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We study the issue of integration with respect to the non-commutative fractional Brownian
motion, that is the analog of the standard fractional Brownian motion in a non-commutative
probability setting.

When the Hurst index H of the process is stricly larger than 1/2, integration can be handled
through the so-called Young procedure. The situation where H = 1/2 corresponds to the specific
free case, for which an Itô-type approach is known to be possible.

When H < 1/2, rough-path-type techniques must come into the picture, which, from a
theoretical point of view, involves the use of some a-priori-defined Lévy area process. We show
that such an object can indeed be “canonically” constructed for any H ∈ ( 1

4 ,
1
2 ). Finally, when

H ≤ 1/4, we exhibit a similar non-convergence phenomenon as for the non-diagonal entries of
the (classical) Lévy area above the standard fractional Brownian motion.

Keywords: non-commutative stochastic calculus, non-commutative fractional Brownian motion,
integration theory.

1. Introduction: the non-commutative fractional
Brownian motion

In classical probability theory, the fractional Brownian motion (fBm in the sequel) is
considered as one of the most natural extensions of the standard Wiener process. From
a modelling point of view, fractional noises offer the possibility to account for long-range
dependency phenomenon, which easily explains their large success in various domains
ranging from biological sciences to mathematical finance. The literature related to fBm
now comprises thousands of publications, and we will only refer here to the nice survey
[14], which offers an overview on some of the most interesting aspects of this specific
Gaussian process.

Unfortunately, when it comes to stochastic integration, the long-range dependence
of the fBm turns into a major drawback and is known to be the source of important
difficulties. In particular, fBm does not satisfy the martingale property, which rules out
the possibility to use Itô theory as a way to investigate the integration problem. More
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or less sophisticated alternative procedures must then come into the picture, based on
either a “stochastic” approach (Malliavin calculus, Skorohod integral) or a “pathwise”
strategy (Young integral, rough paths theory). Here again, any attempt to draw up an
exhaustive list of the publications related to the fractional integration issue would be
vain, and we will only quote the recent survey [8] about pathwise methods - the most
efficient approach so far.

In this first section, and as an introduction to the subsequent investigations, we pro-
pose to recall that the above fundamental objects (Wiener process, fBm, Gaussian pro-
cesses) all admit immediate analogs in the so-called non-commutative probability setting,
the main framework of our study. Let us first recall, at a very general level, that non-
commutative probability theory has received a lot of attention since the late 80’s and the
pathbreaking results of Voiculescu on large random matrices [18]. Based on Voiculescu’s
results (together with subsequent extensions), the non-commutative paradigm can some-
how be seen as a privileged formalism to study the asymptotic behaviour of standard
classes of random matrices growing to infinity.

The rigourous presentation of this setting - which will prevail throughout the study -
goes as follows, along the terminology of [13]:

Definition 1.1. We call a non-commutative probability space any pair (A, ϕ) where:

(i) A is a unital algebra over C endowed with an antilinear ∗-operation X 7→ X∗ such
that (X∗)∗ = X and (XY )∗ = Y ∗X∗ for all X,Y ∈ A. In addition, there exists a norm
‖.‖ : A → [0,∞[ which makes A a Banach space, and such that for all X,Y ∈ A,
‖XY ‖ ≤ ‖X‖‖Y ‖ and ‖X∗X‖ = ‖X‖2.

(ii) ϕ : A → C is a linear functional such that ϕ(1) = 1, ϕ(XY ) = ϕ(Y X), ϕ(X∗X) ≥ 0
for all X,Y ∈ A, and ϕ(X∗X) = 0⇔ X = 0. We call ϕ the trace of the space.

In this setting, we will call any element X ∈ A a non-commutative random variable,
and any path X. : [0, T ]→ A a non-commutative process.

A fundamental feature of any such non-commutative probability space lies in the close
(hidden) link between the norm ‖.‖ in item (i) and the trace ϕ in item (ii). Namely, for
any X ∈ A, it can be shown on the one hand (see [13, Proposition 3.8]) that

|ϕ(X)| ≤ ‖X‖ , (1)

and, even more strikingly, one has (see [13, Proposition 3.17])

‖X‖ := lim
r→∞

ϕ
((
XX∗

)r) 1
2r . (2)

Thus, the trace ϕ can somehow be seen as the “expectation” in this setting and, along
this analogy, the norm in A can then be recovered as the “L∞-norm”. Besides, using
standard spectral properties, we can provide some partial correspondance between the
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non-commutative framework and more classical probabilistic objects: namely, with any
self-adjoint element X ∈ A, we can associate a unique probability measure νX (called
the law of X) such that for every k ≥ 0,

ϕ
(
Xk
)

=
∫
R
xkνX(dx) . (3)

Note that due to the (possible) non-commutativity of A, there is no hope to raise
such a correspondance at the level of vectors (or processes), and to associate any non-
commutative random vector (X1, . . . , Xd) with a measure on Rd. Instead, we consider
that the “stochastic” dynamics of a given family {Xi}i∈I of non-commutative random
variables is fully characterized by the set of its joint moments

ϕ
(
Xi1 · · ·Xir

)
, r ≥ 1 , i1, . . . , ir ∈ I .

With these preliminaries in mind, let us turn to the presentation of the non-commutative
process at the center of our study: the non-commutative fractional Brownian motion (NC-
fBm in the sequel). Just as the standard fBm is an example of a Gaussian process, the
NC-fBm is part of a well-identified and important class of non-commutative processes,
the so-called semicircular processes. For a clear description of this family, let us introduce
the following notation, borrowed from [13], and that we will extensively use in our study:

Notation 1.2. Given elements X1, . . . , X2m ∈ A and a pairing π of {1, . . . , 2m} (that
is, a partition of {1, . . . , 2m} into m disjoint subsets, each of cardinality 2), we set

κπ
(
X1, . . . , X2m

)
:=

∏
{p,q}∈π

ϕ
(
XpXq

)
. (4)

Also, we denote by NC2({1, . . . , 2m}) or NC2(2m) the subset of non-crossing pairings
of {1, . . . , 2m}, that is the subset of pairings π of {1, . . . , 2m} for which there are no
elements {p1, q1}, {p2, q2} ∈ π with p1 < p2 < q1 < q2.

Definition 1.3. With the above notation, we call a (centered) semicircular family in a
non-commutative probability space (A, ϕ) any collection {Xi}i∈I of self-adjoint elements
in A such that, for every even integer r ≥1 and all i1, . . . , ir ∈ I, one has

ϕ
(
Xi1 · · ·Xir

)
=

∑
π∈NC2({1,...,r})

κπ
(
Xi1 , . . . , Xir

)
, (5)

and ϕ
(
Xi1 · · ·Xir

)
= 0 whenever r is an odd integer.

The law of a semicircular family (i.e., the set of its joint moments) is thus governed
by what can be seen as a “non-commutative Wick formula”, obtained by restricting the
usual sum to the sole non-crossing pairings. In particular, this law is fully determined by
the set of the covariances {ϕ(XiXj), i, j ∈ I} of the family.
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It is worth mentioning here that this analogy with the classical Gaussian processes
extends through a fundamental central-limit property. In brief, semicircular families also
appear as the universal limit (in the sense of the joint moments) of the renormalized sum
of a sequence of “independent” NC-random families, where the notion of independence
must be understood in some specific sense, the so-called free sense (see [13, Theorem
8.17] for a complete statement).

As an immediate consequence of Definition 1.3 (and as an additional similarity with
the Gaussian model), observe that the semicircular property is stable through linear real
transformations. Let us label this elementary result for further reference:

Lemma 1.4. Let (X1, . . . , Xk), k ≥ 1, be a semicircular vector and M a k × `-matrix
(` ≥ 1) with real entries. Then Y := MX is a semicircular vector as well.

It is also worth recalling for the non-expert reader that the semicircular property is
named after the probability distribution it generates, when considering single random
variables:

Lemma 1.5. The law νX (in the sense of (3)) of a semicircular random variable X
is the semicircular distribution of variance σ2 := ϕ(X2), that is νX is the probability
measure with density given by

pσ2(x) := 1
2πσ2

√
4σ2 − x2 1{|x|≤2σ} .

Here is finally the definition of the process (or rather the family of processes) at the
center of our study:

Definition 1.6. In a NC-probability space (A, ϕ), and for every H ∈ (0, 1), we call a
non-commutative fractional Brownian motion (NC-fBm) of Hurst index H any semicir-
cular family {Xt}t≥0 in (A, ϕ) with covariance function given by the formula

ϕ
(
XsXt

)
= 1

2
{
s2H + t2H − |t− s|2H

}
. (6)

In particular, for every t ≥ 0, Xt is distributed along the semicircular distribution of
variance t2H .

