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a b s t r a c t

In this work, we are concerned with the following equation

utt −∆u +

∫ t

0
g1(t − s)div (a1(x)∇u(s)) ds

+

∫
+∞

0
g2(s)div (a2(x)∇u(t − s)) ds = 0

in a bounded domain Ω . Under suitable conditions on a1 and a2 and for a wide class of
relaxation functions g1 and g2, we establish a general decay result, from which the usual
exponential and polynomial decay rates are only special cases.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the following problem
utt −1u +

∫ t

0
g1(t − s)div (a1(x)∇u(s)) ds +

∫
+∞

0
g2(s)div (a2(x)∇u(t − s)) ds = 0, ∀x ∈ Ω, ∀t > 0

u(x, t) = 0, ∀x ∈ ∂Ω, ∀t ≥ 0
u(x,−t) = u0(x, t), ut(x, 0) = u1(x), ∀x ∈ Ω, ∀t ≥ 0,

(1.1)

where Ω is a bounded domain of Rn (n ≥ 1) with a smooth boundary ∂Ω, g1 and g2 are two positive non-increasing
functions defined on R+, a1 and a2 are essentially bounded non-negative functions defined on Ω , and u0 and u1 are given
initial data. This type of problems arise in viscoelasticity. For the thermodynamics of materials with fading memory, we
refer the reader to the early work of Coleman and Mizel [1] and the references therein.

We start our literature review with the pioneer work of Dafermos [2], in 1970, where the author discussed a certain
one-dimensional viscoelastic problem, established some existence results, and then proved that, for smooth monotone
decreasing relaxation functions, the solutions go to zero as t goes to infinity. However, no rate of decay has been specified.
In Dafermos [3], a similar result, under a convexity condition on the kernel, has been established. After that a great deal of
attention has been devoted to the study of viscoelastic problems and many existence and long-time behavior results have
been established. Hrusa [4] considered a one-dimensional nonlinear viscoelastic equation of the form

utt − cuxx +

∫ t

0
m(t − s) (ψ(ux(x, s)))x ds = f (x, t)
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and proved several global existence results for large data. He also proved an exponential decay result for strong solutions
when m(s) = e−s and ψ satisfies certain conditions. Dassios and Zafiropoulos [5] studied a viscoelastic problem in R3 and
proved a polynomial decay result for exponentially decaying kernels. After that, a very important contribution by Rivera
was introduced. In 1994, Rivera [6] considered equations for linear isotropic homogeneous viscoelastic solids of integral
type which occupy a bounded domain or the whole space Rn. In the bounded-domain case, and for exponentially decaying
memory kernels and regular solutions, he showed that the sum of the first and the second energy decays exponentially.
For the whole-space case and for exponentially decaying memory kernels, he showed that the rate of decay of energy is
of algebraic type and depends on the regularity of the solution. This result was later generalized to a situation, where the
kernel is decaying algebraically but not exponentially by Cabanillas and Rivera [7]. In their paper, the authors considered
the case of bounded domains as well as the case when the material is occupying the entire space and showed that the decay
of solutions is also algebraic, at a rate which can be determined by the rate of the decay of the relaxation function. This latter
result was later improved by Baretto et al. [8], where equations related to linear viscoelastic plates were treated. Precisely,
they showed that the solution energy decays at the same decay rate of the relaxation function. For partially viscoelastic
materials, Rivera and Salvatierra [9] showed that the energy decays exponentially, provided the relaxation function decays
in a similar fashion and the dissipation is acting on a part of the domain near to the boundary. See also, in this direction, the
work of Rivera and Oquendo [10].

