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Abstract. This work is concerned with a system of two viscoelastic wave
equations with nonlinear damping and source terms acting in both equa-
tions. Under some restrictions on the nonlinearity of the damping and
the source terms, we prove that, for certain class of relaxation functions
and for some restrictions on the initial data, the rate of decay of the
total energy depends on those of the relaxation functions. This result
improves many results in the literature, such as the ones in Messaoudi
and Tatar (Appl. Anal. 87(3):247–263, 2008) and Liu (Nonlinear Anal.
71:2257–2267, 2009) in which only the exponential and polynomial decay
rates are considered.
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1. Introduction

In this paper, we consider the following system:

utt−Δu+
∫ t

0

g (t−s) Δu (x, s) ds+|ut|m−1ut =f1(u, v), x ∈ Ω, t > 0

(1.1a)

vtt−Δv+
∫ t

0

h (t−s) Δv (x, s) ds+|vt|r−1ut =f2(u, v), x ∈ Ω, t > 0

(1.1b)
u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t ≥ 0 (1.1c)
(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω, (1.1d)

where

f1(u, v) = a|u+ v|2(ρ+1)(u+ v) + b|u|ρu|v|(ρ+2)

(1.2)
f2(u, v) = a|u+ v|2(ρ+1)(u+ v) + b|u|(ρ+2)|v|ρv,
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u = u(t, x), v = v(t, x), t ∈ R
+, x ∈ Ω a bounded domain of R

N (N ≥ 1) with a
smooth boundary ∂Ω, ρ,m and r are constants satisfying (2.5) and (2.6), and
the kernel functions g and h are satisfying (2.3) and (2.4).

To motivate our work, we present some results related to viscoelastic
wave equations.

We start with the pioneer works of Dafermos [9,10], in 1970, where the
author discussed certain one-dimensional viscoelastic problems, established
some existence results, and then proved, for smooth monotone decreasing relax-
ation functions, that the solutions go to zero as t goes to infinity. However, no
rate of decay has been specified.

After that, the single equation of the form

utt − Δu+
∫ t

0

g (t− s) Δu (x, s) ds+ h(ut) = f(u) (1.3)

in Ω × (0,+∞), with initial and boundary conditions, has been extensively
studied and many results concerning existence, nonexistence and asymptotic
behavior have been proved. See in this regard [2,4,7,14,16,17,20,21] and the
references therein.

Cavalcanti et al. [7] considered

utt−Δu+
∫ t

0

g (t− s) Δu (x, s) ds+a(x)ut + |u|p−1u=0, in Ω × (0,∞),

(1.4)

where a : Ω → R
+ is a function, which may vanish on a part of the domain Ω.

By assuming a(x) ≥ a0 on ω ⊂ Ω and for two positive constants ξ1 and
ξ2 such that

−ζ1g(t) ≤ g′(t) ≤ −ζ2g(t), t ≥ 0,

the authors established an exponential decay result under some geometry
restrictions on ω. Berrimi and Messaoudi [4] established the result of [7], under
weaker conditions on both a and g, to a system where a source term is com-
peting with the damping term. In [2], an abstract version of the Eq. (1.3) has
been considered and a uniform stability result has been obtained. By using
the piecewise multipliers method, Cavalcanti and Oquendo [8] investigated
the following problem:

utt − k0Δu+
∫ t

0

div[a(x)g (t− s) Δu (x, s)] ds+ b(x)h(ut) + f(u) = 0 (1.5)

and established, under the same conditions on the function g and for a(x) +
b(x) ≥ ρ > 0, an exponential stability result for g decaying exponentially and
h linear, and a polynomial stability result for g decaying polynomially and h
nonlinear. Cabanillas and Rivera [5] considered an anisotropic and inhomoge-
neous viscoelastic equation, in a bounded domain, and proved that the sum of
the first and the second energies decays polynomially when the relaxation func-
tion is of polynomial decay type. A similar result has also been obtained for an
isotropic and homogeneous equation in the case of the whole R

N . Their result
depends on both the dissipation, the Lp regularity of the kernel and on an extra
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assumption on g′′. This result was later improved by Baretto et al. [3], where
equations of linear viscoelastic plates were treated. Precisely, they showed that
the solution energy decays at the same decay rate of the relaxation function,
which is either exponential or polynomial. For partially viscoelastic materials,
Rivera et al. [26] showed that solutions decay exponentially to zero, provided
the relaxation function decays in a similar fashion, regardless to the size of the
viscoelastic part of the material. In [25], a class of abstract viscoelastic systems
of the form

utt(t) + A u(t) + βu(t) − (g ∗ A αu)(t) = 0

u(0) = u0, ut(0) = u1
(1.6)

for 0 ≤ α ≤ 1, β ≥ 0, were investigated. The main focus was on the case when
0 < α < 1 and the main result was that solutions of (1.6) decay polynomially
even if the kernel g decay exponentially. This result is sharp (see Theorem 12
[25]). This result has been improved by Rivera et al. [24], where the authors
studied a more general abstract problem than (1.6) and established a necessary
and sufficient condition to obtain an exponential decay. In the case of lack of
exponential decay, a polynomial decay has been proved. In the latter case they
showed that the rate of decay can be improved by taking more regular initial
data. Also applications to concrete examples have been presented.

For viscoelastic systems, Messaoudi and Tatar [22] considered the
following problem

⎧⎪⎪⎨
⎪⎪⎩
utt − Δu+

∫ t

0

g (t− s) Δu (x, s) ds+ f(u, v) = 0, x ∈ Ω, t > 0,

vtt − Δv +
∫ t

0

h (t− s) Δv (x, s) ds+ k(u, v) = 0, x ∈ Ω, t > 0,
(1.7)

where the functions f and k satisfying for all (u, v) ∈ R
2 the following assump-

tions: { |f(u, v)| ≤ d(|u|β1 + |v|β2)
|k(u, v)| ≤ d(|u|β3 + |v|β4)

for some constant d > 0 and

βi ≥ 1, (N − 2)βi ≤ N, i = 1, 2, 3, 4.

They proved an exponential decay result if both g and h are decaying expo-
nentially and a polynomial decay result otherwise. Their result improves the
one in [29], where (1.7) was considered with

f(u, v) = α(u− v), k(u, v) = −α(u− v),

for α a positive constant, and only exponentially decaying relaxation functions
g and h. In addition, some extra conditions on g′′ and h′′ were imposed. Also,
a system similar to (1.1a)–(1.1d) was studied by Han and Wang [13] and some
global existence and blow-up results have been established. However, the decay
issue was not discussed.
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In the absence of the viscoelasticity (g = h = 0), Agre and Rammaha [1]
studied a system of wave equations of the form{

utt − Δu+ |ut|m−1ut = f1(u, v)
vtt − Δv + |vt|r−1ut = f2(u, v)

(1.8)

in Ω × (0, T ), with initial and boundary conditions of Dirichlet type and the
nonlinear functions f1(u, v) and f2(u, v) as given in (1.2), and proved, under
some appropriate conditions on f1(u, v), f2(u, v) and the initial data, several
results on local and global existence. They also showed that any weak solution
with negative initial energy blows up in finite time, using the same techniques
as in [11]. Recently, the result of [1] has been improved by Said-Houari [28] by
considering a certain class of initial data with positive initial energy.