This definition should of course not be a surprise to any reader familiar with the
definition of the standard fBm (in the classical setting). Formula (6) is indeed nothing
but the covariance function of the latter process. Lifting the formula to the level of the
processes (using (5)) gives rise to very different dynamics though, as can immediately be
seen from Lemma 1.5.

Note that for every fixed Hurst index H ∈ (0, 1), the existence of such a NC-fBm
in some NC-probability space (A, ϕ) follows (for instance) from the general semicircular
constructions of [2] in the free Fock space.
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Integration with respect to the NC-fBm 5

Just as in the classical setting, the situation where H = 1
2 is very specific: the result-

ing non-commutative process here corresponds to the celebrated free Brownian motion,
that is the non-commutative counterpart of the standard Wiener process. In this case,
the disjoint increments of X are known to satisfy the above-mentioned free indepen-
dence property, a powerful tool at the very core of the results of [1] on non-commutative
stochastic integration (see Section 2.4 below for a few additional comments on this situ-
ation).

Unfortunately, as soon as H 6= 1
2 - which is the condition we have in mind here -, it can

be shown that the disjoint increments of the NC-fBm are no longer freely independent.
Free independence will thus not play any role in our analysis, and for this reason, we
refrain from giving the exact definition of this property.

Before going further with the integration problem, let us mention the fact that this
is not the first occurrence of the process in the literature. In [15], Nourdin and Taqqu
have shown that the NC-fBm arises as the limit of natural sums constructed from a
given stationary semicircular process. For the sake of conciseness, we cannot give a full
account on their results (which rely in particular on the consideration of the Tchebycheff
polynomials), but let us report the following simplified statement as an illustration of
such asymptotic properties:

Proposition 1.7. [14, Proposition 8.3] In a NC-probability space (A, ϕ), let (Uk)k≥1 be
a semicircular sequence such that ϕ(Uk) = 0, ϕ(U2

k ) = 1 and with stationary covariance
(i.e., ϕ(XkX`) = ρ(k − `)) satisfying

n∑
k,`=1

ρ(k − `) ∼ Cn2HL(n) as n→∞ ,

where C is a constant and L : (0,∞)→ (0,∞) is a function that slowly varies at infinity,
i.e. L(ct)/L(t) t→∞→ 1 for any constant c > 0. Then, as n→∞,

V (n)
. := 1

nH
√
L(n)

bn.c∑
k=1

Uk → X. ,

where (Xt)t≥0 is a NC-fractional Brownian motion of Hurst index H. To be more specific,
for all times t1, . . . , tk ≥ 0, one has ϕ

(
V

(n)
t1 · · ·V

(n)
tk

)
→ ϕ

(
Xt1 · · ·Xtk

)
as n→∞.

The NC-fBm also appeared more recently through the following result on a possible
link between the law of the process and the asymptotic spectral behaviour of growing
fractional matrices (keep in mind, however, that the correspondance between NC-fBm
and large random matrices is a much less understood topic than in the free situation):

Proposition 1.8. [17, Theorem 1] In a classical probability space, consider a collection

{B(n)(i, j); n ≥ 1 , 1 ≤ i ≤ j ≤ n}
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of independent fractional Brownian motions with common Hurst index H > 1
2 , and define

the sequence of symmetric random matrices (M (n))n≥1 along the formula

M
(n)
t (i, j) = B

(n)
t (i, j)√

n
for 1 ≤ i < j ≤ n , M

(n)
t (i, i) =

√
2B(n)

t (i, i)√
n

.

Denote by {λ(n)
1 ≤ . . . ≤ λ

(n)
n }n≥1 the corresponding random sequence of eigenvalues,

and set µ(n)
t := 1

n

∑n
i=0 δλ(n)

i

. Then, for every continuous function f : R→ R and every
t ≥ 0, one has a.s. ∫

R
f(x)µ(n)

t (dx) n→∞−→
∫
R
f(x)µt(dx) ,

where µt stands for the semicircular distribution of mean 0 and variance t2H (see Lemma
1.5).

In the present study, we propose to go ahead with the analysis of the properties of the
NC-fBm by adressing another natural question, namely: how to integrate with respect
to this process?

Let us slightly specialize the problem by taking account of the algebra setting. Given
a NC-fBm {Xt}t∈[0,1] in a NC-probability space (A, ϕ) (with a given Hurst index H ∈
(0, 1)) and two paths Y,Z : [0, 1] → A (in a class to be determined), we are looking for
a natural interpretation of the integral∫ t

s

YudXuZu , s, t ≥ 0 , (7)

that would (for instance) extend the existing constructions in the specific free caseH = 1
2 .

In order to achieve this goal (at least to some extent), and in the continuation of
the analysis developed in [4, 5], our strategy will rely on an adaptation of the so-called
“pathwise” methods which have been successfully used in the classical setting to handle
integration with respect to the standard fractional Brownian ([3, 9]). We will thus see
how to combine this approach (whether Young integration or rough paths theory) with
the specific topological features of the algebra setting under consideration.

Let us recall, at a very general level, that the “pathwise” methods are based on a
subtle analysis of the local dynamics of the paths under consideration. In particular, the
construction of the integral depends in an essential way on the local Hölder regularity of
these paths, which, just as in the classical setting, will here be governed by the value of
the Hurst index H (see Lemma 2.1 below). Thus, the smaller H, the rougher the process
and the more sophisticated the integration procedure. As a particular consequence of
this increasing difficulty (as H decreases to 0), the conditions on the integrands Y, Z
in (7) need to be more and more restrictive (at least along the pathwise approach), a
phenomenon which can already be observed in the commutative situation. In brief, and
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slightly anticipating the subsequent results, our analysis can cover the case of general
H-Hölder paths Y, Z when H > 1

2 (see Proposition 2.5 and the comments that follow
it), while for H < 1

2 , we will only focus on polynomial expressions of X, that is Yt =
P (Xt), Zt = Q(Xt) for polynomials P,Q (see Section 2.1 and Section 2.7.1 for additional
comments about this restriction). Let us here recall that the case H = 1

2 is extremely
specific in this context (see Section 2.4).

Our results regarding the construction of the integral and its properties will be gathered
in Section 2. Note that, for the sake of conciseness, we have postponed the proof of our
main technical result, namely Proposition 2.8 (about the existence of some “Lévy area”),
to the supplemental paper [6]. Finally, Section 3 is devoted to the details of the proof
of our second main technical result (Proposition 2.11), showing the divergence of the
(product) Lévy area, and accordingly the failure of the procedure, when H ≤ 1

4 .

As a conclusion to this introduction, we would like to emphasize the particular position
of our study, at the crossroads of two theories (with a priori distinct related “communi-
ties”): non-commutative probability theory and rough paths theory. In this context, and
even if our analysis deeply leans on the combination of the two theories, let us point out
a few specific aspects of our results that might be of special interest to each “audience”:

(i) From a rough-path-expert’s perspective. In the course of the analysis, and more pre-
cisely when H < 1

2 , we will be led to involve a fundamental second-order path into the
procedure, which will play the role of a “Lévy area” in this setting (such a consideration
should not be a surprise to any rough-path user). This object morally corresponds (at
least in a simplified version, see Section 2.5) to the product iterated integral∫ t

s

{Xu −Xs}dXu , (8)

provided we can give a sense to this integral. In the commutative setting, i.e. when
A = R and X = x is a one-dimensional fractional Brownian, the interpretation can be
immediately derived from the (formal) integration formula∫ t

s

{xu − xs}dxu = 1
2{xt − xs}

2 , (9)

which indeed yields a suitable definition for this object, for any H ∈ (0, 1). In the general
non-commutative setting, the corresponding integration formula reads (still formally) as∫ t

s

{Xu −Xs}dXu = {Xt −Xs}2 −
∫ t

s

dXu{Xu −Xs} , (10)

but there is no reason anymore for the two integrals in (10) to be equal, which of course
scuttles the simplification procedure. The situation here is somehow analog to the case
of the non-diagonal entries of the classical Lévy-area matrix above a standard multidi-
mensional fBm, and in fact, we will observe a similar breaking phenomenon when letting
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the Hurst index H decrease from 1 to 0: when H > 1
4 , we can indeed define (8) through

a natural approximation procedure (Proposition 2.8), while for H ≤ 1
4 , the very same

approximation fails to converge (Proposition 2.11). Note however that this change of
regime and this similarity with the standard multidimensional fBm are not behaviours
we could have readily expected, because the two objects (the product integral (8) and
the non-diagonal entries of the classical fractional Lévy area) are not exactly of the same
nature.

