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Abstract. — We consider the quintic nonlinear Schrödinger equation (NLS)
on the circle
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We prove that there exist solutions corresponding to an initial datum built
on four Fourier modes which form a resonant set (see definition 1.1), which
have a non trivial dynamic that involves periodic energy exchanges between
the modes initially excited. It is noticeable that this nonlinear phenomena
does not depend on the choice of the resonant set.
The dynamical result is obtained by calculating a resonant normal form up
to order 10 of the Hamiltonian of the quintic NLS and then by isolating an
e↵ective term of order 6. Notice that this phenomena can not occur in the
cubic NLS case for which the amplitudes of the Fourier modes are almost
actions, i.e. they are almost constant.
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2 BENOÎT GRÉBERT & LAURENT THOMANN

Résumé. — Nous considérons l’équation de Schrödinger non linéaire (NLS)
quintique sur le cercle
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u = ±⌫ |u|4u, ⌫ ⌧ 1, x 2 S1
, t 2 R.

Nous montrons qu’il existe des solutions issues d’une condition initiale
construite sur quatre modes de Fourier formant un ensemble résonant (voir
définition 1.1) ont une dynamique non triviale mettant en jeu des échanges
périodiques d’énergie entre ces quatre modes initialement excités. Il est
remarquable que ce phénomène non linéaire soit indépendant du choix de
l’ensemble résonant.
Le résultat dynamique est obtenu en mettant d’abord sous forme normale
résonante jusqu’à l’ordre 10 l’Hamiltonien de NLS quintique puis en isolant
un terme e↵ectif d’ordre 6. Il est à noter que ce phénomène ne peut pas se
produire pour NLS cubique pour lequel les amplitudes des modes de Fourier
sont des presque-actions et donc ne varient quasiment pas au cours du temps.

1. Introduction

1.1. General introduction. — Denote by S1 = R/2⇡Z the circle, and let
⌫ > 0 be a small parameter. In this paper we are concerned with the following
quintic non linear Schrödinger equation

(1.1)

(

i@tu + @2
xu = ±⌫|u|4u, (t, x) 2 R⇥ S1,

u(0, x) = u0(x).

If u0 2 H1(S1), thanks to the conservation of the energy, we show that the
equation admits a unique global solution u 2 H1(S1). In this work we want
to describe some particular examples of nonlinear dynamics which can be
generated by (1.1).

For the linear Schrödinger equation (⌫ = 0 in (1.1)) we can compute the
solution explicitly in the Fourier basis: Assume that u0(x) =

X

j2Z
⇠0
j eijx, then

u(t, x) =
X

j2Z
⇠j(t)eijx with ⇠j(t) = ⇠0

j e�ij2t. In particular, for all j 2 Z, the

quantity |⇠j | remains constant. Now, let ⌫ > 0, then a natural question is:
do there exist solutions so that the |⇠j | have a nontrivial dynamic. First we
review some known results.

Consider a general Hamiltonian perturbation where we add a linear term
and a nonlinear term:

(1.2) i@tu + @2
xu + V ? u = ⌫@ūg(x, u, ū), x 2 S1, t 2 R
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where V is a smooth periodic potential and g is analytic and at least of order
three. In that case the frequencies are !j = j2 + V̂ (j), j 2 Z where V̂ (j)
denote the Fourier coe�cients of V . Under a non resonant condition on these
frequencies, it has been established by D. Bambusi and the first author [2]
(see also [6]) that the linear actions |⇠j |2, j 2 Z are almost invariant during
very long time, or more precisely, that for all N � 1

|⇠j(t)|2 = |⇠j(0)|2 +O(⌫), for |t|  ⌫�N .

Therefore in this non resonant case, the dynamics of NLS are very close to the
linear dynamics. On the other hand, assuming more restrictive non resonant
conditions on the frequencies, it is possible to develop the KAM machinery
to equation (1.2). Actually, for the quintic nonlinearity J. Bourgain [3] has
shown the existence of invariant tori of full dimension which are close to the
invariant tori of the linear part of the equation.
Another very interesting case is the classical cubic NLS

(1.3) i@tu + @2
xu = ±⌫|u|2u, (t, x) 2 R⇥ S1

and for this equation again nothing moves:

|⇠j(t)|2 = |⇠j(0)|2 +O(⌫), for all t 2 R.

This last result is a consequence of the existence of action angle variables
(I, ✓) for the cubic NLS equation (there are globally defined in the defocusing
case and locally defined around the origin in the focusing case, see respectively
[7, 8] and [10]) and that the actions are close to the Fourier mode amplitudes
to the square: Ij = |⇠j |2(1 +O(⌫)).
Thus, in these two examples, the linear actions |⇠j |2 are almost constant in
time, but for di↵erent reasons.
Notice that in both previous cases, the Sobolev norms of the solutions,
⇣

P

j2Z j2s|⇠j(t)|2
⌘1/2

are almost constant for all s � 0.
On the other hand, recently C. Villegas-Blas and the first author consider the
following cubic NLS equation

(1.4) i@tu + @2
xu = ±⌫ cos 2x |u|2u, (t, x) 2 R⇥ S1

and prove that this special nonlinearity generates a nonlinear e↵ect: if u0(x) =
Aeix + Āe�ix then the modes 1 and �1 exchange energy periodically (see [9]).
For instance if u0(x) = cos x + sinx, a total beating is proved for |t|  ⌫�5/4:

|⇠1(t)|2 =
1± sin 2⌫t

2
+O(⌫3/4), |⇠�1(t)|2 =

1⌥ sin 2⌫t

2
+O(⌫3/4).

Of course in (1.4) the interaction between the mode 1 and the mode �1 is
induced by the cos 2x in front of the nonlinearity.
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In the present work we consider the quintic NLS equation (1.1). Notice that
Liang and You have proved in [12] that, in the neighborhood of the origin,
there exist many quasi periodic solutions of (1.1). The basic approach is to
apply the KAM method and vary the amplitude of the solutions in order to
avoid resonances in the spirit of the pioneer work of Kuksin-Pöschel ([11]).
Here we want to take advantage of the resonances in the linear part of the
equation to construct solutions that exchange energy between di↵erent Fourier
modes.
Formally, by the Duhamel formula

u(t) = eit@2
xu0 � i⌫

Z t

0
ei(t�s)@2

x

�|u|4u�(s)ds,

and we deduce that |⇠j |2 cannot move as long as t ⌧ ⌫�1. In this paper
we prove that for a large class of convenient initial data, certain of the |⇠j |2
e↵ectively move after a time of order t ⇠ ⌫�1.

Definition 1.1. — A set A of the form

A =
�

n, n + 3k, n + 4k, n + k
 

, k 2 Z\{0} and n 2 Z,

is called a resonant set. In the sequel we will use the notation

a2 = n, a1 = n + 3k, b2 = n + 4k, b1 = n + k.

We are interested in these resonant sets, since they correspond to resonant
monomials of order 6 in the normal form of the Hamiltonian (1.1), namely
⇠2
a1

⇠a2 ⇠̄
2
b1

⇠̄b2 . See Sections 2 and 3 for more details.

Example 1.2. — For (n, k) = (�2, 1), we obtain (a2, a1, b2, b1) = (�2, 1, 2,�1);
for (n, k) = (�1, 2), we obtain (a2, a1, b2, b1) = (�1, 5, 7, 1).

1.2. The main result. — Our first result is the following:

Theorem 1.3. — There exist T > 0, ⌫0 > 0 and a 2T�periodic function
K? : R 7�!]0, 1[ which satisfies K?(0)  1/4 and K?(T ) � 3/4 so that if A is
a resonant set and if 0 < ⌫ < ⌫0, there exists a solution to (1.1) satisfying for
all 0  t  ⌫�3/2

u(t, x) =
X

j2A
uj(t)eijx + ⌫1/4q1(t, x) + ⌫3/2tq2(t, x),

with |ua1(t)|2 = 2|ua2(t)|2 = K?(⌫t)

|ub1(t)|2 = 2|ub2(t)|2 = 1�K?(⌫t),
and where for all s 2 R, kq1(t, ·)kHs(S1)  Cs for all t 2 R+, and
kq2(t, ·)kHs(S1)  Cs for all 0  t  ⌫�3/2.
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Theorem 1.3 shows that there is an exchange between the two modes a1 and
a2 and the two modes b1 and b2. It is remarkable that this nonlinear e↵ect is
universal in the sense that this dynamic does not depend on the choice of the
resonant set A.

