial data and boundary conditions at x = 0 and x = L. The
parameters L, ρ, G, Iρ , D, γ and β are positive constants and denote, respectively, the length, density, shear
sti�ness, mass moment of inertia, �exural rigidity, adhesive sti�ness and adhesive damping parameter. The
functions W = W(x, t) and ψ = ψ(x, t) represent, respectively, the transverse dispalcement and rotation an-5
gle, and the function S = S(x, t) is proportional to the amount of slip along the interface, so the third equation
in (1.1) describes the dynamics of the slip and contains already the internal frictional damping 4βSt. Without
loss of generality, the length L of the beam can be assumed to be equal to 1.

The model (1.1) can be derived from the following more general one of Bresse-type [5] (known as the
circular arch problem): 

ρ1 Wtt − k1 (Wx + ψ + lS)x − lk3(Sx − lW) = 0,
ρ2 ψtt − k2 ψxx + k1 (Wx + ψ + lS) = 0,
ρ3 Stt − k3 (Sx − lW)x + l k1 (Wx + ψ + lS) = 0,

(1.2)

where l, ρj and kj, j = 1, 2, 3, are positive constants. When l and the third equation in (1.2) are not taken in
consideration (i.e. S = l = 0); (1.2) reduces to the following Timoshenko-type system [38]:{

ρ1 Wtt − k1 (Wx + ψ)x = 0,
ρ2 ψtt − k2 ψxx + k1 (Wx + ψ) = 0.

(1.3)

During the last thirty years, the models (1.1), (1.2) and (1.3) were the subject of various studies in the
literature tackling well-posedness and stability questions by adding some controls (dampings, memories,10
heat conduction, ...) and/or boundary conditions (Dirichlet, Neaumann,mixed, ...). Let usmention here some
of these studies related to our objectives in this paper.

Bounded domains. In the case of bounded domains, the well-posedness and stability of (1.1), (1.2) and
(1.3) were widely treated in a huge number of works; see, for example, [1–4, 6–8, 11, 13–15, 17–20, 26–33, 36,
39] and the refereces therein. The obtained stability results in these papers depend on the nature, number15
and position of the controls, and some relations between the constants of the model, where the decay rate
depends, in some situations, on the regularity of the initial data.

Observe that (1.1) is already damped via the control 4βSt and, moreover, the speeds of the wave propaga-
tions of the last two equations in (1.1) are both asummed to be equal to

√
D
Iρ . The author of the present paper

considered in [16] amore general form of (1.1) by assuming that the three speeds of the wave propagations are
not necessarily equal, and investigated the well-posedness and stability under a unique control represented
by an in�nite memory or a frictional damping. More precisely, he considered

ρ1 φtt + k (u − φx)x + τ1F = 0,
ρ2 (3v − u)tt − b (3v − u)xx − k (u − φx) + τ2F = 0,
ρ̃3 vtt − k̃0 vxx + 3 k (u − φx) + 4 δ̃ v + τ3F = 0,

(1.4)

where x ∈]0, 1[, t > 0, all the coe�cients are positive constants except δ̃, which is nonnegative, and

(τ1, τ2, τ3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, (1.5)
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and the external force F, which plays the role of control, is given by (frictional damping)

F = γ
[
τ1φt + τ2(3v − u)t + τ3vt

]
(1.6)

or (in�nite memory)

F =
+∞∫
0

g(s)
[
τ1φxx + τ2(3v − u)xx + τ3vxx

]
(x, t − s) ds, (1.7)

where g : R+ → R+ is a given relaxation function satisfying some hypotheses and γ is a positive constant.
The results in [16] show that, �rst, (1.4) in case

(τ1, τ2, τ3) ∈ {(0, 1, 0), (0, 0, 1)}

is strongly and polynomially stable without any resrictions on the parameters, and its exponential stability
holds if and only if the three speeds of wave propagations are equal; that is

k
ρ1

= b
ρ2

= k̃0
ρ̃3

.

Second, in case (τ1, τ2, τ3) = (1, 0, 0), the strong and polynomial stability of (1.4) hold provided that the
speeds of wave propagations of the last two equations in (1.4) are equal; that is

b
ρ2

= k̃0
ρ̃3

,

or δ̃ does not belong to a given sequence of real numbers. Third, (1.4) in case (τ1, τ2, τ3) = (1, 0, 0) is not
exponentially stable whichever the values of the parameters. These stability results extend some similar ones
known in the literature; see the references cited above. 5

Unboundeddomains. The stability of (1.2) and (1.3) in unboundeddomains has been extensively treated
in the last few years. In this direction, we mention the papers [10, 12, 24, 25, 34, 35] (see also the references
therien), where some polynomial stability estimates for L2-normof solutions have been proved using frictinal
dampings or heat conduction e�ects ormemory controls. In someparticular cases, the optimality of the decay
rate was also proved. 10

To the best of our knowledge, in the literature there is no stability results for laminated Timeshenko
beams (1.1) in unbounded domains. Our main goal in the present paper is to consider the general model (1.4)
in the whole line R and under one control of frictional damping or in�nite memory type acting only on one
equation; that is (1.4) with (1.6) or with (1.7). When the contol is active on the second or third equation, we
show the asymptotic stability of the system in both cases by proving polynomial stability estimates for the 15
L2-norm of solutions and their higher derivatives with respect to the space varaible x, where the decay rate
depends on the nature of the control (frictional damping (1.6) or in�nite memory (1.7)), the regularity of the
initial data and some relations between the coe�cients k1, k2 and k3. However, when the frictional damping
γφt is active on the �rst equation, we present a new condition, which de�nes a border between the stability
and instability of the system. More precisely, if this condition is satis�ed, we show that the system is stable 20
and has a similar polynomial stability estimate but with a weaker decay rate. Otherwise, when this condition
is not satis�ed, we prove, despite the presence of the dissipation γφt, that the solution does not converge
to zero at all. This last result can be explained by the weakness of the role played by the �rst equation in
comparaison with the one played by the other two equations.

Our results give extensions from the bounded to the unbounded domain case of some of the works cited 25
above, and in particular, they complete the results in [16]. The proof is based on the energymethod combined
with the Fourier analysis (by using the transformation in the Fourier space) andwell chosenweight functions.

The paper is organized as follows. In Section 2, we formulate (1.4) in a �rst order Cauchy system, consider
some assumptions and give some preliminaries. In Sections 3 and 4, we prove our polynomial stability esti-
mates in cases (1.6) and (1.7), respectively. We end our paper by some general comments and related issues 30
in Section 5.
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2 Preliminaries and formulation of the problems
First, in order to simplify the form of (1.4), let us introduce the following change of variables:{

ρ3 = 1
9 ρ̃3, k1 = k, k2 = b, k3 = 1

9 k̃0, δ = 4
9 δ̃,

w = −3v, ψ = 3v − u.

Then, (1.4) with (1.6) can be rewritten as
ρ1φtt − k1 (φx + ψ + w)x + τ1γφt = 0,
ρ2ψtt − k2 ψxx + k1 (φx + ψ + w) + τ2γψt = 0,
ρ3wtt − k3 wxx + k1(φx + ψ + w) + δw + τ3γwt = 0,

(2.1)

where x ∈ R, t > 0, ρ1, ρ2, ρ3, k1, k2, k3, γ > 0, δ ≥ 0 and (τ1, τ2, τ3) is de�ned by (1.5). For (1.4) with (1.7),
we consider the two cases where the memory is acting on the second or third equation, that is

ρ1φtt − k1 (φx + ψ + w)x = 0,

ρ2ψtt − k2 ψxx + k1 (φx + ψ + w) + τ̃1

+∞∫
0

g(s)ψxx(x, t − s) ds = 0,

ρ3wtt − k3 wxx + k1(φx + ψ + w) + δw + τ̃2

+∞∫
0

g(s)wxx(x, t − s) ds = 0,

(2.2)

where
(τ̃1, τ̃2) ∈ {(1, 0), (0, 1)} (2.3)

and g : R+ → R+ is di�erentiable and integrable on R+ such that

0 < g0 :=
+∞∫
0

g(s) ds <
{
k2 if (τ̃1, τ̃2) = (1, 0),
k3 if (τ̃1, τ̃2) = (0, 1),

(2.4)

and there exist positive constants β1 and β2 satisfying

−β1g ≤ g′ ≤ −β2g. (2.5)

The systems (2.1) and (2.2) are supplemented by the initial conditions{
(φ(x, 0), ψ(x, 0), w(x, 0)) = (φ0(x), ψ0(x), w0(x)),
(φt(x, 0), ψt(x, 0), wt(x, 0)) = (φ1(x), ψ1(x), w1(x))

(2.6)

and {
(φ(x, 0), ψ(x, −τ̃1t), w(x, −τ̃2t)) = (φ0(x), ψ0(x, τ̃1t), w0(x, τ̃2t)),
(φt(x, 0), ψt(x, 0), wt(x, 0)) = (φ1(x), ψ1(x), w1(x)),

(2.7)

respectively. To formulate (2.1) and (2.2) in an abstract �rst-order system, we consider the new variables

u = φt , y = ψt , θ = wt , v = φx + ψ + w, z = ψx and ϕ = wx . (2.8)

For simplicity and without loss of generality, we take ρ1 = ρ2 = ρ3 = 1 and δ = 0. Using (2.8), (2.1) leads to
the following system: 

vt − ux − y − θ = 0,
ut − k1 vx + τ1γ u = 0,
zt − yx = 0,
yt − k2 zx + k1v + τ2γ y = 0,
ϕt − θx = 0,
θt − k3 ϕx + k1 v + τ3γθ = 0.