The work in [28] has been followed by the one in [27] in which the author
showed that, under some restrictions on the nonlinearities of the damping and
the source terms, problem (1.8) has a unique global solution provided that the
initial data are small enough. In addition, he proved that the rate of decay of
the total energy is exponential or polynomial depending on the exponents of
the damping terms in both equations.

In this work, we study problem (1.1a)–(1.1d). We state first the local exis-
tence result. Then, we show that this local solution is global, provided that
the initial data are small enough. After that, we show that, for a certain class
of relaxation functions and for some restrictions on the initial data, the rate of
decay of the total energy is similar to those of the relaxation functions. This
result improves many results in the literature, such as the results in [15,22]
in which only the exponential and polynomial decay rates are considered. To
achieve our goal we use a Lyapunov type technique for some perturbation
energy following the method introduced in [18]. In fact this method allows us
to weaken some of the technical assumptions for the convolution kernels.

The outline of this paper is the following: in Sect. 2, we fix notations and
we prove some technical lemmas. In Sect. 3, we state a local existence result.
While Sects. 4 and 5 are devoted to the global existence and general decay of
solutions, respectively.

2. Preliminaries

In this section, we introduce some notations and establish some technical lem-
mas to be used throughout this paper. By ‖.‖q, we denote the usual Lq(Ω)-
norm and for ϕ ∈ H1

0 (Ω), we denote by ‖∇ϕ‖2 the equivalent norm of ϕ in
H1

0 (Ω), and we mean by H the following energy space H = H1
0 (Ω) ×H1

0 (Ω) ×
L2(Ω) × L2(Ω) endowed with the norm:

‖(u0, u1, u2, u3)‖2
H = ‖∇u1‖2

2 + ‖∇u2‖2
2 +

∥∥u3‖2
2 + ‖u4

∥∥2

2
.

The following Sobolev embedding will be used frequently in this paper:

H1
0 (Ω) ↪→ Lq (Ω) , 2 ≤ q ≤ q =

{ 2N
N − 2

, N ≥ 3,

+∞, N = 1, 2.
(2.1)



Vol. 18 (2011) General decay of solutions of a nonlinear system 663

Furthermore, we use the following notations:

(φ, ψ) =
∫

Ω

φ(x)ψ(x) dx,

(φ ∗ ψ) (t) :=
∫ t

0

φ (t− τ)ψ (τ) dτ,

(φ � ψ) (t) :=
∫ t

0

φ (t− τ) (ψ (t) − ψ (τ)) dτ

and

(φ ◦ ψ) (t) :=
∫ t

0

φ (t− τ)
∫

Ω

|ψ (t) − ψ (τ)|2 dx dτ.

The constant C used throughout this paper is a positive generic constant,
which may be different in various occurrences. Concerning the functions f1
and f2, we note that

uf1(u, v) + vf2(u, v) = 2(ρ+ 2)F (u, v), ∀(u, v) ∈ R
2

for

F (u, v) =
1

2(ρ+ 2)

[
a|u+ v|2(ρ+2) + 2b|uv|ρ+2

]
.

Lemma 2.1. There exist two positive constants c0 and c1 such that
c0

2(ρ+ 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
≤ F (u, v) ≤ c1

2(ρ+ 2)

(
|u|2(ρ+2) + |v|2(ρ+2)

)
.

(2.2)

Proof. The right-hand side of inequality (2.2) is trivial. For the left-hand side,
the result is also trivial if u = v = 0.
If, without loss of generality, v �= 0, then either |u| ≤ |v| or |u| > |v|.
For |u| ≤ |v|, we get

F (u, v) =
1

2(ρ+ 2)
|v|2(ρ+2)

[
a|1 +

u

v
|2(ρ+2) + 2b|u

v
|ρ+2

]
.

Consider the continuous function

j(s) = a|1 + s|2(ρ+2) + 2b|s|ρ+2 over [−1, 1].

So min j(s) ≥ 0. If min j(s) = 0 then, for some s0 ∈ [−1, 1], we have

j(s0) = a|1 + s0|2(ρ+2) + 2b|s0|ρ+2 = 0.

This implies that |1 + s0| = |s0| = 0, which is impossible. Thus min j(s) =
2c0 > 0. Therefore

F (u, v) ≥ c0
ρ+ 2

|v|2(ρ+2) ≥ c0
ρ+ 2

|u|2(ρ+2)
.

Consequently,

2F (u, v) ≥ c0
ρ+ 2

{
|v|2(ρ+2) + |u|2(ρ+2)

}
,
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and then
c0

2(ρ+ 2)

{
|v|2(ρ+2) + |u|2(ρ+2)

}
≤ F (u, v).

If |u| ≥ |v| , then

F (u, v) =
1

2 (ρ+ 2)
|u|2(ρ+2)

[
a|1 +

v

u
|2(ρ+2) + 2b| v

u
|ρ+2

]

≥ c0
ρ+ 2

|u|ρ+2 ≥ c0
ρ+ 2

|v|ρ+2
.

This leads to the desired result and completes the proof of Lemma 2.1.

We assume that the relaxation functions g and h are of class C1 and satisfying⎧⎪⎪⎨
⎪⎪⎩
g (s) ≥ 0, 1 −

∫ +∞

0

g (s) ds = l > 0

h (s) ≥ 0, 1 −
∫ +∞

0

h (s) ds = k > 0
(2.3)

and

g′ (s) , h′ (s) ≤ 0, ∀s ≥ 0. (2.4)

For the nonlinearity, we suppose that

− 1 < ρ if N = 1, 2 and − 1 < ρ ≤ 3 −N

N − 2
if N ≥ 3, (2.5)

and

1 ≤ r,m if N = 1, 2 and 1 ≤ r,m ≤ N + 2
N − 2

if N ≥ 3. (2.6)

The following Lemma will be used in the proof of Theorem 5.1.

Lemma 2.2. There exist two positive constants Λ1 and Λ2 such that∫
Ω

|fi(u, v)|2 dx ≤ Λi

(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)2ρ+3

, i = 1, 2. (2.7)

Proof. We prove inequality (2.7) for f1 and the same result also holds for f2.
It’s clear that

|f1 (u, v)| ≤ C
(
|u+ v|2ρ+3 + |u|ρ+1|v|(ρ+2)

)

≤ C[|u|2ρ+3 + |v|2ρ+3 + |u|ρ+1|v|ρ+2]. (2.8)

From (2.8) and Young’s inequality, with

q =
2ρ+ 3
ρ+ 1

, q′ =
2ρ+ 3
ρ+ 2

,

we get

|u|ρ+1|v|ρ+2 ≤ c1|u|2ρ+3 + c2|v|2ρ+3,

hence

|f1(u, v)| ≤ C[|u|2ρ+3 + |v|2ρ+3].
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Consequently, by using Poincaré’s inequality and (2.5), we obtain∫
Ω

|f1(u, v)|2 dx ≤ C
(
‖∇u‖2(2ρ+3)

2 + ‖∇v‖2(2ρ+3)
2

)

≤ Λ1

(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)2ρ+3

.

This completes the proof of Lemma 2.2.

The Lemma below, introduced in [23], plays a crucial role in the construc-
tion of the “modified” functional energy E associated to system (1.1a)–(1.1d).

