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Abstract: The asymptotic stability of one-dimensional linear Bresse systems under infinite memories was ob-
tained by Guesmia and Kafini [10] (three infinitememories), Guesmia and Kirane [11] (two infinitememories),
Guesmia [9] (one infinite memory acting on the longitudinal displacement) and De Lima Santos et al. [6] (one 10
infinite memory acting on the shear angle displacement). When the kernel functions have an exponential de-
cay at infinity, the obtained stability estimates in these papers lead to the exponential stability of the system
if the speeds of wave propagations are the same, and to the polynomial onewith decay rate t −12 otherwise. The
subject of this paper is to study the case where only one infinite memory is considered and it is acting on the
vertical displacement. As far as we know, this case has never studied before in the literature. We show that 15
this case is deeply different from the previous ones cited above by proving that the exponential stability does
not hold even if the speeds of wave propagations are the same and the kernel function has an exponential
decay at infinity. Moreover, we prove that the system is still stable at least polynomially where the decay rate
depends on the smoothness of the initial data. For classical solutions, this decay rate is arbitrarily close to t −14 .
The proof is based on a combination of the energy method and the frequency domain approach to overcome 20
the new mathematical difficulties generated by our system.

Keywords: Bresse system, Infinite memory, Asymptotic behavior, Energy method, Frequency domain ap-
proach

MSC: 35B40, 35L45, 74H40, 93D20, 93D15

1 Introduction 25

The Bresse system [4], known as the circular arch problem, is the following coupled three hyperbolic equa-
tions: ⎧⎪⎪⎨⎪⎪⎩

ρ1φtt − k (φx + ψ + l w)x − lk0 (wx − lφ) = F1 in (0, L) × (0,∞) ,

ρ2ψtt − bψxx + k (φx + ψ + l w) = F2 in (0, L) × (0,∞) ,

ρ1wtt − k0 (wx − lφ)x + lk (φx + ψ + l w) = F3 in (0, L) × (0,∞) ,

(1.1)

where ρ1, ρ2, b, k, k0, l and L are positive constants,

Fj : (0, L) × (0,∞) → R, j = 1, 2, 3,

are given external forces, which play the role of controls, and φ, ψ and w represent, respectively, the vertical,
shear angle and longitudinal displacements. For more details, see for example [14] and [15].
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The stability of Bresse systems with (local or global) frictional dampings

F1 = −𝛾1(x)φt , F2 = −𝛾2(x)ψt and F3 = −𝛾3(x)wt ,

where 𝛾j : (0, 1) → R, j = 1, 2, 3, are given functions, was obtained by several researchers in the last few
years; see [1] for the case of one frictional damping acting on the longitudinal displacement (that is 𝛾1 = 𝛾2 =
0), [2], [7], [19] and [22] for the case of one frictional damping acting on the shear angle displacement (that
is 𝛾1 = 𝛾3 = 0), [3] and [24] for the case of two frictional dampings, and [5], [21] and [23] for the case of three
frictional dampings. When each equation is controlled by a frictional damping, the exponential stability of5
Bresse systems was proved regardless to the speeds of wave propagations given by

s1 =

√︃
k
ρ1

, s2 =

√︃
b
ρ2

and s3 =

√︃
k0
ρ1

. (1.2)

When at least one equation is free, the obtained stability estimate is of exponential or polynomial type de-
pending on some relations between si. When only one frictional damping is considered on the longitudinal
or shear angle displacement (that is 𝛾1 = 𝛾2 = 0 or 𝛾1 = 𝛾3 = 0), it was proved that the exponential stability
is equivalent to10

s1 = s2 = s3. (1.3)
Similar stability results were proved in [1], [8], [13], [17] and [18] in case where the Bresse system is coupled
with one or two heat equations in a certain manner so that at least the longitudinal or shear angle displace-
ment is indirectely damped via the heat equations.

The stability of Bresse systems with memories was also recently studied. When the three equations are
controlled via infinite memories of the form

F1 = −
∞∫︁
0

g1(s)φxx(x, t − s) ds, F2 = −
∞∫︁
0

g2(s)ψxx(x, t − s) ds

and

F3 = −
∞∫︁
0

g3(s)wxx(x, t − s) ds,

where gj : R+ → R+, j = 1, 2, 3, are differentiable, non-increasing and integrable functions on R+, the
stability was proved in [10] regardless to si, where the obtained decay rate depends only on the arbitrary15
growth at infinity of the kernels gj. When only two memories are considered, the stability of Bresse systems
was proved in [11], where the decay rate depends also on si and on the smoothness of initial data.

Similar stability results to the ones of [11] were also proved in [9] under one infinite memory acting on
the longitudinal displacement (that is g1 = g2 = 0) with kernels having a general decay at infinity, and in [6]
under one infinite memory acting on the shear angle displacement (that is g1 = g3 = 0) with kernels having20
an esponential decay at infinity.

Our objective in this paper is studying the last case which, as far as we know, has never been considered
before conserning Bresse system under only one infinite memory acting on the vertical displacement (that is
g2 = g3 = 0), more precisely, we consider the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ1φtt − k (φx + ψ + l w)x − lk0 (wx − lφ) +
∞∫︁
0

g(s)φxx(x, t − s) ds = 0,

ρ2ψtt − bψxx + k (φx + ψ + l w) = 0,

ρ1wtt − k0 (wx − lφ)x + lk (φx + ψ + l w) = 0,

(1.4)

where (x, t) ∈ (0, 1) × (0,∞) and g : R+ → R+ is a given function, along with the initial data25 ⎧⎪⎪⎨⎪⎪⎩
φ (x, −t) = φ0 (x, t) , φt (x, 0) = φ1 (x) in (0, 1) × (0,∞),

ψ (x, 0) = ψ0 (x) , ψt (x, 0) = ψ1 (x) in (0, 1) ,

w (x, 0) = w0 (x) , wt (x, 0) = w1 (x) in (0, 1)

(1.5)
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and the homogeneous Dirichlet-Neumann-Neumann boundary conditions⎧⎨⎩ φ (0, t) = ψx (0, t) = wx (0, t) = 0 in (0,∞) ,

φ (1, t) = ψx (1, t) = wx (1, t) = 0 in (0,∞) .
(1.6)

Without lose of generality, we consider the domain (0, 1) instead of (0, L) to simplify the computations.
In (1.4), only the vertical displacement is damped via the dissipation from the infinite memory, and the

shear angle and longitudinal displacements are free. Our first main result in this paper is proving that the
dissipation generatedby the infinitememory in (1.4) cannot stabilize exponentially the overall systemeven if 5
(1.3) holds and g converges exponentially to zero at infinity. Our secondmain result is showing a polynomial
stability estimte where the decay rate of solutions depends on the smoothness of initial data. For classical
solutions, this decay rate is arbitrarily close to t −14 .

The paper is organized as follows: in Section 2, we present our hypotheses and state our non-exponential
and polynomial stability results. The proof of these results will be given in Sections 3 and 4. Concluding 10
comments and open questions are given in Section 5.