(2.9)
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In case (2.2), we consider the additional new variable introduced in [9]

η(x, t, s) =
{
ψ(x, t) − ψ(x, t − s) if (τ̃1, τ̃2) = (1, 0),
w(x, t) − w(x, t − s) if (τ̃1, τ̃2) = (0, 1)

(2.10)

with its initial data η0(x, s) = η(x, 0, s). The variable η satis�es

ηt(x, t, s) + ηs(x, t, s) =
{
ψt(x, t) if (τ̃1, τ̃2) = (1, 0),
wt(x, t) if (τ̃1, τ̃2) = (0, 1)

(2.11)

and

+∞∫
0

g(s)ηxx(x, t, s) ds =


g0ψxx(x, t) −

+∞∫
0

g(s)ψxx(x, t − s) ds if (τ̃1, τ̃2) = (1, 0),

g0wxx(x, t) −
+∞∫
0

g(s)wxx(x, t − s) ds if (τ̃1, τ̃2) = (0, 1).

(2.12)

Then, we get from (2.2) (with ρ1 = ρ2 = ρ3 = 1 and δ = 0), (2.8), (2.11) and (2.12) the following system:

vt − ux − y − θ = 0,
ut − k1 vx = 0,
zt − yx = 0,

yt − (k2 − τ̃1g0) zx + k1v − τ̃1

+∞∫
0

g(s)ηxx ds = 0,

ϕt − θx = 0,

θt − (k3 − τ̃2g0)ϕx + k1 v − τ̃2

+∞∫
0

g(s)ηxx ds = 0,

ηt + ηs − τ̃1y − τ̃2θ = 0.

(2.13)

Let de�ne the variable U and its initial data U0 by

U =
{

(v, u, z, y, ϕ, θ)T in case (2.9),
(v, u, z, y, ϕ, θ, η)T in case (2.13)

and U0 =
{

(v, u, z, y, ϕ, θ)T(·, 0) in case (2.9),
(v, u, z, y, ϕ, θ, η)T(·, 0) in case (2.13).

The systems (2.9) and (2.13) with the initial conditions (2.6) and (2.7), respectively, are equivalent to{
Ut(x, t) + A1Uxx(x, t) + A2Ux(x, t) + A3U(x, t) = 0,
U(x, 0) = U0(x),

(2.14)

where, for (2.9),

A1 = 0, A2Ux =



−ux

−k1 vx

− yx

− k2 zx

− θx

− k3 ϕx



and A3U =



−y − θ

τ1γ u

0

k1 v + τ2γ y

0

k1 v + τ3γ θ



, (2.15)
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and for (2.13)

A1Uxx =



0

0

0

−τ̃1

+∞∫
0

g(s)ηxx ds

0

−τ̃2

+∞∫
0

g(s)ηxx ds

0



, A2Ux =



− ux

− k1 vx

− yx

− (k2 − τ̃1g0) zx

− θx

− (k3 − τ̃2g0)ϕx

0



and A3U =



− y − θ

0

0

k1 v

0

k1 v

ηs − τ̃1y − τ̃2θ



.

For a given function h : R → C, we use the classical notations Re h, Im h, h̄ and ĥ to denote, respectively,
the real part of h, the imaginary part of h, the conjugate of h and the Fourier transformation of h given by

ĥ(ξ ) =
+∞∫
−∞

e−iξxh(x) dx, ξ ∈ R.

Applying the Fourier transformation (with respect to the space variable x) to (2.14), we obtain the following
�rst-order Cauchy system in the Fourier space, for any (ξ , t) ∈ R ×R+:{

Ût(ξ , t) − ξ2 A1Û(ξ , t) + i ξ A2Û(ξ , t) + A3Û(ξ , t) = 0,
Û(ξ , 0) = Û0(ξ ).

(2.16)

The solution of (2.16) is given by

Û(ξ , t) = e− (−ξ2 A1+i ξ A2+A3) t Û0(ξ ). (2.17)

Let Ê be the total energy associated with system (2.16) given by

Ê(ξ , t) = 1
2

[
k1 |v̂|2 + |û|2 + k2 |ẑ|2 + |ŷ|2 + k3|ϕ̂|2 + |θ̂|2

]
(2.18)

in case (2.9), and5

Ê(ξ , t) = 1
2

[
k1 |v̂|2 + |û|2 + (k2 − τ̃1g0) |ẑ|2 + |ŷ|2 + (k3 − τ̃2g0)|ϕ̂|2 + |θ̂|2

]
+ ξ

2

2

+∞∫
0

g(s)|η̂|2 ds (2.19)

in case (2.13).
We �nish this section by establishing four results to be used in the next two sections.

Lemma 2.1. Let h, d : R → C be two di�erentiable functions. Then

d
dt Re (hd̄) = Re (ht d̄ + dt h̄) (2.20)

and
d
dt Re (ihd̄) = Re

[
i(ht d̄ − dt h̄)

]
. (2.21)
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Proof. We have

d
dt Re (hd̄) = d

dt
(

(Re h) (Re d) + (Im h) (Im d)
)

= (Re ht) (Re d) + (Re h) (Re dt) + (Im ht) (Im d) + (Im h) (Im dt)
= Re (ht d̄ + dt h̄),

so we get (2.20). Using (2.20) with ih instead of h, we �nd (2.21).

Lemma 2.2. The energy functional Ê satis�es

d
dt Ê(ξ , t) = −γ

[
τ1 |û|2 + τ2 |ŷ|2 + τ3 |θ̂|2

]
(2.22)

in case (2.9), and
d
dt Ê(ξ , t) = ξ2

2

+∞∫
0

g′(s)|η̂|2 ds (2.23)

in case (2.13). 5

Proof. The �rst equation of (2.16) in case (2.9) is equivalent to

v̂t − iξ û − ŷ − θ̂ = 0,
ût − ik1ξ v̂ + τ1γ û = 0,
ẑt − iξ ŷ = 0,
ŷt − ik2ξ ẑ + k1 v̂ + τ2γ ŷ = 0,
ϕ̂t − iξ θ̂ = 0,
θ̂t − ik3 ξ ϕ̂ + k1 v̂ + τ3γ θ̂ = 0.

(2.24)

Multiplying the equations in (2.24) by k1 ¯̂v, ¯̂u, k2 ¯̂z, ¯̂y, k3
¯̂ϕ and ¯̂θ, respectively, adding the obtained equations,

taking the real part of the resulting expression and using (2.20), we obtain (2.22).
Similarily, the �rst equation of (2.16) in case (2.13) is reduced to

v̂t − iξ û − ŷ − θ̂ = 0,
ût − ik1ξ v̂ = 0,
ẑt − iξ ŷ = 0,

ŷt − i(k2 − τ̃1g0)ξ ẑ + k1 v̂ + τ̃1ξ2
+∞∫
0

g(s)η̂ ds = 0,

ϕ̂t − iξ θ̂ = 0,

θ̂t − i(k3 − τ̃2g0) ξ ϕ̂ + k1 v̂ + τ̃2ξ2
+∞∫
0

g(s)η̂ ds = 0,

η̂t + η̂s − τ̃1 ŷ − τ̃2 θ̂ = 0.

(2.25)

Multiplying the �rst six equations in (2.25) by k1 ¯̂v, ¯̂u, (k2 − τ̃1g0)¯̂z, ¯̂y, (k3 − τ̃2g0) ¯̂ϕ and ¯̂θ, respectively, multi-
plying the last equation in (2.25) by ξ2g(s)¯̂η and integrating on R+ with respect to s, adding all the obtained
equations, taking the real part of the resulting expression and using (2.20), we get

d
dt Ê(ξ , t) = − ξ

2

2

+∞∫
0

g(s) dds |η̂|
2 ds.

Then, by integrating with respect to s and exploiting the properties of g, we �nd (2.23).
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Lemma 2.3. Let σ, p and q be real numbers such that σ > −1 and p, q > 0. Then there exists Cσ,p,q > 0 such
that

1∫
0

ξ σ e− q t ξ
p
dξ ≤ Cσ,p,q (1 + t)− (σ+1)/p , ∀ t ∈ R+. (2.26)

Proof. For 0 ≤ t ≤ 1, (2.26) is true, for any Cσ,p,q ≥ 2(σ+1)/p

σ+1 . For t > 1, we have

1∫
0

ξ σ e− q t ξ
p
dξ =

1∫
0

ξ σ+1−p e− q t ξ
p
ξ p−1 dξ =

1∫
0

(ξ p)(σ+1−p)/p e− q t ξ
p
ξ p−1 dξ .

Taking τ = q t ξ p. Then
ξ p = τ

q t and ξ p−1 dξ = 1
p q t dτ.

Replacing in the above integral, we �nd

1∫
0

(ξ p)(σ+1−p)/p e− q t ξ
p
ξ p−1 dξ =

q t∫
0

(
τ
q t

)(σ+1−p)/p
e− τ 1

p q t dτ

≤ 1
p (q t)(σ+1)/p

+∞∫
0

τ(σ+1−p)/p e− τ dτ ≤ 2(σ+1)/p

p q(σ+1)/p Cσ,p (t + 1)−(σ+1)/p ,

where

Cσ,p =
+∞∫
0

τ(σ+1−p)/p e− τ dτ,

which is a convergent integral, for any σ > −1 and p > 0. This completes the proof of (2.26), where

Cσ,p,q = max
{

2(σ+1)/p

σ + 1 , 2(σ+1)/p

p q(σ+1)/p Cσ,p

}
.