In Section 2, we will see that such a result does not hold for any set A with
#A  3. However, three modes of a resonant set A can excite the fourth mode
of A if this one was initially arbitrary small but not zero. More precisely :

Theorem 1.4. — For all 0 < � < 1/10, there exist T� > 0, a 2T��periodic
function K� : R 7�!]0, 1[ which satisfies K�(0) = � and K�(T�) � 1/10, and
there exists ⌫0 > 0 so that if A is a resonant set and if 0 < ⌫ < ⌫0, there exists
a solution to (1.1) satisfying for all 0  t  ⌫�3/2

u(t, x) =
X

j2A
uj(t)eijx + ⌫1/4q1(t, x) + ⌫3/2tq2(t, x),

with |ua1(t)|2 = K�(⌫t) ; 2|ua2(t)|2 = 7 + K�(⌫t)

|ub1(t)|2 = 1�K�(⌫t) ; 2|ub2(t)|2 = 1�K�(⌫t),
and where for all s 2 R, kq1(t, ·)kHs(S1)  Cs for all t 2 R+, and
kq2(t, ·)kHs(S1)  Cs for all 0  t  ⌫�3/2.

Of course the solutions satisfy the three conservation laws : the mass, the
momentum and the energy are constant quantities. Denote by Lj = |uj |2,
then we have
• Conservation of the mass:

Z

|u|2

(1.5) La1 + La2 + Lb1 + Ib2 = cst.

• Conservation of the momentum: Im
Z

u@xu

(1.6) a1La1 + a2La2 + b1Lb1 + b2Lb2 = cst.

• Conservation of the energy :
Z

|@xu|2 +
⌫

3

Z

|u|6

(1.7) a2
1La1 + a2

2La2 + b2
1Lb1 + b2

2Lb2 = cst.

On the other hand, the solutions given by Theorem 1.3 satisfy for 0  t  ⌫�5/4

and s � 0
(1.8)

ku(t, ·)k2
Ḣs

=
K?(⌫t)

2
�

2|a1|2s+|a2|2s�2|b1|2s�|b2|2s
�

+|b1|2s+
1
2
|b2|2s+O(⌫1/4).

Remark that (1.8) for s = 0, 1 is compatible with respectively (1.5) and (1.7),
since, for these values of s, the coe�cient

�

2|a1|2s + |a2|2s � 2|b1|2s � |b2|2s
�

vanishes for (a1, a2, b1, b2) 2 A.
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But for s � 2, this coe�cient is no more zero, except for some symmetric
choices of A like (�2, 1, 2,�1). Thus in the other cases ku(t, ·)k2

Ḣs

is not con-
stant. Actually, a computation shows that, choosing n = �k in the definition
of A, the ratio between ku(T, ·)k2Hs

and ku(0, ·)k2Hs

is larger than 2 for s � 4.
Very recently, Colliander, Keel, Sta�lani, Takaoka and Tao [4] have proved
a very nice result on the transfer of energy to high frequencies in the cubic
defocusing nonlinear Schrödinger equation on the 2 dimensional torus. Of
course their result is more powerful ; in particular they allow a ratio between
the initial Hs-norm and the Hs norm for long time arbitrarily large. On the
contrary our result only allows transfers of energy from modes {n, n + 3k} to
modes {n + 4k, n + k} and thus the possibility of growing of the Hs-norm is
bounded by cs for some constant c. Nevertheless our approach is much more
simple, it applies in 1-d and it is somehow universal (the dynamics we describe
are not at all exceptional).

Remark 1.5. — Consider a resonant set A, and let u be given by Theorem
1.3. Then by the scaling properties of the equation, for all N 2 N⇤, uN defined
by uN (t, x) = N

1
2 u(N2t, Nx) is also a solution of (1.1) and we have

uN (t, x) = N1/2
X

j2A
uj(N2t)eijNx + ⌫1/4q1(N2t, Nx) + ⌫3/2tq2(N2t, Nx).

Next, for any N 2 N⇤, the set NA is also a resonant set, and thus we can
apply Theorem 1.3, which gives the existence of a solution to (1.1) which reads

euN (t, x) =
X

j2A
euj(t)eijNx + ⌫1/4

eq1(t, x) + ⌫3/2teq2(t, x).

Observe however that they are not the same.

Theorem 1.3 is obtained by calculating a resonant normal form up to or-
der 10 of the Hamiltonian of the quintic NLS and then by isolating an ef-
fective term of order 6. Roughly speaking we obtain in the new variables
H = N + Zi + Ze

6 + R where N + Zi depends only on the actions, Ze
6 , the

e↵ective part, is a polynomial homogeneous of order 6 which depends on one
angle and R is a remainder term.
We first prove that, reduced to the resonant set, N + Zi + Ze

6 generates the
nonlinear dynamic that we expect. Then we have to prove that adding the
remainder term R and considering all the modes, this nonlinear dynamic per-
sists beyond the local time (here t & ⌫�1). In general this is a hard problem.
Nevertheless in our case, the nonlinear dynamic corresponds to a stable orbit
around a elliptic equilibrium point. So we explicitly calculate the action-angle
variables (K, ') 2 R4 ⇥ T4 for the finite dimensional system in such way that
our nonlinear dynamics reads K̇ = 0. Then for the complete system, we obtain
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K̇ = O(⌫5/2) and we are essentially done.
In [9], this construction was much more simpler since the finite dimensional
nonlinear dynamics was in fact linear (after a change of variable) and linear
dynamics are more stable by perturbation than nonlinear ones.

1.3. Plan of the paper. — We begin in Section 2 with some arithmetical
preliminaries. In Section 3 we reinterpret equation (1.1) as a Hamiltonian
equation and we compute a completely resonant normal form at order 6. In
Section 4 we study the equation (the model equation) obtained by the previous
normal form after truncation of the error terms. In Section 5 we show that
the model equation gives a good approximation of some particular solutions
of (1.1).

2. Preliminaries: Arithmetic

We are interested in sets A of small cardinality so that there exist
(j1, j2, j3, `1, `2, `3) 2 A6 satisfying the following resonance condition

(2.1)

(

j2
1 + j2

2 + j2
3 = `2

1 + `2
2 + `2

3,

j1 + j2 + j3 = `1 + `2 + `3,
and

�

j1, j2, j3
 6= �

`1, `2, `3
 

.

To begin with, let us recall a classical result

Lemma 2.1. — Assume that (j1, j2, j3, `1, `2, `3) 2 Z6 satisfy (2.1). Then
�

j1, j2, j3
 \ �`1, `2, `3

 

= ;.
Proof. — If, say j1 = `1, then we have the relation

j2 + j3 = `2 + `3 and j2
2 + j2

3 = `2
2 + `2

3,

and this implies that (j2, j3) = (l2, l3) or (j2, j3) = (l3, l2). Squaring the first
equality yields (j2 + j3)2 = (l2 + l3)2. To this equality we subtract j2

2 + j2
3 =

`2
2 + `2

3, which implies j2j3 = `2`3. Now compute

(`2 � j2)(`2 � j3) = `2
2 + j2j3 � j2`2 � j3`2 = `2(`2 + `3 � j2 � j3) = 0,

hence the result.

Lemma 2.2. — Assume that there exist integers (j1, j2, j3, `1, `2, `3) 2 A6

which satisfy (2.1). Then the cardinal of A is greater or equal than 4.

Proof. — Assume that #A  3. Then by Lemma 2.1 we can assume that
A = {j1, j2, `1} and that

2j1 + j2 = 3`1 ; 2j2
1 + j2

2 = 3`2
1.
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Let k 2 Z so that j1 = `1 + k, then from the first equation we deduce that
j2 = `1 � 2k. Finally, inserting the last relation in the second equation, we
deduce that k = 0 which implies that j1 = j2 = `1.

The next result describes the sets A of cardinal 4 and which contain non
trivial solutions to (2.1). According to definition 1.1, these sets are called
resonant sets.

Lemma 2.3 (Description of the resonant sets). — The resonance sets
are the

A =
�

n, n + 3k, n + 4k, n + k
 

, k 2 Z\{0} and n 2 Z.