(ii) From a non-commutative-expert’s perspective. To the best of our knowledge, stochas-
tic integration in the non-commutative setting is so far limited to the sole free Brownian
case (or its q-extension, see Section 2.7.3 below), where it can be seen as the direct coun-
terpart of Itô’s construction. Thus, even if essentially restricted to polynomial integrands,
our construction offers a new and clearly non-trivial example of an integral driven by an
irregular non-commutative process. In particular, the pathwise methods will allow us
to go beyond the “free independence” condition, just as they allow to go beyond the
martingale framework in the classical setting. Besides, as we will see in Remark 2.7, the
study of the (simplified) product Lévy area (8) happens to be closely related to the be-
haviour of the commutator

[
Xs, Xt

]
:= XsXt − XtXs, as s, t are getting close to each

other (a property which, to some extent, can be guessed from (10)). Accordingly, through
the integration issue, we will also be led to test the “local commutation default” of the
process and offer another interesting interpretation of the above-mentionned change of
regime: in brief, when H ≤ 1

4 , the NC-fBm becomes “too non-commutative” for the sum∑
(ti)
[
Xti , Xti+1

]
of local commutators to converge in A (as the mesh of the subdivision

(ti) tends to 0).

As far as the presentation of our results is concerned, please note our intention to make
the subsequent analysis easily accessible to both the rough-path and the non-commutative
“communities”. For this reason, we have endeavored to make the study as self-contained
as possible.

Acknowledgements. We are deeply grateful to two anonymous referees for their
careful reading and their enthusiastic comments about our study. We also thank them
for their few recommendations, that have led to significant improvements in the paper.

2. Integration with respect to the NC-fractional
Brownian motion

This section accounts for our main results, along the following organization. First, we
will specify our aims and expectations regarding the construction of the integral, and
recall some basic technical tools from pathwise integration theory. Then we will turn to
the definition of the integral, depending on the Hurst index H of the process: Young-type
construction when H > 1

2 , Itô-type (or Stratonovich-type) construction when H = 1
2 ,
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rough-path-type construction when H < 1
2 . Finally, we will point out some possible

extensions and some limits of our approach.

From now on and for the rest of the section, we fix a NC-probability space (A, ϕ) and
consider a NC-fBm {Xt}t≥0 of Hurst index H ∈ (0, 1) on this space. Besides, for more
simplicity, we will restrict the subsequent considerations and constructions to the time
interval [0, 1], but the results could be readily extended to any interval [0, T ], T > 0.

2.1. Objectives

It is a well-known and natural fact that the difficulty in constructing an integral is often
correlated with the “roughness” of its driving path. In the case of the NC-fBm, and just
as in the case of the standard fBm, we can easily quantify this (ir)regularity along the
classical Hölder scale:

Lemma 2.1. For all 0 ≤ s ≤ t ≤ 1, it holds that

‖Xt −Xs‖ = 2 |t− s|H . (11)

Proof. This is an elementary argument, but we provide it for the non-initiated reader
as an illustration of the specific topological property (2). Observe indeed that, combining
(5) and (6), one has immediately, for all 0 ≤ s ≤ t ≤ 1 and r ≥ 1,

ϕ
(
(Xt −Xs)2r) = |NC2(2r)|ϕ

(
(Xt −Xs)2)r = |NC2(2r)| |t− s|2Hr .

Now recall that the cardinal |NC2(2r)| of the set of the non-crossing pairings of {1, . . . , 2r}
is given by the r-th Catalan number, whose asymptotic behaviour is well-known and
yields |NC2(2r)|1/(2r) → 2 as r → ∞. We are therefore in a position to apply (2) and
derive (11).

Going back to the above discussion, and with property (11) in hand, we can thus
expect the analysis to obey the following general principles: the smaller H, the more
irregular the process and the more difficult the construction. In fact, as a lesson from the
pathwise approach in the classical probability setting, we can expect the most serious
difficulties (and accordingly the most interesting problems) to arise as soon as H ≤ 1

2 .
In order to be able to go below this fundamental 1

2 threshold, we will restrict our
attention to a relatively simple class of integrands Y,Z in (7), namely polynomial func-
tions of X, which obviously makes sense in this algebra setting. Let us therefore rephrase
our objective as follows: given two polynomials P,Q, how to “naturally” and “efficiently”
define the integral ∫ t

s

P (Xu)dXuQ(Xu) , 0 ≤ s ≤ t ≤ 1 ? (12)

Note that, even if restricted to polynomial integrands, this question remains far from
trivial. Consider for instance the case of the elementary integral

∫ t
s
Xu dXu. Following
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the standard Lebesgue (or Stieltjes) procedure, we could be tempted to define this object
as the limit of the Riemann sums

∑
(ti)∈∆s,t

Xti{Xti+1 −Xti}, for any subdivision ∆s,t

of [s, t] whose mesh tends to 0. And yet, taking e.g. the basic sequence tni := i
n , it can

be checked from (6) that, just as in the commutative case,

ϕ
( n−1∑
i=0

Xti{Xti+1 −Xti}
)

= 1
2(1− n1−2H) , (13)

which tends to infinity as soon as H < 1
2 , ruling out the standard Stieltjes procedure as

a general way to define the integral in (12).

Before we turn to the presentation of our results, let us slightly elaborate on the few
specifications we shall keep in mind regarding the desired integral, for a both natural
and efficient definition:

(a) We would like this interpretation to be relatively “intrinsic”, that is to depend on
X only, and not on some approximation of the process or some particular sequence of
subdivisions of the time interval.

(b) We expect the resulting integral to obey natural differentiation rules, such that for
instance

X2
t −X2

s =
∫ t

s

Xu dXu +
∫ t

s

dXuXu ,

or analog Itô-type formulas.

(c) As far as possible, we would like the construction to appear as the limit of the standard
(Lebesgue) construction, and the integral in (12) to appear as the limit of the standard
(Lebesgue) integral ∫ t

s

P (X(n)
u )dX(n)

u Q(X(n)
u ) ,

where X(n) is a sequence of smooth paths that converges to X as n → ∞. For a clear
expression of this robustness (or Wong-Zakaï-type) property, we will refer in the sequel
to the “canonical” sequence derived from the linear interpolation of X along the dyadic
subdivision of [0, 1]. Thus, for the rest of the section, we set tni := i

2n (i = 0, . . . , 2n) and
denote by {X(n)

t }n≥0,t∈[0,T ] the sequence defined as

X
(0)
t = tX1 , X

(n)
t := Xtn

i
+ 2n(t− tni ){Xtn

i+1
−Xtn

i
} for n ≥ 1 and t ∈ [tni , tni+1] .

(14)
Observe that the convergence of X(n) to X is a straightforward consequence of the H-
Hölder regularity of X. Using (11), we get more precisely:

Lemma 2.2. For all n ≥ 0, ε ∈ (0, H) and 0 ≤ s ≤ t ≤ 1, it holds that

‖X(n)
t −X(n)

s ‖ ≤ 6|t−s|H and ‖(X(n)−X)t−(X(n)−X)s‖ ≤ 8|t−s|H−ε2−nε . (15)
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Now, as a preliminary step of our construction strategy, we need to remind the reader
of a few elementary results from pathwise integration theory, as developed in [11], and
that we directly specialize to the algebra A under consideration.

2.2. Technical tools from pathwise integration theory

For k ∈ {1, 2, 3}, we set Sk := {(t1, . . . , tk) ∈ [0, 1]k : t1 ≤ . . . ≤ tk} and denote
by Ck([0, 1];A) the set of continuous maps g : Sk → A vanishing on diagonals (i.e.,
gt1...tk = 0 when two times ti, tj with i 6= j are equal).

Then we define the increment operator δ through the formulas: for g : [0, 1] → A,
(δg)st := gt − gs (0 ≤ s ≤ t ≤ 1), while for h : S2 → A, (δh)sut := hst − hsu − hut
(0 ≤ s ≤ u ≤ t ≤ 1).

The two basic results at the core of pathwise integration theory can now be stated as
follows:

Lemma 2.3. Let h : S2 → A be a map such that for all 0 ≤ s ≤ u ≤ t ≤ 1, (δh)sut = 0.
Then there exists a path g : [0, 1]→ A such that h = δg.

Lemma 2.4 (Sewing lemma [11]). Let h : S3 → A be a map in Im δ (i.e. h = δg for
g : S2 → A) such that for all 0 ≤ s ≤ u ≤ t ≤ 1,

‖hsut‖ ≤ Ch |t− s|µ ,

for some constant Ch > 0 and some parameter µ > 1. Then there exists a unique element
Λh : S2 → A such that δ(Λh) = h and, for all 0 ≤ s ≤ t ≤ 1,

‖(Λh)st‖ ≤ cµCh |t− s|µ, (16)

where cµ := 2 + 2µ
∑∞
k=1 k

−µ.

In order to efficiently combine these two lemmas within an integration procedure, we
will also need the integrands (and their expansions) to satisfy suitable estimates. In the
polynomial setting we restrict to, such estimates can be easily verified, but let us label
them for further reference.