Lemma 2.4. For any positive real numbers σ1, σ2 and σ3, we have

sup
|ξ |≥1

|ξ |−σ1 e− σ2 t |ξ |−σ3 ≤
(

1 + σ1/(σ2σ3)
)σ1/σ3 (1 + t)− σ1/σ3 , ∀t ∈ R+. (2.27)

Proof. It is clear that (2.27) is satis�ed for t = 0. Let t > 0 and h(x) = x−σ1 e− σ2 t x−σ3 , for x ≥ 1. Direct and
simple computations show that

h′(x) = (σ2σ3tx−σ3 − σ1)x−σ1−1 e− σ2 t x−σ3 .

If t ≥ σ1/(σ2σ3), then5

h(x) ≤ h(((σ2σ3t)/σ1)1/σ3 ) = ((σ2σ3)/σ1)−σ1/σ3e−σ1/σ3
(

1 + 1/t
)σ1/σ3 (1 + t)− σ1/σ3

≤ ((σ2σ3)/σ1)−σ1/σ3
(

1 + (σ2σ3)/σ1
)σ1/σ3 (1 + t)− σ1/σ3 =

(
1 + σ1/(σ2σ3)

)σ1/σ3 (1 + t)− σ1/σ3 ,

which gives (2.27) by taking x = |ξ |. If 0 < t < σ1/(σ2σ3), then

h(x) ≤ h(1) = e−σ2 t (1 + t)σ1/σ3 (1 + t)− σ1/σ3 ≤ (1 + σ1/(σ2σ3))σ1/σ3 (1 + t)− σ1/σ3 ,

so, (2.27) holds true, for x = |ξ |.
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Remark 1. 1. The expressions (2.22) and (2.23) show the dissipativeness of (2.16):

Ê(ξ , t) ≤ Ê(ξ , 0), ∀ t ∈ R+,

since γ > 0 and g′ ≤ 0. If γ = 0 and g = 0, then (2.16) is conservative:

Ê(ξ , t) = Ê(ξ , 0), ∀ t ∈ R+.

2. The left inequality in (2.5) guarantees the implication∣∣∣∣∣∣
+∞∫
0

g(s)|η̂|2 ds

∣∣∣∣∣∣ < +∞ →

∣∣∣∣∣∣
+∞∫
0

g′(s)|η̂|2 ds

∣∣∣∣∣∣ < +∞.

The right inequality in (2.5) will be used in Section 4 to prove our stability estimates in case of in�nite memory.
3. We have in case (2.24)

|Û(ξ , t)|2 = |v̂|2 + |û|2 + |ẑ|2 + |ŷ|2 + |ϕ̂|2 + |θ̂|2,

and in case (2.25)

|Û(ξ , t)|2 = |v̂|2 + |û|2 + |ẑ|2 + |ŷ|2 + |ϕ̂|2 + |θ̂|2 + ξ2
+∞∫
0

g(s)|η̂|2 ds.

So we deduce that
α1|Û(ξ , t)|2 ≤ Ê(ξ , t) ≤ α2|Û(ξ , t)|2, ∀ξ ∈ R, ∀t ∈ R+, (2.28)

where α2 = 1
2 max{k1, k2, k3, 1} and

α1 =
{

1
2 min{k1, k2, k3, 1} in case (2.24),
1
2 min{k1, k2 − τ̃1g0, k3 − τ̃2g0, 1} in case (2.25).

3 Stability under frictional damping
This section is dedicated to the investigation of the asymptotic behavior, when time t goes to in�nity, of the 5
solution U of (2.14) in case of frictional damping (2.9). We will prove some polynomial decay estimates on
‖∂kxU‖L2(R), where k ∈ N and the decay rate depends on the smoothness of initial data U0. To get such poly-
nomial decay estimates, we prove, �rst, that |Û|2 converges exponentially to zero with respect to time t.

In this section and in the next one, C denotes a generic positive constant, and Cε denotes a generic posi-
tive constant depending on some positive constant ε, which can be di�erent from line to line. Before distin- 10
guishing the three cases (1.5), we prove several equalities which will play a crucial role.

Multiplying (2.24)4 and (2.24)3 by i ξ ẑ and −i ξ ŷ, respectively, adding the resulting equations, taking the
real part and using (2.21), we obtain

d
dt Re

(
i ξ ŷ ẑ

)
= ξ2

(
|ŷ|2 − k2|ẑ|2

)
− k1 Re

(
i ξ v̂ ẑ

)
− τ2γ Re

(
i ξ ŷ ẑ

)
. (3.1)

Multiplying (2.24)2 and (2.24)1 by i ξ v̂ and −i ξ û, respectively, adding the resulting equations, taking the real
part and using (2.21), we �nd 15

d
dt Re

(
i ξ û v̂

)
= ξ2

(
|û|2 − k1|v̂|2

)
− Re

(
i ξ ŷ û

)
− Re

(
i ξ θ̂ û

)
− τ1γ Re

(
i ξ û v̂

)
. (3.2)

Multiplying (2.24)6 and (2.24)5 by i ξ ϕ̂ and −i ξ θ̂, respectively, adding the resulting equations, taking the real
part and using (2.21), we get

d
dt Re

(
i ξ θ̂ ϕ̂

)
= ξ2

(
|θ̂|2 − k3|ϕ̂|2

)
− k1 Re

(
i ξ v̂ ϕ̂

)
− τ3γ Re

(
i ξ θ̂ ϕ̂

)
. (3.3)
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Multiplying (2.24)6 and (2.24)1 by −ξ2 v̂ and −ξ2 θ̂, respectively, adding the resulting equations, taking the
real part and using (2.20), we arrive at

d
dt Re

(
−ξ2 θ̂ v̂

)
= ξ2

(
k1 |v̂|2 − |θ̂|2

)
− ξ2 Re

(
i ξ û θ̂

)
− k3 ξ2 Re

(
i ξ ϕ̂ v̂

)
−ξ2 Re

(
ŷ θ̂
)

+ τ3γ ξ2 Re
(
θ̂ v̂
)
. (3.4)

Multiplying (2.24)4 and (2.24)1 by −ξ2 v̂ and −ξ2 ŷ, respectively, adding the resulting equations, taking the
real part and using (2.20), we infer that

d
dt Re

(
−ξ2 ŷ v̂

)
= ξ2

(
k1 |v̂|2 − |ŷ|2

)
− ξ2 Re

(
i ξ û ŷ

)
− k2 ξ2 Re

(
i ξ ẑ v̂

)
−ξ2 Re

(
θ̂ ŷ
)

+ τ2γ ξ2 Re
(
ŷ v̂
)
. (3.5)

Multiplying (2.24)3 and (2.24)6 by i ξ θ̂ and −i ξ ẑ, respectively, adding the resulting equations, taking the real5
part and using (2.21), we entail

d
dt Re

(
i ξ ẑ θ̂

)
= −ξ2 Re

(
ŷ θ̂
)

+ k3 ξ2 Re
(
ϕ̂ ẑ
)

+ k1 Re
(
i ξ v̂ ẑ

)
+ τ3γ Re

(
i ξ θ̂ ẑ

)
. (3.6)

Mltiplying (2.24)5 and (2.24)4 by i ξ ŷ and −i ξ ϕ̂, respectively, adding the resulting equations, taking the real
part and using (2.21), it follows that

d
dt Re

(
i ξ ϕ̂ ŷ

)
= −ξ2 Re

(
θ̂ ŷ
)

+ k2 ξ2 Re
(
ẑ ϕ̂
)

+ k1 Re
(
i ξ v̂ ϕ̂

)
+ τ2γ Re

(
i ξ ŷ ϕ̂

)
. (3.7)

Multiplying (2.24)2 and (2.24)3 by − ẑ and − û, respectively, adding the resulting equations, taking the real
part and using (2.20), it appears that10

d
dt Re

(
− û ẑ

)
= −k1 Re

(
i ξ v̂ ẑ

)
− Re

(
i ξ ŷ û

)
+ τ1γ Re

(
û ẑ
)
. (3.8)

Finally, multiplying (2.24)2 and (2.24)5 by − ϕ̂ and − û, respectively, adding the resulting equations, taking
the real part and using (2.20), we see that

d
dt Re

(
− û ϕ̂

)
= −k1 Re

(
i ξ v̂ ϕ̂

)
− Re

(
i ξ θ̂ û

)
+ τ1γ Re

(
û ϕ̂
)
. (3.9)

3.1 Case 1: (τ1, τ2, τ3) = (1, 0, 0)

We start by presenting the exponential stability result of (2.16) in the next lemma.