Proof. — By Lemma 2.1, we know that either
�

j1, j2, j3
 

=
�

`1, `2, `3
 

or
�

j1, j2, j3
 \ �`1, `2, `3

 

= ;. We consider the second case.
• First we exclude the case j1 = j2 = j3 = j. In that case we have to solve

(2.2)

(

3j2 = `2
1 + `2

2 + `2
3,

3j = `1 + `2 + `3.

We will show that (2.2) implies `1 = `2 = `3 = j. Set `1 = j+p and `2 = j+q.
Then by the second line `3 = j � p� q. Now, we plug in the first line and get
p2 + q2 + pq = 0. This in turn implies that p = q = 0 thanks to the inequality
p2 + q2 � 2|pq|.
• Then we can assume that j2 = j3 and `2 = `3, and ]{j1, j2, `1, `2} = 4. Thus
we have to solve

(

j2
1 + 2j2

2 = `2
1 + 2`2

2,

j1 + 2j2 = `1 + 2`2.

From the first line, we infer that (j1 � `1)(j1 + `1) = 2(`2 � j2)(`2 + j2). The
second gives j1 � `1 = 2(`2 � j2), thus j1 + `1 = j2 + `2. Hence we are led to
solve the system

⇢

`1 � `2 = �j1 + j2,

`1 + 2`2 = j1 + 2j2

where the integers j1 and j2 are considered as parameters. The solutions are

`1 =
1
3
(�j1 + 4j2), `2 =

1
3
(2j1 + j2)

with the restriction, j1 ⌘ j2 mod 3, in order to obtain integer solutions. Let
n 2 Z, k 2 Z⇤ so that j1 = n and j2 = n + 3k, the solutions then reads
`1 = n + 4k and `2 = n + k, as claimed.
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Define the set

R = {(j1, j2, j3, `1, `2, `3) 2 Z6 s.t.

j1 + j2 + j3 = `1 + `2 + `3 and j2
1 + j2

2 + j2
3 = `2

1 + `2
2 + `2

3}.
The following result will be useful in the sequel

Lemma 2.4. — Let (j1, j2, j3, `1, p1, p2) 2 R. Assume that j1, j2, j3, `1 2 A.
Then p1, p2 2 A.

Proof. — Let j1, j2, j3, `1 2 A and p1, p2 2 N so that

(2.3)

(

p1 + p2 = j1 + j2 + j3 � `1,

p2
1 + p2

2 = j2
1 + j2

2 + j2
3 � `2

1.

By Lemma 2.3, there exist n, k 2 Z and (ms)1s4 with ms 2
�

0, 1, 3, 4
 

so
that js = n+msk and `1 = n+m4k. We also write p1 = n+q1 and p2 = n+q2.
We plug these expressions in (2.3) which gives
(

q1 + q2 = (m1 + m2 + m3 �m4)k,

q2
1 + q2

2 + 2n(q1 + q2) = 2n(m1 + m2 + m3 �m4)k + (m2
1 + m2

2 + m2
3 �m2

4)k
2,

and is equivalent to
(

q1 + q2 = (m1 + m2 + m3 �m4)k,

q2
1 + q2

2 = (m2
1 + m2

2 + m2
3 �m2

4)k
2.

We write q1 = r1k and q2 = r2k, then r1, r2 2 Q satisfy

(2.4)

(

r1 + r2 = m1 + m2 + m3 �m4 := S,

r2
1 + r2

2 = m2
1 + m2

2 + m2
3 �m2

4 := T.

Next, we observe that indeed r1, r2 2 Z : In fact (2.4) is equivalent to

(2.5) r1 + r2 = S, r1r2 =
1
2
(S2 � T ) := U,

(U 2 Z since S and T have same parity) and r1, r2 are the roots of the
polynomial X2 � SX + U . Thus if r = ↵/� with ↵ ^ � = 1, we have that �|1
and then r 2 Z.
We are finally reduced to solve (2.4) where ms 2

�

0, 1, 3, 4
 

. We list all
possible cases in the following array : By symmetry we only need to consider
the cases m1 � m2 � m3. We denote by m1m2m3m4 a possible choice and by
T = m2

1 + m2
2 + m2

3 �m2
4.
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Values of ms Value of T Values of ms Value of T ms Value of T
4440 48 4441 47 4443 39
4430 41 4431 40=36+4 4410 33
4413 24 4401 31 4403 23
4330 34=25+9 4331 33 4310 26=25+1
4301 24 4110 18=9+9 4113 9=9+0
4103 8=4+4 4001 15 4003 7
3330 27 3331 26=25+1 3334 11
3310 19 3314 3 3301 17=16+1
3304 2 3110 11 3114 -5
3104 -6 3001 8=4+4 3004 -7
1110 3 1113 -6 1114 -13

In this array, we read all the possible solutions to (2.4) which are (assuming
that m1 � m2 � m3 and r1 � r2)
(2.6)
(r1, r2, m1, m2, m3, m4) = (3, 3, 4, 1, 1, 0), (3, 0, 4, 1, 1, 3), (4, 1, 3, 3, 0, 1).

Now we observe that we always have r1, r2 2
�

0, 1, 3, 4
 

, so that if we come
back to (2.3), p1 = n + r1k, p2 = n + r2k and p1, p2 2 A.

3. The normal form

3.1. Hamiltonian formulation. — From now, and until the end of the
paper, we set " = ⌫1/4. In the sequel, it will be more convenient to deal with
small initial conditions to (1.1), thus we make the change of unknown v = "u
and we obtain

(3.1)

(

i@tv + @2
xv = |v|4v, (t, x) 2 R⇥ S1 ,

v(0, x) = v0(x) = "u0(x).

Let us expand v and v̄ in Fourier modes:

v(x) =
X

j2Z
⇠je

ijx, v̄(x) =
X

j2Z
⌘je

�ijx.

We define

P (⇠, ⌘) =
1
3

Z

S1
|v(x)|6dx =

1
3

X

j,`2Z3

M(j,`)=0

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 ,

where M(j, `) = j1 + j2 + · · ·+ jp � `1 � `2 � · · ·� `p denotes the momentum
of the multi-index (j, l) 2 Z2p or equivalently the momentum of the monomial
⇠j1⇠j2 · · · ⇠j

p

⌘`1⌘`2 · · · ⌘`
p

.
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In this Fourier setting the equation (3.1) reads as an infinite Hamiltonian
system

(3.2)

(

i⇠̇j = j2⇠j + @P
@⌘

j

j 2 Z,

�i⌘̇j = j2⌘j + @P
@⇠

j

j 2 Z.

Since the regularity is not an issue in this work, we will work in the following
analytic phase space (⇢ � 0)

A⇢ = {(⇠, ⌘) 2 `1(Z)⇥ `1(Z) | ||(⇠, ⌘)||⇢ :=
X

j2Z
e⇢|j|(|⇠j |+ |⌘j |) < 1}

which we endow with the canonical symplectic structure �i
P

j d⇠j ^ ⌘j . No-
tice that this Fourier space corresponds to functions u(z) analytic on a strip
|=z| < ⇢ around the real axis.
According to this symplectic structure, the Poisson bracket between two func-
tions f and g of (⇠, ⌘) is defined by

{f, g} = �i
X

j2Z

@f

@⇠j

@g

@⌘j
� @f

@⌘j

@g

@⇠j
.

In particular, if (⇠(t), ⌘(t)) is a solution of (3.2) and F is some regular Hamil-
tonian function, we have

d

dt
F (⇠(t), ⌘(t)) = {F,H}(⇠(t), ⌘(t))

where

H = N + P =
X

j2Z
j2⇠j⌘j +

1
3

X

j,`2Z3

M(j,`)=0

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 ,

is the total Hamiltonian of the system. It is convenient to work in the sym-
plectic polar coordinates

�

⇠j =
p

Ijei✓
j , ⌘j =

p

Ije�i✓
j

�

j2Z. Since we have
d⇠ ^ d⌘ = id✓ ^ dI, the system (3.1) is equivalent to

(

✓̇j = �@H
@I

j

j 2 Z,

İj = @H
@✓

j

j 2 Z.

Finally, we define

(3.3) J =
X

j2Z
Ij =

X

j2Z
⇠j⌘j = kvk2L2(S1),

which is a constant of motion for (3.1) and (3.2).
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3.2. The Birkho↵ normal form procedure. — We denote by B⇢(r) the
ball of radius r centred at the origin in A⇢. Recall the definition

R = {(j1, j2, j3, `1, `2, `3) 2 Z6 s.t.

j1 + j2 + j3 = `1 + `2 + `3 and j2
1 + j2

2 + j2
3 = `2

1 + `2
2 + `2

3}
and its subset

R0 = R \
n

�

j1, j2, j3
 

=
�

`1, `2, `3
 

o

.