Lemma 2.3. For any function φ ∈ C1 (R) and any ψ ∈ H1 (0, T ), we have

(φ ∗ ψ) (t)ψt (t) = −1
2
φ (t) |ψ (t)|2 +

1
2

(φ′ � ψ) (t)

−1
2
d

dt

{
(φ � ψ) (t) −

(∫ t

0

φ (τ) dτ
)

|ψ (t)|2
}
.

3. Local existence

In this section, we state the local existence and the uniqueness of the solu-
tion of problem (1.1a)–(1.1d). The proof of this result was given in [13], in
which the authors adopted the technique of [1] which consists of constructing
approximations by the Faedo–Galerkin procedure without imposing the usual
smallness conditions on the initial data in order to handle the source terms.
Unfortunately, due to the strong nonlinearities on f1 and f2, the techniques
used [1,13] allowed them to prove the local existence result only for N ≤ 3.
We note that the local existence result in the case of N > 3 is still an open
problem.

Definition 3.1. A pair of functions (u, v) is said to be a week solution of (1.1a)
–(1.1d) on [0, T ] if u, v ∈ Cw([0, T ],H1

0 (Ω)), ut, vt ∈ Cw([0, T ], L2(Ω)), ut ∈
Lm+1(Ω × (0, T )), vt ∈ Lr+1(Ω × (0, T )), (u(x, 0), v(x, 0)) = (u0, v0) ∈ H1

0 (Ω)
×H1

0 (Ω), (ut(x, 0), vt(x, 0) = (u1, v1) ∈ L2(Ω) × L2(Ω) and (u, v) satisfies
∫

Ω

u′(t)φdx−
∫

Ω

u1φdx+
∫ t

0

∫
Ω

|u′|m−1u′φdx dτ −
∫ t

0

∫
Ω

∇φ (g ∗ ∇u) dx dτ

+
∫ t

0

∫
Ω

∇φ∇u dx

=
∫ t

0

∫
Ω

f1(u(τ), v(τ))φdx dτ

and∫
Ω

v′(t)ψ dx−
∫

Ω

v1ψ dx+
∫ t

0

∫
Ω

|v′|r−1v′ψ dx dτ −
∫ t

0

∫
Ω

∇ψ (h ∗ ∇v) dx dτ

+
∫ t

0

∫
Ω

∇ψ∇v dx =
∫ t

0

∫
Ω

f2(u(τ), v(τ))ψ dx dτ
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for all test functions φ ∈ H1
0 (Ω) ∩ Lm+1(Ω), ψ ∈ H1

0 (Ω) ∩ Lr+1(Ω) and for
almost all t ∈ [0, T ].

Now, we state the local existence theorem.

Theorem 3.2. Let N = 1, 2, 3. Assume that (2.3)–(2.6) hold. Then for any ini-
tial data u0, v0 ∈ H1

0 (Ω) and u1, v1 ∈ L2(Ω), there exists a unique local weak
solution (u, v) of (1.1a)–(1.1d) (in the sense of Definition 3.1) defined in [0, T ]
for some T > 0, and satisfies the energy inequality

E (t) +
∫ t

s

(
‖ut (τ)‖m+1

m+1 dτ + ‖vt (τ)‖r+1
r+1

)
dτ

− 1
2

∫ t

s

((g′ ◦ ∇u) (τ) + (h′ ◦ ∇v) (τ)) dτ ≤ E (s)

for 0 ≤ s ≤ t ≤ T , where E is defined in (4.3) below.

4. Global existence

In this section, we state and prove the global existence of the solution of prob-
lem (1.1a)–(1.1d). In order to do so, a suitable choice of a Lyapunov functional
will be made.

First, we introduce the following functionals:

J (t) =
1
2

(
1 −

∫ t

0

g (s) ds
)

‖∇u‖2
2 +

1
2

(
1 −

∫ t

0

h (s) ds
)

‖∇v‖2
2

+
1
2

[(g ◦ ∇u) (t) + (h ◦ ∇v) (t)] −
∫

Ω

F (u, v) dx (4.1)

and

I (t) =
(

1 −
∫ t

0

g (s) ds
)

‖∇u‖2
2 − 2(ρ+ 2)

∫
Ω

F (u, v) dx

+
(

1 −
∫ t

0

h (s) ds
)

‖∇v‖2
2 + (g ◦ ∇u) (t) + (h ◦ ∇v) (t) . (4.2)

The “modified” energy functional E associated to our system (1.1a)–(1.1d) is

E (t) =
1
2
(‖ut‖2

2 + ‖vt‖2
2) +

1
2

(
1 −

∫ t

0

g (s) ds
)

‖∇u‖2
2 −

∫
Ω

F (u, v) dx

+
1
2

(
1−

∫ t

0

h (s) ds
)

‖∇v‖2
2+

1
2

[(g ◦ ∇u) (t)+(h ◦ ∇v) (t)] . (4.3)

In the next Lemma, we show that the energy functional (4.3) is a non-increas-
ing function along solutions of (1.1a)–(1.1d).

Lemma 4.1. Suppose that (2.3)–(2.6) hold. Let (u, v) be the solution of the
system (1.1a)–(1.1d), then the energy functional is a non-increasing function,
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that is
dE (t)
dt

≤−
[
‖ut‖m+1

m+1+‖vt‖r+1
r+1− 1

2
(g′ ◦ ∇u) (t)− 1

2
(h′ ◦ ∇v) (t)

]
≤0, ∀t≥0.

(4.4)

Proof. By multiplying Eq. (1.1a) by ut and Eq. (1.1b) by vt, integrating over
Ω, using integration by parts and summing up the results, we get

1
2
d

dt

(
‖ut‖2

2 + ‖vt‖2
2 + ‖∇u‖2

2 + ‖∇v‖2
2 −

∫
Ω

F (u, v) dx
)

=−‖ut‖m+1
m+1 − ‖vt‖r+1

r+1+
∫ t

0

g (t− s)
∫

Ω

∇ut (t) · ∇u (τ) dx dτ

+
∫ t

0

h (t− s)
∫

Ω

∇vt (t) · ∇v (τ) dx dτ. (4.5)

Now, applying Lemma 2.3, the last two terms in the right hand side of (4.5)
can be rewritten as follows∫ t

0

g (t− τ)
∫

Ω

∇ut (t) · ∇u (τ) dx dτ = −1
2
g (t) ‖∇u‖2

2 +
1
2

(g′ ◦ ∇u) (t)

−1
2
d

dt

[∫ t

0

g (τ) ‖∇u‖2
2 dτ − (g ◦ ∇u) (t)

]
(4.6)

and∫ t

0

h (t− τ)
∫

Ω

∇vt (t) · ∇v (τ) dx dτ = −1
2
h (t) ‖∇v‖2

2 +
1
2

(h′ ◦ ∇v) (t)

−1
2
d

dt

[∫ t

0

h (τ) ‖∇v‖2
2 dτ − (h ◦ ∇v) (t)

]
. (4.7)

Consequently, inserting (4.6) and (4.7) into (4.5), estimate (4.4) follows.
The inequality below is a key element in proving the global existence of

solution. (cf. [28]).