Lemma 3.1. Assume that k2 ≠ k3. Let Û be the solution of (2.16). Then there exist c, c̃ > 0 such that15

|Û(ξ , t)|2 ≤ c̃ e− c f (ξ ) t |Û0(ξ )|2, ∀ ξ ∈ R, ∀ t ∈ R+, (3.10)

where
f (ξ ) = ξ4

1 + ξ2 + ξ4 + ξ6 . (3.11)

Proof. Let us de�ne the functional F0 as follows:

F0(ξ , t) = Re
[
i ξ
(
λ1 ŷ ẑ + λ3 θ̂ ϕ̂ + iλ4ξ θ̂ v̂ −

(λ4 + 1)k2
k2 − k3

ẑ θ̂ + (λ4 + 1)k3
k2 − k3

ϕ̂ ŷ
)]

+Re
(
−ξ2 ŷ v̂ + i λ2 ξ û v̂

)
, (3.12)
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where λ1, λ2, λ3 and λ4 are positive constants to be speci�ed later (F0 is well de�ned since k2 ≠ k3). By
multiplying (3.1)-(3.4), (3.6) and (3.7) by λ1, λ2, λ3, λ4, − (λ4+1)k2

k2−k3
and (λ4+1)k3

k2−k3
, respectively, adding the obtained

equations and adding (3.5), we deduce that

d
dt F0(ξ , t) = −ξ2

(
k2λ1 |ẑ|2 + k3λ3 |ϕ̂|2 + (1 − λ1) |ŷ|2 + (λ4 − λ3) |θ̂|2 + (k1λ2 − k1λ4 − k1) |v̂|2

)
+I1Re(iξ v̂ ẑ) + I2Re(iξ v̂ ϕ̂) + ξ2

[
λ2|û|2 − Re

(
iξ
(
λ4û θ̂ + û ŷ

))]
−λ2Re

[
iξ
(
ŷ û + θ̂ û + γ û v̂

)]
, (3.13)

where
I1 = k2ξ2 − k1λ1 −

(λ4 + 1)k1k2
k2 − k3

and I2 = k3λ4ξ2 − k1λ3 + (λ4 + 1)k1k3
k2 − k3

.

We put

F(ξ , t) = ξ2F0(ξ , t) − 1
k1
ξ2Re

(
I1 û ẑ + I2 û ϕ̂

)
. (3.14)

Multiplying (3.8), (3.9) and (3.13) by I1
k1
ξ2, I2k1

ξ2 and ξ2, respectively, and adding the obtained equations, we 5
�nd

d
dt F(ξ , t) = −ξ4

(
k2λ1 |ẑ|2 + k3λ3 |ϕ̂|2 + (1 − λ1) |ŷ|2 + (λ4 − λ3) |θ̂|2 + (k1λ2 − k1λ4 − k1) |v̂|2

)
+ξ4

[
λ2|û|2 − Re

(
iξ
(
λ4û θ̂ + û ŷ

))]
− λ2ξ2Re

[
iξ
(
ŷ û + θ̂ û + γ û v̂

)]
+ I1k1

ξ2Re
(
γ û ẑ − iξ ŷ û

)
+ I2
k1
ξ2Re

(
γ û ϕ̂ − iξ θ̂ û

)
. (3.15)

Applying Young’s inequality for the terms depending on û in (3.15), we get, for any ε0 > 0,

d
dt F(ξ , t) ≤ −(k2λ1 − ε0)ξ4 |ẑ|2 − (k3λ3 − ε0)ξ4 |ϕ̂|2 − (1 − λ1 − ε0) ξ4 |ŷ|2 (3.16)

− (λ4 − λ3 − ε0) ξ4 |θ̂|2 − (k1λ2 − k1λ4 − k1 − ε0)ξ4 |v̂|2 + Cε0 ,λ1 ,λ2 ,λ3 ,λ4 (1 + ξ2 + ξ4 + ξ6)|û|2.

We choose 0 < λ1 < 1, λ2 > 1, 0 < λ3 < λ4 < λ2 − 1 and

0 < ε0 < min {k2λ1, k3λ3, 1 − λ1, λ4 − λ3, k1λ2 − k1λ4 − k1} .

Hence, using the de�nition (2.18) of Ê, (3.16) leads, for some positive constant c1, to

d
dt F(ξ , t) ≤ −c1ξ4Ê(ξ , t) + C

(
1 + ξ2 + ξ4 + ξ6

)
|û|2. (3.17)

Now, we ntroduce the Perturbed Energy L as follows: 10

L(ξ , t) = λ Ê(ξ , t) + 1
1 + ξ2 + ξ4 + ξ6 F(ξ , t), (3.18)

where λ is a positive constant to be �xed later. Then, from (2.22), (3.17) and (3.18), we have

d
dt L(ξ , t) ≤ −c1f (ξ )Ê(ξ , t) − (γ λ − C) |û|2, (3.19)

where f is de�ned in (3.11). Moreover, using the de�nitions (2.18), (3.14) and (3.18) of Ê, F and L, respectively,
we arrive at, for some c2 > 0 (independent of λ),

|L(ξ , t) − λ Ê(ξ , t)| ≤ c2 (ξ2 + |ξ |3 + ξ4)
1 + ξ2 + ξ4 + ξ6 Ê(ξ , t) ≤ 3c2 Ê(ξ , t). (3.20)

Therefore, for λ large enough such that λ > max
{
C
γ , 3c2

}
, it follows from (3.19) and (3.20) that

d
dt L(ξ , t) + c1 f (ξ ) Ê(ξ , t) ≤ 0 (3.21)
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and
c3 Ê(ξ , t) ≤ L(ξ , t) ≤ c4 Ê(ξ , t), (3.22)

where c3 = λ −3c2 > 0 and c4 = λ + 3c2 > 0. Consequently, a combination of (3.21) and the second inequality
in (3.22) leads, for c = c1

c4
, to

d
dt L(ξ , t) + c f (ξ ) L(ξ , t) ≤ 0. (3.23)

Finally, by integration of (3.23) with respect to t and using (2.28) and (3.22), estimate (3.10) follows with c̃ =
c4α2
c3α1

.5

Theorem 3.2. Assume that k2 ≠ k3. Let N, ` ∈ N* such that ` ≤ N, U0 ∈ HN(R) ∩ L1(R) and U be the solution
of (2.14). Then, for any j = 0, . . . , N − `, there exists c0 > 0 such that

‖∂jxU‖L2(R) ≤ c0 (1 + t)−1/8−j/4 ‖U0‖L1(R) + c0 (1 + t)−`/2 ‖∂j+`x U0‖L2(R), ∀t ∈ R+. (3.24)

Proof. From (3.11), we have (low and high frequences)

f (ξ ) ≥


1
4 ξ

4 if |ξ | ≤ 1,

1
4 ξ

−2 if |ξ | > 1.
(3.25)

Applying Plancherel’s theorem and (3.10), it follows that

‖∂jxU‖2
L2(R) =

∥∥∥∥∂̂jxU(x, t)
∥∥∥∥2

L2(R)
=
∫
R

ξ2 j |Û(ξ , t)|2dξ (3.26)

10

≤ c̃
∫
R

ξ2 j e− c f (ξ ) t |Û0(ξ )|2dξ

≤ c̃
∫

|ξ |≤1

ξ2 j e− c f (ξ ) t |Û0(ξ )|2dξ + c̃
∫

|ξ |>1

ξ2 j e− c f (ξ ) t |Û0(ξ )|2 dξ := J1 + J2.

Using (2.26) (with σ = 2j and p = 4) and (3.25), it appears, for the low frequency region, that

J1 ≤ C ‖Û0‖2
L∞(R)

∫
|ξ |≤1

ξ2 j e−
c
4 t ξ

4
dξ ≤ C (1 + t)−

1
4 (1+2 j) ‖U0‖2

L1(R). (3.27)

In the high frequency region, using (3.25), we entail

J2 ≤ C
∫

|ξ |>1

|ξ |2 j e−
c
4 t ξ

−2
|Û0(ξ )|2 dξ

≤ C sup
|ξ |>1

{
|ξ |−2 ` e−

c
4 t |ξ |

−2}∫
R

|ξ |2 (j+`) |Û0(ξ )|2 dξ ,

then, using (2.27) (with σ1 = 2l, σ2 = c
4 and σ3 = 2),

J2 ≤ C (1 + t)− ` ‖ ∂j+`x U0 ‖2
L2(R), (3.28)

and so, by combining (3.26)-(3.28), we get (3.24).

We �nish this subsection by proving that the condition k2 ≠ k3 is necessary for the stability of (2.16).15

Theorem 3.3. Assume that k2 = k3. Then |Û(ξ , t)| doesn’t converge to zero when time t goes to in�nity.
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Proof. We show that, for any ξ ∈ R, the matrix

A := −(−ξ2A1 + iξA2 + A3)

has at least a pure imaginary eigenvalue; that is

∀ξ ∈ R, ∃λ ∈ C : Re (λ) = 0, Im (λ) ≠ 0 and det(λI − A) = 0,

where I denotes the identity matrix. From (2.15) with (τ1, τ2, τ3) = (1, 0, 0) and k2 = k3, we have

λI − A =



λ −iξ 0 −1 0 −1
−ik1ξ λ + γ 0 0 0 0

0 0 λ −iξ 0 0
k1 0 −ik2ξ λ 0 0
0 0 0 0 λ −iξ
k1 0 0 0 −ik2ξ λ


.

A direct computation shows that

det(λI − A) = (λ2 + k2ξ2)
[
k1ξ2(λ2 + k2ξ2) + λ(λ + γ)(λ2 + k2ξ2 + 2k1)

]
.

It is clear that, if ξ ≠ 0, then λ = i
√
k2ξ is a pure imaginary eigenvalue of A. If ξ = 0, then λ = i

√
2k1 is also

a pure imaginary eigenvalue of A. Consequently, according to (2.17) (see [37]), the solution of (2.16) doesn’t
converge to zero when time t goes to in�nity.