For an equation with a localized frictional damping cooperating with the dissipation induced by the viscoelastic term,
we mention the work of Cavalcanti et al. [11], where an exponential rate of decay has been proved for a relaxation function
satisfying

−ξ1g(t) ≤ g ′(t) ≤ −ξ2g(t), t ≥ 0

and under some geometry restriction on the domain. Berrimi and Messaoudi [12] improved Cavalcanti’s result [11] by
showing, similarly to [6], that the viscoelastic dissipation alone is enough to stabilize the system. To achieve their goal,
Berrimi and Messaoudi [12] introduced a different functional, which allowed them to weaken the conditions on g , imposed
in both [6,11]. This result has been later extended to a situation,where a source is competingwith the viscoelastic dissipation,
by Berrimi and Messaoudi [13]. Also, Cavalcanti and Oquendo [14] considered

utt − k01u +

∫ t

0
div[a(x)g(t − τ)∇u(τ )]dτ + b(x)h(ut)+ f (u) = 0,

under similar conditions on the relaxation function g and a(x) + b(x) ≥ δ > 0, and improved the result in [11]. They
established an exponential stability when g is decaying exponentially and h is linear, and a polynomial stability when g is
decaying polynomially and h is non-linear. For quasilinear problems, Cavalcanti et al. [15] studied, in a bounded domain,
the following equation

|ut |
ρutt −1u −1utt +

∫ t

0
g(t − τ)1u(τ )dτ − γ1ut = 0,

for ρ > 0. A global existence result for γ ≥ 0, as well as an exponential decay result for γ > 0, have been established.
This latter result was then extended to a situation, where γ = 0, by Messaoudi and Tatar [16,17], and exponential and
polynomial decay results have been established in the absence, as well as in the presence, of a source term.

In all the above mentioned works, the rates of decay in relaxation functions were either of exponential or polynomial
type. For more general decaying relaxation functions, Messaoudi [18,19] considered

utt −1u +

∫ t

0
g(t − τ)1u(τ )dτ = b|u|p−2u,

for p ≥ 2 and b ∈ {0, 1}, and established a more general decay result, from which the usual exponential and polynomial
decay rates are only special cases. After that, a considerable literature in this direction has appeared (see in this regards the
papers [20–28]).

For past (infinite) history problems, all the relaxation functions are either of polynomial or exponential decay
(see for example [29,30]). In fact, the argument introduced by Messaoudi [18,19] cannot be extended to this case. Recently,
Guesmia [31] introduced a newapproachwhich allows a larger class of past-history kernels and consequently amore general
decay result for a class of hyperbolic problems with past history is obtained.

In the present work, we consider (1.1), with relaxation functions g1, g2 that are not necessarily decaying in a polynomial
or exponential fashion and establish a general decay result. In fact, our result allows a larger class of relaxation functions and
improves the decay rates in some special cases (see examples in Section 4). The paper is organized as follows. In Section 2,
we present some material needed for our work. Section 3 contains the statement and the proof of our main result. We end
our paper by giving some illustrating examples in Section 4.

2. Preliminaries

In this section,wepresent somematerial needed in the proof of ourmain result.We startwith the following assumptions:
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(G1) gi : R+
→ R+ are differentiable non-increasing functions such that

gi(0) > 0, i = 1, 2, 1 − ‖a1‖∞

∫
+∞

0
g1(s)ds − ‖a2‖∞

∫
+∞

0
g2(s)ds = l > 0.

(G2) There exists a positive differentiable non-increasing function ξ : R+
→ R+ satisfying

g ′

1(t) ≤ −ξ(t)g1(t), ∀t ≥ 0.

(G3) There exists a positive constant σ and an increasing strictly convex function G : R+
→ R+ of class C1(R+) ∩

C2(]0,+∞[) satisfying

G(0) = G′(0) = 0 and lim
t→+∞

G′(t) = +∞

such that

g ′

2(t) ≤ −σg2(t), ∀t ≥ 0 (2.1)

or ∫
+∞

0

g2(t)
G−1(−g ′

2(t))
dt + sup

t∈R+

g2(t)
G−1(−g ′

2(t))
< +∞. (2.2)

(G4) ai : Ω → R+ are in C1(Ω) such that, for positive constants δ and a0 and forΓ1,Γ2 ⊂ ∂Ω withmeas(Γi) > 0, i = 1, 2,

Infx∈Ω (a1(x)+ a2(x)) ≥ δ

and

ai = 0 or InfΓiai(x) ≥ 2a0, i = 1, 2.