At first order, one has trivially, for every polynomial P and all U, V ∈ A,∥∥P (V )− P (U)
∥∥ ≤ cP (1 + ‖U‖+ ‖V ‖

)p−1‖V − U‖ . (17)

For a convenient expression of the corresponding second-order bound, let us introduce
the following additional notations, borrowed from [1], and that we will also use in our
forthcoming expansions (see for instance (31)). First, for all U, V, Y ∈ A, we set

(U ⊗ V )]Y = Y ](U ⊗ V ) := UY V . (18)
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12 A. Deya and R. Schott

Then, given a polynomial function P (x) :=
∑p
k=0 ai x

i and an element U ∈ A, the tensor
derivative of P (at U) is the element of the algebraic tensor product A⊗A defined as

∂P (U) :=
p∑
k=1

ak

k−1∑
i=0

U i ⊗ Uk−1−i .

Combining these two notations, the second-order control we shall rely on in the sequel
can be written as∥∥P (V )− P (U)− ∂P (U)]{V − U}

∥∥ ≤ cP (1 + ‖U‖+ ‖V ‖
)p−2‖V − U‖2 . (19)

This is of course nothing but a basic application of the classical Taylor estimates (in a
normed algebra setting).

2.3. The case H > 1
2 : Young integral

We can finally start off our construction strategy, by focusing first on the situation where
the Hurst index H of the process is strictly larger than 1

2 . Still keeping property (11) in
mind, we are thus dealing here with a “not too rough” process. In fact, this situation
could be encompassed within the general framework of the so-called Young integration
theory, that springs from the seminal paper [19] and readily extends the classical Stieltjes
interpretation (see also [12] for a thorough account on the related results, in a general
Banach space). Nevertheless, for the sake of completeness, and also as a way to set the
stage for the rougher situations, we prefer to give a full treatment of the problem in
the specific setting we are interested in. In addition, these few details on the “Young”
situation will allow us to provide the non-initiated reader with a first example of the
possibilities offered by the two Lemmas 2.3 and 2.4.

Our main result here reads as follows (let us recall that X(n) stands for the approx-
imation of X defined through (14), and that any integral driven by X(n) is interpreted
in the classical Lebesgue sense):

Proposition 2.5. Assume that H > 1
2 . Then, for all polynomials P,Q, all times 0 ≤

s ≤ t ≤ 1 and every subdivision ∆st = {t0 = s < t1 < . . . < t` = t} of [s, t] with mesh
|∆st| tending to 0, the Riemann sum∑

ti∈∆st

P (Xti)δXtiti+1Q(Xti) (20)

converges in A as |∆st| → 0. The limit provides us with a natural interpretation of the
integral

∫ t
s
P (Xu)dXuQ(Xu), and is such that for all n ≥ 0 and ε ∈ [0, 2H − 1),∥∥∥∥∫ t

s

P (X(n)
u )dX(n)

u Q(X(n)
u )−

∫ t

s

P (Xu)dXuQ(Xu)
∥∥∥∥ ≤ cH,P,Q,ε|t− s|H−ε2−nε , (21)
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Integration with respect to the NC-fBm 13

for some constant cH,P,Q,ε > 0. As a result, one has, based on this interpretation,

δP (X)st =
∫ t

s

∂P (Xu)]dXu . (22)

Proof. Set Mst := P (Xs)δXstQ(Xs), and for all 0 ≤ s ≤ u ≤ t ≤ 1, expand the
increment δMsut as

δMsut = −δP (X)suδXutQ(Xs)− P (Xu)δXutδQ(X)su , (23)

so that, combining (11) and (17) , we immediately obtain ‖δMsut

∥∥ ≤ c |t − s|2H . Since
2H > 1, we are in a position to apply the sewing application Λ (defined in Lemma 2.4) to
δM , and using Lemma 2.3, we can then guarantee the existence of a path J : [0, 1]→ A
such that δJst = Mst−Λ(δM)st for all 0 ≤ s ≤ t ≤ 1. As a straigthforward consequence,
one has ∑

ti∈∆st

Mtiti+1 = δJst +
∑
ti∈∆st

Λ(δM)titi+1 ,

with
∥∥∑

ti∈∆st
Λ(δM)titi+1

∥∥ ≤ c
∑
ti∈Dst |ti+1 − ti|2H → 0 as |∆st| → 0, yielding the

first convergence result, as well as the identity∫ t

s

P (Xu)dXuQ(Xu) = δJst = Mst − Λ(δM)st . (24)

The argument towards (21) then goes as follows. First, observe that the above proce-
dure can be applied to the approximation X(n) as well, providing a similar decomposition
for the limit of the corresponding sum

∑
ti∈∆st

M
(n)
titi+1

. Besides, as we are here dealing
with a smooth path (for fixed n), this limit is known to coincide with the classical
Lebesgue integral, and we thus obtain the identity∫ t

s

P (X(n)
u ) dX(n)

u Q(X(n)
u ) = M

(n)
st − Λ

(
δM (n))

st
, M

(n)
st := P (X(n)

s )δX(n)
st Q(X(n)

s ) .

(25)
In order to compare the two integrals in (24) and (25), it now suffices to control the two
differences M −M (n) and Λ(δM)− Λ(δM (n)). The first control is an immediate conse-
quence of (15), which gives the expected bound

∥∥Mst−M (n)
st

∥∥ ≤ cH,P,Q,ε|t− s|H−ε2−nε.
The second control leans on both (15) and the continuity of Λ: one has first, with expan-
sion (23) in mind, ∥∥δMsut − δM (n)

sut

∥∥ ≤ cH,P,Q,ε|t− s|2H−ε2−nε ,
and by applying Lemma 2.4 we get that

∥∥Λ(δM)st−Λ(δM (n))st
∥∥ ≤ cH,P,Q,ε|t−s|2H−ε2−nε,

which achieves the proof of (21).

Finally, (22) is just a consequence of (21), since the latter convergence property allows
us to pass to the limit in the classical differentiation rule δP (X(n))st =

∫ t
s
∂P (X(n)

u )]dX(n)
u .
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14 A. Deya and R. Schott

The resulting “Young” integral
∫ t
s
P (Xu)dXuQ(Xu) thus satisfies the three (moral)

requirements (a)-(b)-(c) raised in Section 2.1. In fact, it should be clear to the reader that
the above procedure could be readily extended to handle the general integral

∫ t
s
YudXuZu,

where Y : [0, 1]→ A, resp. Z : [0, 1]→ A, is a γ-Hölder path, resp. γ′-Hölder path, with
γ, γ′ ∈ (0, 1) satisfying γ +H > 1, γ′ +H > 1.

However, such an extension will no longer be possible in the subsequent rougher sit-
uations, and we have thus prefered to stick to a unified presentation around the same
starting model.

Let us now turn to the more interesting case where H ≤ 1
2 , with a first brief stop on

the (very) particular case H = 1
2 .

2.4. The free case H = 1
2 .

As we have already recalled it in the introduction, the NC-fBm with Hurst index H = 1
2

is nothing but the celebrated free Brownian motion, the behaviour of which has been
extensively explored in the literature. In a somewhat analogous fashion as the standard
(commutative) Brownian motion, the free Brownian motion is known to satisfy a spe-
cific independence property, the so-called free independence, at the level of its disjoint
increments. Based on this fundamental feature, Biane and Speicher [1] have been able to
adapt the principles of the classical stochastic integration theory in the non-commutative
setting and construct an Itô-type integral with respect to the free Brownian. In [4], we
have brought a new light on these constructions along a rough-path-type approach (sim-
ilar to the one we will develop the next section), which allows for more flexibility in the
integration procedure, as well as additional approximation results.

The following statement offers a (partial) summary of these considerations, when
applied to the integral in (12), and in the spirit of the present formulation. We therein
denote by Id×ϕ×Id the linear extension (to A⊗A⊗A) of the operator

(
Id×ϕ×Id

)(
U⊗

V ⊗W
)

:= ϕ(V )UW . Besides, let us again recall that X(n) is the smooth approximation
introduced in (14), and that integrals driven by X(n) are all understood in the classical
Lebesgue sense.

Proposition 2.6 ([1, 4]). Assume that H = 1
2 . For all polynomials P,Q, all times

0 ≤ s ≤ t ≤ 1 and every subdivision ∆st = {t0 = s < t1 < . . . < t` = t} of [s, t] with
mesh |∆st| tending to 0, the Riemann sum∑

ti∈∆st

P (Xti)δXtiti+1Q(Xti) (26)

converges in A as |∆st| → 0. We denote the limit by
∫ t
s
P (Xu)dXuQ(Xu) and define the
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Integration with respect to the NC-fBm 15

related “Stratonovich” integral by the formula∫ t

s

P (Xu)(◦dXu)Q(Xu) (27)

:=
∫ t

s

P (Xu)dXuQ(Xu) + 1
2

∫ t

s

(
Id× ϕ× Id

)[
∂P (Xu)⊗Q(Xu) + P (Xu)⊗ ∂Q(Xu)

]
.