3.2 Case 2: (τ1, τ2, τ3) = (0, 1, 0)

As in the previous case 1, we present, �rst, our exponential stability result for (2.16). 5

Lemma 3.4. Let Û be the solution of (2.16). Then there exist c, c̃ > 0 such that (3.10) is stais�ed with

f (ξ ) =


ξ2

1+ξ2 if k1 = k2 = k3,
ξ2

1+ξ2+ξ4+ξ6 if not.
(3.29)

Proof. Let us introduce the functionals

F0(ξ , t) = Re
[
i ξ
(
λ1 ŷ ẑ − λ2 û v̂ + λ3 θ̂ ϕ̂

)
− λ4 ξ2 θ̂ v̂ + ξ2 ŷ v̂

]
, (3.30)

F1(ξ , t) =
(
k2
k1
ξ2 + λ1

)
Re
(
û ẑ
)
, (3.31)

F2(ξ , t) = k2
k1k3

(
k3λ4ξ2 − k1λ3

)
Re
(
i ξ ẑ θ̂ − û ẑ − i k3

k2
ξ ϕ̂ ŷ

)
(3.32)

and
F3(ξ , t) = − k2

k3

(
λ4ξ2 + λ2

)
Re
(
i ξ ẑ θ̂ − û ẑ − i k3

k2
ξ ϕ̂ ŷ + k3

k2
û ϕ̂
)
, (3.33)

where λ1, λ2, λ3 and λ4 are positive constants to be �xed later. Multiplying (3.1)-(3.5) by λ1, −λ2, λ3, λ4 and 10
−1, respectively, and adding the obtained equations, we get

d
dt F0(ξ , t) = (λ1 + 1)ξ2|ŷ|2 + Re

(
(1 − λ4)ξ2 θ̂ ŷ + (ξ2 − λ2)iξ û ŷ − γξ2 ŷv̂ − iγλ1ξ ŷẑ

)
(3.34)

−ξ2
(

(k1 − k1λ2 − k1λ4)|v̂|2 + k2λ1|ẑ|2 + (λ4 − λ3)|θ̂|2 + λ2|û|2 + k3λ3|ϕ̂|2
)

+
(
k2ξ2 + k1λ1

)
Re
(
i ξ ẑ v̂

)
+
(
k3λ4ξ2 − k1λ3

)
Re
(
i ξ v̂ ϕ̂

)
+
(
λ4ξ2 + λ2

)
Re
(
i ξ θ̂ û

)
.
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Multiplying (3.8) by −
(
k2
k1
ξ2 + λ1

)
, we obtain

d
dt F1(ξ , t) = −

(
k2ξ2 + k1λ1

)
Re
(
i ξ ẑ v̂

)
+
(
k2
k1
ξ2 + λ1

)
Re
(
i ξ ŷ û

)
. (3.35)

Multiplying (3.7) by − k3
k2
, adding (3.6) and (3.8), and multiplying the obtained equation by

k2
k1k3

(
k3λ4ξ2 − k1λ3

)
,

we �nd

d
dt F2(ξ , t) = k2

k1k3

(
k3λ4ξ2 − k1λ3

)
Re
[(

k3
k2
− 1
)
ξ2 ŷ θ̂ − iξ ŷ û − i γk3

k2
ξ ŷ ϕ̂

]
−
(
k3λ4ξ2 − k1λ3

)
Re
(
i ξ v̂ ϕ̂

)
. (3.36)

Similarily, adding (3.7) and (3.9), multiplying by − k3
k2
, adding (3.6) and (3.8), and multiplying the obtained

formula by − k2
k3

(
λ4ξ2 + λ2

)
, we deduce that

d
dt F3(ξ , t) = k2

k3

(
λ4ξ2 + λ2

)
Re
[(

1 − k3
k2

)
ξ2 ŷ θ̂ + iξ ŷ û + i γk3

k2
ξ ŷ ϕ̂

]
−
(
λ4ξ2 + λ2

)
Re
(
i ξ θ̂ û

)
. (3.37)

Now, let us de�ne the functionals F and L by5

F(ξ , t) = F0(ξ , t) + F1(ξ , t) + F2(ξ , t) + F3(ξ , t) (3.38)

and
L(ξ , t) = λ Ê(ξ , t) + 1

f̃ (ξ )
F(ξ , t), (3.39)

where λ is a positive constant to be speci�ed after and

f̃ (ξ ) =
{

1 + ξ2 if k1 = k2 = k3,
1 + ξ2 + ξ4 + ξ6 if not.

(3.40)

By combining (3.34)-(3.37), we infer that

d
dt F(ξ , t) = −ξ2

(
(k1 − k1λ2 − k1λ4)|v̂|2 + k2λ1|ẑ|2 + (λ4 − λ3)|θ̂|2 + λ2|û|2 + k3λ3|ϕ̂|2

)
+F4(ξ , t), (3.41)

where
F4(ξ , t) = Re

(
I1 θ̂ ŷ + iI2ξ ŷ û + iI3ξ ŷ ϕ̂ − γξ2 ŷ v̂ − iγλ1ξ ŷ ẑ

)
+ (λ1 + 1)ξ2|ŷ|2, (3.42)

I1 =
[

1 − λ4 + k2
k1k3

(
k3
k2
− 1
)

(k3λ4ξ2 − k1λ3) +
(
k2
k3
− 1
)
λ4ξ2 +

(
k2
k3
− 1
)
λ2

]
ξ2,

I2 =
[(

k2
k3
− k2
k1

)
λ4 + k2

k1
− 1
]
ξ2 + λ1 +

(
k2
k3

+ 1
)
λ2 + k2

k3
λ3

and
I3 = γ

(
1 − k3

k1

)
λ4ξ2 + γ(λ2 + λ3).

Noticing that, if k1 = k2 = k3, then I2 and I3 are constants, and I1 = (1 − λ4)ξ2. Otherwise, I2 and I3 are of
the form const ξ2 + const, and I1 is of the form (const ξ2 + const)ξ2. Then, by applying Young’s inequality,10
we see that, for any ε0 > 0,

F4(ξ , t) ≤ ε0ξ2
(
|θ̂|2 + |û|2 + |ϕ̂|2 + |v̂|2 + |ẑ|2

)
+ Cϵ0 ,λ1 ,λ2 ,λ3 ,λ4 f̃ (ξ )|ŷ|2. (3.43)
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Thus, we conclude from (3.41) and (3.43) that
d
dt F(ξ , t) ≤ Cε0 ,λ1 ,λ2 ,λ3 ,λ4 f̃ (ξ )|ŷ|2 (3.44)

−ξ2
(

(k1 − k1λ2 − k1λ4 − ε0)|v̂|2 + (k2λ1 − ε0)|ẑ|2 + (λ4 − λ3 − ε0)|θ̂|2 + (λ2 − ε0)|û|2 + (k3λ3 − ε0)|ϕ̂|2
)
.

We choose 0 < λ1, 0 < λ2 < 1, 0 < λ3 < λ4 < 1 − λ2 and

0 < ε0 < min {k1 − k1λ2 − k1λ4, k2λ1, λ4 − λ3, λ2, k3λ3} .

Therefore, using the de�nition of Ê, (3.44) leads, for some positive constant c1, to
d
dt F(ξ , t) ≤ −c1ξ2Ê(ξ , t) + Cf̃ (ξ )|ŷ|2. (3.45)

Then from (2.22), (3.39) and (3.45) we have
d
dt L(ξ , t) ≤ −c1f (ξ )Ê(ξ , t) − (γ λ − C) |ŷ|2, (3.46)

where f is given in (3.29). On the other hand, the de�nitions (2.18), (3.38) and (3.39) of Ê, F and L, respectively,
imply that there exists c2 > 0 (independent of λ) such that

∣∣∣L(ξ , t) − λÊ(ξ , t)
∣∣∣ ≤
c2

1+|ξ |+ξ2

1+ξ2 Ê(ξ , t) if k1 = k2 = k3,
c2

1+|ξ |+ξ2+|ξ |3

1+ξ2+ξ4+ξ6 Ê(ξ , t) if not
≤ 4c2Ê(ξ , t).

So, we choose λ > max
{
C
γ , 4c2

}
to get (3.21) and (3.22) with c3 = λ − 4c2 > 0 and c4 = λ + 4c2 > 0. The proof

can be completed as for Lemma 3.1. 5

Theorem 3.5. Let N, ` ∈ N* such that ` ≤ N, U0 ∈ HN(R) ∩ L1(R) and U be the solution of (2.14). Then, for
any j = 0, . . . , N − `, there exist c0, c̃0 > 0 such that, for any t ∈ R+,

‖∂jxU‖L2(R) ≤ c0 (1 + t)−1/4−j/2 ‖U0‖L1(R) + c0e−c̃0 t ‖∂j+`x U0‖L2(R) if k1 = k2 = k3, (3.47)

and
‖∂jxU‖L2(R) ≤ c0 (1 + t)−1/4−j/2 ‖U0‖L1(R) + c0 (1 + t)−`/4 ‖∂j+`x U0‖L2(R) if not. (3.48)

Proof. From (3.29), we have (low and high frequences)

f (ξ ) ≥


1
2 ξ

2 if |ξ | ≤ 1,

1
2 if |ξ | > 1

if k1 = k2 = k3, (3.49)

and 10

f (ξ ) ≥


1
4 ξ

2 if |ξ | ≤ 1,

1
4 ξ

−4 if |ξ | > 1
if not. (3.50)

The proof of (3.48) is identical to the one of Theorem 3.2 by using (3.50) and applying (2.26) (with σ = 2j and
p = 2) and (2.27) (with σ1 = 2l, σ2 = c

4 and σ3 = 4). To get (3.47), noticing that the low frequency region can
be teated as in the proof of Theorem 3.2. For the high frequencies, we have just to note that (3.49) implies that∫

|ξ |>1

|ξ |2 j e−cf (ξ )t |Û(ξ , 0)|2 dξ ≤
∫

|ξ |>1

|ξ |2 j e−
c
2 t |Û(ξ , 0)|2 dξ

≤ sup
|ξ |>1

{
|ξ |−2 ` e−

c
2 t
}∫

R

|ξ |2 (j+`) |Û(ξ , 0)|2 dξ

≤ e−
c
2 t ‖ ∂j+`x U0 ‖2

L2(R).
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3.3 Case 3: (τ1, τ2, τ3) = (0, 0, 1)

In this case, we prove the same stability results for (2.16) and (2.14) given in Subsection 3.2. Moreover, the
proofs are very similar.