2 Hypotheses and main results

2.1 Well-posedness.

We give here a brief idea about the well-posedness of (1.4) − (1.6). As in [11], (1.4) − (1.6) can be formulated
as a first order system of the form 15⎧⎨⎩ Ut = AU in (0,∞) ,

U(t = 0) = U0,
(2.1)

where ⎧⎪⎪⎨⎪⎪⎩
U = (φ, φ̃, ψ, ψ̃, w, w̃, η)T , U0 = (φ0, φ1, ψ0, ψ1, w0, w1, η0)T ,

φ̃ = φt , ψ̃ = ψt , w̃ = wt ,

η(x, t, s) = φ(x, t) − φ(x, t − s), η0(x, s) = η(x, 0, s),

AU =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̃

k
ρ1

(φx + ψ + l w)x +
lk0
ρ1

(wx − lφ) −
g0
ρ1
φxx + 1

ρ1

∞∫︁
0

gηxx ds

ψ̃

b
ρ2
ψxx −

k
ρ2

(φx + ψ + l w)

w̃

k0
ρ1

(wx − lφ)x −
lk
ρ1

(φx + ψ + l w)

φ̃ − ηs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

and

g0 =
∞∫︁
0

g(s) ds. (2.3)

The domain ofA is given by

D(A) =
{︁
V = (v1, · · · , v7)T ∈ H, AV ∈ H, v7(0) = ∂xv3(0) = ∂xv5(0) = ∂xv3(1) = ∂xv5(1) = 0

}︁
,
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where
H = H1

0(0, 1) × L2(0, 1) × H1
* (0, 1) × L2* (0, 1) × H1

* (0, 1) × L2* (0, 1) × Lg ,

L2* (0, 1) =

⎧⎨⎩v ∈ L2(0, 1),
1∫︁

0

v dx = 0

⎫⎬⎭ , H1
* (0, 1) = H1(0, 1) ∩ L2* (0, 1)

and

Lg =

⎧⎨⎩v : R+ → H1
0(0, 1),

1∫︁
0

∞∫︁
0

g|vx|2 ds dx < ∞

⎫⎬⎭ .

Now let us consider the following hypothesis:
(H1) Assume that the function g : R+ → R+ is differentiable, non-increasing and integrable onR+, and there
exists a postive constant k̃ such that, for any

(φ, ψ, w)T ∈ H1
0(0, 1) × H1

* (0, 1) × H1
* (0, 1),

we have
1∫︁

0

(︁
|φx|2 + |ψx|2 + |wx|2

)︁
dx ≤ k̃

1∫︁
0

(︁
b|ψx|2 + k|φx + ψ + lw|2 + k0|wx − lφ|2 − g0|φx|2

)︁
dx. (2.4)

Moreover, assume that there exists a positive constant β1 such that

−β1g(s) ≤ g′(s), ∀s ∈ R+. (2.5)

Remark 1. Condition (2.4) holds if the constants l and g0 are small enough. Under condition (2.4), the sets Lg
andH are Hilbert spaces equipped with the inner products, for

Φ1 = (φ1, φ̃1, ψ1, ψ̃1, w1, w̃1, η)T , Φ2 = (φ2, φ̃2, ψ2, ψ̃2, w2, w̃2, η̃)T ∈ H,

⟨Φ1,Φ2⟩H = k ⟨(φ1x + ψ1 + l w1) , (φ2x + ψ2 + l w2)⟩L2(0,1) + b ⟨ψ1x , ψ2x⟩L2(0,1)

+ k0 ⟨(w1x − lφ1) , (w2x − lφ2)⟩L2(0,1) − g0 ⟨φ1x , φ2x⟩L2(0,1)

+ ρ1 ⟨φ̃1, φ̃2⟩L2(0,1) + ρ2⟨ψ̃1, ψ̃2⟩L2(0,1) + ρ1 ⟨w̃1, w̃2⟩L2(0,1) + ⟨η, η̃⟩Lg
and

⟨η, η̃⟩Lg =
∞∫︁
0

g ⟨ηx , η̃x⟩L2(0,1) ds.

The corresponding energy will be defined as follows, for Φ = (φ, φ̃, ψ, ψ̃, w, w̃, η)T inH:

‖Φ‖2H = k ‖φx + ψ + l w‖2L2(0,1) + b ‖ψx‖
2
L2(0,1) + k0 ‖wx − lφ‖

2
L2(0,1)

− g0 ‖φx‖2L2(0,1) + ρ1 ‖φ̃‖
2
L2(0,1) + ρ2‖ψ̃‖

2
L2(0,1) + ρ1 ‖w̃‖

2
L2(0,1) + ‖η‖2Lg .

Theorem 2. We assume that (H1) holds. Let n ∈ N and U0 ∈ D(An). Then (2.1) has a unique solution

U ∈ ∩nm=0Cn−m
(︀
R+;D

(︀
Am)︀)︀ . (2.6)

Proof. Ecxactely as in [11] one can prove that the linear operatorA generates a C0-semigroup of contractions
in H by proving that −A is maximal monotone (it is enough to neglect the second memory in the second5
system considered in [11]). So, we deduce (2.6) (see Theorem 2.3 [11] and its proof).

2.2 Lack of exponential stability.

Our first main result is that the semigroup associated with Bresse system (2.1) is not exponentially stable.

Theorem 3. We assume that (H1) holds. Then the semigroup associated with (2.1) is not exponentially stable.
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2.3 Polynomial stability.

Our second result is that the semigroup associated with Bresse system (2.1) is polynomially stable under the
following additional two hypotheses:
(H2) Assume that g0 > 0 and there exists a positive constant β2 such that

g′(s) ≤ −β2g(s), ∀s ∈ R+. (2.7)

(H3) Assume that l satisfies 5

l2 ≠ k0ρ2 − bρ1k0ρ2
(mπ)2 − kρ1

ρ2 (k + k0)
, ∀m ∈ Z. (2.8)

Our second main result is stated as follow:

Theorem 4. We assume that (H1) − (H3) hold. Then, for any m ∈ N*, there exists a constant cm > 0 such that

∀Φ0 ∈ D
(︀
Am)︀ , ∀t > 0,

⃦⃦⃦
etAΦ0

⃦⃦⃦
H
≤ cm ‖Φ0‖D(Am)

(︂
ln t
t

)︂m
4 ln t. (2.9)

Remark 5. 1. Typical simple examples of g satisfying (H1) and (H2) are

g(s) = b1e−b2s ,

where b1 and b2 are psotive constants.
2. The estimate (2.9) gives

∀m ∈ N*, ∀Φ0 ∈ D
(︀
Am)︀ , ∀ϵ > 0, ∃Cm,ϵ,Φ0 > 0 :

⃦⃦⃦
etAΦ0

⃦⃦⃦
H
≤ Cm,ϵ,Φ0 t

−m
4 +ϵ . ∀t > 0.