(28)

Then, as n→∞, it holds that∫ t

s

P (X(n)
u )dX(n)

u Q(X(n)
u )→

∫ t

s

P (Xu)(◦dXu)Q(Xu) , (29)

and one has in particular

δP (X)st =
∫ t

s

∂P (Xu)](◦dXu) .

To be more specific, the convergence of the sum in (26) is a consequence of [1, Theorem
3.2.1], while the approximation property (29) follows from the combination of the results
of Proposition 4.10, Proposition 4.16 and Proposition 5.5 in [4].

When dealing with the free Brownian motion, we thus observe a similar Itô/Stratonovich
duality as in classical stochastic integration theory (with respect to the Wiener process),
which, to some extent, offers a natural transition between the previous Young situation
H > 1

2 (with convergence of the “Itô” integral, along (20)) and the forthcoming rough
situation H < 1

2 (with convergence of the “Stratonovich” integral, along (38) and Re-
mark 2.10). Also, as can be seen from (29), and just as in the standard Wiener case, the
Stratonovich interpretation turns out to be the most robust one as far as approxima-
tion of the driver is concerned: it therefore provides us with the “solution” to our three
requirements (a)-(b)-(c) in Section 2.1.

2.5. The first rough case: H ∈ (1
3 , 1

2)

As soon as H < 1
2 , both previous strategies clearly fail: the process is not regular enough

for the Young method (based on classical Riemann sums) to work, and its disjoint incre-
ments are no longer (freely) independent, ruling out the free-case procedure.

In the continuation of [4, 5], and borrowing some ideas from rough paths theory,
we propose to introduce a construction based on the consideration of local second-order
expansions and corrected Riemann sums, which will at least allow us to cover the case
H ∈ ( 1

3 ,
1
2 ).

At this point, we need to mention that, at a theoretical level, this setting and the
below developments are very close to the analysis carried out in [4, Section 4]. The latter
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16 A. Deya and R. Schott

reference indeed contains a possible approach to integration with respect to any γ-Hölder
NC-process with γ ∈ ( 1

3 ,
1
2 ), which, due to (11), is exactly the regularity condition that

prevails here. Nevertheless, the results of [4, Section 4] lean on the extensive use of some
a-priori-defined object called a product Lévy area, and that is expected to satisfy very
specific conditions (we can then check these conditions in the free Brownian case [4,
Section 5] or in the q-Brownian situation [5, Section 3]).

Unfortunately, owing to the strong dependency of the increments of the NC-fBm, we
have not been able to exhibit such a product Lévy area above the process (we suspect
that such an object does not even exist in this case, at least not stricto sensu, see Section
2.7.1 below). Instead, we will rely on some “weaker product Lévy area”, which does
not meet all the requirements of [4, Definition 4.4], but which will be sufficient for our
purpose. The construction of this object is the topic of Proposition 2.8 below, and the
main technical result of our analysis.

As an introduction to this central property, let us briefly recall that in the rough-path
procedure, the consideration of corrected Riemann sums derives from the formal second-
order expansion of the integral at stake, just as the consideration of classical Riemann
sums morally stems from a first-order expansion. Thus, in the situation we are interested
in, we consider that, at first order,∫ t

s

P (Xu)dXuQ(Xu) ≈ P (Xs)(δX)stQ(Xs) , (30)

yielding the main term in (20), while at second order, we have, owing to (19),∫ t

s

P (Xu)dXuQ(Xu)

≈ P (Xs)(δX)stQ(Xs) +
∫ t

s

δP (X)sudXuQ(Xs) +
∫ t

s

P (Xs)dXuδQ(X)su

≈ P (Xs)(δX)stQ(Xs) +
(∫ t

s

(∂P (Xs)]δXsu)dXu

)
Q(Xs) + P (Xs)

(∫ t

s

dXu(∂Q(Xs)]δXsu)
)
,

(31)

which will ultimately lead us to the desired local correction. The rigorous implementation
of this idea, that is the treatment of the implicit remainder in expansion (31), will then
be made possible through the combination of the technical Lemmas 2.3 and 2.4, along a
similar pattern as in the proof of Proposition 2.5. However, for this machinery to work,
we still need to “feed” it with a proper definition of the second-order objects involved in
(31). In other words, we still need to give an a-priori sense to (or to “explicitly construct”)
the two integrals∫ t

s

(∂P (Xs)]δXsu)dXu and
∫ t

s

dXu(∂Q(Xs)]δXsu) . (32)

In these expressions, observe that neither ∂P (Xs) nor ∂Q(Xs) depend on the integration
variable u, so that the integrals can overall be regarded as the product iterated integrals
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Integration with respect to the NC-fBm 17

of X or the product Lévy areas above X (“applied” to ∂P (Xs) and ∂Q(Xs)). Observe
also (still at a heuristic level for the moment) that the second integral in (32) can be
easily recovered from the first one: indeed, as Xt is a self-adjoint element in A (for every
t), one has morally, for every U ∈ A,(∫ t

s

dXuUδXsu

)∗
=
∫ t

s

δXsuU
∗dXu .

With these few ideas in mind, let us turn to the actual construction procedure, which,
as in [3], will lean on an approximation of these objects. Namely, consider the approx-
imation (X(n))n≥0 of X given by (14) and define the sequence of approximated Lévy
areas by the natural formula: for all n ≥ 0 and U ∈ A,

X2,(n)
st [U ] :=

∫ t

s

δX(n)
su UdX(n)

u , 0 ≤ s ≤ t ≤ 1 , (33)

where the integral is here understood in the classical Lebesgue sense. Our objective now
is to show the convergence of this sequence as n→∞, that is as X(n) converges to X. As
it can be guessed from the proof of Proposition 2.5, the pathwise method also requires
us to exhibit suitable controls on the limit, regarding whether the time variables s, t or
the “fixed” integrand U in (33).

Remark 2.7. Let us briefly go back here to the discussion we have launched at the
end of Section 1, and insist on the specificity of this object, that is

∫ t
s
δX

(n)
su UdX(n)

u ,
with respect to its classical commutative counterpart. Note indeed that if A were a
commutative algebra, or more generally if the variables {U,Xt; t ≥ 0} all commuted,
then expression (33) would of course reduce to 1

2U(δX(n)
st )2, providing an immediate

answer to the above convergence issue, for any H ∈ (0, 1) (it is a well-known fact that
the rough-path approach is not relevant when applied to a one-dimensional - and so,
commutative - Hölder process). In a general algebra, this question is no longer trivial
and is in fact closely related to the local “non-commutativity” of the process under
consideration. For instance, it is easy to see that

X2,(n)
01 [1] = 1

2X
2
1 + 1

2

2n−1∑
i=0

[
Xtn

i
, Xtn

i+1

]
, with

[
Xtn

i
, Xtn

i+1

]
:= Xtn

i
Xtn

i+1
−Xtn

i+1
Xtn

i
,

(34)
and in light of this expression, the question (morally) is therefore to know whether the
sum

∑
i[Xtn

i
, Xtn

i+1
] of “infinitesimal commutators” converges as n → ∞. At a heuristic

level, the problem can thus be interpreted as follows: the more “locally commutative”
the process (i.e., the smaller [Xtn

i
, Xtn

i+1
]), the more chances the sum, and accordingly

the sequence X2,(n)
01 [1] of (simplified) product Lévy areas, to converge.

In order to prove the convergence of (X2,(n))n≥0 in the present situation, that is when
H ∈ ( 1

3 ,
1
2 ), we actually need to reduce the class of possible “fixed” integrands U in (33),
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18 A. Deya and R. Schott

at least in a way that still encompasses our target integrals in (32). To this end, we
introduce, for all t ∈ [0, 1], the unital subalgebra At generated by (Xs)0≤s≤t, i.e.

At :=
{
λ0 1 +

n∑
i=1

λiXti1
Xti2
· · ·Xtipi

: n ≥ 1 , λi ∈ R , pi ≥ 1 , 0 ≤ tij ≤ t
}
.

The desired property can now be stated as follows:

Proposition 2.8. Assume that H ∈ ( 1
4 ,

1
2 ). Then, for all 0 ≤ s ≤ t ≤ 1 and U ∈ As,

the sequence X2,(N)
st [U ] converges in A as N → ∞, and the limit, that we denote by

X2
st[U ], satisfies the following properties:

(i) For all 0 ≤ s ≤ t ≤ 1, X2
st ∈ L(As,A).