Remark 2.1. If ai ≠ 0, i = 1, 2, there exist neighborhoodswi of Γi, i = 1, 2, such that

InfΩ∩wi
ai(x) ≥ a0 > 0, i = 1, 2.

As in [14], let d = min{a0, δ} and let αi ∈ C1(Ω̄), i = 1, 2, be such that
0 ≤ αi(x) ≤ ai(x)

αi(x) = 0, if ai(x) ≤
d
4

αi(x) = ai(x), if ai(x) ≥
d
2
.

(2.3)

Lemma 2.1. The functions αi, i = 1, 2, are not identically zero and satisfy

α1(x)+ α2(x) ≥
d
2
.

Proof. (1) For x ∈ Ω ∩wi, we have ai(x) ≥ a0 ≥ d, which implies, by (2.3), that αi(x) = ai(x) ≥ d. Thus αi is not identically
zero.

(2) If a1(x) ≥
d
2 , then α1(x) = a1(x). Consequently α1(x)+ α2(x) ≥ a1(x) ≥

d
2 . If a1(x) <

d
2 , then a2(x) > d

2 which implies,
by (2.3), α2(x) = a2(x) > d

2 . Consequently α1(x)+ α2(x) > d
2 . This completes the proof. �

Remark 2.2. Following the idea of Dafermos [2], we introduce

ηt (x, s) = u (x, t)− u (x, t − s) , ∀x ∈ Ω, ∀s, t ≥ 0; (2.4)

consequently we obtain the following initial and boundary conditionsη
t (x, 0) = 0, ∀x ∈ Ω, ∀t ≥ 0
ηt (x, s) = 0, ∀x ∈ ∂Ω, ∀s, t ≥ 0
η0 (x, s) = η0 (x, s) = u0 (x, 0)− u0 (x, s) , ∀x ∈ Ω, ∀s ≥ 0.

(2.5)

Clearly, (2.4) gives

ηtt (x, s)+ ηts (x, s) = ut (x, t) . (2.6)
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By combining (1.1), (2.5), (2.6), we obtain the following system
utt − div

[
1 − a2(x)

∫
+∞

0
g2(s)ds


∇u
]

+

∫ t

0
g1(t − s)div (a1(x)∇u(s)) ds

−

∫
+∞

0
g2(s)div


a2(x)∇ηt(s)


ds = 0, ∀x ∈ Ω, ∀t > 0

ηtt (x, s)+ ηts (x, s)− ut (x, t) = 0, ∀x ∈ Ω, ∀s, t ≥ 0

(2.7)

together with the following initial and boundary conditionsu (x, t) = ηt (x, s) = 0, ∀x ∈ ∂Ω, ∀s, t ≥ 0
u (x,−t) = u0(x, t), ut (x, 0) = u1(x), ∀x ∈ Ω, ∀t ≥ 0
ηt (x, 0) = 0, η0 (x, s) = η0 (x, s) = u0 (x, 0)− u0 (x, s) , ∀x ∈ Ω, ∀s, t ≥ 0.

(2.8)

The existence and uniqueness of the solution of problem (2.7), (2.8) can be established by using the Galerkin method.
We define the ‘‘modified’’ energy functional of the weak solution by

E(t) =
1
2

∫
Ω

u2
t dx +

1
2

∫
Ω

[
1 − a1(x)

∫ t

0
g1(s)ds − a2(x)

∫
+∞

0
g2(s)ds

]
|∇u|2dx +

1
2
g1 ◦ ∇u +

1
2
g2 ◦ ∇ηt , (2.9)

where

g1 ◦ ∇u =

∫
Ω

a1(x)
∫ t

0
g1(t − s)|∇u(t)− ∇u(s)|2dsdx,

g2 ◦ ∇ηt =

∫
Ω

a2(x)
∫

+∞

0
g2(s)|∇ηt |2dsdx.