So, for classical solutions (that is m = 1), the decay rate of t →
⃦⃦⃦
etAΦ0

⃦⃦⃦
H
is arbitrarily close to t

−1
4 .

The proof of our non-exponential and polynomial stability for (2.1) is based on the following frequency do-
main theorems: 10

Theorem 6. ([12] and [20]) A C0 semigroup of contractions on a Hilbert spaceH generated by an operator A
is exponentially stable if and only if

iR ⊂ ρ (A) and sup
λ∈R

⃦⃦⃦
(iλI −A)−1

⃦⃦⃦
L(H)

< ∞. (2.10)

Theorem 7. ([16]) If a bounded C0 semigroup etA on a Hilbert spaceH generated by an operator A satisfies,
for some j ∈ N*,

iR ⊂ ρ (A) and sup
|λ|≥1

1
λj
⃦⃦⃦
(iλI −A)−1

⃦⃦⃦
L(H)

< ∞. (2.11)

Then, for any m ∈ N*, there exists a positive constant cm such that 15

∀Φ0 ∈ D
(︀
Am)︀ , ∀t > 0,

⃦⃦⃦
etAΦ0

⃦⃦⃦
H
≤ cm ‖Φ0‖D(Am)

(︂
ln t
t

)︂m
j ln t. (2.12)

3 Lack of exponential stability of (2.1)
We use Theorem 6 by proving that the second condition in (2.10) is not satisfied. We have to prove that there
exists a sequence (λn)n ⊂ R such that

lim
n→∞

⃦⃦⃦
(iλn I −A)−1

⃦⃦⃦
L(H)

= ∞,
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which is equivalent to find a sequence (Fn)n ⊂ H satisfying

‖Fn‖H ≤ 1, ∀n ∈ N (3.1)

and
lim
n→∞

‖ (iλn I −A)−1 Fn‖H = ∞. (3.2)

For this purpose, let
Φn = (iλn I −A)−1 Fn , ∀n ∈ N.

Then we have to find sequences (λn)n ⊂ R, (Fn)n ⊂ H and (Φn)n ⊂ D (A) satisfying (3.1),

lim
n→∞

‖Φn‖H = ∞ and iλnΦn −AΦn = Fn , ∀n ∈ N. (3.3)

Taking
Φn =

(︁
φn , φ̃n , ψn , ψ̃n , wn , w̃n , ηn

)︁T
and Fn = (f1n , · · · , f7n)T .

then we have the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iλnφn − φ̃n = f1n ,

iρ1λnφ̃n − k (φnx + ψn + l wn)x − lk0 (wnx − lφn) + g0φnxx −
∞∫︁
0

gηnxx ds = ρ1f2n ,

iλnψn − ψ̃n = f3n ,

iρ2λnψ̃n − bψnxx + k (φnx + ψn + l wn) = ρ2f4n ,

iλnwn − w̃n = f5n ,

iρ1λnw̃n − k0 (wnx − lφn)x + lk (φnx + ψn + l wn) = ρ1f6n ,

iλnηn + ηns − φ̃n = f7n .

(3.4)

Choosing5
f1n = f3n = f5n = f7n = 0. (3.5)

Then system (3.4) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃n = iλnφn , ψ̃n = iλnψn , w̃n = iλnwn ,

−ρ1λ2nφn − k (φnx + ψn + l wn)x − lk0 (wnx − lφn) + g0φnxx −
∞∫︁
0

gηnxx ds = ρ1f2n ,

−ρ2λ2nψn − bψnxx + k (φnx + ψn + l wn) = ρ2f4n ,

−ρ1λ2nwn − k0 (wnx − lφn)x + lk (φnx + ψn + l wn) = ρ1f6n ,

iλnηn + ηns − iλnφn = 0.

(3.6)

To simplify the calculations, we put N = nπ. We use here some ideas of [1], where some of the next computa-
tions are addapted to our problem. Now we consider three cases.

Case 1: bρ2
= k0
ρ1

. We choose10

⎧⎪⎪⎨⎪⎪⎩
φn = φ̃n = ηn = 0,

ψn(x) = α1 cos (Nx) , ψ̃n(x) = iα1λn cos (Nx) ,

wn(x) = α2 cos (Nx) , w̃n(x) = iα2λn cos (Nx) ,

(3.7)
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f2n = 0, f4n(x) = −
lk0
ρ2
α2 cos (Nx) , f6n(x) = −

l2k0
ρ1

α2 cos (Nx) (3.8)

and

λn = N

√︃
k0
ρ1

, (3.9)

where α1, α2 ∈ R. We have Φn ∈ D(A) and Fn ∈ H. On the other hand, (3.6) is satisfied if and only if⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kα1 + l (k + k0) α2 = 0,[︂
−λ2n +

b
ρ2
N2 + k

ρ2

]︂
α1 +

lk
ρ2
α2 = −

lk0
ρ2
α2,

lk
ρ1
α1 +

[︂
−λ2n +

k0
ρ1
N2 + l

2k
ρ1

]︂
α2 = −

l2k0
ρ1

α2.

(3.10)

According to (3.9) and because b
ρ2

= k0
ρ1

, we have

−λ2n +
k0
ρ1
N2 = −λ2n +

b
ρ2
N2 = 0,

and therefore, the system (3.10) is equivalent to

α1 = −l
(︂
1 + k0k

)︂
α2. (3.11)

Choosing
α2 =

ρ1ρ2
lk0
√︁
ρ21 + l2ρ22

and using (3.5) and (3.8), we obtain

‖Fn‖2H = ‖f4n‖2L2(0,1) + ‖f6n‖2L2(0,1) =
(︂
lk0
ρ2

)︂2
[︃
1 +
(︂
lρ2
ρ1

)︂2
]︃
α22

1∫︁
0

cos2 (Nx) dx

≤
(︂
lk0
ρ2

)︂2
[︃
1 +
(︂
lρ2
ρ1

)︂2
]︃
α22 = 1.