(ii) For all 0 ≤ s ≤ u ≤ t ≤ 1 and U ∈ As,

X2
st[U ]− X2

su[U ]− X2
ut[U ] = δXsuUδXut . (35)

(iii) For all ε ∈ (0, 2H − 1
2 ), ε′ ∈ [0, H), there exist constants cH,ε, cH,ε,ε′ > 0 such

that for all 0 ≤ s ≤ t ≤ 1, N ≥ 0, m ≥ 0, N ≤ N1, . . . , Nm ≤ ∞, 1 ≤ ι ≤ m and
0 ≤ uj ≤ vj ≤ s (j = 1, . . . ,m),

∥∥{X2
st−X2,(N)

st

}[
δXu1v1 · · · δXumvm

]∥∥ ≤ (cH,ε)m+1 |t− s|2H−ε

2Nε
∏

j=1,...,m
|uj − vj |H , (36)

and ∥∥X2,(N)
st

[
δX(N1)

u1v1
· · · δ(X(Nι) −X)uιvι · · · δX(Nm)

umvm

]∥∥
≤ (cH,ε,ε′)m+1|t− s|2H−ε |vι − uι|

H−ε′

2Nιε′

∏
j=1,...,m
j 6=ι

|uj − vj |H , (37)

where we have used the convention X(∞) := X.

For the sake of conciseness, we have postponed the (technical) proof of this result to
the supplemental article [6].

Let us now see how we can lean on the above-constructed object X2 (and the related
approximation results) to offer a satisfying interpretation of the general integral in (12).
For a convenient statement of the result, we set, along a similar convention as in (18),
and for all 0 ≤ s ≤ t ≤ 1, U, V ∈ As,

(U ⊗ V )]X2
st := UX2

st[V ] , X2,∗
st ](U ⊗ V ) := X2

st[U∗]∗V ,

and then linearly extend these two notations to any element of the algebraic tensor
product As ⊗As.
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Proposition 2.9. Fix H ∈ ( 1
3 ,

1
2 ), and let P,Q be two polynomials. For all 0 ≤ s ≤

t ≤ 1 and every subdivision ∆st = {t0 = s < t1 < . . . < t` = t} of [s, t] with mesh |∆st|
tending to 0, the corrected Riemann sum∑
ti∈∆st

{
P (Xti)(δX)titi+1Q(Xti) + (∂P (Xti)]X2

titi+1
)Q(Xti) + P (Xti)(X

2,∗
titi+1

]∂Q(Xti))
}

(38)
converges in A as |∆st| → 0. The limit, that we denote by

∫ t
s
P (Xu)dXuQ(Xu), is such

that for all n ≥ 0 and ε ∈ (0, 1
2 (3H − 1)),∥∥∥∥ ∫ t

s

P (X(n)
u )dX(n)

u Q(X(n)
u )−

∫ t

s

P (Xu)dXuQ(Xu)
∥∥∥∥ ≤ cH,P,Q,ε|t− s|H−ε2−nε , (39)

for some constant cH,P,Q,ε > 0, and so, based on this construction, one has

δP (X)st =
∫ t

s

∂P (Xu)]dXu . (40)

This interpretation of the integral thus clearly meets requirements (b)-(c) of Section
2.1. Regarding condition (a), we can only assert that, as far the driver X is concerned,
the above definition is as intrinsic as possible (the usual and “more intrinsic” Riemann
sums could indeed diverge, as shown in (13)), but it still involves an a-priori-defined
object X2 whose construction may depend on the chosen approximation X(n) of X. This
is a standard phenomenon in rough paths theory.

Thanks to the results of Lemma 2.2 and Proposition 2.8, Proposition 2.9 could es-
sentially be derived from the considerations of [4, Section 4] (applied to the particular
integral in (12)). However, as we evoked it earlier, the properties exhibited in Proposition
2.8 (and especially the two estimates (36) and (37)) are not exactly the same as those
appearing in the central definition [4, Definition 4.4]. Therefore, for both clarity and
rigor, we prefer to review the main arguments behind the transition from Proposition 2.8
to Proposition 2.9. This will also allow us to emphasize the similarities with the Young
procedure of Section 2.3.

Proof of Proposition 2.9. We follow the pattern of the proof of Proposition 2.5, start-
ing this time from the path

Mst := P (Xs)δXstQ(Xs) + (∂P (Xs)]X2
st)Q(Xs) + P (Xs)(X2,∗

st ]∂Q(Xs)) . (41)

For all 0 ≤ s ≤ u ≤ t ≤ 1, the increments of δMsut can be readily expanded as

δMsut =
[
− δP (X)suδXutQ(Xs) +

(
∂P (Xs)]δX2

sut

)
Q(Xs)

]
+
[
− P (Xu)δXutδQ(X)su + P (Xs)

(
δX2,∗

sut]∂Q(Xs)
)][(

∂P (Xs)]X2
ut

)
Q(Xs)−

(
∂P (Xu)]X2

ut

)
Q(Xu)

]
+
[
P (Xs)

(
X2,∗
ut ]∂Q(Xs)

)
− P (Xu)

(
X2,∗
ut ]∂Q(Xu)

)]
. (42)
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20 A. Deya and R. Schott

Let us now estimate each term into bracket separetely. As far as the third term is con-
cerned, one has naturally(

∂P (Xs)]X2
ut

)
Q(Xs)−

(
∂P (Xu)]X2

ut

)
Q(Xu)

= −
(
δ(∂P (X))su]X2

ut

)
Q(Xs)−

(
∂P (Xu)]X2

ut

)
δQ(X)su ,

which, using estimate (36) (with N = 0), entails that∥∥(∂P (Xs)]X2
ut

)
Q(Xs)−

(
∂P (Xu)]X2

ut

)
Q(Xu)

∥∥ ≤ cH,P,Q,ε|t− s|3H−ε ,
for any ε ∈ (0, 2H − 1

2 ). The same strategy and estimate apply of course to the fourth
term in (42).

As for the first two terms, we can use identity (35) to write(
∂P (Xs)]δX2

sut

)
Q(Xs) =

(
∂P (Xs)]δXsu

)
δXutQ(Xs) ,

and so ∥∥− δP (X)suδXutQ(Xs) +
(
∂P (Xs)]δX2

sut

)
Q(Xs)

∥∥
=
∥∥{δP (X)su − ∂P (Xs)]δXsu

}
δXutQ(Xs)

∥∥ ≤ cH,P,Q|t− s|3H ,

where we have combined (11) and (19) to get the last inequality. Besides, using again
(35), it is easy to check that

P (Xs)
(
δX2,∗

sut]∂Q(Xs)
)

= P (Xs)δXut

(
∂Q(Xs)]δXsu

)
,

which, along the same argument as above, entails that∥∥− P (Xu)δXutδQ(X)su + P (Xs)
(
δX2,∗

sut]∂Q(Xs)
)∥∥ ≤ cH,P,Q|t− s|3H .

Going back to (42), we have thus shown that for all 0 ≤ s ≤ u ≤ t ≤ 1 and ε ∈ (0, 2H− 1
2 ),∥∥δMsut

∥∥ ≤ cH,P,Q,ε|t − s|3H−ε. Since H > 1
3 , we are here in the very same position as

in the proof of Proposition 2.5 (at least when picking ε ∈ (0, 3H − 1)), and following the
same arguments (that is, combining Lemmas 2.3 and 2.4), we can conclude about the
existence of a path J : [0, 1]→ A such that for all 0 ≤ s ≤ t ≤ 1, one has

lim
|∆st|→0

∑
ti∈∆st

Mtiti+1 = δJst = Mst − Λ(δM)st =:
∫ t

s

P (Xu)dXuQ(Xu) ,

which corresponds to the first part of our assertion.

The estimate (39) can again be shown along the same principles as in the proof of
Proposition 2.5. Just as in the latter proof, we can first decompose the approximated
integral (for any fixed n) as∫ t

s

P (X(n)
u ) dX(n)

u Q(X(n)
u ) = M

(n)
st − Λ

(
δM (n))

st
,
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where M (n) is obtained by replacing (X,X2) with (X(n),X2,(n)) in (41). Then, in order
to control the differences M (n) −M and δM (n) − δM , we can rely on the combination
of (15), (36) and (37). For instance, writing

(∂P (X(n)
s )]X2,(n)

st )Q(X(n)
s )− (∂P (Xs)]X2

st)Q(Xs)

= ({∂P (X(n)
s )− ∂P (Xs)}]X2,(n)

st )Q(X(n)
s ) + (∂P (Xs)]{X2,(n)

st − X2
st})Q(X(n)

s )
+ (∂P (Xs)]X2

st){Q(X(n)
s )−Q(Xs)}

we can easily bound the first term using (15) and (37), and the last two terms using (15)
and (36), which gives here∥∥(∂P (X(n)

s )]X2,(n)
st )Q(X(n)

s )− (∂P (Xs)]X2
st)Q(Xs)

∥∥ ≤ cH,P,Q,ε |t− s|2H−ε2nε ,

for any ε ∈ (0, 2H − 1
2 ). Similar considerations allow us to control δM (n) − δM (keeping

expansion (42) in mind), providing finally, for all 0 ≤ s ≤ u ≤ t ≤ 1 and ε ∈ (0, 2H − 1
2 ),∥∥M (n)

st −Mst

∥∥ ≤ cH,P,Q,ε |t− s|2H−ε2nε ,
∥∥δM (n)

sut − δMsut

∥∥ ≤ cH,P,Q,ε |t− s|3H−2ε

2nε .