We are now able to state the main result of this section, which is a normal
form result at order 10 for the Hamiltonian H.

Proposition 3.1. — There exists a canonical change of variable ⌧ from
B⇢(") into B⇢(2") with " small enough such that

(3.4) H := H � ⌧ = N + Z6 + R10,

where

(i) N is the term N(I) =
X

j2Z
j2Ij;

(ii) Z6 is the homogeneous polynomial of degree 6

Z6 =
X

R
⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 .

(iii) R10 is the remainder of order 10, i.e. a Hamiltonian satisfying
||XR10(z)||⇢  C||z||9⇢ for z = (⇠, ⌘) 2 B⇢(");

(iv) ⌧ is close to the identity: there exist a constant C⇢ such that ||⌧(z)�z||⇢ 
C⇢||z||2⇢ for all z 2 B⇢(").

By abuse of notation, in the proposition and in the sequel, the new variables
(⇠0, ⌘0) = ⌧�1(⇠, ⌘) are still denoted by (⇠, ⌘).

Proof. — For convenience of the reader, we briefly recall the Birkho↵ normal
form method. Let us search ⌧ as time one flow of � a polynomial Hamiltonian
of order 6,

� =
X

j,`2Z3

M(j,`)=0

aj,` ⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 .

For any smooth function F , the Taylor expansion of F ��t
� between t = 0 and

t = 1 gives

F � ⌧ = F + {F,�}+
1
2

Z 1

0
(1� t){{F,�}, �} � �t

�dt.
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Applying this formula to H = N + P we get

H � ⌧ = N + P + {N,�}+ {P,�}+
1
2

Z 1

0
(1� t){{H,�}, �} � �t

�dt.

Therefore in order to obtain H � ⌧ = N + Z6 + R10 we define

(3.5) Z6 = P + {N,�}
and

(3.6) R10 = {P,�}+
1
2

Z 1

0
(1� t){{H,�}, �} � �t

�dt.

For j, ` 2 Z3 we define the associated divisor by

⌦(j, `) = j2
1 + j2

2 + j2
3 � `2

1 � `2
2 � `2

3.

The homological equation 3.5 is solved by defining

� :=
X

j,`2Z3

M(j,`)=0,⌦(j,`) 6=0

1
i⌦(j, `)

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3

and thus Z6 =
X

j,`2Z3

M(j,`)=0,⌦(j,`)=0

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 . At this stage we define the

class Pp of formal polynomial

Q =
X

j,l2Zp

M(j,`)=0

aj,`⇠j1⇠j2 · · · ⇠j
p

⌘`1⌘`2 · · · ⌘`
p

where the aj` form a bounded family and we define [Q] = supj,` |aj`|. We
recall the following result from [5]

Lemma 3.2. — Let P 2 Pp. Then
(i) P is well defined and continuous (and thus analytic) on A⇢ and

|P (⇠, ⌘)|  [P ]||(⇠, ⌘)||2p
0  [P ]||(⇠, ⌘)||2p

⇢ .

(ii) The associated vector field XP is bounded (and thus smooth) from A⇢

to A⇢ and
||XP (⇠, ⌘)||⇢  2p[P ]||(⇠, ⌘)||2p�1

⇢ .

(iii) Let Q 2 Pq then {P,Q} 2 Pp+q�2 and

[{P,Q}]  2qp[P ][Q].
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For convenience of the reader the proof of this lemma is recalled in the
appendix A.

By using this Lemma and since there are no small divisors in this resonant
case, Z6 and � have analytic vector fields on A⇢. On the other hand, since �
is homogeneous of order 6, for " su�ciently small, the time one flow generated
by � maps the ball B⇢(") into the ball B⇢(2") and is close to the identity in
the sense of assertion (iv).
Concerning R10, by construction it is a Hamiltonian function which is of order
at least 10. To obtain assertion (iii) it remains to prove that the vector field
XR10 is smooth from B⇢(") into A⇢ in such a way we can Taylor expand XR10

at the origin. This is clear for the first term of (3.6): {P,�} have a smooth
vector field as a consequence of Lemma 3.2 assertions (ii) and (iii). For the
second term, notice that {H,�} = Z6 � P + {P,�} which is a polynomial
on A⇢ having bounded coe�cients and the same is true for Q =

� {H,�}, � .
Therefore, in view of Lemma 3.2, XQ is smooth. Now, since for " small enough
�t

� maps smoothly the ball B⇢(") into the ball B⇢(2") for all 0  t  1, we
conclude that

R 1
0 (1� t){{H,�}, �} � �t

�dt has a smooth vector field.

3.3. Description of the resonant normal form. — In this subsection
we study the resonant part of the normal form given by Proposition 3.1

Z6 =
X

R
⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 .

We have

Proposition 3.3. — The polynomial Z6 reads

(3.7) Z6 = Zi
6 + Ze

6 + Z6,2 + Z6,3,

where
(i) Zi

6 is a homogeneous polynomial of degree 6 which only depends on the
actions (recall the definition (3.3) of J):

Zi
6(I) =

X

R0

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 = 6J3 � 9J
X

k2Z
I2
k + 4

X

k2Z
I3
k ;

(ii) Ze
6 is the e↵ective Hamiltonian, it is a homogeneous polynomial of degree

6 which involves only modes in the resonant set A:

Ze
6(⇠, ⌘) = 9(⇠a2⇠

2
a1

⌘b2⌘
2
b1 + ⇠b2⇠

2
b1⌘a2⌘

2
a1

);

(iii) Z6,2 is an homogeneous polynomial of degree 6 which contains all the
terms involving exactly two modes which are not in A;

(iv) Z6,3 is an homogeneous polynomial of degree 6 which contains all the
terms involving at least three modes which are not in A.
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Example 3.4. — Assume that A = {�2, 1, 2,�1}. Then we have Ze
6(⇠, ⌘) =

9(⇠�2⇠2
1⌘2⌘2

�1 + ⇠2⇠2
�1⌘�2⌘2

1), and we can compute (see Example (B.1))

Z6,2(⇠, ⌘) = 36(⇠3⇠�2⇠�1⌘�3⌘2⌘1 + ⇠�3⇠2⇠1⌘3⌘�2⌘�1)
+9(⇠4⇠

2
�2⌘�4⌘

2
2 + ⇠�4⇠

2
2⌘4⌘

2
�2).

If A = {�1, 5, 7, 1}, the term Z6,2 is much more complicated (see Example
(B.1)).

Proof. — (of Proposition 3.3) A priori, in (3.7) there should also be a poly-
nomial Z6,1 composed of the terms involving exactly one mode which is not
in A. An important fact of Proposition 3.3 is that Z6,1 = 0, and this is a
consequence of Lemma 2.4.
The specific form of the e↵ective Hamiltonian announced in (ii) follows from
the proof of Lemma 2.3.
It remains to compute Zi

6. This is done in the two following lemmas.
Denote by

Q = {(j1, j2, `1, `2) 2 Z4 s.t. j1 + j2 = `1 + `2 and j2
1 + j2

2 = `2
1 + `2

2}.
Observe that if (j1, j2, `1, `2) 2 Q, then {j1, j2} = {`1, `2} (see the proof of
Lemma 2.1). Next, we can state

Lemma 3.5. — The two following identities hold true

(3.8) Z4(I) :=
X

(j1,j2,`1,`2)2Q

⇠j1⇠j2⌘`1⌘`2 = 2J2 �
X

j2Z
I2
j ,

(3.9) W (k)
4 (I) :=

X

(j1,`2,`3)2⌦(k)

⇠k⇠j1⌘`2⌘`3 = 2Ik(J � Ik),

where ⌦(k) =
�

(j1, `2, `3) 2 Z3 s.t. (k, j1, `2, `3) 2 Q and j1 6= k
 

.