Lemma 4.2. Suppose that (2.5) holds. Then there exists η > 0 such that for
any (u, v) ∈ H1

0 (Ω) ×H1
0 (Ω) the inequality

‖u+ v‖2(ρ+2)
2(ρ+2) + 2‖uv‖ρ+2

ρ+2 ≤ η(l‖∇u‖2
2 + k‖∇v‖2

2)
ρ+2 (4.8)

holds.

Proof. It is clear that by using the Minkowski inequality we get

‖u+ v‖2
2(ρ+2) ≤ 2(‖u‖2

2(ρ+2) + ‖v‖2
2(ρ+2)).

Also, Hölder’s and Young’s inequalities give us

‖uv‖(ρ+2) ≤ ‖u‖2(ρ+2)‖v‖2(ρ+2) ≤ c(l‖∇u‖2
2 + k‖∇v‖2

2).

A combination of the two last inequalities and the embedding H1
0 (Ω) ↪→

L2(ρ+2)(Ω) yields (4.8).
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Lemma 4.3. Suppose that (2.3)–(2.6) hold. Then for any (u0, v0, u1, v1) ∈ H
satisfying

{
β = η

[
2(ρ+2)

ρ+1 E (0)
]ρ+1

< 1,
I (0) = I (u0, v0) > 0,

(4.9)

we have

I (t) = I (u (t) , v (t)) > 0, ∀t > 0. (4.10)

Proof. Since I(0) > 0, then by continuity,

I (t) ≥ 0, on (0, δ), δ > 0.

Let Tm be such that

{I (Tm) = 0 and I (t) > 0, ∀ 0 ≤ t < Tm} (4.11)

which implies that, for all t ∈ [0, Tm],

J (t) =
1

2(ρ+ 2)
I (t) +

ρ+ 1
2(ρ+ 2)

{(
1 −

∫ t

0

g (s) ds
)

‖∇u‖2
2

+
(

1 −
∫ t

0

h (s) ds
)

‖∇v‖2
2 + (g ◦ ∇u) (t) + (h ◦ ∇v) (t)

}

≥ ρ+ 1
2(ρ+ 2)

{(
1 −

∫ t

0

g (s) ds
)

‖∇u‖2
2 + (g ◦ ∇u) (t)

+
(

1 −
∫ t

0

h (s) ds
)

‖∇v‖2
2 + (h ◦ ∇v) (t)

}
. (4.12)

By using (2.3), (4.1), (4.4) and (4.12), we easily get

l ‖∇u‖2
2 + k ‖∇v‖2

2 ≤
(

1 −
∫ t

0

g (s) ds
)

‖∇u‖2
2 +

(
1 −

∫ t

0

h (s) ds
)

‖∇v‖2
2

≤ 2(ρ+ 2)
ρ+ 1

J (t)

≤ 2(ρ+ 2)
ρ+ 1

E (t) ≤ 2(ρ+ 2)
ρ+ 1

E (0), ∀t ∈ [0, Tm]. (4.13)

By exploiting (4.8) and (4.9), we obtain

2(ρ+ 2)
∫

Ω

F (u(Tm), v(Tm)) dx ≤ η(l‖∇u(Tm)‖2
2 + k‖∇v(Tm)‖2

2)
ρ+2

= η(l‖∇u(Tm)‖2
2 + k‖∇v(Tm)‖2

2)
ρ+1

× (
l‖∇u(Tm)‖2

2 + k‖∇v(Tm)‖2
2

)

≤ η

[
2(ρ+ 2)
ρ+ 1

E (0)
]ρ+1

× (
l‖∇u(Tm)‖2

2 + k‖∇v(Tm)‖2
2

)
.
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Consequently,

2(ρ+ 2)
∫

Ω

F (u(Tm), v(Tm)) dx ≤ β
(
l‖∇u(Tm)‖2

2 + k‖∇v(Tm)‖2
2

)

≤ β

(
1 −

∫ t

0

g (s) ds
)

‖∇u(Tm)‖2
2

+β
(

1 −
∫ t

0

h (s) ds
)

‖∇v(Tm)‖2
2

<

(
1 −

∫ t

0

g (s) ds
)

‖∇u(Tm)‖2
2

+
(

1 −
∫ t

0

h (s) ds
)

‖∇v(Tm)‖2
2 .

Therefore, by using (4.2), we conclude that

I (Tm) > 0,

which contradicts our hypothesis (4.11). So I(t) > 0 for all t ≥ 0.

Now, we state and prove our global existence result.

Theorem 4.4. Suppose that (2.3)–(2.6) hold. If (u0, v0, u1, v1) ∈ H and satisfies
(4.9). Then the solution of (1.1a)–(1.1d) is global and bounded.

Proof. To prove Theorem 4.4, it suffices to show that the energy norm of the
solution (u, v) is bounded, that is the norm

‖(u, v)‖2
H = ‖∇u‖2

2 + ‖∇v‖2
2 + ‖ut‖2

2 + ‖vt‖2
2

is bounded independently of t. To achieve this we use (4.1), (4.3), (4.4) and
(4.13) to get

E (0) ≥ E (t) = J (t) +
1
2
(‖ut‖2

2 + ‖vt‖2
2)

≥ ρ+ 1
2(ρ+ 2)

(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)
+

1
2
(‖ut‖2

2 + ‖vt‖2
2). (4.14)

Therefore,

‖(u, v)‖2
H ≤ CE (0),

where C is a positive constant, which depends only on ρ, k and l.

Remark 4.5. When f1(u, v) ≤ 0 and f2(u, v) ≤ 0, then any solution of (1.1a)–
(1.1d) with arbitrary initial data in H is global in time and Theorems 4.4 and
5.1 hold without condition (4.9).
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5. Asymptotic stability

In this section, we are interested in the study of the asymptotic behavior (when
t → +∞) of the solutions to (1.1a)–(1.1d). In addition to (2.3) and (2.4), we
also assume the existence of two positive non-increasing differentiable func-
tions ξ1 and ξ2 such that

g′ (t) ≤ −ξ1 (t) g (t), h′ (t) ≤ −ξ2 (t)h (t), ∀t ≥ 0 (5.1)

g(0), h(0) > 0 and ∫ +∞

0

ξi (t) dt = +∞, i = 1, 2. (5.2)

We then state our main stability result.

Theorem 5.1. Suppose that (2.3)–(2.6), (5.1) and (5.2) hold. Let (u0, v0, u1, v1)
∈ H be given and satisfying (4.9). Then for any t0 > 0, there exist positive
constants K and λ such that the solution (u, v) of (1.1a)–(1.1d) satisfies

E (t) ≤ Ke
−λ

∫ t
t0

ξ(s) ds
, ∀t ≥ t0, (5.3)

where ξ(t) = min(ξ1(t), ξ2(t)), ∀t ≥ 0.

Example 5.2. Let

g(t) = a1e
−b1(1+t)ν1

, h(t) = a2e
−b2(1+t)ν2

, with ai, bi, νi > 0 (i = 1, 2).