Lemma 2.2. The ‘‘modified’’ energy functional satisfies, along the solution of (2.7), (2.8),

E ′(t) = −
1
2
g1(t)

∫
Ω

|∇u(t)|2dx +
1
2
g ′

1 ◦ ∇u +
1
2
g ′

2 ◦ ∇ηt ≤ 0, (2.10)

where

g ′

1 ◦ ∇u =

∫
Ω

a1(x)
∫ t

0
g ′

1(t − s)|∇u(t)− ∇u(s)|2dsdx,

g ′

2 ◦ ∇ηt =

∫
Ω

a2(x)
∫

+∞

0
g ′

2(s)|∇η
t
|
2dsdx.

Proof. By multiplying Eq. (2.7)1 by ut and integrating over Ω , using integration by parts, hypotheses (G1)–(G4) and some
manipulations as in [7,11] and others, we obtain (2.10) for regular solutions. This inequality remains valid forweak solutions
by a simple density argument. �

We define

g1 ⊙ ∇u =

∫
Ω

a1(x)
∫ t

0
g1(t − s) (∇u(s)− ∇u(t)) dsdx,

g2 ⊙ ∇ηt =

∫
Ω

a2(x)
∫

+∞

0
g2(s)∇ηtdsdx.

Lemma 2.3. There exists a positive constant c such that
|g1 ⊙ ∇u|2 ≤ cg1 ◦ ∇ug2 ⊙ ∇ηt

2 ≤ cg2 ◦ ∇ηt ,
(2.11)

and g ′

1 ⊙ ∇u
2 ≤ −cg ′

1 ◦ ∇ug ′

2 ⊙ ∇ηt
2 ≤ −cg ′

2 ◦ ∇ηt ,
(2.12)

for all u, ηt(., s) ∈ H1(Ω).
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Proof. By using (G1)–(G4), and Hölder’s inequality, we get

|g1 ⊙ ∇u|2 =

∫
Ω

∫ t

0
a

1
2
1 (x)g

1
2
1 (t − s)a

1
2
1 (x)g

1
2
1 (t − s) (∇u(s)− ∇u(t)) dsdx

2
≤ ‖a1‖∞

∫
+∞

0
g1(s)ds

∫
Ω

a1(x)
∫ t

0
g1(t − s) |∇u(s)− ∇u(t)|2 dsdx

≤ cg1 ◦ ∇u.

Similarly,g2 ⊙ ∇ηt
2 ≤ cg2 ◦ ∇ηt

and (2.12) can be established. �

3. General decay

In this section, we state and prove our main result. For this purpose, we introduce three ‘‘auxiliary’’ functionals and
establish three related lemmas. We will use c to denote a positive generic constant and assume that E(t) > 0, ∀t ≥ 0
(if E(t0) = 0, for some t0 ≥ 0, then E(t) = 0, ∀t ≥ t0; consequently, by (2.10), estimate (3.8) below holds).

Lemma 3.1. Under the assumptions (G1)–(G4), the functional

φ(t) =

∫
Ω

uutdx (3.1)

satisfies, along the solution of (2.7), (2.8) and for any ε1 > 0,

φ′(t) ≤

∫
Ω

u2
t dx −

[
1 − ε1 − ‖a1‖∞

∫
+∞

0
g1(s)ds − ‖a2‖∞

∫
+∞

0
g2(s)ds

] ∫
Ω

|∇u|2dx

+
c
ε1


g1 ◦ ∇u + g2 ◦ ∇ηt


, ∀t ≥ 0. (3.2)

Proof. By differentiating (3.1) and using (2.7), (2.8), we easily see that

φ′(t) =

∫
Ω

u2
t dx −

∫
Ω


1 − a2(x)

∫
+∞

0
g2(s)ds


|∇u|2dx +

∫
Ω

∇u ·

∫ t

0
a1(x)g1(t − s)∇u(s)dsdx

−

∫
Ω

∇u ·

∫
+∞

0
g2(s)a2(x)∇ηt(s)dsdx

=

∫
Ω

u2
t dx −

∫
Ω


1 − a1(x)