On the other hand, from (2.4), we have

‖Φn‖2H ≥ 1
k̃
‖wnx − lφn‖2L2(0,1) =

1
k̃
‖wnx‖2L2(0,1) =

α22
2k̃
N2

1∫︁
0

[1 − cos (2Nx)] dx =
α22
2k̃
N2,

hence 5
lim
n→∞

‖Φn‖H = ∞. (3.12)

Case 2: bρ2
≠ k0
ρ1

and k ≠ k0. We choose

f2n = f4n = 0, f6n(x) = cos (Nx) , (3.13)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φn(x) = α1 sin (Nx) , φ̃n(x) = iα1λn sin (Nx) ,

ψn(x) = α2 cos (Nx) , ψ̃n(x) = iα2λn cos (Nx) ,

wn(x) = α3 cos (Nx) , w̃n(x) = iα3λn cos (Nx) ,

ηn(x, s) = α1
(︁
1 − e−iλns

)︁
sin (Nx)

(3.14)
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and

λn =

√︃
k0
ρ1
N2 + l

2k
ρ1

, (3.15)

where α1, α2, α3 ∈ C. Notice that, according to these choices, Φn ∈ D(A), Fn ∈ H and

‖Fn‖2H = ‖f6n‖2L2(0,1) =
1∫︁

0

cos2 (Nx) dx ≤ 1. (3.16)

On the other hand, thanks to (3.5), (3.13) and (3.14), the first three equations and the last one in (3.6) are
satisfied, and the other three equations are equivalent to⎧⎪⎪⎨⎪⎪⎩

[︀
(k − µn)N2 − ρ1λ2n + l2k0

]︀
α1 + kNα2 + l (k + k0)Nα3 = 0,

kNα1 +
(︀
bN2 − ρ2λ2n + k

)︀
α2 + klα3 = 0,

l (k + k0)Nα1 + lkα2 +
(︀
k0N2 − ρ1λ2n + l2k

)︀
α3 = ρ1,

(3.17)

where we note

µn =
∞∫︁
0

g(s)e−iλns ds

(µn exists because g is integrable onR+ and |e−iλns| = 1). From the choice (3.15), we see that the last equation5
in (3.17) is equivalent to

α2 = −
k + k0
k Nα1 +

ρ1
lk , (3.18)

so, substituting in the first two equations in (3.17), we get

α3 = a1Nα1 + a2 (3.19)

and

α1 =

[︁
l (k + k0) a2 +

ρ1
l

]︁
N

[2k0 + µn − l (k + k0) a1]N2 + l2 (k − k0)
, (3.20)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1 = k+k0

lk2

(︂
b − ρ2k0ρ1

)︂
N2 + k0lk −

lρ2(k + k0)
ρ1k

,

a2 = ρ1
(lk)2

[︂(︂
ρ2k0
ρ1

− b
)︂
N2 + l

2ρ2k
ρ1

− k
]︂
.

To simplify the computations, we put⎧⎪⎪⎪⎨⎪⎪⎪⎩
a3 =

ρ1 (k + k0)
lk2

(︂
ρ2k0
ρ1

− b
)︂
, a4 =

(k + k0)2

k2

(︂
ρ2k0
ρ1

− b
)︂
,

a5 = lρ2(k+k0)
k − k0ρ1lk , a6 =

l2ρ2 (k + k0)2
ρ1k

+ k0 (k − k0)k

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
d0 = k+k0

lk2

(︂
b − ρ2k0ρ1

)︂
, d1 = ρ1

(lk)2

(︂
ρ2k0
ρ1

− b
)︂
,

d2 =
k0
lk −

lρ2(k + k0)
ρ1k

, d3 = ρ1
l2k

(︂
l2ρ2
ρ1

− 1
)︂
.

Then
Nα1 =

a3N4 + a5N2

a4N4 + (µn + a6)N2 + l2 (k − k0)
and (notice that d0a3 + d1a4 = 0)

α3 =
(︀
d0N2 + d2

)︀ (︀
a3N4 + a5N2)︀

a4N4 + (µn + a6)N2 + l2 (k − k0)
+ d1N2 + d3 (3.21)
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= (d0a5 + d2a3 + d3a4 + d1a6 + d1µn)N4 +
(︀
d2a5 + d3a6 + l2 (k − k0) d1 + d3µn

)︀
N2 + l2 (k − k0) d3

a4N4 + (µn + a6)N2 + l2 (k − k0)
,

Because b
ρ2

≠ k0
ρ1

and k ≠ k0, then a4 ≠ 0 and

d0a5 + d2a3 + d3a4 + d1a6 =
ρ1
(lk)2

(︂
ρ2k0
ρ1

− b
)︂
(k0 − k) ≠ 0. (3.22)

On the other hand, integrating by parts and using the fact that g is non-increasing and lims→∞ g(s) = 0, we
get

|µn| =

⃒⃒⃒⃒
⃒⃒ 1iλn

⎛⎝g(0) + ∞∫︁
0

g′(s)e−iλns ds

⎞⎠⃒⃒⃒⃒⃒⃒
≤ 1

λn

⎛⎝g(0) + ∞∫︁
0

|g′(s)| ds

⎞⎠
≤ 1

λn

⎛⎝g(0) − ∞∫︁
0

g′(s) ds

⎞⎠
≤ 2g(0)

λn
,

therefore
lim
n→∞

µn = 0. (3.23)

Then we deduce from (3.21), (3.22) and (3.23) that

lim
n→∞

α3 =
d0a5 + d2a3 + d3a4 + d1a6

a4
≠ 0, (3.24)

hence
lim
n→∞

|α3|N = ∞. (3.25)

Now, in virtue of (2.4), we have

‖Φn‖2H ≥ 1
k̃
‖wnx‖2L2(0,1) =

(|α3|N)2

k̃

1∫︁
0

sin2 (Nx) dx

≥ (|α3|N)
2

2k̃

1∫︁
0

[1 − cos (2Nx)] dx = (|α3|N)2

2k̃
,

then by (3.25) we get (3.12). 5

Case 3: bρ2
≠ k0ρ1

and k = k0. We consider the choices (3.5),

λn =

√︃
b
ρ2
N2 + k

2ρ2
, (3.26)

f2n = 0, f4n(x) = α2Cn cos (Nx) , f6n(x) = α2Dn cos (Nx) (3.27)

and (3.14) with

α1 =
(︂
ρ1Dn
2lk − 1

2

)︂
α2
N and α3 = 0, (3.28)

where

Cn =
ρ1
2lρ2

Dn and Dn =
2lk
ρ1

(︃
1
2 −

k
k + l2k

N2 − µn − ρ1λ2n
N2

)︃
.
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According to (3.23) and (3.26), we remark that

lim
n→∞

Dn =
2lk
ρ1

(︃
1
2 −

k
k − ρ1b

ρ2

)︃
and lim

n→∞
Cn =

k
ρ2

(︃
1
2 −

k
k − ρ1b

ρ2

)︃

(these limits exist since b
ρ2

≠ k0ρ1
and k = k0), so the sequence

(︀
|Cn|2 + |Dn|2

)︀
n is bounded. Then we choose

α2 =
1√︁

supn∈N
(︀
|Cn|2 + |Dn|2

)︀ . (3.29)

According to these choices, we see that Φn ∈ D(A), Fn ∈ H and, using (3.5), (3.27) and (3.29), we find

‖Fn‖2H = ‖f4n‖2L2(0,1) + ‖f6n‖2L2(0,1) =
(︁
|Cn|2 + |Dn|2

)︁
α22

1∫︁
0

cos2 (Nx) dx

≤
(︁
|Cn|2 + |Dn|2

)︁
α22 ≤ 1.