Then it’s clear that (5.1) holds for ξi(t) = biνi(1 + t)min(0,νi−1)(i = 1, 2).
Consequently, applying (5.3), we obtain the following exponential decay:

E(t) ≤ Ke−λb0(1+t)min(1,ν1,ν2)
,

where

b0 =

⎧⎨
⎩
b1 if ν2 > ν1
b2 if ν1 > ν2
min (b1, b2) if ν1 = ν2

. (5.4)

Example 5.3. If

g(t) = a1e
−b1[ln(1+t)]ν1 and h(t) = a2e

−b2[ln(1+t)]ν2
,

with ai, bi > 0, νi > 1 (i = 1, 2)

Then for

ξi(t) =
biνi (ln (1 + t))νi−1

1 + t
(i = 1, 2)

the inequality (5.3) gives

E(t) ≤ Ke−λb0(ln(1+t))min(ν1,ν2)
,

where b0 is as in (5.4).

Example 5.4. If

g (t) =
a1

(2 + t)ν1 (ln (2 + t))b1
, h (t) =

a2

(2 + t)ν2 (ln (2 + t))b2
,
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where

ai > 0 and

⎧⎨
⎩
νi > 1 and bi ∈ R

or
νi = 1 and bi > 1

(i = 1, 2).

Then for

ξi(t) =
νi (ln (2 + t)) + bi
(2 + t) (ln (2 + t))

(i = 1, 2)

we obtain from (5.3)

E(t) ≤ K[
(2 + t)min(ν1,ν2) (ln (2 + t))b0

]λ
,

where b0 is as in (5.4).

Remark 5.5. If the functions g and h decay faster than exponentially, then the
energy decays exponentially. If one of the functions g or h does not decay faster
than exponentially, then the energy has the same decay rate of the slower one
of the relaxation functions g and h.

Remark 5.6. Our results in Theorems 4.4 and 5.1 also hold for other nonlin-
earities in f1(u, v) and f2(u, v). For instance we can show the same results for
f1(u, v) = |u|ρu|v|(ρ+2) + |u|2(ρ+2) and f2(u, v) = |v|ρv|u|(ρ+2) + |v|2(ρ+2).

Remark 5.7. It is clear that the coupling (1.2) is highly nonlinear compared
to the one taken by Santos [29]. In addition, it is not a special case of the
coupling of [22]. In fact, with this type of coupling, the well-posedness has
been established only for domains in R

N , N = 1, 2, 3. See [1,13,28].

Remark 5.8. In addition to the difference in the coupling types, the decay
results of [13,22] are only special cases of our result. Precisely, the exponential
decay is obtained when ξi(t) = ai > 0 in (5.1) and the polynomial decay is
obtained when ξi(t) =

ai

(1 + t)bi
, ai > 0 and bi ≥ 0 such that b1 + b2 > 0.

Proof of Theorem 5.1. The proof of Theorem 5.1 will be done through sev-
eral Lemmas. As usual, the key point in stability is the suitable choice of a
Lyapunov functional. Let us first introduce the functional F (t) defined as

F (t) := E (t) + ε1Ψ (t) + ε2χ (t), (5.5)

where ε1 and ε2 are positive constants,

Ψ (t) :=
∫

Ω

utu dx+
∫

Ω

vtv dx (5.6)

and

χ (t) := −
∫

Ω

ut

∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

−
∫

Ω

vt

∫ t

0

h (t− τ) (v (t) − v (τ)) dτ dx. (5.7)
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With the above choice of the functional F , we shall prove an inequality of the
form

ξ (t) F ′ (t) ≤ −γ1ξ (t)E (t) − 2γ2E
′ (t) , ∀t ≥ t0,

for some positive constants t0, γ1 and γ2.

Lemma 5.9. For (u, v) ∈ H1
0 (Ω) ×H1

0 (Ω), we have
∫

Ω

(∫ t

0

g (t− s) (u (t) − u (τ)) dτ
)2

≤ (1 − l)C2
∗ (g ◦ ∇u) (t) (5.8)

and
∫

Ω

(∫ t

0

h (t− s) (v (t) − v (τ)) dτ
)2

≤ (1 − k)C2
∗ (h ◦ ∇v) (t) , (5.9)

where C∗ is the Poincaré constant.

For the proof of Lemma 5.9, we refer to [18].
In the following Lemma, we prove that the functional F is equivalent to

the energy functional E, more precisely, we have:

Lemma 5.10. Let (u, v) be the solution of (1.1a)–(1.1d) and assume that (4.9)
holds. Then there exists a constant ε0 > 0, such that for all ε1 < ε0 and for
all ε2 < ε0, we have

1
2
E (t) ≤ F (t) ≤ 2E (t) , ∀t ≥ 0. (5.10)

Proof. To prove Lemma 5.10, we follow the same techniques used in [18].
Therefore, using (4.3 ), (5.8) and (5.9), we get

F (t) ≤ E (t) + (ε1/2)
(
‖ut‖2

2 + ‖vt‖2
2

)
+ (ε1/2)

(
‖u‖2

2 + ‖v‖2
2

)

+ (ε2/2)
(
‖ut‖2

2+‖vt‖2
2

)
+(ε2/2)

∫
Ω

(∫ t

0

g (t−s) (u (t)−u (τ)) dτ
)2

+ (ε2/2)
∫

Ω

(∫ t

0

h (t− s) (v (t) − v (τ)) dτ
)2

≤ 1
2

[1 + ε1 + ε2]
(
‖ut‖2

2 + ‖vt‖2
2

)
−

∫
Ω

F (u, v) dx

+
1
2

[
1 −

∫ t

0

g (s) ds+ ε1C
2
∗

]
‖∇u‖2

2

+
1
2

[
1+ε2C2

∗ (1−l)] (g ◦ ∇u) (t)

+
1
2

[
1−

∫ t

0

h (s) ds+ε1C2
∗

]
‖∇v‖2

2

+
1
2

[
1 + ε2C

2
∗ (1 − k)

]
(h ◦ ∇v) (t). (5.11)
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Consequently, by using 1 − ∫ t

0
g(s) ds ≥ l, 1 − ∫ t

0
h(s) ds ≥ k and (4.2), we

conclude that

2E (t) − F (t) ≥ 1
2

[1 − (ε1 + ε2)] ‖ut‖2
2 +

1
2

[1 − (ε1 + ε2)] ‖vt‖2
2

+
1

2(ρ+ 2)
I (t)

+
[
ρ+ 1

2(ρ+ 2)
− ε2

2
C2

∗ (1 − l)
]

(g ◦ ∇u) (t)

+
[

ρ+ 1
2 (ρ+ 2)

l − ε1
2
C2

∗

]
‖∇u‖2

2

+
[

ρ+ 1
2 (ρ+ 2)

− ε2
2
C2

∗ (1 − k)
]

(h ◦ ∇v) (t)

+
[

ρ+ 1
2 (ρ+ 2)

k − ε1
2
C2

∗

]
‖∇v‖2

2 .

By fixing ε1 and ε2 small enough, we obtain 2E(t) − F (t) ≥ 0. By the same
method, we can show that

F (t) − 1
2
E (t) ≥ 0.

This completes the proof of Lemma 5.10.