∫ t

0
g1(s)ds − a2(x)

∫
+∞

0
g2(s)ds


|∇u|2dx

+

∫
Ω

∇u.
∫ t

0
a1(x)g1(t − s) (∇u(s)− ∇u(t)) dsdx −

∫
Ω

∇u ·

∫
+∞

0
g2(s)a2(x)∇ηt(s)dsdx

≤

∫
Ω

u2
t dx −

∫
Ω


1 − a1(x)

∫ t

0
g1(s)ds − a2(x)

∫
+∞

0
g2(s)ds


|∇u|2dx

+ ε1

∫
Ω

|∇u|2dx +
1
2ε1

|g1 ⊙ ∇u|2 +
1
2ε1

g2 ⊙ ∇ηt
2 .

By using (2.11), the assertion of the lemma is proved. �

Lemma 3.2. Under the assumptions (G1)–(G4), the functional

ψ1(t) = −

∫
Ω

α1(x)ut

∫ t

0
g1(t − s)(u(t)− u(s))dsdx (3.3)

satisfies, along the solution of (2.7), (2.8) and for any ε2, ε3 > 0,

ψ ′

1(t) ≤ −

[∫ t

0
g1(s)ds − ε2

] ∫
Ω

α1(x)u2
t dx +

ε3

2

∫
Ω

|∇u|2dx −
c
ε2

g ′

1 ◦ ∇u

+
c
ε3


g1 ◦ ∇u + g2 ◦ ∇ηt


, ∀t ≥ 0. (3.4)
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Proof. By differentiating (3.3) and using (2.7), (2.8), we easily see that

ψ ′

1(t) = −

∫
Ω

α1(x)u2
t dx
∫ t

0
g1(s)ds


−

∫
Ω

α1(x)ut

∫ t

0
g ′

1(t − s)(u(t)− u(s))dsdx

−

∫
Ω

α1(x)
[∫ t

0
g1(t − s)(u(t)− u(s))ds

]
div

[
1 − a2(x)

∫
+∞

0
g2(s)ds


∇u
]
dx

+

∫
Ω

α1(x)
[∫ t

0
g1(t − s)(u(t)− u(s))ds

] [∫ t

0
g1(t − s)div (a1(x)∇u(s)) ds

]
dx

−

∫
Ω

α1(x)
[∫ t

0
g1(t − s)(u(t)− u(s))ds

] ∫
+∞

0
g2(s)div


a2(x)∇ηt(s)


dsdx.

Since suppα1 ⊃ Ω ∩ w1 ⊃ Γ1 and u = 0 on Γ1, then∫
Ω


α1(x)

∫ t

0
g ′

1(t − s)(u(t)− u(s))ds
2

dx =

∫
suppα1


α1(x)

∫ t

0
g ′

1(t − s)(u(t)− u(s))ds
2

dx

≤ −c
∫
suppα1

∫ t

0
g ′

1(t − s) (u(t)− u(s))2 ds.

Hence, using a version of Poincaré’s inequality [14] and (2.3), we obtain∫
Ω


α1(x)

∫ t

0
g ′

1(t − s)(u(t)− u(s))ds
2

dx ≤ −c
∫
suppα1

∫ t

0
g ′

1(t − s)|∇u(t)− ∇u(s)|2dsdx

≤ −c
∫
suppα1

a1(x)
∫ t

0
g ′

1(t − s)|∇u(t)− ∇u(s)|2dsdx

≤ −cg ′

1 ◦ ∇u.