Lemma 3.6. The result of Lemma 3.4 holds true also when (τ1, τ2, τ3) = (0, 0, 1).

Proof. We introduce the functionals5

F0(ξ , t) = Re
[
i ξ
(
λ1 ŷ ẑ − λ2 û v̂ + λ3 θ̂ ϕ̂

)
+ λ4 ξ2 θ̂ v̂ − ξ2 ŷ v̂

]
, (3.51)

F1(ξ , t) =
(
k3
k1
λ4ξ2 + λ3

)
Re
(
û ϕ̂
)
, (3.52)

F2(ξ , t) = − 1
k1

(
k2ξ2 − k1λ1

)
Re
(
i ξ ẑ θ̂ − i k3

k2
ξ ϕ̂ ŷ + k3

k2
û ϕ̂
)

(3.53)

and
F3(ξ , t) =

(
ξ2 + λ2

)
Re
(
i ξ ẑ θ̂ − i k3

k2
ξ ϕ̂ ŷ + k3

k2
û ϕ̂ − û ẑ

)
, (3.54)

where λ1, λ2, λ3 and λ4 are positive constants to be �xed later. Multiplying (3.1), (3.2), (3.3) and (3.4) by λ1,
−λ2, λ3 and −λ4, respectively, adding the obtained equations in addition to (3.5), we get10

d
dt F0(ξ , t) = Re

[
iξ
((
λ2 − λ4ξ2

)
θ̂ û − γλ3 θ̂ ϕ̂

)
+ (λ4 − 1)ξ2 θ̂ ŷ − γλ4ξ2 θ̂ v̂

]
(3.55)

+(λ3 + λ4)ξ2|θ̂|2 − ξ2
(

(k1λ4 − k1λ2 − k1)|v̂|2 + k2λ1|ẑ|2 + (1 − λ1)|ŷ|2 + λ2|û|2 + k3λ3|ϕ̂|2
)

+(k2ξ2 − k1λ1) Re
(
i ξ v̂ ẑ

)
+ (k3λ4ξ2 + k1λ3) Re

(
i ξ ϕ̂ v̂

)
+ (ξ2 + λ2) Re

(
i ξ ŷ û

)
.

Multiplying (3.9) by −
(
k3
k1
λ4ξ2 + λ3

)
, we �nd

d
dt F1(ξ , t) =

(
k3
k2
λ4ξ2 + λ3

)
Re
(
i ξ θ̂ û

)
−
(
k3λ4ξ2 + k1λ3

)
Re
(
i ξ ϕ̂ v̂

)
. (3.56)

Adding (3.7) and (3.9), multiplying the obtained equation by − k3
k2
, adding (3.6) and multiplying the reuslting

equation by −
(
k2
k1
ξ2 − λ1

)
, we infer that

d
dt F2(ξ , t) =

(
k2
k1
ξ2 − λ1

)
Re
[
iξ
(
− k3
k2
θ̂ û − γ θ̂ ẑ

)
+
(

1 − k3
k2

)
ξ2 θ̂ ŷ

]
−
(
k2ξ2 − k1λ1

)
Re
(
i ξ v̂ ẑ

)
. (3.57)

Similarily, adding (3.7) and (3.9), multiplying the obtained equation by − k3
k2
, adding (3.6) and (3.8), and mul-15

tiplying the reuslting equation by ξ2 + λ2, we entail

d
dt F3(ξ , t) =

(
ξ2 + λ2

)
Re
[
iξ
(
k3
k2
θ̂ û + γ θ̂ ẑ

)
+
(
k3
k2
− 1
)
ξ2 θ̂ ŷ

]
−
(
ξ2 + λ2

)
Re
(
i ξ ŷ û

)
. (3.58)

Now, as in Subsection 3.2, we de�ne the functionals F and L by (3.38) and (3.39) with the same function f̃
de�ned by (3.40). By combining (3.55)-(3.58), we deduce that

d
dt F(ξ , t) = F4(ξ , t) − ξ2

(
(k1λ4 − k1λ2 − k1)|v̂|2 + k2λ1|ẑ|2 + (1 − λ1)|ŷ|2 + λ2|û|2 + k3λ3|ϕ̂|2

)
, (3.59)
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where
F4(ξ , t) = Re

(
iI1ξ θ̂ û + iI2ξ θ̂ ẑ + I3 θ̂ ŷ − γλ4ξ2 θ̂ v̂ − iγλ3ξ θ̂ ϕ̂

)
+ (λ3 + λ4)ξ2|θ̂|2, (3.60)

I1 =
[(

k3
k2
− 1
)
λ4 + k3

k2
− k3
k1

]
ξ2 + k3

k2
λ1 +

(
k3
k2

+ 1
)
λ2 + λ3,

I2 = γ
[(

1 − k2
k1

)
ξ2 + λ1 + λ2

]
and

I3 =
[(

k3
k2
− 1
)

(ξ2 + λ2) +
(

1 − k3
k2

)(
k2
k1
ξ2 − λ1

)
+ λ4 − 1

]
ξ2.

We see that, if k1 = k2 = k3, then I1 and I2 are constants, and I3 = (λ4 − 1)ξ2. Otherwise, I1 and I2 are of the
form const ξ2 + const, and I3 is of the form (const ξ2 + const)ξ2. Then, by applying Young’s inequality, we
arrive at, for any ε0 > 0,

F4(ξ , t) ≤ ε0ξ2
(
|ŷ|2 + |û|2 + |ϕ̂|2 + |v̂|2 + |ẑ|2

)
+ Cε0 ,λ1 ,λ2 ,λ3 ,λ4 f̃ (ξ )|θ̂|2. (3.61)

Therefore, we conclude from (3.60) and (3.61) that 5

d
dt F(ξ , t) ≤ Cε0 ,λ1 ,λ2 ,λ3 ,λ4 f̃ (ξ )|θ̂|2 − ξ2

(
(k1λ4 − k1λ2 − k1 − ε0)|v̂|2 + (k2λ1 − ε0)|ẑ|2

)
−ξ2

(
(1 − λ1 − ε0)|ŷ|2 + (λ2 − ε0)|û|2 + (k3λ3 − ε0)|ϕ̂|2

)
. (3.62)

We choose 0 < λ3, 0 < λ1 < 1, λ4 > 1, 0 < λ2 < λ4 − 1 and

0 < ε0 < min {k3λ3, λ2, 1 − λ1, k2λ1, k1λ4 − k1λ2 − k1} .

Then, using the de�nition of Ê, (3.62) leads, for some c1 > 0, to

d
dt F(ξ , t) ≤ −c1ξ2Ê(ξ , t) + Cf̃ (ξ )|θ̂|2,

which is similar to (3.45). Consequentely, the proof can be �nalized as that of Lemma 3.4.

Theorem 3.7. The stability result given in Theorem 3.5 is satis�ed when (τ1, τ2, τ3) = (0, 0, 1).

Proof. The proof is identical to the one of Theorem 3.5.

4 Stability under in�nite memory
This section is devoted to the study of the asymptotic behavior, when time t goes to in�nity, of the solution 10
U of (2.14) in the case of in�nite memory (2.13). We will prove two polynomial decay estimates on ‖∂kxU‖L2(R)
similar to the ones proved in the Subsections 3.2 and 3.3. We start by this lemma.

Lemma 4.1. Let ε0 > 0, η̃ ∈ {η̂, η̂} and h, d : R → C be two functions. Then

Re

h(ξ )d(ξ )
+∞∫
0

g(s)η̃(ξ , s) ds

 ≤ ε0|h(ξ )|2 − Cε0 |d(ξ )|2
+∞∫
0

g′(s)|η̃(ξ , s)|2 ds, ∀ξ ∈ R (4.1)

and

Re

h(ξ )d(ξ )
+∞∫
0

g′(s)η̃(ξ , s) ds

 ≤ ε0|h(ξ )|2 − Cε0 |d(ξ )|2
+∞∫
0

g′(s)|η̃(ξ , s)|2 ds, ∀ξ ∈ R. (4.2)
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Proof. Using Hölder’s inequality and the right inequality in (2.5), we see that∣∣∣∣∣∣
+∞∫
0

g(s)η̃(ξ , s) ds

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
+∞∫
0

√
g(s)

√
g(s)η̃(ξ , s) ds

∣∣∣∣∣∣
2

≤

 +∞∫
0

g(s) ds

 +∞∫
0

g(s)|η̃(ξ , s)|2 ds

≤ − g0
β2

+∞∫
0

g′(s)|η̃(ξ , s)|2 ds.

Similarily, we have ∣∣∣∣∣∣
+∞∫
0

g′(s)η̃(ξ , s) ds

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
+∞∫
0

√
−g′(s)

√
−g′(s)η̃(ξ , s) ds

∣∣∣∣∣∣
2

≤

− +∞∫
0

g′(s) ds

 +∞∫
0

(−g′(s))|η̃(ξ , s)|2 ds

≤ −g(0)
+∞∫
0

g′(s)|η̃(ξ , s)|2 ds.

Then, using these two inequalities and Young’s inequality, we get (4.1) (with Cε0 = g0
4ε0β2

) and (4.2) (with
Cε0 = g(0)

4ε0
).