Lemma 5.11. Suppose that (2.3), (2.4) and (5.1) hold. Let (u0, v0, u1, v1) ∈ H
be given and satisfying (4.9). If (u, v) is the solution of (1.1a)–(1.1d), then we
have

Ψ′ (t) ≤
(

1 +
C∗
l

)
‖ut‖2

2 +
(

1 +
C∗
k

)
‖vt‖2

2 − l

4
‖∇u‖2

2 − k

4
‖∇v‖2

2

+
1 − l

2l
(g ◦ ∇u) (t) +

1 − k

2k
(h ◦ ∇v) (t) +

∫
Ω

F (u, v) dx

+
m

m+ 1
β

−(m+1)/m
1 ‖ut‖m+1

m+1 +
r

r + 1
β

−(r+1)/r
2 ‖vt‖r+1

r+1 . (5.12)

Proof. By using (1.1a), direct computations lead to the following identity:

Ψ′ (t) = ‖ut‖2
2 + ‖vt‖2

2 − ‖∇u‖2
2 − ‖∇v‖2

2 +
∫

Ω

uf1 (u, v) dx

+
∫

Ω

vf2 (u, v) dx−
∫

Ω

u |ut|m−1
ut dx−

∫
Ω

v |vt|r−1
vt dx

+
∫

Ω

∇u (t) ·
∫ t

0

g (t− τ) ∇u (τ) dτ dx

+
∫

Ω

∇v (t) ·
∫ t

0

h (t− τ) ∇v (τ) dτ dx. (5.13)
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Following the same approach as in Lemma 3.3 [18], the last two terms in the
right hand side of (5.13) can be estimated as follows, for all μ1, μ2 > 0,

∫
Ω

∇u (t) ·
∫ t

0

g (t− τ) ∇u (τ) dτ dx

≤ 1
2

{
‖∇u‖2

2+
(

1+
1
μ1

)
(1−l) (g ◦ ∇u) (t)+(1+μ1) (1−l)2 ‖u‖2

2

}

(5.14)

and∫
Ω

∇v (t) ·
∫ t

0

h (t− τ) ∇v (τ) dτ dx

≤ 1
2

{
‖∇v‖2

2 +
(

1 +
1
μ2

)
(1 − k) (h ◦ ∇v) (t) + (1 + μ2) (1 − k)2 ‖∇v‖2

2

}
.

Also, Young’s inequality, Poincaré’s inequality and (4.13) imply, for some
β1, β2 > 0,∣∣∣∣

∫
Ω

u|ut|m−1ut dx

∣∣∣∣ ≤ βm+1
1

m+ 1
‖u‖m+1

m+1 +
m

m+ 1
β

−(m+1)/m
1 ‖ut‖m+1

m+1

≤ βm+1
1 Cm+1

∗
m+ 1

(
2 (ρ+ 2)
l (ρ+ 1)

E (0)
)(m−1)/2

‖∇u‖2
2

+
m

m+ 1
β

−(m+1)/m
1 ‖ut‖m+1

m+1 (5.15)

and similarly,
∣∣∣∣
∫

Ω

v|vt|r−1vt dx

∣∣∣∣ ≤ βr+1
2 Cr+1

∗
r + 1

(
2 (ρ+ 2)
k (ρ+ 1)

E (0)
)(r−1)/2

‖∇v‖2
2

+
r

r + 1
β

−(r+1)/r
2 ‖vt‖r+1

r+1 . (5.16)

Inserting estimates (5.14), (5.15) and (5.16) into (5.13), we arrive at

Ψ′ (t) ≤ ‖ut‖2
2 + ‖vt‖2

2 − κ1 ‖∇u‖2
2 − κ2 ‖∇v‖2

2

+
1
2

(
1 +

1
μ1

)
(1 − l) (g ◦ ∇u) (t)

+
1
2

(
1 +

1
μ2

)
(1 − k) (h ◦ ∇v) (t) +

∫
Ω

F (u, v) dx

+
[

m

m+ 1
β

−(m+1)/m
1

]
‖ut‖m+1

m+1

+
[

r

r + 1
β

−(r+1)/r
2

]
‖vt‖r+1

r+1 , (5.17)

where

κ1 =
1
2

(
1 − (1 + μ1) (1 − l)2

)
− βm+1

1 Cm+1
∗

m+ 1

(
2 (ρ+ 2)
l (ρ+ 1)

E (0)
)(m−1)/2
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and

κ2 =
1
2

(
1 − (1 + μ2) (1 − k)2

)
− βr+1

2 Cr+1
∗

r + 1

(
2 (ρ+ 2)
k (ρ+ 1)

E (0)
)(r−1)/2

.

Choosing μ1 = l/(1 − l), μ2 = k/(1 − k) and piking β1 and β2 small enough
such that

βm+1
1 Cm+1

∗
m+ 1

(
2 (ρ+ 2)
l (ρ+ 1)

E (0)
)(m−1)/2

≤ l

4

and

βr+1
2 Cr+1

∗
r + 1

(
2 (ρ+ 2)
k (ρ+ 1)

E (0)
)(r−1)/2

≤ k

4

then, (5.12) is established.

Lemma 5.12. Suppose that (2.3), (2.4) and (5.1) hold. Let (u0, v0, u1, v1) ∈ H
be given and satisfying (4.9). If (u, v) is the solution of (1.1a)–(1.1d), then the
functional

χ1 (t) = −
∫

Ω

ut

∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx (5.18)

satisfies, for all δ > 0,

χ′
1 (t) ≤

[(
2δ +

1
4δ

)
(1 − l) +

1 − l

4δ

+ C1

(
2(ρ+ 2)
l (ρ+ 1)

E (0)
)(m−1)/2

δm+1

m+ 1
(1 − l)m

]
(g ◦ ∇u) (t)

+
(
2δ (1 − l)2 + δ

)
‖∇u‖2

2 +
(
δ −

∫ t

0

g (s) ds
)

‖ut‖2
2

−g (0)
4δ

C2
∗ (g′ ◦ ∇u) (t) +

m

m+ 1
δ−(m+1)/m ‖ut‖m+1

m+1

+
∫

Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx.

Proof. Differentiate (5.18) with respect to t to get by using Eq. (1.1a)

χ′
1 (t) =

∫
Ω

∇u (t) .
(∫ t

0

g (t− τ) (∇u (t) − ∇u (τ)) dτ
)
dx

−
∫

Ω

(∫ t

0

g (t−τ) ∇u (τ) dτ
)
.

(∫ t

0

g (t−τ) (∇u (t)−∇u (τ)) dτ
)
dx

−
∫

Ω

ut

∫ t

0

g′ (t− τ) (u (t) − u (τ)) dτ dx−
(∫ t

0

g (s) ds
)

‖ut‖2
2

+
∫

Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

−
∫

Ω

|ut|m−1ut

∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx. (5.19)
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Similarly as in (5.12), we estimate the right-hand side terms of (5.19) as follows:
First, by using Young’s inequality and (5.8), we obtain for any δ > 0

∣∣∣∣
∫

Ω

∇u (t) .
(∫ t

0

g (t−τ) (∇u (t)−∇u (τ)) dτ
)
dx

∣∣∣∣
≤ δ ‖∇u‖2

2 +
1 − l

4δ
(g ◦ ∇u) (t) . (5.20)

Also, the second term can be estimated as follows (see [18]):
∫

Ω

(∫ t

0

g (t− τ) ∇u (τ) dτ
)
.