On the other hand, thanks to (3.5), (3.14) and (3.27), the first three equations and the last one in (3.6) are
satisfied, and because α3 = 0 and k = k0, the other three equations are equivalent to⎧⎪⎪⎨⎪⎪⎩

[︀
(k − µn)N2 − ρ1λ2n + l2k

]︀
α1 + kNα2 = 0,

kNα1 +
(︀
bN2 − ρ2λ2n + k

)︀
α2 = ρ2α2Cn ,

2lkNα1 + lkα2 = ρ1α2Dn .

(3.30)

The first equation in (3.30) is satisfied thanks to the definition of α1 and Dn, the second equation in (3.30)
holds according to the definition of λn, α1 and Cn, and the last equation in (3.30) is satisfied from the defini-5
tion of α1.

Now, in virtue of (2.4), we have

‖Φn‖2H ≥ 1
k̃
‖ψnx‖2L2(0,1) =

(α2N)2

k̃

1∫︁
0

sin2 (Nx) dx

≥ (α2N)
2

2k̃

1∫︁
0

[1 − cos (2Nx)] dx = (α2N)2

2k̃
,

consequently, (3.12) holds.
Finally, there exist sequences (Fn)n ⊂ H, (Φn)n ⊂ D(A) and (λn)n ⊂ R satisfying (3.1) and (3.3). Hence,

Theorem 6 implies that system (2.1) is not exponentially stable.

4 Polynomial stability of (2.1)10

Using Theorem 7, we need to show that
i IR ⊂ ρ (A) (4.1)

and
sup
|λ| ≥ 1

1
λ4
⃦⃦⃦
(iλI −A)−1

⃦⃦⃦
H

< ∞. (4.2)

We start by proving (4.1). Notice that, according to the fact that 0 ∈ ρ (A) (see [11] for the second system with
a neglected second memory), A−1 is bounded and it is a bijection between H and D(A). Since D(A) has a
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compact embedding intoH, so it follows thatA−1 is a compact operator, which implies that the spectrum of
A is discrete.

From subsection 2.1, we have 0 ∈ ρ (A). Let λ ∈ R* and

Φ =
(︁
φ, φ̃, ψ, ψ̃, w, w̃, η

)︁T
∈ D(A).

We prove that iλ is not an eigenvalue ofA by proving that the equation

AΦ = i λ Φ (4.3)

has a unique solution Φ = 0. Assume that (4.3) is true, then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃ = iλφ, ψ̃ = iλψ, w̃ = iλw,

k
ρ1

(φx + ψ + l w)x +
lk0
ρ1

(wx − lφ) −
g0
ρ1
φxx +

1
ρ1

∞∫︁
0

g(s)ηxx ds = iλφ̃,

b
ρ2
ψxx −

k
ρ2

(φx + ψ + l w) = iλψ̃,

k0
ρ1

(wx − lφ)x −
lk
ρ1

(φx + ψ + l w) = iλw̃,

φ̃ − ηs = iλη.

(4.4)

A simple computations implies that (see (44) [11]) 5

⟨AΦ,Φ⟩H = 1
2

∞∫︁
0

g′(s)‖ηx‖2L2(0,1) ds, (4.5)

then

0 = Re iλ ‖Φ‖2H = Re ⟨iλΦ,Φ⟩H = Re ⟨AΦ,Φ⟩H = 1
2

∞∫︁
0

g′(s)‖ηx‖2L2(0,1) ds.

Therefore, using (2.7),

0 ≤ ‖η‖2Lg =
∞∫︁
0

g(s)‖ηx‖2L2(0,1) ds ≤
−1
β2

∞∫︁
0

g′(s)‖ηx‖2L2(0,1) ds = 0,

so
η = 0. (4.6)

By the first and last equations in (4.4), we find

φ = φ̃ = 0. (4.7)

Using (4.6) and (4.7), we see that (4.4) leads to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ̃ = iλψ, w̃ = iλw,

kψx + l (k + k0)wx = 0,

bψxx − k (ψ + l w) = −ρ2λ2ψ,

k0wxx − lk (ψ + l w) = −ρ1λ2w.

(4.8)

The third equation in (4.8) implies that kψ+l (k + k0)w is a constant, then, thanks to thedefinitionof L2* (0, 1),
we get 10

ψ = −l
(︂
1 + k0k

)︂
w. (4.9)
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Using the last two equations in (4.8), we obtain

lbψxx − k0wxx = −ρ2lλ2ψ + ρ1λ2w. (4.10)

Then, combining with (4.9), we find
wxx + α2λ2w = 0,

where

α =

√︃
ρ2l2 (k + k0) + kρ1
bl2 (k + k0) + kk0

. (4.11)

This implies that, for c1, c2 ∈ C,

w(x) = c1 cos (αλx) + c2 sin (αλx) .

The boundary condition wx (0) = 0 leads to c2 = 0, and then, using (4.9),

ψ(x) = −l
(︂
1 + k0k

)︂
c1 cos (αλx) and w(x) = c1 cos (αλx) . (4.12)

Because ψx(1) = wx(1) = 0, we have

c1 = 0 or ∃m ∈ Z : αλ = mπ.

Assume by contradiction that
∃m ∈ Z : αλ = mπ. (4.13)

Therefore, using (4.11) and (4.12), we get that the last two equations in (4.8) are equivalent to5

(k0ρ2 − bρ1) λ2 =
k0

k + k0

[︁
bl2 (k + k0) + kk0

]︁
. (4.14)

So, combining (4.11), (4.13) and (4.14), we get

∃m ∈ Z : l2 = k0ρ2 − bρ1k0ρ2
(mπ)2 − kρ1

ρ2 (k + k0)
,

which is a contradiction with (2.8). Consequentely, c1 = 0 and hence

ψ = w = 0. (4.15)

Using (4.15) and the first two equations in (4.8), we obtain

ψ̃ = w̃ = 0.

Finally, Φ = 0 and thus
iλ ∈ ρ (A) . (4.16)

This ends the proof of (4.1).
Now we establish (4.2) by contradiction. Assume that (4.2) is false, then there exist sequences (Φn)n ⊂

D (A) and (λn)n ⊂ R satisfying10
‖Φn‖H = 1, ∀ n ∈ N, (4.17)

lim
n→∞

|λn| = ∞ (4.18)

and
lim
n→∞

λ4n ‖(iλn I − A) Φn‖H = 0. (4.19)
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Let Φn =
(︂
φn ,

∼
φn , ψn ,

∼
ψn , wn ,

∼
wn , ηn

)︂T
. The limit (4.19) implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ4n
[︁
iλnφn −

∼
φn
]︁
→ 0 in H1

0 (0, 1) ,

λ4n

⎡⎣iλnρ1∼φn − k (φnx + ψn + lwn)x − lk0 (wnx − lφn) + g0φnxx − ∞∫︁
0

g(s)ηnxx

⎤⎦→ 0 in L2 (0, 1) ,

λ4n
[︂
iλnψn −

∼
ψn
]︂
→ 0 in H1

* (0, 1) ,

λ4n
[︂
iλnρ2

∼
ψn − bψnxx + k (φnx + ψn + lwn)

]︂
→ 0 in L2* (0, 1) ,

λ4n
[︁
iλnwn −

∼
wn
]︁
→ 0 in H1

* (0, 1) ,

λ4n
[︁
iλnρ1

∼
wn − k0 (wnx − lφn)x + lk (φnx + ψn + lwn)

]︁
→ 0 in L2* (0, 1) ,

λ4n
[︁
iλnηn + ηns −

∼
φ
]︁
→ 0 in Lg .