We distinguishing the two cases (2.3).5

4.1 Case 1: (τ̃1, τ̃2) = (1, 0)

Multiplying (2.25)4 by −
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by −g(s) ŷ and integrating over R+ with respect to s,

adding the resulting equations, taking the real part and using (2.20), we �nd

d
dt Re

−ŷ +∞∫
0

g(s)η̂ ds

 = −g0|ŷ|2 − (k2 − g0)Re

iξ ẑ +∞∫
0

g(s)η̂ ds

 + k1Re

v̂ +∞∫
0

g(s)η̂ ds


+ξ2

∣∣∣∣∣∣
+∞∫
0

g(s)η̂ ds

∣∣∣∣∣∣
2

− Re

ŷ +∞∫
0

g′(s)η̂ ds

 . (4.3)

Multiplying (2.25)6 by
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by g(s)θ̂ and integrating over R+ with respect to s,

adding the resulting equations, taking the real part and using (2.20), we get10

d
dt Re

θ̂ +∞∫
0

g(s)η̂ ds

 = k3Re

iξ ϕ̂ +∞∫
0

g(s)η̂ ds

 + g0Re
(
ŷθ̂
)

−k1Re

v̂ +∞∫
0

g(s)η̂ ds

 + Re

θ̂ +∞∫
0

g′(s)η̂ ds

 . (4.4)
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Similarily, multiplying (2.25)2 by −iξ
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by iξg(s)û and integrating overR+ with

respect to s, adding the resulting equations, taking the real part and using (2.21), we obtain

d
dt Re

iξ û +∞∫
0

g(s)η̂ ds

 = k1ξ2Re

v̂ +∞∫
0

g(s)η̂ ds

 + g0Re
(
iξ ŷû

)

+Re

iξ û +∞∫
0

g′(s)η̂ ds

 . (4.5)

Also, multiplying (2.25)5 by −iξ
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by iξg(s)ϕ̂ and integrating over R+ with re-

spect to s, adding the resulting equations, taking the real part and using (2.21), we arrive at

d
dt Re

iξ ϕ̂ +∞∫
0

g(s)η̂ ds

 = ξ2Re

θ̂ +∞∫
0

g(s)η̂ ds

 + g0Re
(
iξ ŷϕ̂

)

+Re

iξ ϕ̂ +∞∫
0

g′(s)η̂ ds

 . (4.6)

Now, we present our stability estimate for (2.16). 5

Lemma 4.2. Let Û be the solution of (2.16). Then there exist c, c̃ > 0 such that (3.10) holds true with the same
function f de�ned by (3.11).

Proof. Noticing that, if we replace in (2.24) k2, k3, τ1γ û, τ2γ ŷ and τ3γ θ̂ by k2 − τ̃1g0, k3 − τ̃2g0, 0,

τ̃1ξ2
+∞∫
0

g(s)η̂ ds and τ̃2ξ2
+∞∫
0

g(s)η̂ ds, respectively, we get the �rst six equations in (2.25). Then we de�ne

F0 by (3.30), and as in (3.31)-(3.33), we de�ne F1, F2 and F3 by (g0 ∈]0, k2[ because of (2.4)) 10

F1(ξ , t) =
(
k2 − g0
k1

ξ2 + λ1

)
Re
(
û ẑ
)
, (4.7)

F2(ξ , t) = k2 − g0
k1k3

(
k3λ4ξ2 − k1λ3

)
Re
(
i ξ ẑ θ̂ − û ẑ − i k3

k2 − g0
ξ ϕ̂ ŷ

)
(4.8)

and
F3(ξ , t) = − k2 − g0

k3

(
λ4ξ2 + λ2

)
Re
(
i ξ ẑ θ̂ − û ẑ − i k3

k2 − g0
ξ ϕ̂ ŷ + k3

k2 − g0
û ϕ̂
)
. (4.9)

Then, we get (3.34)-(3.37) with k2 − g0 and ξ2
+∞∫
0

g(s)η̂ ds instead of k2 and γ ŷ, respectively. Let us de�ne the

functional F by

F(ξ , t) = ξ2(F0(ξ , t) + F1(ξ , t) + F2(ξ , t) + F3(ξ , t)) − λ5ξ4Re

ŷ +∞∫
0

g(s)η̂ds


− 1
g0
ξ2Re

(I1 θ̂ + iI2ξ û + iI3ξ ϕ̂
) +∞∫

0

g(s)η̂ds

 (4.10)
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and let L be the functional given by (3.39) with

f̃ (ξ ) = 1 + ξ2 + ξ4 + ξ6 (4.11)

instead of (3.40), where λ5 > 0, and I1, I2 and I3 are de�ned as in Subsection 3.2 with k2 − g0 instead of k2.
By combining (3.34)-(3.37) and (4.3)-(4.6), we deduce that

d
dt F(ξ , t) = ξ2(F4(ξ , t) + F5(ξ , t)) − g0λ5ξ4|ŷ|2

−ξ4
(

(k1 − k1λ2 − k1λ4)|v̂|2 + (k2 − g0)λ1|ẑ|2 + (λ4 − λ3)|θ̂|2 + λ2|û|2 + k3λ3|ϕ̂|2
)
, (4.12)

where F4 is de�ned by (3.42) with k2 − g0 and ξ2
+∞∫
0

g(s)η̂ ds instead of k2 and γ ŷ, respectively, and

F5(ξ , t) = Re

( 1
g0
I1(k1 v̂ − ik3ξ ϕ̂) − k1

g0
I2ξ2 v̂ − 1

g0
I3ξ2 θ̂

) +∞∫
0

g(s)η̂ ds


+Re

λ5ξ2

−i(k2 − g0)ξ ẑ + k1 v̂ + ξ2
+∞∫
0

g(s)η̂ ds

 +∞∫
0

g(s)η̂ ds


−Re

( 1
g0

(
I1 θ̂ + iI2ξ û + iI3ξ ϕ̂

)
+ λ5ξ2 ŷ

) +∞∫
0

g′(s)η̂ ds

 − Re (I1 θ̂ŷ + iI2ξ ŷû + iI3ξ ŷϕ̂
)
.

Therefore, from (3.42), we have5

F4(ξ , t) − Re
(
I1 θ̂ŷ + iI2ξ ŷû + iI3ξ ŷϕ̂

)
= (λ1 + 1)ξ2|ŷ|2 − Re

(ξ2 v̂ + iλ1ξ ẑ
)
ξ2

+∞∫
0

g(s)η̂ ds

 ,
which implies that all the terms appearing in the real part in F4 + F5 depend on η. Because I1, I2 and I3 are
de�ned as in Subsection 3.2 with k2 − g0 instead of k2, then

|I1|2 ≤ Cξ4(1 + ξ2)2, |I2|2 ≤ C(1 + ξ2)2 and |I3|2 ≤ C(1 + ξ2)2.

Thus, by applying Young’s inequality and using (4.1) and (4.2), we see that, for any ε0 > 0,

ξ2 (F4(ξ , t) + F5(ξ , t)
)
≤ ε0ξ4

(
|θ̂|2 + |û|2 + |ϕ̂|2 + |v̂|2 + |ẑ|2

)
+ (λ1 + 1 + ε0)ξ4|ŷ|2

−Cε0 ,λ1 ,λ2 ,λ3 ,λ4 ,λ5 f̃ (ξ )ξ2
+∞∫
0

g′(s)|η̂|2 ds. (4.13)

So, we conclude, from (4.12) and (4.13), that

d
dt F(ξ , t) ≤ −Cε0 ,λ1 ,λ2 ,λ3 ,λ4 ,λ5 f̃ (ξ )ξ2

+∞∫
0

g′(s)|η|2 ds − [g0λ5 − (λ1 + 1 + ε0)]ξ4|ŷ|2

−ξ4
(

(k1 − k1λ2 − k1λ4 − ε0)|v̂|2 + ((k2 − g0)λ1 − ε0)|ẑ|2 + (λ4 − λ3 − ε0)|θ̂|2
)

−ξ4
(

(λ2 − ε0)|û|2 + (k3λ3 − ε0)|ϕ̂|2
)
. (4.14)

We choose 0 < λ1, 0 < λ2 < 1, 0 < λ3 < λ4 < 1 − λ2 and

0 < ε0 < min
{
k1 − k1λ2 − k1λ4, (k2 − g0)λ1, λ4 − λ3, λ2, k3λ3

}
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(recall that g0 ∈]0, k2[ since (2.4)). Then, we choose λ5 > 1
g0

(λ1 + 1 + ε0). Therefore, using the de�nition (2.19)
of Ê and the second inequality in (2.5), estimate (4.14) implies that, for some positive constant c1,

d
dt F(ξ , t) ≤ −c1ξ4Ê(ξ , t) − Cf̃ (ξ )ξ2

+∞∫
0

g′(s)|η|2 ds. (4.15)

Hence, from (2.23), (3.39) and (4.15), it follows that

d
dt L(ξ , t) ≤ −c1f (ξ )Ê(ξ , t) −

(
1
2 λ − C

)
ξ2

+∞∫
0

g′(s)|η|2 ds. (4.16)

where f is de�ned in (3.11). As in Subsections 3.1 and 3.2, we conclude that there exists c2 > 0 (independent
of λ) such that 5

|L(ξ , t) − λ Ê(ξ , t)| ≤ c2 Ê(ξ , t). (4.17)

Therefore, by choosing λ > max {2C, c2}, we get (3.21) and (3.22). Consequentely, the proof can be ended as
in the proof of Lemma 3.1.