Picking ε ∈ (0, 1
2 (3H − 1)), the conclusion (that is, (39)) follows from the continuity

properties of Λ.

Once endowed with (39), and just as in the proof of Proposition 2.5, identity (40) is im-
mediately derived from the classical differentiation rule δP (X(n))st =

∫ t
s
∂P (X(n)

u )]dX(n)
u .

Remark 2.10. In both Propositions 2.8 and 2.9, we could also have included (with-
out any change in the statements and their proofs) the situation where H ∈ [ 1

2 , 1). In
fact, when doing so, the resulting interpretation of the integral happens to be consistent
with the previous constructions, that is with the interpretations of Proposition 2.5 and
Proposition 2.6. When H > 1

2 , we can rely on (36) to assert that, as |∆st| → 0,∑
ti∈∆st

{
(∂P (Xti)]X2

titi+1
)Q(Xti) + P (Xti)(X

2,∗
titi+1

]∂Q(Xti))
}
→ 0 ,

so that the limit of the sum in (38) indeed reduces to the limit of the classical Riemann
sums in (20). When H = 1

2 , this consistency property is a consequence of Corollary
4.13 and Proposition 5.6 in [4]: according to the latter results, the limit of the corrected
Riemann sums (38) more specifically coincides with the Stratonovich integral defined
through (27).

2.6. Rougher situations

At this point, the - theoretical! - extension of our construction procedure to smaller H
should certainly be clear to the reader: for H ∈ ( 1

4 ,
1
3 ] (and then H ∈ ( 1

5 ,
1
4 ], ...), we
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formally expand the integral in (12) at order 3 (and then at order 4,...) and study the
existence of the successive “product iterated integrals” that arise in the development.

When H ∈ ( 1
4 ,

1
3 ], and even if we prefer to skip the examination of the related details

(or perhaps postpone it to a future report), we are relatively confident about the success
of the method, which should lead to a similar result as in Proposition 2.9, by considering
of course third-order-corrected Riemann sums. Thus, on top of the “product Lévy areas”
X2,X2,∗ constructed in Proposition 2.8 (note indeed that the latter statement holds true
for any H ∈ ( 1

4 ,
1
2 )), the strategy would here require us to investigate the existence of

the “product Lévy volumes” above X, corresponding morally to the third-order iterated
integrals ∫

(u,v,w)∈D(i)
s,t

dXuUdXvV dXw , (43)

for U, V fixed in As, and where the domains D(i)
s,t (i = 1, . . . , 6) correspond to the six

ordered sets composing [s, t]3 (for instance, D(1)
s,t = {s ≤ u ≤ v ≤ w ≤ t}, D(2)

s,t = {s ≤
u ≤ w ≤ v ≤ t},...). We think that the study of the integrals in (43) can certainly be
done along the arguments of the proof of Proposition 2.8, but of course this still needs
to be checked through a careful analysis.

What we rather would like to point out is the fact that this construction procedure is
actually doomed to failure as soon as H ≤ 1

4 , which can be directly seen at second order,
that is at the level of the product Lévy area:

Proposition 2.11. In a non-commutative probability space (A, ϕ), consider a NC-
fractional Brownian motion {Xt}t≥0 of Hurst index H ≤ 1

4 , and let (X(n),X2,(n))n≥0 be
defined through formulas (14) and (33). Then it holds that

ϕ
((
X2,(n+1)

01 [1]− X2,(n)
01 [1]

)(
X2,(n+1)

01 [1]− X2,(n)
01 [1]

)∗) ≥ c 2n(1−4H) , (44)

for some strictly positive constant c. In particular, the sequence X2,(n)
01 [1] does not converge

in (A, ‖.‖) as n tends to infinity.

The details of the proof of this proposition can be found in the subsequent Section 3.

Going back to the interpretation in Remark 2.7, and especially to (34), we can thus
consider that whenH ≤ 1

4 , the NC-fBm is too “locally non-commutative” for the sequence
of approximated Lévy areas to converge, and accordingly for our rough-path approach
to work.

From a technical point of view, and although we are dealing with a quite different
object here, this non-convergence phenomenon is somehow similar to the issue one must
face, in classical probability theory, when considering the non-diagonal entries of the
Lévy-area matrix above a standard 2-dimensional fractional Brownian motion, that is
(morally) the integral

∫ t
s
δB

(1)
su dB

(2)
u , where B(1), B(2) stand for independent fractional
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Brownian motions of common Hurst indexH ≤ 1
4 , defined on a classical probability space

(Ω,F ,P). It is indeed a well-known fact (see for instance [3, Proposition 30]) that the
corresponding sequence of approximated Lévy areas, derived from some “canonical” ap-
proximation (B(1),n, B(2),n) of (B(1), B(2)), also fails to convergence (even in probability)
as n→∞.

In the latter commutative setting, i.e. when working with the above integral
∫ t
s
δB

(1)
su dB

(2)
u

for H ≤ 1
4 , a possible way to overcome the non-convergence issue is to extend our in-

terpretation of iterated integrals at a more abstract level, by considering the so-called
class of non-geometric rough paths, and then use this additional flexibility to exhibit a
suitable object above the process. Such a (highly abstract and sophisticated) procedure
has for instance been implemented in [16]. At this stage, we must admit that we have no
idea whether such considerations could be adapted in the non-commutative framework
to handle the product Lévy area

∫ t
s
δXsuUdXu.

2.7. Possible extensions of these considerations

As a conclusion to our investigations, and before we turn to the technical proofs of
Proposition 2.8 and Proposition 2.11, let us briefly outline a few possible extensions of
this approach to non-commutative integration, together with related open questions.

2.7.1. Beyond polynomial integration

A first general question is whether this strategy could be extended to a larger class of
integrands Y,Z : [0, 1]→ A (instead of P (X), Q(X)) in (12). Recall that we have already
addressed this issue in the Young case H > 1

2 (see the end of Section 2.3), while such
an extension can indeed be obtained in the free case H = 1

2 using the Itô-type approach
developed by Biane and Speicher (see [1] for further details).

The rough situation H < 1
2 turns out to be more problematic in this regard. In view of

the above developments, a first essential question here is to know whether the definition
of the “product Lévy area” X2

st

[
U
]
in Proposition 2.8 could be extended to more general

U , that is beyond polynomial expressions of {Xr}0≤r≤s.

Based on (36), a possible line of generalization involves elements U of the form U :=
f(Xr), where r ∈ [0, s] and f is a function defined through the Fourier transform f(x) =∫
R e

ıξxµf (dξ) and satisfying
∫
R e

cH,ε|ξ|µf (dξ) <∞. Here, cH,ε stands for the constant in
(36), for ε > 0 fixed such that 3H − ε > 1.
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Indeed, at least at some formal level, we have, for such a function f ,∥∥X2
st

[
f(Xr)

]∥∥ ≤
∑
m≥0

∣∣∣∣ ∫
R

(ıξ)m

m! µf (dξ)
∣∣∣∣∥∥X2

st

[
Xm
r

]∥∥
≤ cH,ε|t− s|2H−ε

∫
R

(∑
m≥0

|cH,εξ|m

m!

)
µf (dξ)

≤ cH,ε|t− s|2H−ε
∫
R
ecH,ε|ξ|µf (dξ) ,

which still offers the required Hölder control, and thus opens a way toward the interpre-
tation of the integral

∫ t
s
g(Xu)dXuh(Xu), for smooth enough functions g, h.

Then a natural attempt to go further would be to turn to the setting introduced
in [4, Section 4], and allowing for the consideration of the more flexible class of adapted
controlled biprocesses (along [4, Definition 4.9]). Unfortunately, as we already mentionned
it twice, the estimates we have obtained in Proposition 2.8 are not sufficient for a direct
application of the results of [4]. In other words, the operator X2 derived from our result
is not as general as a genuine product Lévy area, in the specific sense of [4, Definition
4.4]. Indeed, such a product Lévy area is expected to satisfy, for all 0 ≤ s ≤ t ≤ 1 and
U ∈ As, ∥∥X2

st

[
U
]∥∥ ≤ cγ |t− s|2γ‖U‖ , (45)

for some γ > 1
3 , which is more general than our estimate (36) (with N = 0). Morally, we

would here need the right-hand side of (36) to be uniformly bounded over m ≥ 0, which
cannot be derived from our current computations (see [6]). Property (45) can indeed
be checked in the free Brownian case H = 1

2 , owing to the free independence of the
disjoint increments. When H < 1

2 , and in light of the expressions at stake in the proof
of Proposition 2.8, we must say that we have serious doubts about the existence of such
a uniform estimate.