(4.20)

We will prove that ‖Φn‖H → 0, which gives a contradiction with (4.17). To do so, we will use several multi-
pliers, where some of them are used in [1] .
Step 1. Using (4.5), we get

Re
⟨︀
λ4n (i λn I − A) Φn ,Φn

⟩︀
H

= Re
(︁
iλ5n ‖Φn‖2L2(0,1) − λ

4
n ⟨AΦn ,Φn⟩H

)︁
= −λ4n

2

∞∫︁
0

g′(s)‖ηnx‖2L2(0,1) ds.

So (4.17) and (4.19) imply that

λ4n

∞∫︁
0

g′(s)‖ηnx‖2L2(0,1) ds −→ 0.

But, in virtue of (2.7), we have

0 ≤ λ4n
∞∫︁
0

g(s)‖ηnx‖2L2(0,1) ds ≤
−λ4n
β2

∞∫︁
0

g′(s)‖ηnx‖2L2(0,1) ds,

then

λ4n

∞∫︁
0

g(s)‖ηnx‖2L2(0,1) ds −→ 0,

hence
λ2nηn −→ 0 in Lg . (4.21)

Step 2. Using (4.17) and (4.18), we get from the last limit in (4.20) that

λn
⟨(︁
iλnηn + ηns − iλnφn + iλnφn −

∼
φn
)︁
, iφn

⟩
Lg

−→ 0,

so, using the first limit in (4.20), 5⟨
λ2nηn , φn

⟩
Lg
− iλn ⟨ηns , φn⟩Lg − λ

2
n ⟨φn , φn⟩Lg −→ 0. (4.22)

We see that
−λ2n ⟨φn , φn⟩Lg = −g0λ

2
n ‖φnx‖2L2(0,1) , (4.23)
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and (4.17) and (4.21) imply that ⟨
λ2nηn , φn

⟩
Lg

−→ 0. (4.24)

On the other hand, integrating by part with respect to s, applying Cauchy-Schwartz inequality and using (2.5)
and the fact that

ηnx(x, 0) = 0 and lim
s→∞

g(s) = 0,

we find ⃒⃒⃒
−iλn ⟨ηns , φn⟩Lg

⃒⃒⃒
= |λn|

⃒⃒⃒⃒
⃒⃒⃒⟨φnx , ∞∫︁

0

(−g′(s))ηnx ds
⟩
L2(0,1)

⃒⃒⃒⃒
⃒⃒⃒

≤ |λn|‖φnx‖L2(0,1)

∞∫︁
0

(−g′(s))‖ηnx‖L2(0,1) ds

≤
√︀
g(0)|λn|‖φnx‖L2(0,1)

⎛⎝ ∞∫︁
0

(−g′(s))‖ηnx‖2L2(0,1) ds

⎞⎠ 1
2

≤
√︀
β1g(0)|λn|‖φnx‖L2(0,1)‖ηn‖Lg ,

and then, according to (4.17), (4.18) and (4.21),

λn ⟨ηns , φn⟩Lg −→ 0. (4.25)

Consequentely, (4.22) − (4.25) and since g0 > 0 (hypothesis (H2)) lead to

λnφnx −→ 0 in L2 (0, 1) . (4.26)

Moreover, because φn ∈ H1
0 (0, 1), then

λnφn −→ 0 in L2 (0, 1) , (4.27)

and by (4.20)1, we find5
∼
φnx → 0 in L2 (0, 1) . (4.28)

Therefore, since
∼
φn ∈ H1

0 (0, 1),
∼
φn −→ 0 in L2 (0, 1) . (4.29)

Step 3.Multiplying (4.20)3 and (4.20)5 by
1
λ5n

, and using (4.17) and (4.18), we obtain⎧⎨⎩ ψn −→ 0 in L2 (0, 1) ,

wn −→ 0 in L2 (0, 1) .
(4.30)

Step 4. Taking the inner product of (4.20)2 with
i
∼
φn
λ3n

in L2 (0, 1), using (4.18), integrating by parts and using

the boundary conditions, we get

ρ1
⃦⃦⃦
λn

∼
φn
⃦⃦⃦2
L2(0,1)

+
⟨
kλn (φnx + ψn + lwn) − g0λnφnx , i

∼
φnx
⟩
L2(0,1)

(4.31)

+lk0
⟨
λnwn , i

∼
φnx
⟩
L2(0,1)

+ l2k0
⟨
λnφn , i

∼
φn
⟩
L2(0,1)

+
⟨
λn

∞∫︁
0

g(s)ηnx ds, i
∼
φnx

⟩
L2(0,1)

→ 0.

Multiplying (4.20)3 and (4.20)5 by
1
λ4n

, and using (4.17) and (4.18), we have10

(λnψn)n and (λnwn)n are bounded in L2 (0, 1) . (4.32)
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So, using (4.17), (4.21), (4.26), (4.27), (4.28), (4.31) and (4.32), we deduce that

λn
∼
φn −→ 0 in L2 (0, 1) , (4.33)

and by (4.18) and (4.20)1, we find
λ2nφn −→ 0 in L2 (0, 1) . (4.34)

Step 5. Taking the inner product of (4.20)2 with
1
λ4n

[kψnx + l (k + k0)wnx] in L2 (0, 1) and using (4.18), we
get

ρ1
⟨
iλn

∼
φn , [kψnx + l (k + k0)wnx]

⟩
L2(0,1)

+ (g0 − k) ⟨φnxx , [kψnx + l (k + k0)wnx]⟩L2(0,1) (4.35)

− ‖kψnx + l (k + k0)wnx‖2L2(0,1) + l
2k0 ⟨φn , [kψnx + l (k + k0)wnx]⟩L2(0,1)

−
⟨ ∞∫︁

0

g(s)ηnxx ds, [kψnx + l (k + k0)wnx]

⟩
L2(0,1)

→ 0.

Integrating by parts and using the boundary conditions, we get 5

⟨φnxx , [kψnx + l (k + k0)wnx]⟩L2(0,1) = −
⟨
λnφnx ,

[︂
k ψnxxλn

+ l (k + k0)
wnxx
λn

]︂⟩
L2(0,1)

(4.36)

and ⟨ ∞∫︁
0

g(s)ηnxx ds, [kψnx + l (k + k0)wnx]

⟩
L2(0,1)

(4.37)

= −
⟨
λn

∞∫︁
0

g(s)ηnx ds,
[︂
k ψnxxλn

+ l (k + k0)
wnxx
λn

]︂⟩
L2(0,1)

.