Therefore, we have

ψ ′

1(t) ≤ −

∫ t

0
g1(s)ds − ε2

∫
Ω

α1(x)u2
t dx −

c
ε2

g ′

1 ◦ ∇u

+

∫
Ω

α1(x)

1 − a2(x)

∫
+∞

0
g2(s)


∇u(t) ·

∫ t

0
g1(t − s)(∇u(t)− ∇u(s))dsdx

+

∫
Ω


1 − a2(x)

∫
+∞

0
g2(s)


∇α1 · ∇u(t)

∫ t

0
g1(t − s)(u(t)− u(s))dsdx

−

∫
Ω

a1∇α1 ·

∫ t

0
g1(t − s)∇u(s)ds

∫ t

0
g1(t − s) (u(t)− u(s)) ds


dx

−

∫
Ω

a1α1

∫ t

0
g1(t − s)∇u(s)ds


·

∫ t

0
g1(t − s)(∇u(t)− ∇u(s))ds


dx

+

∫
Ω

a2∇α1 ·

∫
+∞

0
g2(s)∇ηt(s)ds

∫ t

0
g1(t − s)(u(t)− u(s))ds


dx

+

∫
Ω

a2α1

∫
+∞

0
g2(s)∇ηt(s)ds


·

∫ t

0
g1(t − s)(∇u(t)− ∇u(s))ds


dx.

By using Young’ s inequality, Poincaré’s inequality, (2.11) and the fact that |∇α1(x)| ≤ ca1(x) (thanks to (2.3)), estimate (3.4)
follows. �

Similar computations yield the following:

Lemma 3.3. Under the assumptions (G1)–(G4), the functional

ψ2(t) = −

∫
Ω

α2(x)ut

∫
+∞

0
g2(s)ηt(s)dsdx (3.5)

satisfies, along the solution of (2.7), (2.8) and for any ε2, ε3 > 0,



482 A. Guesmia, S.A. Messaoudi / Nonlinear Analysis: Real World Applications 13 (2012) 476–485

ψ ′

2(t) ≤ −

[∫
+∞

0
g2(s)ds − ε2

] ∫
Ω

α2(x)u2
t dx +

ε3

2

∫
Ω

|∇u|2dx −
c
ε2

g ′

2 ◦ ∇ηt

+
c
ε3


g1 ◦ ∇u + g2 ◦ ∇ηt


, ∀t ≥ 0. (3.6)

Now, we state and prove our main result.

Theorem 3.4. Assume that (G1)–(G4) hold. Assume further that, in case of (2.2), there exists M0 > 0, for which∫
Ω

|∇u0(x, s)|2dx ≤ M0, ∀s > 0. (3.7)

Then, there exist positive constants ε0, c ′, c ′′ such that the solution of (2.7), (2.8) satisfies

E(t) ≤ c ′′G−1
1


c ′

∫ t

0
ξ(s)ds


, ∀t ≥ 0, (3.8)

where G1(t) =
 1
t

1
G0(s)

ds and

G0(t) =


t if (2.1) holds
tG′(ε0t) if (2.2) holds.

(We can take ξ = 1 if a1 = 0, and G0 = Id if a2 = 0).

Proof. Let L = NE + Mφ + ψ1 + ψ2, forM,N > 0, and let, for t0 > 0 fixed,

g0 = min
∫ t0

0
g1(s)ds,

∫
+∞

0
g2(s)ds


.

A differentiation of L, using (2.10), (3.2), (3.4), (3.6), leads to

L′(t) ≤


N
2

−
c
ε2


(g ′

1 ◦ ∇u + g ′

2 ◦ ∇ηt)−

∫
Ω

[(g0 − ε2)(α1 + α2)− M] u2
t dx

×


c
ε3

+
Mc
ε1


(g1 ◦ ∇u + g2 ◦ ∇ηt)− [(l − ε1)M − ε3]

∫
Ω

|∇u|2dx, ∀t ≥ t0. (3.9)

By using the fact that (α1 + α2)(x) ≥
d
2 and choosing

ε1 =
l
2
, ε2 =

1
2
g0, M =

dg0
8
, ε3 =

ldg0
32

,

we obtain, for some β > 0,

L′(t) ≤ −βE(t)+


N
2

− c

(g ′

1 ◦ ∇u + g ′

2 ◦ ∇ηt)+ c(g1 ◦ ∇u + g2 ◦ ∇ηt), ∀t ≥ t0. (3.10)

Then, we choose N large enough so that N
2 − c ≥ 0 and L ∼ E since

|Mφ + ψ1 + ψ2| ≤ cE.