Let us now evoke some possible extensions at the level of the driving process itself.
2.7.2. More general semicircular processes

In the standard probability setting, the rough-path approach is known to be applicable
to a class of Gaussian processes that goes beyond the fractional Brownian motion (see
e.g. [9] or [10, Chapter 15]), and therefore we may wonder about the existence of such
an extension in the non-commutative framework.

Skimming through the proof of Proposition 2.8 (in [6]), the specific involvement of the
covariance of the process (here, the fractional covariance (6)) is actually easy to locate.
Namely, we only use the form of this covariance within the estimates of the two final
technical lemmas, and as a consequence, the developments and results of Section 2.5
would remain true for any (Hölder) semicircular process satisfying these estimates.

This being said, at this point, we are far from being able to exhibit a similar general
(and essentially sharp) covariance criterion as in [10, Theorem 15.33].
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2.7.3. The q-fractional Brownian motion

It is a well-known fact in the non-commutative-probability literature (see e.g. [2]) that the
semicircular processes are part of a more general class, the so-called q-Gaussian processes
(for fixed q ∈ (−1, 1)), defined through the “q-Wick” formula

ϕ
(
Xi1 · · ·Xir

)
=

∑
π∈P2({1,...,r})

qCr(π)κπ
(
Xi1 , . . . , Xir

)
, (46)

where, in comparison with (5), the sum runs this time over the set of all pairings of
{1, . . . , r}, and the notation Cr(π) refers to the number of crossings in π (the semicircular
processes are thus nothing but the 0-Gaussian processes).

Along this line of generalization, and for fixed q ∈ (−1, 1), H ∈ (0, 1), we can then
naturally define the q-fractional Brownian motion (q-fBm) of Hurst index H, the above
NC-fBm corresponding to the 0-fBm. In [5], we have already applied the rough-path
strategy to the q-Brownian motion, i.e. the q-fBm of Hurst index H = 1

2 , which, at least
in the case q ∈ [0, 1), led us to better controls and approximation results than in the
original Itô-type approach of the situation ([7]).

As regards the q-fBm X = X(q,H) of Hurst index H 6= 1
2 , observe first that we are still

dealing with a H-Hölder process (for any fixed q ∈ (−1, 1)), since, with the argument of
the proof of Lemma 2.1 in mind, we have here

ϕ
(
(Xt −Xs)2r)1/(2r) = |t− s|2H

( ∑
π∈P2({1,...,2r})

qCr(π)
)1/(2r)

→ 2|t− s|2H√
1− q

as r →∞ .

When H > 1
2 , this basic regularity property immediately allows us to mimic the Young

procedure of Section 2.3. As for the (more interesting) case H < 1
2 , we must say we are

rather confident about the possibility to extend the considerations of both Section 2.5
and Section 2.6 to any q ∈ (−1, 1), with a similar “success” for H > 1

4 and “failure” for
H ≤ 1

4 . Of course, this involves a careful adaptation of the proofs of Propositions 2.8
and 2.11, taking the q-parameter into account, and we expect both the upper bounds in
(36)-(37) and the lower bound in (44) to depend on q as well.

3. Non-convergence of the Lévy area when H ≤ 1
4

Let us finally provide the details behind the second main technical result of our study.

Proof of Proposition 2.11. Just as in the proof of Proposition 2.8, we have

X2,(n+1)
01 [1]− X2,(n)

01 [1] = 1
2

2n−1∑
i=0

{
Y

(n)
2i Y

(n)
2i+1 − Y

(n)
2i+1Y

(n)
2i
}
,
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with Y (n)
i := δXtn+1

i
tn+1
i+1

, and so, setting

M (n) := ϕ
((
X2,(n+1)

01 [1]− X2,(n)
01 [1]

)(
X2,(n+1)

01 [1]− X2,(n)
01 [1]

)∗)
,

we can write

M (n) = 1
4

2n−1∑
i,j=0

ϕ
({
Y

(n)
2i Y

(n)
2i+1 − Y

(n)
2i+1Y

(n)
2i
}{
Y

(n)
2j+1Y

(n)
2j − Y

(n)
2j Y

(n)
2j+1

})
.

Applying formula (5) to the semicircular family {Yi}i=0,...,2n+1−1, we can easily expand
the latter quantity as

M (n) = 1
2

2n−1∑
i,j=0

∆(n)(i, j) , (47)

where

∆(n)(i, j) := ϕ
(
Y

(n)
2i Y

(n)
2j
)
ϕ
(
Y

(n)
2i+1Y

(n)
2j+1

)
− ϕ

(
Y

(n)
2i Y

(n)
2j+1

)
ϕ
(
Y

(n)
2j Y

(n)
2i+1

)
.

At this point, observe that ∆(n)(i, j) = ∆(n)(j, i) for all i, j = 0, . . . , 2n − 1, and for
0 ≤ i ≤ j ≤ 2n − 1, it can be checked that

∆(n)(i, j) = 1
4 · 24H(n+1) ΓH(2(j − i)) ,

where, for every k ≥ 0, ΓH(k) is defined as

ΓH(k) :=
(
2|k|2H − |k + 1|2H − |k − 1|2H

)2
−
(
2|k − 1|2H − |k|2H − |k − 2|2H

)(
2|k + 1|2H − |k|2H − |k + 2|2H

)
.

Going back to (47), we thus have

M (n) = 1
8 · 24H(n+1)

{
2nΓH(0) + 2

2n−1∑
k=1

(2n − k)ΓH(2k)
}

= 2n(1−4H)

24H+3

{
ΓH(0) + 2

2n−1∑
k=1

(
1− k

2n

)
ΓH(2k)

}
. (48)

Denoting by fH the function at the center of the subsequent Lemma 3.1, one has, for
every k ≥ 1, ΓH(k) = −k4HfH

( 1
k

)
, and so, using the result of this lemma, we get that

for every k ≥ 1, ∣∣ΓH(2k)
∣∣ ≤ |2k|4H · 2

|2k|4 ≤
1

4k3 ,

which implies that ΓH(2k) ≥ − 1
4k3 . Injecting this lower bound into (48), we end up with

M (n) ≥ 2n(1−4H)

24H+3

{
ΓH(0)− 1

2

∞∑
k=1

1
k3 + 1

2n+1

2n−1∑
k=1

1
k2

}
≥ 2n(1−4H)

24H+3

{
ΓH(0)− 1

2

∞∑
k=1

1
k3

}
,

imsart-bj ver. 2014/10/16 file: NC-fbm-revised-bernoulli.tex date: May 28, 2018



Integration with respect to the NC-fBm 27

and we can now explicitly check that this lower bound is indeed strictly positive, due to

ΓH(0) = 22H{4− 22H} ≥ 3 .

As for the second assertion in our statement, it relies of course on estimate (1), that
is on the bound

M (n) ≤
∥∥X2,(n+1)

01 [1]− X2,(n)
01 [1]

∥∥2
.

Lemma 3.1. Consider the function fH defined for every x ∈ [0, 1
2 ] as

fH(x) :=[
2(1− x)2H − 1− (1− 2x)2H][2(1 + x)2H − 1− (1 + 2x)2H]− [2− (1 + x)2H − (1− x)2H]2 .
Then for all 0 < H ≤ 1

4 and k ≥ 1, it holds that |fH( 1
2k )| ≤ 2

|2k|4 .

Proof. Note that the claimed bound follows from rough estimates (and is thus far from
optimal).

First, for k = 1, let us write fH(1/2) as

fH(1/2) =
[
21−2H − 1

][
2H(1− 2H)

∫ 1/2

0
dy1

∫ 1/2

0
dy2 (1 + (y1 + y2))2H−2

]
−
[
2H(1− 2H)

∫ 1/2

0
dy

∫ y

−y
dz (1− z)2H−2

]2
,

so that

|fH(1/2)| ≤
{

2H(1− 2H)(1/2)2 + (2H(1− 2H))224−4H
∣∣∣∣2 ∫ 1/2

0
dy y

∣∣∣∣2}
≤
{

(1/2)4 + 24(1/2)8} ≤ 2(1/2)4 .

Then, for every x ∈ [0, 1
4 ], write fH(x) as

fH(x) =
(
2H(1− 2H)

)2{[∫ x

0
dy1

∫ x

0
dy2 (1− (y1 + y2))2H−2

]
·[ ∫ x

0
dy1

∫ x

0
dy2 (1 + (y1 + y2))2H−2

]
−
[ ∫ x

0
dy

∫ y

−y
dz (1− z)2H−2

]2}
,

and as a result

|fH(x)| ≤ 1
16

{
22−2Hx4 +

(
4
3

)4−4H ∣∣∣∣2 ∫ x

0
dy y

∣∣∣∣2} ≤ 1
16

{
4 +

(
4
3

)4}
x4 ≤ x4 .
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Supplementary Material

Supplement to “Integration with respect to the NC-fBm”
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide the technical details
of the proof of Proposition 2.8.
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