(∫ t

0

g (t− τ) (∇u (t) − ∇u (τ)) dτ
)
dx

≤
(

2δ +
1
4δ

)
(1 − l) (g ◦ ∇u) (t) + 2δ (1 − l)2 ‖∇u‖2

2 . (5.21)

Concerning the third term, we have
∫

Ω

ut

∫ t

0

g′ (t−τ) (u (t) − u (τ)) dτ dx≤δ ‖ut‖2
2− g (0)

4δ
C2

∗ (g′ ◦ ∇u) (t) . (5.22)

To estimate the fifth term, we use Young’s inequality and Poincaré’s inequality
to obtain∫

Ω

|ut|m−1ut

∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

≤ m

m+ 1
δ−(m+1)/m ‖ut‖m+1

m+1+
δm+1

m+ 1

∫
Ω

[∫ t

0

g (t−τ) |u (t)−u (τ)| dτ
]m+1

dx

≤ m

m+ 1
δ−(m+1)/m ‖ut‖m+1

m+1

+
δm+1

m+ 1

(∫ t

0

g (τ) dτ
)m ∫

Ω

∫ t

0

g (t− τ) |u (t) − u (τ)|m+1
dτ dx

≤ m

m+ 1
δ−(m+1)/m ‖ut‖m+1

m+1

+
δm+1

m+ 1
(1−l)m

C∗
∫ t

0

g (t−τ) ‖∇u (t)−∇u (τ)‖m+1
2 dτ. (5.23)

It’s clear that by using (4.14) the last term in the right-hand side of (5.23) can
be estimated as follows∫ t

0

g (t− τ) ‖∇u (t) − ∇u (τ)‖m+1
2 dτ

≤
∫ t

0

g (t− τ) ‖∇u (t) − ∇u (τ)‖2
2 ‖∇u (t) − ∇u (τ)‖m−1

2 dτ

≤ C

(
2(ρ+ 2)
l (ρ+ 1)

E (0)
)(m−1)/2

(g ◦ ∇u) (t) . (5.24)

By combining (5.20)–(5.24), the assertion of Lemma 5.12 is established.
By repeating the same steps as in Lemma 5.12, we have the following result:
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Lemma 5.13. Suppose that (2.3), (2.4) and (5.1) hold. Let (u0, v0, u1, v1) ∈ H
be given satisfying (4.9). If (u, v) is the solution of (1.1a)–(1.1d), then the
functional

χ2 (t) = −
∫

Ω

vt

∫ t

0

h (t− τ) (v (t) − v (τ)) dτ dx (5.25)

satisfies, for any δ > 0,

χ′
2 (t) ≤

[(
2δ +

1
4δ

)
(1 − k) +

1 − k

4δ

+ C1

(
2(ρ+ 2)
k (ρ+ 1)

E (0)
)(r−1)/2

δr+1

r + 1
(1 − k)r

]
(h ◦ ∇v) (t)

+
(
2δ (1 − k)2 + δ

)
‖∇v‖2

2 +
(
δ −

∫ t

0

h (s) ds
)

‖vt‖2
2

− h (0)
4δ

C2
∗ (h′ ◦ ∇v) (t)

+
r

r + 1
δ−(r+1)/r ‖vt‖r+1

r+1

+
∫

Ω

f2 (u, v)
∫ t

0

h (t− τ) (v (t) − v (τ)) dτ dx.

Now, we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1. Since the functions g and h are non-negative, continu-
ous and g(0), h(0) > 0, then for any t ≥ t0 > 0, we have

∫ t

0

g (s) ds ≥
∫ t0

0

g (s) ds = g0,

∫ t

0

h (s) ds ≥
∫ t0

0

h (s) ds = h0.

From (4.4), (5.5), (5.12), (5.19) and (5.26) we have, for all t ≥ t0,

F ′ (t) ≤ −
[
ε2 {g0 − δ} − ε1

(
1 +

C∗
l

)]
‖ut‖2

2

−
[
ε2 {h0 − δ} − ε1

(
1 +

C∗
k

)]
‖vt‖2

2

+
{

1
2

−ε2 g (0)
4δ

C2
∗

}
(g′ ◦ ∇u) (t)

+
{

1
2

− ε2
h (0)
4δ

C2
∗

}
(h′ ◦ ∇v) (t)

−
[
ε1
l

4
− ε2δ

{
2 (1 − l)2 + 1

}]
‖∇u‖2

2

−
[
ε1
k

4
− ε2δ

{
2 (1 − k)2 + 1

}]
‖∇v‖2

2
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+
(
ε1

1 − l

2l
+ ε2α1

)
(g ◦ ∇u) (t) +

(
ε1

1 − k

2k
+ ε2α2

)
(h ◦ ∇v) (t)

+β1 (ε1, ε2) ‖ut‖m+1
m+1 + β2 (ε1, ε2) ‖vt‖r+1

r+1 + ε1

∫
Ω

F (u, v) dx

+ ε2

∫
Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

+ ε2

∫
Ω

f2 (u, v)
∫ t

0

h (t− τ) (v (t) − v (τ)) dτ dx, (5.26)

where

α1 =
(

2δ+
1
4δ

)
(1 − l)+

1 − l

4δ
+C1

(
2(ρ+2)
l (ρ+ 1)

E (0)
)(m−1)/2

δm+1

m+ 1
(1−l)m

,

α2 =
(

2δ +
1
4δ

)
(1 − k)+

1 − k

4δ
+C1

(
2(ρ+ 2)
k (ρ+ 1)

E (0)
)(r−1)/2

δr+1

r + 1
(1 − k)r

and

β1 (ε1, ε2) =
(
ε1

m

m+ 1
β

−(m+1)/m
1 + ε2

m

m+ 1
δ−(m+1)/m − 1

)
,

β2 (ε1, ε2) =
(
ε1

r

r + 1
β

−(r+1)/r
2 + ε2

r

r + 1
δ−(r+1)/r − 1

)
.

To estimate the last two terms in (5.26), we need the following lemma:

Lemma 5.14. Suppose that (2.3), (2.4) and (2.5) hold. Let (u0, v0, u1, v1) ∈ H
be given and satisfying (4.9). Then, if (u, v) is the solution of (1.1a)–(1.1d),
there exist two positive constant Λ3 and Λ4 such that for any δ > 0 and for all
t ≥ 0,

∫
Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx ≤ Λ3δ
(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)

+
(1 − l)C2

∗
4δ

(g ◦ ∇u) (t) (5.27)

and∫
Ω

f2 (u, v)
∫ t

0

h (t− τ) (v (t) − v (τ)) dτ dx ≤ Λ4δ
(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)

+
(1 − k)C2

∗
4δ

(h ◦ ∇v) (t). (5.28)

Proof. Using Young’s inequality, we obtain
∫

Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

≤ δ

(∫
Ω

|f1 (u, v)|2 dx
)

+
1
4δ

∫
Ω

(∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx
)2

dx.
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Application of (5.8) and (2.7) yields∫
Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

≤ Λ1δ
(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)2ρ+3

+
(1 − l)C2

∗
4δ

(g ◦ ∇u) (t) . (5.29)

By using (4.13), then inequality (5.29) takes the form∫
Ω

f1 (u, v)
∫ t

0

g (t− τ) (u (t) − u (τ)) dτ dx

≤Λ1

(
2(ρ+ 2)
ρ+ 1

E (0)
)2(ρ+1) (

l ‖∇u‖2
2 + k ‖∇v‖2

2

)
+

(1−l)C2
∗

4δ
(g ◦ ∇u) (t)

= Λ3

(
l ‖∇u‖2

2 + k ‖∇v‖2
2

)
+

(1 − l)C2
∗

4δ
(g ◦ ∇u) (t) , (5.30)

where

Λ3 = Λ1

(
2(ρ+ 2)
ρ+ 1

E (0)
)2(ρ+1)

.