Multiplying (4.20)4 and (4.20)6 by
1
λ5n

and using (4.18), we obtain⎧⎪⎪⎨⎪⎪⎩
iρ2

∼
ψn − b

ψnxx
λn

+ k
λn (

φnx + ψn + lwn) → 0 in L2 (0, 1) ,

iρ1
∼
wn − k0

wnxx
λn

+ lk0
φnx
λn

+ lk
λn (

φnx + ψn + lwn) → 0 in L2 (0, 1) .

Exploiting (4.17), we get(︂
1
λn
ψnxx

)︂
n
and

(︂
1
λn
wnxx

)︂
n
are bounded in L2 (0, 1) , (4.38)

then, using (4.21), (4.26), (4.36), (4.37) and (4.38), we deduce that

⟨φnxx , [kψnx + l (k + k0)wnx]⟩L2(0,1) → 0 (4.39)

and ⟨ ∞∫︁
0

g(s)ηnxx ds, [kψnx + l (k + k0)wnx]

⟩
L2(0,1)

→ 0,

so, exploiting (4.17), (4.27), (4.33) and (4.35), we have

kψnx + l (k + k0)wnx → 0 in L2 (0, 1) . (4.40)

Step 6. Taking the inner product of (4.20)4 with
ψn
λ4n

in L2 (0, 1), using (4.18), integrating by parts and using

the boundary conditions, we obtain

−ρ2
⟨∼
ψn ,

(︂
iλnψn −

∼
ψn
)︂⟩

L2(0,1)
− ρ2

⃦⃦⃦⃦
∼
ψn

⃦⃦⃦⃦2
L2(0,1)



Non-exponential and polynomial stability results of a Bresse system | 93

+b ‖ψnx‖2L2(0,1) + k ⟨(φnx + ψn + lwn) , ψn⟩L2(0,1) → 0,

then, using (4.17), (4.18), (4.20)3 and (4.30), we find

b ‖ψnx‖2L2(0,1) − ρ2
⃦⃦⃦⃦
∼
ψn

⃦⃦⃦⃦2
L2(0,1)

→ 0. (4.41)

On the other hand, taking the inner product of (4.20)6 with
wn
λ4n

in L2 (0, 1), using (4.18), integrating by parts

and using the boundary conditions, we observe that

−ρ1
⟨∼
wn ,

(︁
iλnwn −

∼
wn
)︁⟩

L2(0,1)
− ρ1

⃦⃦⃦∼
wn
⃦⃦⃦2
L2(0,1)

+ k0 ‖wnx‖2L2(0,1)

+lk0 ⟨φnx , wn⟩L2(0,1) + lk ⟨(φnx + ψn + lwn) , wn⟩L2(0,1) → 0.

By (4.17), (4.18), (4.20)5 and (4.30), we deduce that

k0 ‖wnx‖2L2(0,1) − ρ1
⃦⃦⃦∼
wn
⃦⃦⃦2
L2(0,1)

→ 0. (4.42)

Step 7. Taking the inner product of (4.20)4 with
wn
λ4n

and of (4.20)6 with
ψn
λ4n

in L2 (0, 1), and using (4.18), we
get ⎧⎪⎪⎨⎪⎪⎩

⟨[︂
iλnρ2

∼
ψn − bψnxx + k (φnx + ψn + lwn)

]︂
, wn

⟩
L2(0,1)

→ 0,⟨[︁
iλnρ1

∼
wn − k0 (wnx − lφn)x + lk (φnx + ψn + lwn)

]︁
, ψn

⟩
L2(0,1)

→ 0.

Integrating by parts and using the boundary conditions, we obtain

−ρ2
⟨∼
ψn ,

(︁
iλnwn −

∼
wn
)︁⟩

L2(0,1)
− ρ2

⟨∼
ψn ,

∼
wn
⟩
L2(0,1)

+b ⟨ψnx , wnx⟩L2(0,1) + k ⟨(φnx + ψn + lwn) , wn⟩L2(0,1) → 0

and
−ρ1

⟨
∼
wn ,

(︂
iλnψn −

∼
ψn
)︂⟩

L2(0,1)
− ρ1

⟨
∼
wn ,

∼
ψn
⟩
L2(0,1)

+k0 ⟨(wnx − lφn) , ψnx⟩L2(0,1) + lk ⟨(φnx + ψn + lwn) , ψn⟩L2(0,1) → 0,

then, using (4.17), (4.18), (4.20)3, (4.20)5 and (4.30), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
−ρ2

⟨∼
ψn ,

∼
wn
⟩
L2(0,1)

+ b ⟨ψnx , wnx⟩L2(0,1) → 0,

−ρ1
⟨∼
ψn ,

∼
wn
⟩
L2(0,1)

+ k0 ⟨ψnx , wnx⟩L2(0,1) → 0,

which implies that (︂
ρ2
b −

ρ1
k0

)︂⟨∼
ψn ,

∼
wn
⟩
L2(0,1)

→ 0 (4.43)

and (︂
b
ρ2
− k0ρ1

)︂
⟨ψnx , wnx⟩L2(0,1) → 0. (4.44)

Step 8.We distinguish in this step two cases.5

Case 1: bρ2
≠ k0
ρ1

. From (4.43) and (4.44), we see that

⟨∼
ψn ,

∼
wn
⟩
L2(0,1)

→ 0 and ⟨ψnx , wnx⟩L2(0,1) → 0. (4.45)
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Therefore, taking the inner product in L2 (0, 1) of (4.40), first, with ψnx, and second, with wnx, we obtain

ψnx → 0 and wnx → 0 in L2 (0, 1) , (4.46)

and then, by (4.41), (4.42) and (4.46),
∼
ψn → 0 and

∼
wn → 0 in L2 (0, 1) . (4.47)

Finally, combining (4.21), (4.26), (4.27), (4.29), (4.30), (4.46) and (4.47), we get

‖Φn‖H −→ 0, (4.48)

which is a contradiction with (4.17), so (4.2) holds. Consequentely, (2.9) is satisfied.
Case 2: bρ2

= k0
ρ1

. Using (4.18), (4.20)4 and (4.20)6, we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ2n
[︂
− iρ2b λn

(︁
iλnψn − ψ̃n

)︁
− ρ2b λ

2
nψn − ψnxx +

k
b (φnx + ψn + lwn)

]︂
→ 0 in L2 (0, 1) ,

λ2n
[︂
− iρ2b λn (iλnwn − w̃n) −

ρ2
b λ

2
nwn − (wnx − lφn)x +

lk
k0

(φnx + ψn + lwn)
]︂
→ 0 in L2 (0, 1) ,

so, using (4.20)3 and (4.20)5, we find 5⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ2n
[︂
−ρ2b λ

2
nψn − ψnxx +

k
b (φnx + ψn + lwn)

]︂
→ 0 in L2 (0, 1) ,

λ2n
[︂
−ρ2b λ

2
nwn − (wnx − lφn)x +

lk
k0

(φnx + ψn + lwn)
]︂
→ 0 in L2 (0, 1) .