Proof. — First we prove (3.8). Thanks to the previous remark and the fact
that ⇠j⌘j = Ij , we have

Z4(I) =
X

Q,j1=`1

⇠j1⇠j2⌘`1⌘`2 +
X

Q,j1 6=`1

⇠j1⇠j2⌘`1⌘`2

=
X

(j1,j2)2Z2

Ij1Ij2 +
X

(j1,j2)2Z2

j1 6=j2

Ij1Ij2

= 2
�

X

j2Z
Ij

�2 �
X

j2Z
I2
j = 2J2 �

X

j2Z
I2
j ,
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which was the claim.
We now turn to (3.9). Again we split the sum in two

W (k)
4 (I) =

X

(j1,`2,`3)2⌦(k)

j1=`2

⇠k⇠j1⌘`2⌘`3 +
X

(j1,`2,`3)2⌦(k)

j1 6=`2

⇠k⇠j1⌘`2⌘`3

= Ik

X

j12Z\{k}
Ij1 + Ik

X

j12Z\{k}
Ij1

= 2Ik(J � Ik),

hence the result.

Lemma 3.6. — The following identity holds true

Zi
6(I) :=

X

R0

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 = 6J3 � 9J
X

k2Z
I2
k + 4

X

k2Z
I3
k .

Proof. — First we split the sum into three parts

Zi
6(I) =

X

R0,j1=`1

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 +
X

R0,j1 6=`1,j2=`1

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3

+
X

R0,j1 6=`1,
j2 6=`1,j3=`1

⇠j1⇠j2⇠j3⌘`1⌘`2⌘`3 := ⌃1 + ⌃2 + ⌃3.

For the first sum, we use (3.8) to write

(3.10) ⌃1 =
X

(j2,j3,`2,`3)2Q
j12Z

Ij1⇠j2⇠j3⌘`2⌘`3 = JZ4(I) = 2J3 � J
X

k2Z
I2
k .

Now we deal with the sum ⌃3. Denote by

Q(k) =
�

(j1, j2, `1, `2) 2
�

Z\{k}�4 s.t. j1+j2 = `1+`2 and j2
1 +j2

2 = `2
1+`2

2

 

,

then from (3.8) we deduce that

Z(k)
4 (I) :=

X

(j1,j2,`1,`2)2Q(k)

⇠j1⇠j2⌘`1⌘`2 = 2(J � Ik)2 �
X

j2Z
I2
j + I2

k .

Therefore by the previous equality

⌃3 =
X

(j1,j2,`2,`3)2Q(`1)

`12Z

I`1⇠j1⇠j2⌘`2⌘`3 =
X

k2Z
IkZ

(k)
4 (I)

=
X

k2Z
Ik

⇣

2J2 � 4JIk + 2I2
k �

X

j2Z
I2
j + I2

k

⌘

= 2J3 � 5J
X

k2Z
I2
k + 3

X

k2Z
I3
k .(3.11)
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Now we consider ⌃2. By (3.9) and (3.11)

⌃2 =
X

R0,j1 6=j2

Ij2⇠j1⇠j3⌘`2⌘`3

=
X

R0,j1 6=j2,j3 6=j2

Ij2⇠j1⇠j3⌘`2⌘`3 +
X

R0,j1 6=j2,j3=j2

Ij2⇠j1⇠j2⌘`2⌘`3

= ⌃3 +
X

j22Z
Ij2W

j2(I)

= 2J3 � 5J
X

k2Z
I2
k + 3

X

k2Z
I3
k + 2J

X

k2Z
I2
k � 2

X

k2Z
I3
k

= 2J3 � 3J
X

k2Z
I2
k +

X

k2Z
I3
k .(3.12)

Finally, (3.10), (3.11) and (3.12) yield the result.

4. The model equation

We want to describe the dynamic of a solution to (3.2) so that ⇠0
j = ⌘0

j = 0
when j 62 A. In view of the result of Propositions 3.1 and 3.3 we hope that
such a solution will be close to the solution (with same initial condition) of the
Hamiltonian flow of N + Zi

6 + Ze
6 reduced to the four modes of the resonant

set, i.e.

(4.1) bH =
X

j2A
j2Ij + 6J3 � 9J

X

k2A
I2
k + 4

X

k2A
I3
k + 18I1/2

a2
I1/2
b2

Ia1Ib1 cos(2'0),

with '0 = ✓a1 � ✓b1 + 1
2✓a2 � 1

2✓b2 .
The Hamiltonian system associated to bH is defined on the phase space T4 ⇥
R4 3 (✓a1 , ✓a2 , ✓a3 , ✓a4 ; Ia1 , Ia2 , Ia3 , Ia4) by

(4.2)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

✓̇a
j

= � @ bH
@I

a

j

j = 1, 2,

İa
j

= @ bH
@✓

a

j

j = 1, 2,

✓̇b
j

= � @ bH
@I

b

j

j = 1, 2,

İb
j

= @ bH
@✓

b

j

j = 1, 2,

This finite dimensional system turns out to be completely integrable.

Lemma 4.1. — The system (4.2) is completely integrable.

Proof. — It is straightforward to check that

K1 = Ia1 + Ib1 , K2 = Ia2 + Ib2 and K1/2 = Ib2 +
1
2
Ia1 ,
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are constants of motion. Furthermore we verify
�

K1, bH
 

=
�

K2, bH
 

=
�

K1/2, bH
 

= 0,

as well as
�

K1, K2
 

=
�

K2, K1/2

 

=
�

K1/2, K1
 

= 0.

Moreover the previous quantities are independent. So bH admits four integrals
of motions that are independent and in involution and thus bH is completely
integrable.

4.1. Action angle variables for bH. — In this section we construct action
angle variables for bH in two particular regimes corresponding to two particular
set of initial data.
We begin with a partial construction common to both cases. The previous con-
siderations suggest that we make the following symplectic change of variables:
Denote by

✓ = t(✓a1 , ✓b1 , ✓b2 , ✓a2), I = t(Ia1 , Ib1 , Ib2 , Ia2).
Then we define the new variables

' = t('0, '1, '2, '1/2), K = t(K0, K1, K2, K1/2),

by the linear transform

(4.3)
✓

'
K

◆

=
✓

tB�1 0
0 B

◆✓

✓
I

◆

,

where the matrix B is given by

B =

0

B

B

@

1 0 0 0
1 1 0 0
0 0 1 1
1
2 0 1 0

1

C

C

A

and thus tB�1 =

0

B

B

@

1 �1 �1
2

1
2

0 1 0 0
0 0 0 1
0 0 1 �1

1

C

C

A

.

In the new variables (4.2) reads

(4.4)

8

<

:

'̇0 = � @ bH
@K0

K̇0 = @ bH
@'0

,

(

'̇j = � @ bH
@K

j

K̇j = 0
, for j = 1, 2, 3.

In the sequel, we will need the explicit expression of bH in these new coor-
dinates. Observe that for j = 1, 2 we have

I2
a

j

+ I2
b
j

= K2
j � 2Ia

j

Ib
j

and I3
a

j

+ I3
b
j

= Kj(K2
j � 3Ia

j

Ib
j

),

then if we introduce the notation

F (K1, K2) = K1 + 4K2 + (K1 + K2)(K2
1 + K2

2 + 8K1K2),
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the Hamiltonian bH reads

(4.5) bH = bH('0, K0, K1, K2, K1/2)

= F (K1, K2) + 6
⇥

(K1 + 3K2)Ia1Ib1 + (K2 + 3K1)Ia2Ib2 + 3I
1
2
a2I

1
2
b2

Ia1Ib1 cos(2'0)
⇤

,

where

Ia1 = K0, Ib1 = K1 �K0, Ib2 = K1/2 �
1
2
K0, Ia2 = K2 �K1/2 +

1
2
K0.

We now want to exhibit some particular trajectories ('0, K0), actually periodic
orbits around stable equilibrium. For that we particularise the coe�cients Kj

for j 6= 0.

Let A � 1/2. We set K1 = "2, K2 = A"2 and K1/2 = 1
2"2, and we denote

by
bH0('0, K0) := bH('0, K0, "

2, A"2,
1
2
"2).

The evolution of ('0, K0) is given by
8

<

:

'̇0 = �@ bH0
@K0

K̇0 = @ bH0
@'0

.

Then, we make the change of unknown

'0(t) = '("4t) and K0(t) = "2K("4t).

An elementary computation shows that, the evolution of (', K) is given by
8

<

:

'̇ = �@H
?

@K

K̇ = @H
?

@' .

where

(4.6) H? = H?(', K) =
3
2
(1�K)

h

(A + 3)(2A� 1) + (7 + 13A)K + 6(1�K)
1
2 (2A� 1 + K)

1
2 K cos(2')

i

.