Consequently, we get

L′(t) ≤ −βE(t)+ c(g1 ◦ ∇u + g2 ◦ ∇ηt), ∀t ≥ t0. (3.11)

To this end, we distinguish two cases to estimate g2 ◦ ∇ηt .
Case 1: Condition (2.1) holds. At this point we use (2.10) to get

g2 ◦ ∇ηt ≤ −
1
σ
g ′

2 ◦ ∇ηt ≤ −
2
σ
E ′(t). (3.12)

Case 2: Condition (2.2) holds. In this case, following the approach of [31], let G∗ be the dual function of the convex function
G defined by G∗(t) = sups≥0{ts − G(s)}, and let τ1, τ2 > 0. By using the fact that s →

s
G−1(s)

is non-decreasing then (2.9),
(2.10) and (3.7) yield∫

Ω

|∇ηt(s)|2dx ≤ c,
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hence, using Young’s inequality ts ≤ G(t)+ G∗(s) and the facts that s →
s

G−1(s)
and G∗ are non-decreasing we obtain

g2 ◦ ∇ηt =
1

τ1G′(ε0E(t))

∫
+∞

0
G−1


−τ2g ′

2(s)
∫
Ω

|∇ηt(s)|2dx


τ1G′(ε0E(t))g2(s)


Ω

|∇ηt(s)|2dx

G−1


−τ2g ′

2(s)

Ω

|∇ηt(s)|2dx

 ds

≤ −
τ2

τ1G′(ε0E(t))
g ′

2 ◦ ∇ηt +
1

τ1G′(ε0E(t))

∫
+∞

0
G∗


cτ1G′(ε0E(t))g2(s)
G−1(−cτ2g ′

2(s))


ds.

By exploiting (2.10) and

G∗(s) = s(G′)−1(s)− G

(G′)−1(s)


≤ s(G′)−1(s),

we get

g2 ◦ ∇ηt ≤ −
2τ2

τ1G′(ε0E(t))
E ′(t)+ c

∫
+∞

0

g2(s)
G−1(−cτ2g ′

2(s))
(G′)−1


cτ1G′(ε0E(t))g2(s)
G−1(−cτ2g ′

2(s))


ds.

Choosing τ2 =
1
c and recalling (2.2), we arrive at

g2 ◦ ∇ηt ≤ −
c

τ1G′(ε0E(t))
E ′(t)+ c(G′)−1


cτ1G′(ε0E(t))

 ∫ +∞

0

g2(s)
G−1(−g ′

2(s))
ds.

Now, choosing τ1 =
1
c and using again (2.2), we obtain

G′(ε0E(t))g2 ◦ ∇ηt ≤ −cE ′(t)+ cε0E(t)G′(ε0E(t)). (3.13)

Then, we deduce, from (3.12) and (3.13), that

G0(E(t))
E(t)

g2 ◦ ∇ηt ≤ −cE ′(t)+ cε0G0(E(t)), (3.14)

where G0 is defined in Theorem 3.4. Therefore, multiplying (3.11) by G0(E(t))
E(t) , using (3.14) and choosing ε0 small enough, we

arrive at

G0(E(t))
E(t)

L′(t)+ cE ′(t) ≤ −cG0(E(t))+ c
G0(E(t))
E(t)

g1 ◦ ∇u, ∀t ≥ t0. (3.15)

Let

I(t) =
G0(E(t))
E(t)

L(t)+ cE(t), ∀t ≥ 0.