Theorem 4.3. Let N, ` ∈ N* such that ` ≤ N, U0 ∈ HN(R) ∩ L1(R) and U be the solution of (2.14). Then, for
any j = 0, . . . , N − `, there exist c0 > 0 such that (3.24) holds true.

Proof. The proof is identical to that of Theorem 3.2. 10

4.2 Case 2: (τ̃1, τ̃2) = (0, 1)

Multiplying (2.25)6 by −
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by −g(s) θ̂ and integrating over R+ with respect to s,

adding the resulting equations, taking the real part and using (2.20), we have

d
dt Re

−θ̂ +∞∫
0

g(s)η̂ ds

 = −g0|θ|2 − (k3 − g0)Re

iξ ϕ̂ +∞∫
0

g(s)η̂ ds


+k1Re

v̂ +∞∫
0

g(s)η̂ ds

 + ξ2

∣∣∣∣∣∣
+∞∫
0

g(s)η̂ ds

∣∣∣∣∣∣
2

−Re

θ̂ +∞∫
0

g′(s)η̂ ds

 . (4.18)

Multiplying (2.25)4 by
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by g(s)ŷ and integrating over R+ with respect to s,

adding the resulting equations, taking the real part and using (2.20), we obtain 15

d
dt Re

ŷ +∞∫
0

g(s)η̂ ds

 = k2Re

iξ ẑ +∞∫
0

g(s)η̂ ds

 + g0Re
(
ŷθ̂
)

−k1Re

v̂ +∞∫
0

g(s)η̂ ds

 + Re

ŷ +∞∫
0

g′(s)η̂ ds

 . (4.19)
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Similarily, multiplying (2.25)3 by −iξ
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by iξg(s)ẑ and integrating overR+ with

respect to s, adding the resulting equations, taking the real part and using (2.21), we entail

d
dt Re

iξ ẑ +∞∫
0

g(s)η̂ ds

 = ξ2Re

ŷ +∞∫
0

g(s)η̂ ds

 + g0Re
(
iξ θ̂ẑ

)

+Re

iξ ẑ +∞∫
0

g′(s)η̂ ds

 . (4.20)

Also, multiplying (2.25)2 by −iξ
+∞∫
0

g(s)η̂ ds, multiplying (2.25)7 by iξg(s)û and integrating over R+ with re-

spect to s, adding the resulting equations, taking the real part and using (2.21), it appears that

d
dt Re

iξ û +∞∫
0

g(s)η̂ ds

 = k1ξ2Re

v̂ +∞∫
0

g(s)η̂ ds

 + g0Re
(
iξ θ̂û

)

+Re

iξ û +∞∫
0

g′(s)η̂ ds

 . (4.21)

Lemma 4.4. The result of Lemma 4.2 holds also in case (τ̃1, τ̃2) = (0, 1).5

Proof. The proof is very similar to that of Lemma 4.2, using the arguments used in Subsection 3.3. We de-
�ne F0, F1, F2 and F3 by (3.51)-(3.54), with k3 replaced by k3 − g0, so we �nd (3.55)-(3.58) with k3 − g0 and

ξ2
+∞∫
0

g(s)η̂ ds instead of k3 and γ θ̂, respectively. As in Subsection 4.1, let us introduce the functional F given

by

F(ξ , t) = ξ2(F0(ξ , t) + F1(ξ , t) + F2(ξ , t) + F3(ξ , t)) − λ5ξ4Re

θ̂ +∞∫
0

g(s)η̂ ds


− 1
g0
ξ2Re

(I3 ŷ + iI1ξ û + iI2ξ ẑ
) +∞∫

0

g(s)η̂ ds

 (4.22)

and let L be the functional de�ned by (3.39), where f̃ is given by (4.11) instead of (3.40), λ5 > 0, and I1, I2 and10
I3 are de�ned as in Subsection 3.3 with k3 − g0 instead of k3. By combining (3.55)-(3.58) and (4.18)-(4.21), we
deduce that

d
dt F(ξ , t) = ξ2(F4(ξ , t) + F5(ξ , t)) − g0λ5ξ4|θ̂|2

−ξ4
(

(k1λ4 − k1λ2 − k1)|v̂|2 + k2λ1|ẑ|2 + (1 − λ1)|ŷ|2 + λ2|û|2 + (k3 − g0)λ3|ϕ̂|2
)
, (4.23)
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where F4 is de�ned by (3.60), with k3 − g0 and ξ2
+∞∫
0

g(s)η̂ ds instead of k3 and γ θ̂, respectively, and

F5(ξ , t) = Re

( 1
g0
I3(k1 v̂ − ik2ξ ẑ) − k1

g0
I1ξ2 v̂ − 1

g0
I2ξ2 ŷ

) +∞∫
0

g(s)η̂ ds


+Re

λ5ξ2

k1 v̂ − i(k3 − g0)ξ ϕ̂ + ξ2
+∞∫
0

g(s)η̂ ds

 +∞∫
0

g(s)η̂ ds


−Re

( 1
g0

(
I3 ŷ + iI1ξ û + iI2ξ ẑ

)
+ λ5ξ2 θ̂

) +∞∫
0

g′(s)η̂ ds

 − Re (I3 θ̂ŷ + iI2ξ θ̂ẑ + iI1ξ θ̂û
)
.

As in the previous Subsection 4.1, by applying Young’s inequality and using (4.1) and (4.2), we see that, for
any ε0 > 0,

ξ2 (F4(ξ , t) + F5(ξ , t)
)
≤ ε0ξ4

(
|ŷ|2 + |û|2 + |ϕ̂|2 + |v̂|2 + |ẑ|2

)
+ (λ3 + λ4 + ε0)ξ4|θ̂|2

−Cε0 ,λ1 ,λ2 ,λ3 ,λ4 ,λ5 f̃ (ξ )ξ2
+∞∫
0

g′(s)|η̂|2 ds. (4.24)

Hence, we conclude, from (4.23) and (4.24), that

d
dt F(ξ , t) ≤ −Cε0 ,λ1 ,λ2 ,λ3 ,λ4 ,λ5 f̃ (ξ )ξ2

+∞∫
0

g′(s)|η|2 ds − [g0λ5 − (λ3 + λ4 + ε0)]ξ4|θ̂|2

−ξ4
(

(k1λ4 − k1λ2 − k1 − ε0)|v̂|2 + ((k3 − g0)λ3 − ε0)|ϕ̂|2
)

−ξ4
(

(1 − λ1 − ε0)|ŷ|2 + (λ2 − ε0)|û|2 + (k2λ1 − ε0)|ẑ|2
)
. (4.25)

We choose 0 < λ3, 0 < λ1 < 1, λ4 > 1, 0 < λ2 < λ4 − 1 and

0 < ε0 < min
{

(k3 − g0)λ3, λ2, 1 − λ1, k2λ1, k1λ4 − k1λ2 − k1
}
.

(notice that g0 ∈]0, k3[ since (2.4)). Then we choose λ5 > 1
g0

(λ3 + λ4 + ε0), which implies (4.15), and therefore, 5
(4.16) holds true. Finally, the proof can be ended as in the previous Subsection 4.1.

Theorem 4.5. The stability result of Theorem 4.3 is satis�ed also in case (τ̃1, τ̃2) = (0, 1).

Proof. The proof is the same as the one of Theorem 4.3.

5 Comments and issues
1. In case (3.29) with k1 = k2 = k3, the function f tends to 1 when ξ goes to in�nity, this means that, when the 10
frictional damping is active on the second or third equation of (2.1), the resulting dissipation is very strong in
the high frequency region, which avoid the regularity loss in the estimate on ‖∂jxU‖L2(R); that is, we can take
j = ` = 0 and get the stability of (2.14), where the decay estimate on ‖U‖L2(R) depends only on ‖U0‖L1(R) and
‖U0‖L2(R). However, in the other cases, f tends to 0 when ξ goes to in�nity, this means that the dissipation is
very weak in the high frequency region, which leads to the regularity loss in the estimate on ‖∂jxU‖L2(R). In 15
all cases, the behavior of f in the low frequencies determines the decay rate of the solution.

2. Condition (2.5) means that g is between two exponentially decreasing functions. This class is the sim-
plest standard one considered in the literature. Seeking the largest class possible of g was not amoung the
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objectives of this paper. But we think that it will be possible to generalize our results to larger class of g thatn
the one satisfying (2.5), and get the polynomial stability (perhapswithweaker decay rates than the ones given
in this paper). In case of bounded domains, we refer the readers for this issue to [13, 19, 20] for (1.3), and to
[14, 17, 18] for (1.2).

3. The optimality of the obtained decay rates on ‖∂jxU‖L2(R) is an interesting open question. This question5
will be the focus of our attention in a future work.

4. The stability question in case of in�nite memory acting on the �rst equation seems to bemore delecate
than the other ones treated in sections 3 and 4.

5. The decay rates of ‖∂jxU‖L2(R) in cases (τ1, τ2, τ3) ∈ {(0, 1, 0), (0, 0, 1)} are better than the one ob-
tained in cases (τ1, τ2, τ3) = (1, 0, 0) and (2.3). On the other hand, the stability in case (τ1, τ2, τ3) = (1, 0, 0)10
holds true if and only if k2 ≠ k3. Our stability results are, in some sense, compatible with the ones proved
in [16], where R is replaced by a bounded domain ]0, L[ and the obtained polynomial decay rate in case of
frictional damping is better than the one obtained in case of in�nite memory, and moreover, when δ = 0
and the frictional damping is e�ective on the �rst equation, the polynomial stability was proved under the
assumption k2 ≠ k3.15
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