4.1.1. First regime: A = 1/2. — In that case we have

H? = H?(', K) =
9
4
K(1�K)

h

9 + 4K
1
2 (1�K)

1
2 cos(2')

i

,

and the evolution of (', K) is given by

(4.7)

8

<

:

'̇ = �27
4 (1� 2K)

h

3 + 2K
1
2 (1�K)

1
2 cos(2')

i

K̇ = �18K
3
2 (1�K)

3
2 sin(2').
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The dynamical system (4.7) is of pendulum type. Let us define

(4.8) ? =
1
2
� 1

8

h

2(7
p

105� 69)
i1/2 ⇡ 0.208...,

we have

Proposition 4.2. — Let ? be given by (4.8). If ? < K(0) < 1 � ? and
'(0) = 0, then there is T > 0 so that (', K) is a 2T�periodic solution of (4.7)
and

K(0) + K(T ) = 1.

We denote by ('?, K?) such a trajectory.

O '

K

!0!1 !2

?

⇡/2�⇡/2

1

⇥⇥ ⇥

⇥

Figure 1 : The phase portrait of system (4.7)

Proof. — The line K = 0 and K = 1 are barriers and the phase portrait is
⇡-periodic in ' so we restrict our study to the region �⇡

2  '  ⇡
2 , 0 < K < 1.

In this domain, there are exactly three equilibrium points : !0 = (0, 1/2) which
is a centre and !1 = (�⇡/2, 1/2) and !2 = (⇡/2, 1/2) which are saddle points.
The level set H?(', K) = H?(!1) = H?(!2) = 63/16, which corresponds to
the equation

K(1�K)
�

9 + 4K
1
2 (1�K)

1
2 cos(2')

�

=
7
4
,

defines two heteroclinic orbits which link the points !1 and !2 : C1 in the
region {K < 1/2} and C2 in the region {K > 1/2} (see the dashed curves in
Figures 1&2). Moreover, we can explicitly compute the intersection (0, ?) of
the curve C1 with the K�axis, and we obtain (4.8).
Let eU ⇢]� ⇡/2, ⇡/2[⇥]?, 1� ?[\{!0} be the open domain delimited by the
curves C1 and C2 minus the point !0. Any solution issued from a point inside
eU is periodic and turns around the centre !0. Furthermore, let 2T be the
period, by symmetry we have ('(T ), K(T )) = (0, 1�K(0)).
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O '

K

!0!1 !2

?

�

'?, K?

�

⇡/2�⇡/2

C2

C1

1

⇥⇥ ⇥

Figure 2 : An example of trajectory ('?, K?)

By applying the Arnold-Liouville theorem (see e.g. [1]) inside eU we obtain

Lemma 4.3. — Let U ⇢⇢ eU , then there exists a symplectic change of vari-
ables � : U 3 (K, ') 7�! (L, ↵) 2 R>0 ⇥ S1 which defines action angle coordi-
nates for (4.7) i.e., (4.7) is equivalent to the system

L̇ = �@H?

@↵
= 0, ↵̇ =

@H?

@L
.

Moreover � is a C1-di↵eomorphism, and there exists C > 0 depending on U
so that

kd�k  C, kd��1k  C.

4.1.2. Second regime: A=4. — In that case we obtain

H? =
3
2
(1�K)

h

49 + 59K + 6(1�K)
1
2 (7 + K)

1
2 K cos(2')

i

,

and the evolution of (', K) is given by
(4.9)
8

<

:

'̇ = 3
h

59K � 5� 3(K + 7)�
1
2 (1�K)

1
2 (�3K2 � 16K + 7) cos(2')

i

K̇ = �18(1�K)
3
2 (7 + K)

1
2 K sin(2').

Proposition 4.4. —
Let � > 0 arbitrary small, and set ('(0), K(0)) = (0, �). Then there is T� > 0
so that (', K) is 2T��periodic and

K(T�) >
1
10

.

We denote by ('?, K?) such a trajectory.
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O '

K

!0

!1 !2 ⇡/2�⇡/2

1

⇥
⇥ ⇥

Figure 3 : The phase portrait of system (4.9)

Proof. — We restrict our study to the region 0  '  ⇡
2 , 0 < K < 1. First,

we study the sign of '̇. To begin with, observe that '̇ has exactly the sign of
f(K)� cos(2') where

f(K) =
1
3
(59K � 5)(K + 7)

1
2 (1�K)�

1
2 (�3K2 � 16K + 7)�1.

We verify that there exists 1/10 < 0 < 1/5 so that the function f is increasing
and one to one f : [0, 0] �! [�5

p
7/21, 1]. Thus, the curve C0 := {'̇ = 0}

can be expressed as a decreasing function K(') = f�1
�

cos(2')
�

.
Thanks to this study, and the expression of K̇, we deduce that the phase
portrait has exactly three equilibrium points : !0 = (0, 0) which is a centre
and !1 = (�'0, 0) and !2 = ('0, 0) which are saddle points (here 0 < '0 <
⇡/2 is defined by the equation f(0) = �5

p
7/21 = cos(2'0)). The level set

H?(', K) = H?(!1) = H?(!2) = 3
2 · 49, which is defined by the equation

10� 59K + 6(1�K)
3
2 (7 + K)

1
2 cos(2') = 0,

defines two heteroclinic orbits C1 := {K = 0} and C2 that link the two saddle
points (see the dashed curves in Figures 3&4).
Let eU2 ⇢]�⇡/2, ⇡/2[⇥]0, 1[\{!0} be the open domain delimited by the curves
C1 and C2 minus the point !0. Any solution issued from a point inside eU2 is
periodic and turns around the centre !0. Furthermore, let 2T be the period,
by symmetry we have '(T ) = 0 and K(T ) > 0.
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Figure 4 : An example of trajectory ('?, K?)

As in the first case, applying the Arnold-Liouville theorem inside eU we obtain

Lemma 4.5. — Let U ⇢⇢ eU2, then there exists a symplectic change of vari-
ables � : U 3 (K, ') 7�! (L, ↵) 2 R>0 ⇥ S1 which defines action angle coordi-
nates for (4.9) i.e., (4.9) is equivalent to the system

L̇ = �@H?

@↵
= 0, ↵̇ =

@H?

@L
.

Moreover � is a C1-di↵eomorphism, and there exists C > 0 depending on U
so that

kd�k  C, kd��1k  C.

4.1.3. On the other cases.— More generally, we can consider the case K1 = "2,
K2 = A"2 and K1/2 = B"2, where the constants A, B > 0 satisfy the natural
conditions A � B and B � 1/2. Roughly speaking, the mechanism is the
following. Consider the curve C0 = {'̇ = 0}. If C0 has no intersection with
{K = 0} and {K = 1}, then the dynamic is essentially the one of A = 1/2,
B = 1/2. On the contrary, if C0 has two intersections with {K = 0} or
{K = 1}, then the dynamic is essentially the one of A = 4, B = 1/2.

5. Proof of Theorems 1.3 and 1.4

Consider the Hamiltonian H given by (3.4), which is a function of
�

⇠j , ⌘j

�

j2Z. We make the linear change of variables given by (4.3) (the
variables ⇠j , ⌘j remain unchanged for j /2 A). In the sequel, the Hamiltonian
in the new variables is still denoted by H. Then H induces the system

(5.1)

8

<

:

'̇j = � @H
@K

j

K̇j = @H
@'

j

,

8

<

:

i⇠̇p = @H
@⌘

p

i⌘̇p = � @H
@⇠

p

, p /2 A.

Next, we take some initial conditions to (5.1) which will be close to the initial
conditions chosen for (4.4).
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Observe that the Kj ’s aren’t constants of motion of (5.1). However, they
are almost preserved, and this is the result of the next lemma. Recall that
A = {a2, a1, b2, b1},

K1 = Ia1 + Ib1 , K2 = Ia2 + Ib2 , and K1/2 = Ib2 +
1
2
Ia1 ,

and recall the notations of Proposition (3.3).

Lemma 5.1. — Assume that

(5.2) ⇠j(0), ⌘j(0) = O("), 8 j 2 A and ⇠p(0), ⌘p(0) = O("3), 8 p 62 A.