(4.49)

Then, using (4.18), (4.26) and (4.30), we get⎧⎪⎨⎪⎩
ρ2
b λ

2
nψn + ψnxx → 0 in L2 (0, 1) ,

ρ2
b λ

2
nwn + wnxx → 0 in L2 (0, 1) .

(4.50)

Multiplying (4.50)1 by k and (4.50)2 by l(k + k0) and adding the obtained limits, and multiplying (4.50)1 by
k and (4.50)2 by −l(k + k0) and adding the limits, we obtain⎧⎪⎨⎪⎩

ρ2
b λ

2
n
[︀
kψn + l(k + k0)wn

]︀
+
[︀
kψnxx + l(k + k0)wnxx

]︀
→ 0 in L2 (0, 1) ,

ρ2
b λ

2
n
[︀
kψn − l(k + k0)wn

]︀
+
[︀
kψnxx − l(k + k0)wnxx

]︀
→ 0 in L2 (0, 1) .

(4.51)

Taking the inner product in L2 (0, 1) of (4.51)1 and (4.51)2 with
[︀
kψn + l(k + k0)wn

]︀
, integrating by parts and

using the boundary conditions, we get

ρ2
b
⃦⃦
kλnψn + l(k + k0)λnwn

⃦⃦2
L2(0,1) − ‖kψnx + l(k + k0)wnx‖

2
L2(0,1) → 0

and
ρ2
b

⟨
λ2n
[︀
kψn − l(k + k0)wn

]︀
,
[︀
kψn + l(k + k0)wn

]︀⟩
L2(0,1)

−
⟨︀[︀
kψnx − l(k + k0)wnx

]︀
,
[︀
kψnx + l(k + k0)wnx

]︀⟩︀
L2(0,1) → 0,

then, using (4.17) and (4.40), we obtain⎧⎨⎩ kλnψn + l(k + k0)λnwn → 0 in L2 (0, 1) ,

k2 ‖λnψn‖2L2(0,1) − l
2(k + k0)2 ‖λnwn‖2L2(0,1) → 0.

(4.52)
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Taking the inner product in L2 (0, 1) of (4.49)1 with wn and (4.49)2 with ψn, integrating by parts and using
the boundary conditions, we get

−ρ2b λ
4
n ⟨ψn , wn⟩L2(0,1) + λ

2
n ⟨ψnx , wnx⟩L2(0,1) −

k
b

⟨
λ2nφn , wnx

⟩
L2(0,1)

(4.53)

+ kb ⟨λnψn , λnwn⟩L2(0,1) +
lk
b ‖λnwn‖2L2(0,1) → 0

and
−ρ2b λ

4
n ⟨ψn , wn⟩L2(0,1) + λ

2
n ⟨ψnx , wnx⟩L2(0,1) − l

(︂
1 + k

k0

)︂⟨
ψnx , λ2nφn

⟩
L2(0,1)

(4.54)

+ lkk0
‖λnψn‖2L2(0,1) +

l2k
k0

⟨λnψn , λnwn⟩L2(0,1) → 0,

then,multiplying (4.53) by bk0k , and (4.54) by −bk0k , adding the obtained limits andusing (4.17) and (4.34),
we find5

lk0 ‖λnwn‖2L2(0,1) − lb ‖λnψn‖
2
L2(0,1) +

(︁
k0 − l2b

)︁
⟨λnψn , λnwn⟩L2(0,1) → 0. (4.55)

By taking the inner product in L2 (0, 1) of (4.52)1 with λnψn, and using (4.32), we have

k ‖λnψn‖2L2(0,1) + l(k + k0) ⟨λnwn , λnψn⟩L2(0,1) → 0. (4.56)

Combining (4.52)2 and (4.55), we get

1
l(k + k0)2

[︁
k0k2 − bl2(k + k0)2

]︁
‖λnψn‖2L2(0,1) +

(︁
k0 − l2b

)︁
⟨λnwn , λnψn⟩L2(0,1) → 0, (4.57)

so, multiplying (4.56) by
(k + k0)

(︀
k0 − l2b

)︀
k0

, and (4.57) by −l (k + k0)
2

k0
, adding the obtained limits and not-

ing that bρ2
= k0
ρ1

, we obtain [︁
kk0 + bl2(k + k0)

]︁
‖λnψn‖2L2(0,1) → 0.

Then
λnψn → 0 in L2 (0, 1) (4.58)

and, using (4.52)1,
λnwn → 0 in L2 (0, 1) . (4.59)

Using (4.18), (4.20)3, (4.20)5, (4.58) and (4.59), we deduce that10 ⎧⎨⎩
∼
ψn → 0 in L2 (0, 1) ,
∼
wn → 0 in L2 (0, 1) .

(4.60)

Taking the inner product in L2 (0, 1) of (4.50)1 with ψn, and (4.50)2 with wn, integrating by parts and using
the boundary conditions, we get ⎧⎪⎨⎪⎩

ρ2
b ‖λnψn‖2L2(0,1) − ‖ψnx‖

2
L2(0,1) → 0,

ρ2
b ‖λnwn‖2L2(0,1) − ‖wnx‖

2
L2(0,1) → 0,

then, from (4.58) and (4.59), we conclude that⎧⎨⎩ ψnx → 0 in L2 (0, 1) ,

wnx → 0 in L2 (0, 1) .
(4.61)

Finally, (4.21), (4.26), (4.27), (4.29), (4.30), (4.60) and (4.61) imply (4.48), which is a contradiction with

(4.17). Consequentely, in both cases b
ρ2

≠ k0
ρ1

and b
ρ2

= k0
ρ1

, (4.2) holds, and so (2.9) is satisfied. Hence, the
proof of Theorem 4 is completed.
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5 Conclusion and general remarks
41. Our first main result proved in this paper shows that the dissipation producing by the infinite memory
in the first equation in (1.4) is not strong enough to stabilize (1.4) exponentially even if g converges expo-
nentially to zero at infinity and regardless to the speeds of wave propagations. But this dissipation is strong
enough to stabilize (1.4) at least polynomially. The natural question that we can ask is whether the obtained 5
decay rate is optimal.
42. We have considered in this paper the homogeneous Dirichlet-Neumann-Neumann boundary conditions.
The second interesting question wemention here is the extension of our results to the case of other boundary
conditions, in particular, the homogeneous Dirichlet-Dirichlet-Dirichlet ones.
43. In [9], [10] and [11] where at least the second or the third equation of Bresse system is damped via an 10
infinitememory, some stability estimates were provedwith kernels having an arbitrary growth at infinity (not
necessarily of exponential type). Showing the tability of (1.4) with such kernels is an important problem.
4. The last interesting question we note here is proving the tability of (1.4) in the whole space R (instead of
(0, 1)).

Acknowledgement: The author would like to thank M. Afilal and A. Soufyane for useful and fruitful discus- 15
sions and exchanges on thermoelastic Bresse type systems.
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