Analogously, we obtain (5.28) with

Λ4 = Λ2

(
2(ρ+ 2)
ρ+ 1

E (0)
)2(ρ+1)

.

This completes the proof of Lemma 5.14.

Inserting estimates (5.27) and (5.28) into (5.26), we get

F ′ (t) ≤ −
[
ε2 (g0 − δ) − ε1

(
1 +

C∗
l

)]
‖ut‖2

2

−
[
ε2 (h0 − δ) − ε1

(
1 +

C∗
k

)]
‖vt‖2

2

+
{

1
2

− ε2
g (0)
4δ

C2
∗

}
(g′ ◦ ∇u) (t)

+
{

1
2

− ε2
h (0)
4δ

C2
∗

}
(h′ ◦ ∇v) (t)

−
[
ε1
l

4
− ε2δ

{
2 (1 − l)2 + 1 + Λ3l + Λ4l

}]
‖∇u‖2

2

−
[
ε1
k

4
− ε2δ

{
2 (1 − k)2 + 1 + Λ4k + Λ3k

}]
‖∇v‖2

2

+
(
ε1

1 − l

2l
+ ε2

(
α1 +

(1 − l)C2
∗

4δ

))
(g ◦ ∇u) (t)

+
(
ε1

1 − k

2k
+ ε2

(
α2 +

(1 − k)C2
∗

4δ

))
(h ◦ ∇v) (t)

+β1 (ε1, ε2) ‖ut‖m+1
m+1 + β2 (ε1, ε2) ‖vt‖r+1

r+1 + ε1

∫
Ω

F (u, v) dx. (5.31)
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At this point, we choose δ small enough so that

δ ≤ 1
2

min (h0, g0)

and ⎧⎪⎨
⎪⎩

4
l
δ
(
2 (1 − l)2 + 1 + Λ3l + Λ4l

)
< 1

4(1+ C∗
l )g0

4
k
δ
(
2 (1 − k)2 + 1 + Λ4k + Λ3k

)
< 1

4(1+ C∗
k )h0

.

Once δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying⎧⎪⎪⎨
⎪⎪⎩

1
4
(
1 + C∗

l

)g0ε2 < ε1 <
1

2
(
1 + C∗

l

)g0ε2
1

4
(
1 + C∗

k

)h0ε2 < ε1 <
1

2
(
1 + C∗

k

)h0ε2
(5.32)

will make

k1 = ε2 (g0 − δ) − ε1

(
1 +

C∗
l

)
> 0,

k2 = ε2 (h0 − δ) − ε1

(
1 +

C∗
k

)
> 0,

k3 = ε1
l

4
− ε2δ

{
2 (1 − l)2 + 1 + Λ3l + Λ4l

}
> 0,

k4 = ε1
k

4
− ε2δ

{
2 (1 − k)2 + 1 + Λ4k + Λ3k

}
> 0.

We then pick ε1 and ε2 so small that (5.10) and (5.32) remain valid and further

k5 =
1
2

− ε2
g (0)
4δ

C2
∗ > 0, k6 =

1
2

− ε2
h (0)
4δ

C2
∗ > 0

and

β1 (ε1, ε2) < 0, β2 (ε1, ε2) < 0.

Therefore, there exist two positive constants γ1 and γ2 such that

F ′ (t) ≤ −γ1E (t) + γ2 [(g ◦ ∇u) (t) + (h ◦ ∇v) (t)] , ∀t ≥ t0. (5.33)

Now, for all t ≥ 0, let ξ(t) = min(ξ1(t), ξ2(t)).
By multiplying (5.33) by ξ(t) we arrive at

ξ (t) F ′ (t) ≤ −γ1ξ (t)E (t) + γ2ξ (t) [(g ◦ ∇u) (t) + (h ◦ ∇v) (t)] , ∀t ≥ t0.

Recalling (5.1) and using (4.4), we get

ξ (t)F ′ (t) ≤ −γ1ξ (t)E (t) − γ2 [(g′ ◦ ∇u) (t) + (h′ ◦ ∇v) (t)] ,
≤ −γ1ξ (t)E (t) − 2γ2E

′ (t) , ∀t ≥ t0.

That is

(ξ (t) F (t) + 2γ2E (t))′ − ξ′ (t) F (t) ≤ −γ1ξ (t)E (t) , ∀ a.e t ≥ t0.

By using (5.10), the fact that ξ′ (t) ≤ 0 for a.e t ≥ t0 and ξ > 0 and letting

L (t) = ξ (t)F (t) + 2γ2E (t) ∼ E (t) (5.34)
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we obtain, for some λ > 0

L ′ (t) ≤ −γ1ξ (t)E (t) ≤ −λξ (t) L (t) , ∀ a.e t ≥ t0 (5.35)

A simple integration of (5.35) over (t0, t) leads to

L (t) ≤ L (t0) e
−λ

∫ t
t0

ξ(s) ds
, ∀t ≥ t0. (5.36)

A combination of (5.34) and (5.36) leads to (5.3). The proof of Theorem 5.1
is thus completed.

Remark 5.15. Estimate (5.3) holds for all t ≥ 0 by virtue of continuity and
boundedness of E and ξ.

Remark 5.16. Our approach here allows us to weaken some of the technical
assumptions of [6,7], for convolution kernels. We only need g and h to be
differentiable satisfying (2.3) and (2.4).

Remark 5.17. One can easily generalize the results of this paper to the follow-
ing system:

|ut|i utt−Δu−Δutt+
∫ t

0

g (t−s) Δu (x, s) ds+|ut|m−1ut = f1(u, v),

(5.37a)

|vt|j vtt−Δv−Δvtt+
∫ t

0

h (t−s) Δv (x, s) ds+ |vt|r−1ut =f2(u, v),

(5.37b)

with the initial conditions (1.1c) and the boundary conditions (1.1d ), and in
this case the result obtained in [15] will be only a particular case.

Remark 5.18. The results of this paper hold also if we consider two past
history controls in (1.1a) and (1.1b); that is the integral

∫ t

0
is replaced by∫ t

−∞, where the functions g and h satisfy in this case the condition (5.1) with
ξ1(t) = a1g

p1−1(t) and ξ2(t) = a2h
p2−1(t) with ai > 0 and pi ∈ [1, 3/2), that

is

g′ ≤ −a1g
p1 and h′ ≤ −a2h

p2 . (5.38)

We can also consider the case of mixed memory-past history controls, that
is

∫ t

0
is replaced by

∫ t

−∞ only in (1.1a) and (5.37a). We also point out that
kernels satisfying (5.38) has been considered by Messaoudi and Said-Houari
[19] for Timoshenko systems. Recently, the assumption (5.38) has been further
weakened by Guesmia [12], where he studied an abstract hyperbolic system
with past history.
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