Then for all 0  t  C"�6,

(5.3) Ip(t) = O("6) when p 62 A,

and

K1(t) = K1(0) +O("10)t(5.4)
K2(t) = K2(0) +O("10)t(5.5)

K1/2(t) = K1/2(0) +O("10)t.(5.6)

Proof. — We first remark that by the preservation of the L2 norm in the NLS
equation, we have

X

p2Z
Ip(t) =

X

p2Z
Ip(0) for all t 2 R,

and therefore by using (5.2)

Ip(t) = O("2) for all p 2 Z and for all t.

On the other hand by Propositions 3.1 and 3.3, we have for p 2 Z
(5.7) İp =

�

Ip, H
 

=
�

Ip, Z
e
6

 

+
�

Ip, Z6,2
 

+
�

Ip, Z6,3
 

+
�

Ip, R10
 

.

• To prove (5.3), we first verify that for p /2 A,
�

Ip, Ze
6

 

= 0. Then, we
remark that, as a consequence of Lemma 2.4, all the monomials appearing in
Z6,2 have the form

⇠j1⇠j2⇠p1⌘`1⌘`2⌘p2 or ⇠`1⇠`2⇠p2⌘j1⌘j2⌘p1

where (j1, j2, p1, `1, `2, p2) 2 R, j1, j2, `1, `2 2 A and p1, p2 /2 A. Furthermore,
by straightforward computation,

(5.8)
�

Ip1 + Ip2 , ⇠j1⇠j2⇠p1⌘`1⌘`2⌘p2

 

=
�

Ip1 + Ip2 , ⇠`1⇠`2⇠p2⌘j1⌘j2⌘p1

 

= 0.

Then we define an equivalence relation : Let p, ep 62 A. We say that p and ep
are linked and write p $ ep if there exist k 2 N⇤, a sequence (q(i))1ik 62 A so
that q(1) = p, q(k) = ep and j(i)

1 , j(i)
2 , `(i)

1 , `(i)
2 2 A satisfying

(j(i)
1 , j(i)

2 , q(i), `(i)
1 , `(i)

2 , q(i+1)) 2 R, for all 1  i  k � 1.
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For p 62 A, we define Jp =
X

q$p

Iq (the sum over all indexes q which are linked

to p). We observe that Jp is a sum of positive quantities, one of them being
Ip. So the control of Jp induces the control of Ip.
In view of (5.8) we have

�

Jp, Z6,2
 

= 0
and thus

J̇p =
�

Jp, Z6,3
 

+
�

Jp, R10
 

, when p 62 A.

Furthermore all the monomials appearing in
�

Jp, R10
 

are of order 10 and
contains at least one mode out of A. Therefore as soon as (5.3) remains valid,
we have

J̇p(t) = O("3+3⇥3) +O("9+3)
and thus

|Jp(t)| = O("6) + t O("12).
We then conclude by a classical bootstrap argument that (5.3) holds true for
t  C"�6.
• It remains to prove (5.4)-(5.6). Again this is proved by a bootstrap argu-

ment. To begin with, we verify by direct calculation that for all p 2 �

1/2, 1, 2
 

,
�

Kp, Z
e
6

 

= 0.

Therefore, by using (5.7) we deduce that for all p 2 �

1/2, 1, 2
 

(5.9) K̇p =
�

Kp, Z6,2
 

+
�

Kp, Z6,3
 

+
�

Kp, R10
 

.

Then we use that each monomial of Z6,2 contains at least two terms with
indices p0 62 A (see Proposition 3.3). Therefore, as soon as (5.2) holds, we
have |�Kp, Z6,2

 |  C"10. Furthermore |�Kp, R10
 |  C"10. Therefore, by

(5.9),
Kp(t) = Kp(0) + t O("10).

Finally, to recover the bounds (5.2), we have to demand that t is so that
0  t  "�6, which was the claim.

From now, we fix the initial conditions

(5.10)
K1(0) = "2, K2(0) = A"2, K1/2(0) = "2/2,

and |⇠j(0)|, |⌘j(0)|  C"3 for j /2 A.

Let H be given by (3.4). Then according to the result of Lemma 5.1 which
says that for a suitable long time we remain close to the regime of Section
4, we hope that we can write H = bH0 + R, where R is an error term which
remains small for times 0  t  "�6.
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We focus on the motion of ('0, K0) and as in the previous section, we make
the change of unknown

(5.11) '0(t) = '("4t) and K0(t) = "2K("4t),

and we work with the scaled time variable ⌧ = "4t. Then we can state

Proposition 5.2. — Consider the solution (5.1) with the initial conditions
(5.10). Then (', K) defined by (5.11) satisfies for 0  ⌧  "�2

(5.12)

(

'̇ = �@H
?

@K +O("2)

K̇ = @H
?

@' +O("2),

where H? is the Hamiltonian (4.6)

H? =
3
2
(1�K)

h

(A+3)(2A�1)+(7+13A)K+6(1�K)
1
2 (2A�1+K)

1
2 K cos(2')

i

.

Proof. — First recall that bH = bH('0, K0, K1, K2, K1/2) is the reduced Hamil-
tonian given by (4.5). By Propositions 3.1 and 3.3 we have

(5.13) H = bH + RI + Z6,2 + Z6,3 + R10,

where RI is the polynomial function of the actions Ij defined by (recall that
J =

P

k2N Kp)

RI = 6
�

J3 � (K1 + K2)3
�� 9J

X

k2Z
I2
k + 9(K1 + K2)

X

k2A
I2
k +

+
X

j /2A

j2Ij + 4
X

k 62A
I3
k .

Notice that RI vanishes when Ik = 0 for all k /2 A since RI is in fact the part
of N + Zi

6 that does not depend only on the internal variables (Ik)k2A.
Thanks to the Taylor formula there is Q so that

bH('0, K0, K1, K2, K1/2) = bH('0, K0, "
2, A"2, "2/2) + Q

= bH0 + Q.(5.14)

Thus, by (5.13) and (5.14) we have H = bH0 + R with

R = Q + RI + Z6,2 + Z6,3 + R10.

By (5.1), ('0, K0) satisfies the system
8

<

:

'̇0(t) = � @H
@K0

('0(t), K0(t), . . . )

K̇0(t) = @H
@'0

('0(t), K0(t), . . . ),
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where the dots stand for the dependance of the Hamiltonian on the other
coordinates. Then, after the change of variables (5.11) we obtain

8

<

:

'̇(⌧) = � 1
"6

@H
@K ('(⌧), "2K(⌧), . . . )

K̇(⌧) = 1
"6

@H
@' ('(⌧), "2K(⌧), . . . ).

Now write H = bH0 + R and observe that bH0(', "2K) = C" + "6H?(', K). As
a consequence, (', K) satisfies

8

<

:

'̇ = �@H
?

@K � 1
"6

@R(',"2K,... )
@K

K̇ = @H
?

@' + 1
"6

@R(',"2K,... )
@' .

Thus it remains to estimate @'R(', "2K, . . . ) and @KR(', "2K, . . . ). Remark
that ' and K are dimensionless variables. Thus, if P is a polynomial involving
p internal modes, (⇠j , ⌘j)j2A, and q external modes, (⇠j , ⌘j)j /2A, we have by
using Lemma 5.1

@'P (', "2K, . . . ) = O("p+3q), @KP (', "2K, . . . ) = O("p+3q).

Then notice that RI contains only monomials involving at least one external
actions (Ik)k/2A. Therefore we get

@'RI(', "2K, . . . ) = O("10), @KRI(', "2K, . . . ) = O("10),
@'Z6,2(', "2K, . . . ) = O("10), @KZ6,2(', "2K, . . . ) = O("10),
@'Z6,3(', "2K, . . . ) = O("12), @KZ6,3(', "2K, . . . ) = O("12),
@'R10(', "2K, . . . ) = O("10), @KR10(', "2K, . . . ) = O("10).

On the other hand, by construction Q reads P1�K1 + P2�K2 + P1/2�1/2

where P1, P2 and P1/2 are polynomials of order 2 in K0, K1, K2, K1/2 and
"2 while �Kj denotes the variation of Kj : �Kj = Kj �Kj(0). Using again
Lemma 5.1, we check that for 0  ⌧  "�2

@'Q = O("8), @KQ = O("8),

hence the result.