By recalling the fact that t −→
G0(E(t))

E(t) is non-increasing, we deduce that I ∼ E and by exploiting (3.15), we conclude that

I ′(t) ≤ −cG0(E(t))+ c
G0(E(t))
E(t)

g1 ◦ ∇u, ∀t ≥ t0. (3.16)

To handle the last term of (3.16), following the approach of [18,19], wemultiply by ξ(t). Hence, exploiting assumption (G2),
(2.10) and the fact that t −→

G0(E(t))
E(t) is non-increasing, we get

ξ(t)I ′(t) ≤ −cξ(t)G0(E(t))+ c
G0(E(t))
E(t)

ξ(t)g1 ◦ ∇u

≤ −cξ(t)G0(E(t))+ c(ξg1) ◦ ∇u
≤ −cξ(t)G0(E(t))− cg ′

1 ◦ ∇u

≤ −cξ(t)G0(E(t))− cE ′(t), ∀t ≥ t0. (3.17)

Finally, we introduce, for τ > 0, the function F = τ (ξ I + cE), which is, clearly, equivalent to E and satisfies, thanks to (3.17)
and the non-increasingness of ξ ,

F ′(t) ≤ −cτξ(t)G0(E(t)), ∀t ≥ t0. (3.18)
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We choose τ > 0 small enough so that

F ≤ E and G1 (F(t0)) ≥ cτ
∫ t0

0
ξ(s)ds, (3.19)

where G1 is given in Theorem 3.4. This choice is possible since

lim
τ→0+

F(τ ) = 0+ and lim
s→0+

G1(s) = +∞.

Therefore (3.18) becomes, for c ′
= cτ ,

F ′(t) ≤ −c ′ξ(t)G0(F(t)), ∀t ≥ t0.

Consequently, we obtain

(G1(F(t)))′ ≥ c ′ξ(t), ∀t ≥ t0. (3.20)

By integrating (3.20) over [t0, t], we get

G1(F(t)) ≥ c ′

∫ t

0
ξ(s)ds + G1(F(t0))− c ′

∫ t0

0
ξ(s)ds, ∀t ≥ t0.

Thanks to (3.19), we easily see that

G1(F(t0))− c ′

∫ t0

0
ξ(s)ds ≥ 0

hence,

G1(F(t)) ≥ c ′

∫ t

0
ξ(s)ds, ∀t ≥ t0.

By recalling that G1 is non-increasing, we easily deduce

F(t) ≤ G−1
1


c ′

∫ t

0
ξ(s)ds


, ∀t ≥ t0

and by using F ∼ E and the boundedness of E, (3.8) is established. �

Remark 3.1. We note that our result cannot be deduced from the results of [9,11] since we require no condition on g ′′.
Besides, our relaxation functions are of more general decay contrary to [9,11] where only the exponential decay has been
considered.

4. Examples

In this section, we give two examples to illustrate our general decay estimate (3.8) and show how it generalizes and
improves the results known in the literature related to the kernel g2 (see [29,30]). For more examples concerning past
history, see [31].
1. Let g2(t) =

d
(1+t)q , for q > 1 and d > 0. The classical condition appeared in [29,30]

g ′

2(t) ≤ −σgp
2 (t), ∀t ≥ 0,

where σ > 0 and 1 ≤ p < 3/2, is not satisfied if 1 < q ≤ 2, while (2.2) always holds with G(t) = t
1
p +1 and for any

p ∈]0, q−1
2 [. In this case, (3.8) takes the form

E(t) ≤
c ′ t

0 ξ(s)ds + 1
p , ∀t ≥ 0, ∀p ∈

]
0,

q − 1
2

[
(4.1)

2. Let g2(t) = de−(1+t)q , for q > 1 and d > 0. Condition (2.1) holds if q ≥ 1 and condition (2.2) holds for q ∈]0, 1[ with

G(t) =

∫ t

0
(− ln s)1−

1
p ds,

for t near zero and for any p ∈]0, q
2 [. In this case (3.8) becomes, for all t ≥ 0,

E(t) ≤

c ′′e−c′
 t

0 ξ(s)ds
p
, ∀p ∈


0,

q
2


if q ∈]0, 1[

c ′′e−c′
 t
0 ξ(s)ds, if q ≥ 1.

(4.2)
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Here, if q ∈]0, 1[, the decay estimate (4.2) is stronger than the one obtained in [30], where only a polynomial rate
was obtained.
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