Now we choose some precise initial conditions for (', K). We take '(0) = 0
and ? < K(0) < 1 � ? as in Theorem 1.3 or K(0) = � ⌧ 1 as in Theorem
1.4. We also consider the solution ('?, K?) to (4.7) with initial condition
('?, K?)(0) = (', K)(0). Then

Lemma 5.3. — For all 0  ⌧  "�2 we have

(', K)(⌧) = ('?, K?)(⌧) +O("2)⌧,
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Proof. — Consider the system (5.12), and apply the change of variable
(L, ↵) = �(K, ') defined in Lemma 4.3. Using (5.12) and the fact that d� is
bounded (cf. Lemma 4.3), we obtain that for 0  ⌧  "�2

d

d⌧
(L, ↵) =

d

d⌧
�(K, ') = d�(K, ').(K̇, '̇)

= d�(K, ').(
@H?

@'
,�@H?

@K
) +O("2)

= (
@H?

@↵
,�@H?

@L
) +O("2)

= (0,�@H?

@L
) +O("2).

Therefore there exists L? 2 R so that L(⌧) = L? + O("2)⌧ and if we define
!? = �@H

?

@L (L?), we obtain ↵(⌧) = !?⌧ +O("2)⌧ . Next, as d��1 is bounded,
we get

(', K)(⌧) = ��1
�

L(⌧), ↵(⌧)
�

= ��1
�

L?, !?⌧
�

+O("2)⌧

= ('?, K?)(⌧) +O("2)⌧,

where ('?, K?)(⌧) is the solution of (4.7) so that ('?, K?)(0) = (', K)(0).

Proof of Theorems 1.3 and 1.4. — As a consequence of Lemma 5.3, the solu-
tion of (5.1) satisfies for 0  t  "�6

K0(t) = "2K?("4t) +O("8)t
'0(t) = '?("4t) +O("6)t.

This completes the proof of the main results : The error term q1 comes from
the normal form reduction (see Proposition 3.1), and the error term q2 comes
from the O("6) above (recall that ⌫ = "4).
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Appendix A

We prove Lemma 3.2:
The first assertion is trivial. Concerning the second one we have

||XP (⇠, ⌘)||⇢ =
X

k2Z
e⇢|k|

✓

�

�

�

�

@Q

@⇠k

�

�

�

�

+
�

�

�

�

@Q

@⌘k

�

�

�

�

◆

 p[P ]
X

k2Z
e⇢|k|

X

j1,··· ,j
p�1,`1,··· ,`

p

2Z
M(j1,··· ,j

p�1,k;`1,...,`
p

)=0

�

�⇠j1 · · · ⇠j
p�1⌘`1 · · · ⌘`

p

�

�+
�

�⇠`1 · · · ⇠`
p

⌘j1 · · · ⌘j
p�1

�

�

 p[P ]
X

j1,··· ,j
p�1,`1,··· ,`

p

2Z

�

�

�

⇠j1e
⇢|j1| · · · ⇠j

p�1e
⇢|j

p�1|⌘`1e
⇢|`1| · · · ⌘`

p

e⇢|`
p

|
�

�

�

+

+ p[P ]
X

j1,··· ,j
p�1,`1,··· ,`

p

2Z

�

�

�

⇠`1e
⇢|`1| · · · ⇠`

p

e⇢|`
p

|⌘j1e
⇢|j1| · · · ⌘j

p�1e
⇢|j

p�1|
�

�

�

 2p[P ]||(⇠, ⌘)||2p�1
⇢ ,

where we used,

M(j1, · · · , jp�1, k; `1, . . . , `p) = 0 ) |k|  |j1|+ · · ·+ |jp�1|+ |`1|+ · · ·+ |`p|.
Assume now that P 2 Pp and Q 2 Pq with coe�cients aj` and bj`. It is clear
that {P,Q} is a monomial of degree 2p+2q�2 satisfying the zero momentum
condition. Furthermore writing

{P,Q}(⇠, ⌘) =
X

(j,`)2Z2p+2q�2

cj`⇠j1 · · · ⇠j
p+q�1⌘`1 · · · ⌘`

p+q�1 ,

where cj` is expressed as a sum of coe�cients aikbnm for which there exists
s 2 Z such that

i [ n \ {s} = j and k [m \ {s} = `.

For instance if s = i1 = m1 then necessarily j = (i2, · · · , ip, n1, · · · , nq) and
` = k1, . . . , kp, m2, · · · , mq. Thus for fixed (j, `), you just have to choose which
of the indices i you excise and which of indices m you excise or, symmetrically,
which of the indices n you excise and which of indices k you excise. Note that
the value of s is automatically fixed by the zero momentum condition on (i, k)
and on (n, m). So

|cj`|  2pq[P ][Q].

Appendix B

We give here a method to compute the terms which appear in Z6,2 (see
Proposition 3.3). Let A be a resonant set.
Let (j1, j2, j3, `1, p1, p2) 2 R. Assume that j1, j2, j3, `1 2 A. Then by Lemma
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2.4, we deduce that p1, p2 2 A. As a consequence, the only terms which will
give a nontrivial contribution to Z6,2 are of the form (j1, j2, p1, j3, j4, p2) 2 R,
with j1, j2, j3, j4 2 A and p1, p2 62 A.

Let j1, j2, `1, `2 2 A and p1, p2 2 N so that

(B.1)

(

p2 � p1 = j1 + j2 � `1 � `2,

p2
2 � p2

1 = j2
1 + j2

2 � `2
1 � `2

2.

By Lemma 2.3, there exist k 2 Z⇤ and n 2 N so that A =
�

n, n + 3k, n +
4k, n+k

 

. Hence, there exist n, k 2 Z and (ms)1j4 with ms 2
�

0, 1, 3, 4
 

so
that js = n+msk and `1 = n+m3k, `2 = n+m4k. We then define q1, q2 2 Q
by p1 = n + q1k and p2 = n + q2k. We plug these expressions in (B.1) which
gives

(

q2 � q1 = m1 + m2 �m3 �m4 := U,

q2
2 � q2

1 = m2
1 + m2

2 �m2
3 �m2

4 := V.

When U 6= 0, we can solve this latter equation and we obtain

q2 =
1
2
(
V

U
+ U), q1 =

1
2
(
V

U
� U).

By symmetry, we can assume that m1 � m2, m3 � m4. We also observe that
(m1, m2, p1, m3, m4, p2) is a solution i↵ (m3, m4, p2, m1, m2, p1) is a solution.
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Values of ms Value of V Values of U Value of q2 Value of q1

4400 32 8 6 -2
4401 31 7 40/7 -9/7
4411 30 6 11/2 -1/2
4431 22 4 19/4 3/4
4430 23 5 24/5 -1/5
4433 14 2 9/2 5/2
4300 25 7 37/7 -12/7
4301 24 6 5 -1
4311 23 5 24/5 -1/5
4100 17 5 21/5 -4/5
4103 8 2 3 1
4133 -1 -1 0 1
4011 14 2 9/2 5/2
4031 6 0 ⇥ ⇥
4033 -2 -2 -1/2 3/2
3300 18 6 9/2 -3/2
3301 17 5 21/5 -4/5
3311 16 4 4 0
3100 10 4 13/4 -3/4
3011 7 1 3 4
1100 2 2 3/2 -1/2

Example B.1. — Assume that A = {�2, 1, 2,�1}. Then n = �2 and k = 1,
so that p1 = �2 + q1 and p2 = �2 + q2. We only look at the integer values in
the two last columns, and we find (up to permutation)

4400 : (2, 2,�4, 2, 2, 4), 4301 : (2, 1,�3,�2,�1, 3).

Assume that A = {�1, 5, 7, 1}. Then n = �1 and k = 2, so that p1 = �1+2q1

and p2 = �1 + 2q2. In this case, we look at the half-integer values in the two
last columns, and we find (up to permutation)

4400 : (7, 7,�5,�1,�1, 11), 4411 : (7, 7,�2, 1, 1, 10),
4433 : (7, 7, 4, 5, 5, 8), 4301 : (7, 5,�3,�1, 1, 9),

4011 : (7,�1, 4, 1, 1, 8), 4033 : (7,�1, 2, 5, 5,�2),
3300 : (5, 5,�4,�1,�1, 8), 1100 : (1, 1,�2,�1,�1, 2).
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[8] B. Grébert, T. Kappeler and J. Pöschel. The defocusing NLS equation and its
normal form. To appear.
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CNRS 6629, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France.
E-mail : benoit.grebert@univ-nantes.fr
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